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Abstract—Federated learning (FL) over mobile devices is an
emerging distributed learning paradigm for numerous delay
sensitive applications. In FL, the training delay is composed
of the computing and communication delay. Some of the par-
ticipating mobile devices may have slow local computing or
wireless communications, which results in high FL training
delay. Intuitively, if fast devices help slow ones, the FL training
delay can potentially be reduced. However, helping each other
among devices requires frequent transmissions and may cause
additional delay. Fortunately, we observe that Device-to-Device
(D2D) transmission, a fast and direct transmission, may be
applied between device pairs to mitigate the additional delay
from frequent transmissions. Inspired by those observations,
we develop the D2D transmission assisted FL. (DAFL), a novel
FL scheme to improve the training delay over mobile devices.
Briefly, we first put the eligible mobile devices into pairs, each
pair consisting of a fast and a slow device. Then, we apply
D2D transmission between each device pair to: (1) improve the
transmission delay of each pair, by letting the fast device help
with the model parameters transmission to the server, and (2)
improve the computing delay by splitting learning task between
paired devices. The emulation results demonstrate that DAFL
surpasses existing peer designs in terms of reducing training
delay by more than 20%.

Index Terms—Federated learning, Delay efficiency, D2D trans-
missions, Split learning.

I. INTRODUCTION

Nowadays, federated learning (FL) is considered a promis-
ing distributed deep learning (DL) solution, which can yield
efficient and privacy-preserving collaborative training over
many devices [1]. Meanwhile, with ever-increasing computing
capability, mobile devices can conduct the on-device training
of more and more deep neural network (DNN) models. FL
over mobile devices has prompted numerous applications,
such as keyboard predictions [2], physical hazard detection
in smart homes [3], health event detection [4], etc. A key
obstacle to unleash the full potential of FL over mobile
devices is the long training delay, especially for delay-
sensitive mobile applications. One of the possible reasons
behind this is the device heterogeneity among FL clients,
which can be defined as diverse computing capabilities and
communication conditions [5]. Among those mobile devices,
“slow” performing ones are considered stragglers for the FL.
training. In FL, the server and other devices may need to wait
for all the stragglers to finish their local updates. Therefore,
the FL training delay is bottlenecked by such slow devices.
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Fig. 1. Time delay of a single-round local update on different hardware
platforms with varying communication conditions.

For illustrative purpose, we conducted an empirical study
on the training delay by performing one round of FL on
ResNet20 model over independent and identically distributed
(IID) CIFARI10 dataset. We evaluated the training delay of
local training on two NVIDIA Jetson family platforms (i.e.,
Nano and TX2), under different wireless accessing tech-
nologies, i.e., LTE and Wi-Fi 5, respectively. As shown in
Fig. 1, the training delay per round on Nano using LTE
communication is 4.15 times more than that of TX2 using
Wi-Fi 5. This huge delay gap stems from the device hetero-
geneity, i.e., the differences of computing and communication
capabilities. In terms of computing, TX2 (1.33 TFLOPs) has
a higher computing capacity than Nano (472 GFLOPs). In
terms of communications, Wi-Fi 5 (100 Mbps) has a faster
transmission rate than LTE (20 Mbps).

In the literature, there are many existing approaches to
address straggler issues due to device heterogeneity [6]—-[10].
For example, the participation selection approaches in [8]—
[10] allow FL server to select the fast devices for performing
model updates and abandon the stragglers. However, since
only the fast devices are chosen for partial participation, the
training may become biased over slow devices, which can lead
to accuracy drop [11], [12]. Asynchronous FL [13] is another
possible solution, which allows for asynchronous local model
updates for FL aggregation. Nevertheless, the slow devices
may become stale to the global model, which may cause the
accuracy drop of FL training [8].

To reduce training delay while keeping learning accuracy,
an intuitive idea is to let the fast devices (i.e., high computing
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and communication capability) help slow devices (i.e., low
computing and communication capability) to conduct the
training. However, such an attempt is challenging because
the frequent transmissions among devices may incur extra
large transmission delays. Fortunately, we find that Device-
to-Device (D2D) transmission (e.g., Wi-Fi Direct) [14] offers
a direct and fast communication option among nearby mo-
bile devices, which can serve as an enabling technology to
facilitate fast devices to help slow ones in FL training.

Specifically, to reduce the communication delay, the slow
device, which has poor wireless connections with FL server,
can send its model parameters to the fast device, which
has good wireless connections with FL server, via D2D
communications. The fast device then aggregates the two
model updates from both the slow device and fast device, and
uploads the aggregated update to the FL server. In this way,
the transmission delay of the slow device and thus that of FL
training can be potentially reduced. Furthermore, to reduce the
computing delay, we propose to apply split learning (SL) [15]
to collaboratively train the slow device’s local model between
the fast device and slow device. The SL activation exchange
between the slow device and the fast device will be transmitted
via high-speed D2D communications. In this way, SL splits
the training workload between slow and fast devices, which is
promising to reduce the computing delay of the slow device.

