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Abstract—As a promising distributed machine learning
paradigm, federated learning (FL) trains a central model with
decentralized data without compromising user privacy, which
makes it widely used by Artificial Intelligence Internet of Things
(AIoT) applications. However, the traditional FL suffers from
model inaccuracy, since it trains local models only using hard
labels of data while useful information of incorrect predictions
with small probabilities is ignored. Although various solutions
try to tackle the bottleneck of the traditional FL, most of
them introduce significant communication overhead, making
the deployment of large-scale AIoT devices a great challenge.
To address the above problem, this article presents a novel
distillation-based FL (DFL) method that enables efficient and
accurate FL for AIoT applications. By using knowledge distilla-
tion (KD), in each round of FL training, our approach uploads
both the soft targets and local model gradients to the cloud
server for aggregation, where the aggregation results are then
dispatched to AIoT devices for the next round of local training.
During the DFL local training, in addition to hard labels, the
model predictions approximate soft targets, which can improve
model accuracy by leveraging the knowledge of soft targets.
To further improve our DFL model performance, we design a
dynamic adjustment strategy of loss function weights for tuning
the ratio of KD and FL, which can maximize the synergy between
soft targets and hard labels. Comprehensive experimental results
on well-known benchmarks show that our approach can signif-
icantly improve the model accuracy of FL without introducing
significant communication overhead.
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I. INTRODUCTION

ALONG with the proliferation of artificial intelligence (AI)
and Internet of Things (IoT), federated learning (FL) [1],

[2], [3], [4], [5] techniques are increasingly used in safety-
critical AI IoT (AIoT) applications (e.g., autonomous driving,
commercial surveillance, and industrial control [6], [7]). As
shown in Fig. 1, different from centralized machine learning,
FL enables keeping data samples distributed while sharing
the sample knowledge among all the AIoT devices. In FL,
the cloud server is responsible for dispatching and aggregat-
ing model gradients rather than collecting samples from AIoT
devices through the network, which can greatly reduce the
communication overhead and protect the data privacy of AIoT
devices during the model training process.

Although FL enables effective collaboration among AIoT
devices and the cloud server, it drastically suffers from its
model inaccuracy caused by the loss of knowledge during
model training [8]. The optimization objective of FL local
training is to minimize the distance between the correct
prediction and the hard label and ignore all the incorrect
predictions [1]. However, the ignoring of incorrect predictions
results in the loss of knowledge since the knowledge is a
learned mapping from input vectors to output vectors, and
all the sample-to-prediction mappings are part of the knowl-
edge according to [8] and [9]. The probability of incorrect
predictions represents the similarities between the current sam-
ple and other different categories. Therefore, the traditional FL
based on hard labels loses some knowledge during the model
training process, resulting in decreased FL model accuracy.

Since knowledge distillation (KD) can enhance the model
knowledge and the model generalization ability, it is used to
improve the model accuracy [8]. During the “student model”
training process, there are two optimization objectives, i.e., hard
labels of data and soft targets from the “teacher model.” The
loss function of the “student model” is defined as the sum of the
cross-entropy loss function (i.e., the distance between model
predictions and the corresponding hard labels of data) and the
Kullback–Leibler divergence loss function (i.e., the distance
between model predictions and the corresponding soft targets
from the “teacher model”). As an online paradigm of KD,
federated distillation (FD) implements collaborative training of
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Fig. 1. Common architecture of FL.

different device models only by interacting soft targets between
the cloud server and all the devices [10], [11], [12]. However,
all these methods focus more on the fundamental problems of
network resource limitation for large-scale architecture rather
than the FL performance improvement.

To improve the FL model accuracy, various methods have
been proposed, e.g., global control variable-based meth-
ods [13], [14], reinforcement learning-based methods [15],
device grouping-based methods [16], [17], and KD-based
methods [18]. However, all these mentioned methods improve
FL performance using complex reinforcement learning strate-
gies or global variables with large sizes. Therefore, most
of them are unsuitable for AIoT applications with limited
network and memory resources. Moreover, these KD-based
methods require collecting data distribution and sample cate-
gories from all devices or constructing public data sets, which
brings huge risks to data privacy protection. Therefore, how to
design an efficient and accurate FL without introducing sig-
nificant communication overhead and ensuring data privacy is
becoming a great challenge in AIoT design.

