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Abstract—Federated learning (FL) over mobile devices is an
emerging distributed learning paradigm for numerous delay
sensitive applications. In FL, the training delay is composed
of the computing and communication delay. Some of the par-
ticipating mobile devices may have slow local computing or
wireless communications, which results in high FL training
delay. Intuitively, if fast devices help slow ones, the FL training
delay can potentially be reduced. However, helping each other
among devices requires frequent transmissions and may cause
additional delay. Fortunately, we observe that Device-to-Device
(D2D) transmission, a fast and direct transmission, may be
applied between device pairs to mitigate the additional delay
from frequent transmissions. Inspired by those observations,
we develop the D2D transmission assisted FL (DAFL), a novel
FL scheme to improve the training delay over mobile devices.
Briefly, we first put the eligible mobile devices into pairs, each
pair consisting of a fast and a slow device. Then, we apply
D2D transmission between each device pair to: (1) improve the
transmission delay of each pair, by letting the fast device help
with the model parameters transmission to the server, and (2)
improve the computing delay by splitting learning task between
paired devices. The emulation results demonstrate that DAFL
surpasses existing peer designs in terms of reducing training
delay by more than 20%.

Index Terms—Federated learning, Delay efficiency, D2D trans-
missions, Split learning.

I. INTRODUCTION

Nowadays, federated learning (FL) is considered a promis-

ing distributed deep learning (DL) solution, which can yield

efficient and privacy-preserving collaborative training over

many devices [1]. Meanwhile, with ever-increasing computing

capability, mobile devices can conduct the on-device training

of more and more deep neural network (DNN) models. FL

over mobile devices has prompted numerous applications,

such as keyboard predictions [2], physical hazard detection

in smart homes [3], health event detection [4], etc. A key

obstacle to unleash the full potential of FL over mobile

devices is the long training delay, especially for delay-

sensitive mobile applications. One of the possible reasons

behind this is the device heterogeneity among FL clients,

which can be defined as diverse computing capabilities and

communication conditions [5]. Among those mobile devices,

“slow” performing ones are considered stragglers for the FL

training. In FL, the server and other devices may need to wait

for all the stragglers to finish their local updates. Therefore,

the FL training delay is bottlenecked by such slow devices.

Fig. 1. Time delay of a single-round local update on different hardware
platforms with varying communication conditions.

For illustrative purpose, we conducted an empirical study

on the training delay by performing one round of FL on

ResNet20 model over independent and identically distributed

(IID) CIFAR10 dataset. We evaluated the training delay of

local training on two NVIDIA Jetson family platforms (i.e.,

Nano and TX2), under different wireless accessing tech-

nologies, i.e., LTE and Wi-Fi 5, respectively. As shown in

Fig. 1, the training delay per round on Nano using LTE

communication is 4.15 times more than that of TX2 using

Wi-Fi 5. This huge delay gap stems from the device hetero-

geneity, i.e., the differences of computing and communication

capabilities. In terms of computing, TX2 (1.33 TFLOPs) has

a higher computing capacity than Nano (472 GFLOPs). In

terms of communications, Wi-Fi 5 (100 Mbps) has a faster

transmission rate than LTE (20 Mbps).

In the literature, there are many existing approaches to

address straggler issues due to device heterogeneity [6]–[10].

For example, the participation selection approaches in [8]–

[10] allow FL server to select the fast devices for performing

model updates and abandon the stragglers. However, since

only the fast devices are chosen for partial participation, the

training may become biased over slow devices, which can lead

to accuracy drop [11], [12]. Asynchronous FL [13] is another

possible solution, which allows for asynchronous local model

updates for FL aggregation. Nevertheless, the slow devices

may become stale to the global model, which may cause the

accuracy drop of FL training [8].

To reduce training delay while keeping learning accuracy,

an intuitive idea is to let the fast devices (i.e., high computing
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and communication capability) help slow devices (i.e., low

computing and communication capability) to conduct the

training. However, such an attempt is challenging because

the frequent transmissions among devices may incur extra

large transmission delays. Fortunately, we find that Device-

to-Device (D2D) transmission (e.g., Wi-Fi Direct) [14] offers

a direct and fast communication option among nearby mo-

bile devices, which can serve as an enabling technology to

facilitate fast devices to help slow ones in FL training.