Despite the benefits above, there are two major challenges
to fulfill the idea of “fast device helping slow device”.
First, how to pair slow and fast devices given their location
constraints to effectively reduce the training delay in FL?
Second, how to optimally determine the model layer to split
between the paired slow and fast devices? Note that the delay
of SL is jointly determined by the activation transmission and
the split model training between slow and fast devices [16].

To address those challenges, in this paper, we propose a
D2D transmission assisted FL (DAFL) scheme to improve
delay efficiency of FL over mobile devices. DAFL design
spans over multi-lateral knowledge of D2D communications,
matching theory and FL, and the main contributions of DAFL
are summarized as follows.

o We introduce DAFL framework which leverages D2D
communications and SL to reduce the communication
and computing delay in FL training.

o In DAFL, we exploit matching theory to pair the slow
and fast devices considering their geo-location con-
straints, where the preferences are based on the com-
puting and communication latency of the mobile device
per FL round.

o To reduce computing delay, we employ SL to split the
local computing workload between the paired slow and
fast devices, and identify the optimal model layer to split,
through in-depth analysis.

o We perform emulations with a group of mobile devices
in a given area and show that DAFL outperforms its peer
designs and is effective in improving delay efficiency in
FL training.

II. SYSTEM MODEL

We consider a set of A/ devices as clients and a server in a
federated learning system. For computation, given any client
device n € N, we let p,, be the Al performance (FLOPs) of
device n. For communication, we let , = r(n, S) denote the
transmission rate between device n and the server S. We let
Tn.m = r(n,m) denote the transmission rate between client
devices n and m, known as the D2D transmission.

To determine whether a device has fast or slow comput-
ing, we use common computing devices in the real world
as reference. The following devices are Jetson Nano (472
GFLOPs), Jetson TX2 (1.33 TFLOPs), and Jetson Xavier NX
(21 TFLOPs), indicating their Al performances for computing.
We determine 1 TFLOPs as the threshold between fast and
slow computing. To determine whether a device has fast or
slow transmission, we use real world transmission rate of Wi-
Fi 5 (50 Mbps) and LTE (10 Mbps) as references to define
10 Mbps as the threshold between fast and slow transmission
devices. In addition, given any two devices n and m, the D2D
transmission rate 7, ,,, is always higher than the transmission
rate between individual device and the server (r,, and r,,).
Such condition can be indicated by the following relation,

max {7} < rym. (1)

re{n,m}

We consider a DNN of £ = {1,2,...,L} layers. Let
M™, M* denote the i-th layer of device m,n model. Hence,
the full model for device n and m are 25:1 M and
ZiL=1 M™. Let T°(-) and T°(-) be delay functions for
device n and device m respectively, in terms of Al perfor-
mance. We denote the computing delay of the i-th layer of
DNN on device n and device m by T, = T (p,, M]")
and T;™ = T° (pm,M]™). Next, we define a function
T'(-) to represent parameter transmission delay. Then, the
transmission delay for the i-th layer between device n and
server is denoted by T/"" = T'"(r,), and the transmission
delay for the ¢-th layer between client device n and m is
denoted by T;T"”" = T"(rym). The transmission delay
in this paper consists of both uplink and downlink delay.
Consequently, the goal of our work is to find the minimum
training delay T;, ,,, for each pair of devices(n,m) € N.

III. D2D ASSISTED FL OVER MOBILE DEVICES

We divide DAFL into three sections: pre-processing,
training process, and post-processing sections. In the pre-
processing section, we pair up devices with each pair consist-
ing of one fast and one slow device. In the training section,
we run each pair of devices under a designed process, where
model upload assisting improves the transmission delay and
SL helps with the computing delay. In the post-processing
section, we apply partial client participation by selecting the
devices with better performance, in terms of model conver-
gence contribution.
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A. Pre-processing: matching based device pairing

We consider a set of heterogeneous devices distributed in
a given area. Each individual device has its own computation
and transmission speed. Our goal is to pair up these devices,
with each pair consisting of one slow training device and one
fast training device (computation + transmission delay).

We pair the devices based on the concept of stable marriage
matching, a bipartite one-to-one matching problem with two-
sided preferences [17]. Originally in stable marriage matching,
clients find their own partner to pair with based on their
preference list. In our work, however, we use the central server
to determine the pair arrangement. We first have clients report
their training delay (computation + transmission) to the server.
Then, server splits the devices into two sides, S consisting of
slow training devices and JF consisting of fast training devices.
Ty, and T; denote the training delay of fast training device &,
for one round, where k,l € F. For a slow training device u
where u € S, we can construct a preference relation >, over
all fast devices as follows,

1 1
k=ule — XUk =y = XUy, k, 1 €F,
T, X Uk Tu g X Ul

L i dy g < dig, @)

U,k .
0, otherwise.