In order to address the above challenges, this article presents
a novel distillation-based FL (DFL) method named DFL that
can effectively enhance the model knowledge during the FL
training process. Unlike the traditional FL that only trains
models based on hard labels of device samples, our proposed
DFL method set two optimization objectives for the model,
i.e., the hard labels of data samples and the correspond-
ing soft targets. We aggregate label-wise sample logits as
the soft targets of the “teacher model” and dispatch them
together with the global model for FL model training, which
introduces negligible extra network overhead as the soft tar-
gets size is always much smaller than the global model. In
this way, our DFL method can increase the model accu-
racy by incorporating the knowledge of soft targets into the
model training. This article makes the following three major
contributions.

1) To improve the model accuracy of DFL, we present
a novel architecture that combines the merits of both
global soft targets and model gradients for the purpose
of knowledge enhancement.

2) To wisely utilize the knowledge represented by soft tar-
gets, we design a dynamic adjustment strategy, which

can tune the ratio of loss functions of soft targets and
hard labels during the DFL training.

3) We conduct both theoretical and empirical analysis on
the convergence of DFL and prove that DFL converges
as fast as FedAvg in arbitrarily heterogeneous data
scenarios.

We implement our approach using our proposed DFL archi-
tecture and the dynamic adjustment strategy. Comprehensive
experimental results show that our proposed approach can
achieve better performance than state-of-the-art methods with-
out introducing drastic communication overhead.

The remainder of this article is organized as follows. After
the introduction to related works in Sections II and IV gives
the details of our DFL approach. Section V presents the exper-
imental results, showing the effectiveness of our approach.
Finally, Section VI concludes this article.

II. RELATED WORK

As more and more safety-critical AIoT applications adopt
FL, the FL model accuracy is becoming a major con-
cern in AIoT design. In order to improve the FL model
inference accuracy, various methods have been investigated.
For example, Karimireddy et al. [13] proposed a method
named SCAFFOLD, using global control variables to cor-
rect the “client-drift” in the local training process. Similar to
SCAFFOLD, Huang et al. [14] presented a method employing
the federated attentive message passing to promote more coop-
eration among similar devices. However, all these two meth-
ods upload/dispatch additional large-size controllers (i.e., the
global control variables and the attentive messages) together
with model gradients between the cloud server and devices.
By using built-in generators, Zhu et al. [21] proposed a data-
free KD approach named FedGen to address the problem
of heterogeneous FL. Lin et al. [18] proposed an ensem-
ble distillation method that trains the central model with
unlabeled data and the corresponding outputs of device mod-
els. Nonetheless, these two methods cannot be directly used
in real scenarios, since they require each device to upload
their data distribution or sample categories, which brings
the risks of data exposure and huge communication over-
head. Moreover, it is impractical to construct built-in gener-
ators or public data sets, though they are helpful for model
training.

Due to the merits of model knowledge sharing and enhance-
ment, various online versions of KD (i.e., FD) have been
investigated in AIoT applications. For example, Anil et al. [9]
proposed the co-distillation method with data samples shared
by all the AIoT devices. Based on FD and federated data
augmentation, Jeong et al. [11] used generative adversarial
networks (GANs) [19] to generate a public data set and
carried out KD on the public data set during the model
training process. By leveraging an unlabeled public data
set, Itahara et al. [20] proposed a distillation-based semi-
supervised FL algorithm that exchanges outputs of local mod-
els among mobile devices. However, all these FD approaches
above focus on reducing communication overhead rather than
improving model accuracy. Moreover, these methods with
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public data sets introduce inevitable risks of privacy exposure,
which cannot be ignored in practice.

Although KD techniques are promising in enhancing the
model performance, their combination with FL in AIoT sce-
narios still suffers from the limited inference improvements
coupled with significant communication overhead. To the best
of our knowledge, so far existing KD-based approaches do
not consider that the knowledge of soft targets changes along
with the model training process. Our work is the first attempt
that fully explores the synergy between the model gradients
and global soft targets to further enable knowledge shar-
ing among AIoT devices. Due to the enhanced knowledge
obtained by soft targets using our proposed architecture and
dynamic adjustment strategy, the accuracy of DFL models can
be significantly improved, while the communication overhead
is negligible.