Specifically, to reduce the communication delay, the slow

device, which has poor wireless connections with FL server,

can send its model parameters to the fast device, which

has good wireless connections with FL server, via D2D

communications. The fast device then aggregates the two

model updates from both the slow device and fast device, and

uploads the aggregated update to the FL server. In this way,

the transmission delay of the slow device and thus that of FL

training can be potentially reduced. Furthermore, to reduce the

computing delay, we propose to apply split learning (SL) [15]

to collaboratively train the slow device’s local model between

the fast device and slow device. The SL activation exchange

between the slow device and the fast device will be transmitted

via high-speed D2D communications. In this way, SL splits

the training workload between slow and fast devices, which is

promising to reduce the computing delay of the slow device.

Despite the benefits above, there are two major challenges

to fulfill the idea of ”fast device helping slow device”.

First, how to pair slow and fast devices given their location

constraints to effectively reduce the training delay in FL?

Second, how to optimally determine the model layer to split

between the paired slow and fast devices? Note that the delay

of SL is jointly determined by the activation transmission and

the split model training between slow and fast devices [16].

To address those challenges, in this paper, we propose a

D2D transmission assisted FL (DAFL) scheme to improve

delay efficiency of FL over mobile devices. DAFL design

spans over multi-lateral knowledge of D2D communications,

matching theory and FL, and the main contributions of DAFL

are summarized as follows.

• We introduce DAFL framework which leverages D2D

communications and SL to reduce the communication

and computing delay in FL training.

• In DAFL, we exploit matching theory to pair the slow

and fast devices considering their geo-location con-

straints, where the preferences are based on the com-

puting and communication latency of the mobile device

per FL round.

• To reduce computing delay, we employ SL to split the

local computing workload between the paired slow and

fast devices, and identify the optimal model layer to split,

through in-depth analysis.

• We perform emulations with a group of mobile devices

in a given area and show that DAFL outperforms its peer

designs and is effective in improving delay efficiency in

FL training.

II. SYSTEM MODEL

We consider a set of N devices as clients and a server in a

federated learning system. For computation, given any client

device n ∈ N , we let pn be the AI performance (FLOPs) of

device n. For communication, we let rn = r(n, S) denote the

transmission rate between device n and the server S. We let

rn,m = r(n,m) denote the transmission rate between client

devices n and m, known as the D2D transmission.

To determine whether a device has fast or slow comput-

ing, we use common computing devices in the real world

as reference. The following devices are Jetson Nano (472
GFLOPs), Jetson TX2 (1.33 TFLOPs), and Jetson Xavier NX

(21 TFLOPs), indicating their AI performances for computing.

We determine 1 TFLOPs as the threshold between fast and

slow computing. To determine whether a device has fast or

slow transmission, we use real world transmission rate of Wi-

Fi 5 (50 Mbps) and LTE (10 Mbps) as references to define

10 Mbps as the threshold between fast and slow transmission

devices. In addition, given any two devices n and m, the D2D

transmission rate rn,m is always higher than the transmission

rate between individual device and the server (rn and rm).

Such condition can be indicated by the following relation,

max
π∈{n,m}

{rπ} < rn,m. (1)

We consider a DNN of L = {1, 2, ..., L} layers. Let

Mm
i ,Mn

i denote the i-th layer of device m,n model. Hence,

the full model for device n and m are
∑L

i=1 M
n
i and∑L

i=1 M
m
i . Let T cn(·) and T cm(·) be delay functions for

device n and device m respectively, in terms of AI perfor-

mance. We denote the computing delay of the i-th layer of

DNN on device n and device m by T cn
i = T cn(pn,M

n
i )

and T cm
i = T cn(pm,Mm

i ). Next, we define a function

T tr(·) to represent parameter transmission delay. Then, the

transmission delay for the i-th layer between device n and

server is denoted by T trn
i = T tr(rn), and the transmission

delay for the i-th layer between client device n and m is

denoted by T
trn,m

i = T tr(rn,m). The transmission delay

in this paper consists of both uplink and downlink delay.