Here d, ;. denotes the distance between u and k, and dy,
denotes the D2D transmission distance threshold. 7}, and T,
denote the training delay of slow training device u, v for one
round, where u,v € S For a fast training device k& where
k € F, we can construct a preference relation > over all
slow devices as follows,

U, v Ty X vy, =k Ty X Uy, u,v €S. 3)

After constructing the preference for both sides, the server
pairs up clients based on the preference list. The outcome of
our matching consists of slow-fast device pairs.

B. Training process: D2D assisted training for paired devices

For each pair of devices, there is one fast device and one
slow device. We take device pair (n,m) as an example, where
device n is the fast device and device m is the slow device.
The relation of transmission and delay of the two devices and
the server are defined as follows.

T =ax T/, @)

T = B x T, (5)

7

where ¢ € L. Let h denote the number of iterations for local
training per transmission round. The training delay of this pair
under traditional FL for one communication round is,

L L
Tn,m = WEI?S’);L} h x ; Ticw + ; Etrw
L L
=h x Z Ticm + ZTitTm' (6)
1=1 i=1
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Fig. 2. The sketches of FL training per round for the paired slow and fast
devices, where the upper one is traditional FL and the lower one is DAFL.

Specifically, the training assisting process consists of two
primary components, namely, SL. and model upload assisting.
For SL, since device m is the slow device, it is only necessary
to perform SL on device m. Hence, the model on device
m is split into two parts, with [ being the split layer. The
first part of the model 22:1 M is on the device m side
and the second part Zf:l 41 M™ is on the device n side.
At the start, device m performs forward propagation on the
first part of the model 22:1 M™, while device n performs
forward propagation on its own full model Zle M. Later
on, device m transmits its activation to device n to perform
forward and backward propagation of the second part of the
model ZiL:l 1 M. Device n then sends back the gradients
at the split layer to device m to finish rest of the backward
propagation for 22:1 M;™, meanwhile device n finishes its
own full model Zle M of backward propagation. After
both the devices complete their local training, we perform
model upload assisting to aid the slower device m. To achieve
this, device m transmits its model parameters to the faster
device n through D2D transmission. Device n then aggregates
the model parameters from both the devices and uploads to
the server.

To measure the training delay of our training assisting
method for one communication round, we provide the fol-
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lowing relation,

l L
TnD’::FL = mln{h X (Z Tf’” + Z Ticn + z‘vlt""n,m)}
’ leL P o

L L

2 : trn,m 2 : :
_|_ Tl Tn, _|_ Tit"'n

i=1 =1

r L
—hx (Z Ticm + Z jwicn, + Tt:-n,m)
i=1

i=l*+1
L L
tTn,m trm
YTy T (7
i=1 i=1

We subtract Eqn. (6) from Eqn. (7) to show the difference as,

DAFL
Tmm - Tn7m

L
=hx (3 (TP T + T
i=0*+1
L L L
+ Z T‘:rn’m + Z Tvitrn _ Z Tvl_trm
=1 =1 =1
L
=hx (Y (Tf=Tfm) +T.0)
i=l*+1
L
+(a+5—1)xZTf’“m. (8)
=1

To make Eqn. (8) less than 0, our work must satisfy the
following condition: 8 < « < 0.5. This implies that device
n has to be at least twice as fast as device m in terms of
transmission speed, and the D2D transmission rate needs to
be higher than device n’s transmission rate. Moreover, the SL
process must meet the potential splitting points condition in
P given by,

L L
P={lel] d Tf+1,""< > T} (9
i=l+1 i=l+1
The detailed processes per round for device pair (n,m) can
be seen in Fig. 2, where the upper scheme shows the process
of traditional FL and the lower scheme shows the training
assisting method under DAFL.

C. Post-processing: partial client participation

For every round of local training and updating, straggler
issues occur when training delay is bottleknecked by slow
devices. Despite applying our method, there is still a chance
of straggler issues if some slow devices are too far away to be
paired up, or if the devices around them are also slow and thus
cannot help with the training. Hence, to consider this scenario,
at the post-processing section after the training process, we
apply partial client participation to evaluate our performance.
Overall, for a given round in post-training section, we choose
devices with better model convergence to participate [8], [9].
By doing so, a portion of devices that could potentially be
the bottleneck of FL will not be selected. Consequently, we
address the straggler issue and training delay will be reduced.