III. PRELIMINARY KNOWLEDGE

A. Federated Learning

As a promising distributed machine learning technology,
FL [1] is proposed to solve the data silos problem, where all
the involved clients can share their knowledge without expos-
ing local data privacy. Assume that there are a total of K
devices in an AIoT system, and in the rth FL training round
there are N (N ≤ K) devices being selected to dispatch the
global model. Let w and wk be the models on the cloud server
and the kth client, respectively. Let the number of samples on
the kth device be lk, where the sum of lk of the selected N
devices is l, and the loss function of device models is �. The
objective of FL is defined as follows:

min
w

F(w) �
N∑

k=1

lk
l
�(w). (1)

In the rth training round, let wr be the global model dispatched
to all the selected devices for the purpose of local training. At
the end of the rth training round, the local model of the kth
selected device will be updated as follows:

wk ← wr + η�k
r (2)

where η is the learning rate and �k
r is the model gradient (i.e.,

weight differences) achieved by the local training of device k
in round r. Meanwhile, to improve communication efficiency,
all the selected AIoT devices need to upload their model gradi-
ents (i.e., �) rather than the models to the cloud server. After
receiving all the local models of selected devices, the cloud
server will conduct the aggregation operation to obtain a new
global model as follows:

wr+1 = wr +
∑K

k=1 lk × �k
r∑K

k=1lk
. (3)

B. Knowledge Distillation

To improve the inference performance of a model (i.e., stu-
dent model), KD resorts to the advanced knowledge learned
by a well-trained model (i.e., teacher model) and distills it to
the student model. Typically, the knowledge learned by the

student model comes from two sources: 1) soft labels that are
the predictions by the teacher model and 2) hard labels that
are a set of labeled training data samples provided for the dis-
tillation purpose. Suppose that there are two neural network
models (i.e., student model s and teacher model t) participat-
ing in KD, whose training data and corresponding labels are
x and y, respectively. The loss function of the student model
is defined as follows:

L(s) = F(y|s, Y) + G(y|s, y|t) (4)

where F(y|s, Y) is the cross-entropy loss function between
the predictions y|s and hard labels Y . G(y|s, y|t) is the
Kullback–Leibler divergence loss function, which indicates
the distance between the predictions of student model y|s
and the corresponding teacher predictions y|t. Based on this
loss function and the provided training data, after the distilla-
tion, the inference performance of the student models can be
significantly improved.

IV. OUR DFL APPROACH

Typically, an AIoT application involves a cloud server and
plenty of AIoT devices, where each AIoT device has lim-
ited communication and memory capacities. In this article,
we focus on the model performance rather than the problem
of incentive or fairness. Therefore, we assume that at the
beginning of our DFL architecture deployment, data sam-
ples are collected by each device and used for local model
training. The model to be trained is initially placed on the
cloud server and dispatched to AIoT devices at the begin-
ning of each training round. Since soft targets can enhance
the model knowledge and the model generalization ability [8],
our approach introduces KD into our architecture to improve
the model accuracy. Unlike existing FD methods, our DFL
approach uploads/dispatches model gradients and soft targets
(generated using local samples in the previous round) simulta-
neously during the interaction between AIoT devices and the
cloud server. When a new device joins the AIoT application,
it will receive the latest global model and soft targets from the
cloud server and perfectly fit into the DFL model training. The
proposed DFL model training procedure is divided into two
parts: 1) the cloud server training part, which includes the dis-
patching, aggregation, and update of both model gradients and
soft targets and 2) the local training part, which trains local
models using both local samples and dispatched soft targets.
Once the local training finishes, an AIoT device needs to figure
out new label-wise sample logits for the following aggrega-
tion. The following sections will detail the key components
and the convergence analysis of our DFL approach.

A. Architecture and Workflow of Our DFL Approach

Fig. 2 depicts the overall architecture and workflow of our
proposed DFL approach for some AIoT application, which
mainly consists of three parts: 1) the FL processing part
(marked in yellow); 2) the soft targets processing part in the
cloud server (marked in blue); and 3) the soft targets process-
ing part in AIoT devices (marked in red). Unlike traditional
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Fig. 2. Architecture and workflow of our DFL approach.