Consequently, the goal of our work is to find the minimum

training delay Tn,m for each pair of devices(n,m) ∈ N .

III. D2D ASSISTED FL OVER MOBILE DEVICES

We divide DAFL into three sections: pre-processing,

training process, and post-processing sections. In the pre-

processing section, we pair up devices with each pair consist-

ing of one fast and one slow device. In the training section,

we run each pair of devices under a designed process, where

model upload assisting improves the transmission delay and

SL helps with the computing delay. In the post-processing

section, we apply partial client participation by selecting the

devices with better performance, in terms of model conver-

gence contribution.
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A. Pre-processing: matching based device pairing

We consider a set of heterogeneous devices distributed in

a given area. Each individual device has its own computation

and transmission speed. Our goal is to pair up these devices,

with each pair consisting of one slow training device and one

fast training device (computation + transmission delay).

We pair the devices based on the concept of stable marriage

matching, a bipartite one-to-one matching problem with two-

sided preferences [17]. Originally in stable marriage matching,

clients find their own partner to pair with based on their

preference list. In our work, however, we use the central server

to determine the pair arrangement. We first have clients report

their training delay (computation + transmission) to the server.

Then, server splits the devices into two sides, S consisting of

slow training devices and F consisting of fast training devices.

Tk and Tl denote the training delay of fast training device k, l
for one round, where k, l ∈ F . For a slow training device u
where u ∈ S , we can construct a preference relation �u over

all fast devices as follows,

k �u l ⇔ 1

Tk
× vu,k �u

1

Tl
× vu,l, k, l ∈ F ,

vu,k =

{
1, if du,k < dth,

0, otherwise.
(2)

Here du,k denotes the distance between u and k, and dth
denotes the D2D transmission distance threshold. Tu and Tv

denote the training delay of slow training device u, v for one

round, where u, v ∈ S For a fast training device k where

k ∈ F , we can construct a preference relation �k over all

slow devices as follows,

u �k v ⇔ Tu × vu,k �k Tv × vv,k, u, v ∈ S. (3)

After constructing the preference for both sides, the server

pairs up clients based on the preference list. The outcome of

our matching consists of slow-fast device pairs.

B. Training process: D2D assisted training for paired devices

For each pair of devices, there is one fast device and one

slow device. We take device pair (n,m) as an example, where

device n is the fast device and device m is the slow device.

The relation of transmission and delay of the two devices and

the server are defined as follows.

T trn
i = α× T trm

i , (4)

T
trn,m

i = β × T trm
i , (5)

where i ∈ L. Let h denote the number of iterations for local

training per transmission round. The training delay of this pair

under traditional FL for one communication round is,

Tn,m = max
π∈{n,m}

{
h×

L∑
i=1

T cπ
i +

L∑
i=1

T trπ
i

}

= h×
L∑

i=1

T cm
i +

L∑
i=1

T trm
i . (6)

Fig. 2. The sketches of FL training per round for the paired slow and fast
devices, where the upper one is traditional FL and the lower one is DAFL.

Specifically, the training assisting process consists of two

primary components, namely, SL and model upload assisting.

For SL, since device m is the slow device, it is only necessary

to perform SL on device m. Hence, the model on device

m is split into two parts, with l being the split layer. The

first part of the model
∑l

i=1 M
m
i is on the device m side

and the second part
∑L

i=l+1 M
m
i is on the device n side.

At the start, device m performs forward propagation on the

first part of the model
∑l

i=1 M
m
i , while device n performs

forward propagation on its own full model
∑L

i=1 M
n
i . Later

on, device m transmits its activation to device n to perform

forward and backward propagation of the second part of the

model
∑L

i=l+1 M
m
i . Device n then sends back the gradients

at the split layer to device m to finish rest of the backward

propagation for
∑l

i=1 M
m
i , meanwhile device n finishes its

own full model
∑L

i=1 M
n
i of backward propagation. After

both the devices complete their local training, we perform

model upload assisting to aid the slower device m. To achieve

this, device m transmits its model parameters to the faster

device n through D2D transmission. Device n then aggregates

the model parameters from both the devices and uploads to

the server.