IV. PERFORMANCE EVALUATION
A. Experimental setup

We use image classification as the FL task, and choose
VGG19 and ResNet20 as three local DNN models. To meet
the splitting points condition in Eqn. (9) in Sec. III-B, we
select the split layer for SL as the first max-pooling layer for
VGG19, and the first batch normalization layer for ResNet20.
The open dataset we use is CIFAR10. Each device contains
5000 training data out of a total of 50, 000 training examples
for CIFAR10. We use the SGD optimizer with a learning rate
of 0.01 for all approaches. The SGD weight decay is set to
0.0001 and the SGD momentum is set to 0.9. The number of
local iterations is set to 10 for all approaches. The batch size
is set to 64, and the number of communication rounds R is
set to 700.

To simulate the computationally limited mobile devices, we
use NVIDIA Jetson TX2 and Jetson Nano as our devices.
We use NVIDIA RTX 8000 that has 16.31 TFLOPs peak
performance and 48GB memory as the server in FL with
much higher computation performance. We employ LTE for
slow devices’ transmissions, and Wi-Fi 5 for fast devices’
transmissions to the FL server. Wi-Fi Direct is used for D2D
transmissions among paired devices. The transmission rates
for Wi-Fi 5, LTE and Wi-Fi Direct are 100 Mbps, 20 Mbps
and 150 Mbps, respectively.

We conduct an emulation involving 20 mobile devices
in a 30000 m? circular area participating in FL process.
We use Jetson Nano with LTE and Jetson TX2 with Wi-
Fi 5 to represent slow and fast training devices respectively.
The devices are randomly assigned in the area, each with
the radius of 60m representing the transmission range for
D2D transmission. After pairing, we apply D2D transmission
between the device pairs and SL for the slower device of the
pair. After obtaining the training delay, we apply partial client
participation to select the devices. We then perform training
with the set number of communication rounds and obtain the
average training delay.

B. Result analysis

We compare DAFL with FedAvg, a general federated
learning algorithm with partial client participation to deal
with straggler issues due to device heterogeneity. DAFL
has the benefit of reducing computation delay with SL and
improving transmission delay with D2D transmission. In
addition, we take SFL [18] as our other comparison method.
Both DAFL and SFL use the concept of SL for computa-
tion delay reduction. DAFL, however, applies SL between
clients, while SFL performs SL between clients and server.
Furthermore, our method holds the benefit of less computing
and communication burden on the server side. DAFL also
introduces D2D transmission between devices, which can
further save transmission time during activation transmission
in comparison with SFL.

To analyze the training delay performance, we compare
DAFL with other baselines on ResNet20 and VGG19 models
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Fig. 3. Test accuracy of models ResNet20 and VGG19 under CIFAR10 IID
dataset with participation rate p = 0.8.

under CIFAR10 dataset, with partial client participation rate
p = 0.8. From Fig. 3, we can conclude that our method
reaches the target accuracy faster with high partial client
participation rate. Moreover, our work is viable with non-IID
dataset as well. As shown in Fig. 4, our method outperforms
the baselines in terms of training delay.

To analyze the impact of device density on the training
delay, we aim to alter the size of the area in which the
devices are located. In our default set up of device sparsity and
distribution, we have 20 client devices randomly distributed in
a 30,000m? area and the range for D2D transmission is 30m.
We first determine a sparse scenario, in which 20 devices
are randomly distributed in a 60,000m? area. With wider
space, devices are more distant to one other and thus, the
chance of devices being paired up is lowered. As a result,
our work improves less under sparse areas. On the other
hand, a dense scenario with 20 devices randomly distributed
in 15,000m2 area, where devices are closer, the chance of
pairing up increases. Therefore, our work improves even more
in dense areas. This influence of different space sparsity ratio
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Fig. 4. Test accuracy of models ResNet20 and VGG19 under CIFAR10
non-IID dataset with participation rate p = 0.8.

on training delay is shown in Fig. 5 for IID and non-IID data.

To assess the impact of device location distribution, we
choose normal distribution and grid distribution for compari-
son. This is plotted in Fig. 6 for both IID and non-IID datasets.
As seen in the figure, when devices are distributed normally, a
majority of them are close to each other, increasing the chance
of pairing up. This can be further improved in dense areas as
our method works even better.

V. CONCLUSION

In this paper, we have proposed DAFL, a FL framework
that addressed straggler issues due to device heterogeneity
and provided delay efficient FL process over mobile devices.
We have designed a matching scheme for pairing devices
into pairs of fast and slow devices (straggler) in terms of
transmission rate and computing capability. For each pair of
devices, we have applied a training assisting method to reduce
the training delay. The method included D2D transmission for
reducing transmission delay, and SL for reducing computing
delay of slow devices. We have also applied partial client
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participation at the end of each round to further reduce the
training delay. We have compared DAFL with other schemes
and shown a considerable training delay reduction by 0.21x
to 0.28x.
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