FL methods, in our approach the cloud server needs to aggre-
gate label-wise sample logits collected from devices to form
the global soft targets, which will be dispatched to selected
AIoT devices for the distillation purpose. Specifically, our DFL
method involves following seven steps.

Step 1 (Model and Soft Targets Dispatching): At the begin-
ning of each training round, the cloud server dispatches both
the global soft targets and global model to the selected AIoT
device (see Algorithm 1 for more details).

Step 2 (Local Training): Once receiving the dispatched
global soft targets and global model, each selected device will
conduct the local training (i.e., distillation) using both the hard
labels of local data and received soft targets [see (7)]. Similar
to traditional KD methods, our DFL approach adopts both KL-
Loss and CE-Loss for the distillation so that the predictions of
local models can be accurately approximated to correspond-
ing labels in each training epoch (see Algorithm 2 for more
details).

Step 3 (Prediction): After E epochs of local training, each
selected device will use the newly trained local model to gen-
erate one prediction (i.e., soft label) for each of its local data
samples.

Step 4 (Label-Wise Averaging): Assume that there are a
total of N sample categories in the AIoT application. For each
category of local data samples in one device, our approach
averages their predictions to generate one sample logit. By
combining sample logits of all the categories together, we can
form the local soft targets for the device, which are in the
form of an N × N matrix.

Step 5 (Soft Targets and Gradient Upload): After the local
training, each device needs to upload the newly generated
label-wise soft targets (i.e., sample logits) and model gradients
to the cloud server for aggregation.

Step 6 (Soft Targets and Gradient Aggregation): Once the
cloud server receives both model gradients and soft targets

(i.e., averaged sample logits) of all the selected devices, it
will average all the collected local gradients and soft targets.

Step 7 (Global Model Update): The cloud server forms a
new global model based on the averaged global gradients.

DFL will repeats all the above seven steps continuously
until the convergence of global models.

B. Training Procedure of DFL

The model training procedure of our DFL approach con-
sists of two parts, i.e., the cloud server procedure and the
local update procedure. At the very beginning of the model
training, AIoT devices randomly collect a set of data sam-
ples and save them in their local memory for model training,
while the cloud server initializes the global model and soft
targets. Similar to the classic FL method (i.e., FedAvg [1]),
our approach randomly selects a fraction of AIoT devices par-
ticipating in each round of model training due to the limited
network resources of real AIoT applications. The collabora-
tion of the cloud server and AIoT devices of our proposed
DFL method will be detailed in the following two sections.

1) Cloud Server Procedure: When the model training of
our DFL approach starts, the cloud server first dispatches the
current global model and soft targets to the selected AIoT
devices. After receiving the latest model and soft targets, the
selected AIoT devices will conduct several epochs of local
training, respectively. At the end of round r, we upload both
model gradients and the newly generated label-wise sample
logits of all the selected AIoT devices to the cloud server for
aggregations using the following formulas:

wr+1 = wr +
∑K

k=1 |Dk| × �k
r+1∑K

k=1|Dk|
(5)

Y r+1 =
∑K

k=1 |Dk| × Y k
r+1∑K

k=1|Dk|
(6)
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Algorithm 1: Cloud Server Procedure of DFL

Input: i) N, # of total AIoT devices;
ii) c, fraction of devices on each round;
iii) R, # of training rounds;
iv) D = {D1, . . . , DN}, set of datasets;

1. Initialize(w,Y );
2. K ← Max(c · N, 1);
for r ← 1 to R do

3. S ← random set of K devices;
4. Dispatch(wr,Y r, S);
for each device k ∈ S do

5. (�k
r+1,Y

k
r+1) ← DeviceUpdate(wr,Y r);

end

6. wr+1 = wr +
∑K

k=1 |DIdx(Sk)|×�k
r+1∑K

k=1|DIdx(Sk)| ;