To measure the training delay of our training assisting

method for one communication round, we provide the fol-
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lowing relation,

TDAFL
n,m = min

l∈L
{h× (

l∑
i=1

T cm
i +

L∑
i=l+1

T cn
i + T

trn,m

l )}

+

L∑
i=1

T
trn,m

i +

L∑
i=1

T trn
i

= h× (

l∗∑
i=1

T cm
i +

L∑
i=l∗+1

T cn
i + T

trn,m

l∗ )

+
L∑

i=1

T
trn,m

i +

L∑
i=1

T trm
i . (7)

We subtract Eqn. (6) from Eqn. (7) to show the difference as,

TDAFL
n,m − Tn,m

= h× (

L∑
i=l∗+1

(T
cnD
i − T cm

i ) + T
trn,m

l∗ )

+
L∑

i=1

T
trn,m

i +

L∑
i=1

T trn
i −

L∑
i=1

T trm
i

= h× (

L∑
i=l∗+1

(T cn
i − T cm

i ) + T
trn,m

l∗ )

+ (α+ β − 1)×
L∑

i=1

T trm
i . (8)

To make Eqn. (8) less than 0, our work must satisfy the

following condition: β < α < 0.5. This implies that device

n has to be at least twice as fast as device m in terms of

transmission speed, and the D2D transmission rate needs to

be higher than device n’s transmission rate. Moreover, the SL

process must meet the potential splitting points condition in

P given by,

P = {l ∈ L|
L∑

i=l+1

T cn
i + T

trn,m

l <

L∑
i=l+1

T cm
i }. (9)

The detailed processes per round for device pair (n,m) can

be seen in Fig. 2, where the upper scheme shows the process

of traditional FL and the lower scheme shows the training

assisting method under DAFL.

C. Post-processing: partial client participation
For every round of local training and updating, straggler

issues occur when training delay is bottleknecked by slow

devices. Despite applying our method, there is still a chance

of straggler issues if some slow devices are too far away to be

paired up, or if the devices around them are also slow and thus

cannot help with the training. Hence, to consider this scenario,

at the post-processing section after the training process, we

apply partial client participation to evaluate our performance.

Overall, for a given round in post-training section, we choose

devices with better model convergence to participate [8], [9].

By doing so, a portion of devices that could potentially be

the bottleneck of FL will not be selected. Consequently, we

address the straggler issue and training delay will be reduced.

IV. PERFORMANCE EVALUATION

A. Experimental setup

We use image classification as the FL task, and choose

VGG19 and ResNet20 as three local DNN models. To meet

the splitting points condition in Eqn. (9) in Sec. III-B, we

select the split layer for SL as the first max-pooling layer for

VGG19, and the first batch normalization layer for ResNet20.

The open dataset we use is CIFAR10. Each device contains

5000 training data out of a total of 50, 000 training examples

for CIFAR10. We use the SGD optimizer with a learning rate

of 0.01 for all approaches. The SGD weight decay is set to

0.0001 and the SGD momentum is set to 0.9. The number of

local iterations is set to 10 for all approaches. The batch size

is set to 64, and the number of communication rounds R is

set to 700.

To simulate the computationally limited mobile devices, we

use NVIDIA Jetson TX2 and Jetson Nano as our devices.

We use NVIDIA RTX 8000 that has 16.31 TFLOPs peak

performance and 48GB memory as the server in FL with

much higher computation performance. We employ LTE for

slow devices’ transmissions, and Wi-Fi 5 for fast devices’

transmissions to the FL server. Wi-Fi Direct is used for D2D

transmissions among paired devices. The transmission rates

for Wi-Fi 5, LTE and Wi-Fi Direct are 100 Mbps, 20 Mbps

and 150 Mbps, respectively.

We conduct an emulation involving 20 mobile devices

in a 30000 m2 circular area participating in FL process.