7. Y r+1 =
∑K

k=1 |DIdx(Sk)|× Y k
r+1∑K

k=1|DIdx(Sk)| ;

end

where w and Y represent the model weight and the label-
wise soft targets, respectively. K denotes the number of AIoT
devices selected in each round of model training. �k

r+1 and
Y k

r+1 indicate the model gradient and sample logits of device
k in round r + 1, |Dk| represents the size of the data set Dk

hosted by the kth AIoT device.
Algorithm 1 shows the key steps involved in our DFL algo-

rithm. Step 1 initializes the global model and soft targets with
w and Y using the function Initialize. In step 2, we calculate
the number of selected AIoT devices K participating in each
round of model training with the function Max, where C and N
denote the fraction and the number of total AIoT devices. At
the beginning of round r, step 3 randomly selects the devices
participating in the model training of round r, where S is used
to save the selected devices. Step 4 dispatches the global model
and soft targets to all the selected devices in S. In step 5, all the
selected devices upload both model gradients and the newly
generated label-wise sample logits to the cloud server. Once
the cloud server receives model gradients and label-wise sam-
ple logits from all the selected devices, steps 6 and 7 perform
the aggregation.

Note that, since the aggregation process of soft targets is
similar to the aggregation process of model gradients, any
existing privacy protection approaches (e.g., secure aggrega-
tion [22] and variational Bayes-based method [23]) for FL
can be easily integrated into our approach to avoid the risk of
privacy exposure.

2) Local Update Procedure: When selected AIoT devices
receive the latest global model w and soft targets Y , they con-
duct the local update procedure. The local update procedure of
our DFL approach involves two stages, i.e., the local training
stage and the new label-wise sample logit generation stage.
Similar to FedAvg, the predictions of our DFL model approx-
imate the hard labels of local samples. To further improve the
model accuracy, our approach makes the model predictions
approximate to the soft targets related to the corresponding
hard labels as well. Therefore, to make wisely use of the

Algorithm 2: Local Update Procedure of DFL

Input: i) E, # of local epochs;
ii) D, device dataset with hard labels Y;
iii) η, learning rate;
iv) R, # of total communication rounds;
v) T , threshold of the loss function ratio;

DeviceUpdate(w,Y ):
1. Receive (w,Y ) from the cloud server;
2. temp = w;
for e ← 1 to E do

3. y ← Prediction(w, D);
4. ρ ← Max(1 − r

R , T );
5. L(w) = ρ F(y|w, Y) + (1 − ρ) G(y|w,Y );
6. w = w − η∇L(w);

end
7. y ← Prediction(w, D);
8. Y ← LabelWiseAverage(y);
9. � = w − temp;
10. Send (�,Y ) to the cloud server;

knowledge of both hard labels and soft targets, we design our
loss function in model training as follows:

L(w) = ρ F(y|w, Y) + (1 − ρ) G(y|w,Y ) (7)

where F(y|w, Y) is the cross-entropy loss function, which
denotes the distance between the prediction y and the cor-
responding hard label Y of the sample. Here, G(y|w,Y ) is the
Kullback–Leibler divergence loss function, which indicates the
distance between the prediction y and the corresponding label-
wise sample logits Y (extracted from the global soft targets)
of the sample. The hyperparameter ρ (ρ ∈ [0, 1]) is the ratio
of the two loss functions (see Section IV-C). Since the objec-
tive of local training is to minimize the loss function L(w),
we can get the model update for each epoch as follows:

w = w − η∇L(w) (8)

where η denotes the learning rate and ∇ indicates the gradi-
ent. When the local training stage finishes, the new label-wise
sample logit generation stage will be implemented. All the
updated models perform predictions with local samples and
calculate the label-wise sample logits. To improve communi-
cation efficiency, all the selected AIoT devices upload their
model gradients (i.e., �) rather than the updated models to
the cloud server for aggregation at the end of each round

�k
r+1 = wk

r+1 − wk
r . (9)

Algorithm 2 presents the local update process of our DFL in
detail. In steps 1 and 2 of the algorithm, AIoT devices receive
the global model w and soft targets Y from the cloud server
and save the received global model. Steps 3–6 show the imple-
mentation of the local training stage. At the beginning of each
local epoch, step 3 makes predictions of data samples with the
local model using the function Prediction. Step 4 calculates
the current ratio of the two-loss functions ρ with the index
r and the number R of training rounds and the threshold T .
Steps 5 and 6 iteratively update the model weight, where the
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loss function is defined in (7). After the local training stage
finishes, steps 7–9 generate the label-wise sample logits. To
save network resources, step 9 calculates the model gradient
for upload. Finally, step 10 uploads the model gradient and
label-wise sample logits to the cloud server for aggregation.