We use Jetson Nano with LTE and Jetson TX2 with Wi-

Fi 5 to represent slow and fast training devices respectively.

The devices are randomly assigned in the area, each with

the radius of 60m representing the transmission range for

D2D transmission. After pairing, we apply D2D transmission

between the device pairs and SL for the slower device of the

pair. After obtaining the training delay, we apply partial client

participation to select the devices. We then perform training

with the set number of communication rounds and obtain the

average training delay.

B. Result analysis

We compare DAFL with FedAvg, a general federated

learning algorithm with partial client participation to deal

with straggler issues due to device heterogeneity. DAFL

has the benefit of reducing computation delay with SL and

improving transmission delay with D2D transmission. In

addition, we take SFL [18] as our other comparison method.

Both DAFL and SFL use the concept of SL for computa-

tion delay reduction. DAFL, however, applies SL between

clients, while SFL performs SL between clients and server.

Furthermore, our method holds the benefit of less computing

and communication burden on the server side. DAFL also

introduces D2D transmission between devices, which can

further save transmission time during activation transmission

in comparison with SFL.

To analyze the training delay performance, we compare

DAFL with other baselines on ResNet20 and VGG19 models
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(a) ResNet20

(b) VGG19

Fig. 3. Test accuracy of models ResNet20 and VGG19 under CIFAR10 IID
dataset with participation rate p = 0.8.

under CIFAR10 dataset, with partial client participation rate

p = 0.8. From Fig. 3, we can conclude that our method

reaches the target accuracy faster with high partial client

participation rate. Moreover, our work is viable with non-IID

dataset as well. As shown in Fig. 4, our method outperforms

the baselines in terms of training delay.

To analyze the impact of device density on the training

delay, we aim to alter the size of the area in which the

devices are located. In our default set up of device sparsity and

distribution, we have 20 client devices randomly distributed in

a 30, 000m2 area and the range for D2D transmission is 30m.

We first determine a sparse scenario, in which 20 devices

are randomly distributed in a 60, 000m2 area. With wider

space, devices are more distant to one other and thus, the

chance of devices being paired up is lowered. As a result,

our work improves less under sparse areas. On the other

hand, a dense scenario with 20 devices randomly distributed

in 15, 000m2 area, where devices are closer, the chance of

pairing up increases. Therefore, our work improves even more

in dense areas. This influence of different space sparsity ratio

(a) ResNet20

(b) VGG19

Fig. 4. Test accuracy of models ResNet20 and VGG19 under CIFAR10
non-IID dataset with participation rate p = 0.8.

on training delay is shown in Fig. 5 for IID and non-IID data.

To assess the impact of device location distribution, we

choose normal distribution and grid distribution for compari-

son. This is plotted in Fig. 6 for both IID and non-IID datasets.

As seen in the figure, when devices are distributed normally, a

majority of them are close to each other, increasing the chance

of pairing up. This can be further improved in dense areas as

our method works even better.

V. CONCLUSION

In this paper, we have proposed DAFL, a FL framework

that addressed straggler issues due to device heterogeneity

and provided delay efficient FL process over mobile devices.

We have designed a matching scheme for pairing devices

into pairs of fast and slow devices (straggler) in terms of

transmission rate and computing capability. For each pair of

devices, we have applied a training assisting method to reduce

the training delay. The method included D2D transmission for

reducing transmission delay, and SL for reducing computing

delay of slow devices. We have also applied partial client
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(a) IID, target accuracy: 0.8

(b) non-IID, target accuracy: 0.65

Fig. 5. Total training delay of model updates for different space sparsity of
different methods, with partial client participation rate p = 0.8 on ResNet20.

(a) IID, target accuracy: 0.8

(b) non-IID, target accuracy: 0.65

Fig. 6. Total training delay for different device location distributions of
different methods, with partial client participation rate p = 0.8 on ResNet20.

participation at the end of each round to further reduce the

training delay. We have compared DAFL with other schemes

and shown a considerable training delay reduction by 0.21x

to 0.28x.
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