C. Dynamic Adjustment Strategy

The ratio of the two-loss functions plays an important role
in DFL local training since the weight of soft targets greatly
impacts the model training. Generally, the knowledge of soft
targets depends on the model accuracy, and the model accu-
racy increases as the number of training rounds increases.
Therefore, there is insufficient knowledge of soft targets in the
early stage of the model training process since the model is
randomly initialized. In this case, the soft targets will make the
model optimize in the wrong direction, which will slow down
the model training. The knowledge of soft targets increases
as the training continues, which can enhance the model with
the knowledge that the hard labels do not have. However, the
model training cannot rely mainly on soft targets according
to [8]. Therefore, we need to set a threshold T to fix the ratio
of the two-loss functions in the late stage of the model training
process so that the model can achieve the best performance.
To maximize the use of the soft targets and reduce their side
effects, we design a dynamic adjustment strategy to control
the loss function ratio as follows:

ρ = Max
(
1 − r

R
, T

)
(10)

where r and R represent the index of the current round and
the total number of overall training rounds, respectively. T
denotes the threshold to fix the ratio of the two-loss functions.
As shown in (10), in the early stage of the model training
process, the cross-entropy loss function is given a high pro-
portion and gradually decreases with the number of training
rounds, while the Kullback–Leibler divergence loss function
is the opposite. The discussion about the optimal threshold is
in the experimental part.

D. Convergence Analysis of Our DFL Approach

Similar to hard labels, the “global soft targets” can be used
to represent features of all the data samples, which remain
unchanged during the FL model training. As shown in (7),
our approach combines both soft targets and hard labels as
the approximation term of the FL model prediction. Due
to the invariance of both soft targets Y and hard labels Y
in (7), the convergence of DFL can be guaranteed. Inspired
by the work in [24], we analyze the convergence rate of our
DFL approach with two device participation scenarios (i.e.,
full device participation and partial device participation). We
define the distributed optimization model of our DFL approach
as follows:

min
w

{
�(w) �

N∑
k=1

pk(Fk(w) + Gk(w))
}

(11)

where N is the total number of all the AIoT devices, pk is
the probability of selecting the kth device such that pk ≥ 0

and
∑N

k=1 pk = 1. Fk(w) and Gk(w) are two loss functions
(i.e., the cross-entropy loss function and the Kullback–Leibler
divergence loss function) which are defined as follows:

Fk(w) � 1

nk

nk∑
j=1

F
(
w; xk,j

)

Gk(w) � 1

nk

nk∑
j=1

G
(

w; x′
k,j

)
(12)

where nk is the number of local samples in the kth device,
xk,j is the local training samples concluding pictures and hard
labels, x′

k,j is the combination of the local samples and its
corresponding soft targets.

Similar to [24], to analyze the convergence rate of our DFL
approach, we make the following five assumptions on the
functions F1, . . . ,FN and G1, . . . ,GN .

Assumption 1: F1, . . . ,FN and G1, . . . ,GN are all L −
smooth: for all v and w, Fk(v) ≤ Fk(w) + (v − w)T∇Fk(w) +
(L/2)||v − w||2, Gk(v) ≤ Gk(w) + (v − w)T∇Gk(w) + (L/2)
||v − w||2.

Assumption 2: F1, . . . ,FN and G1, . . . ,GN are all μ −
strongly convex: for all v and w, Fk(v) ≥ Fk(w) + (v −
w)T∇Fk(w) + (μ/2)||v − w||2, Gk(v) ≥ Gk(w) + (v −
w)T∇Gk(w) + (μ/2)||v − w||2.

Assumption 3: Let ξ k
t and δk

t be sampled from the
kth device’s local data uniformly at random. The vari-
ance of stochastic gradients in each device is bounded:
E||∇Fk(wk

t , ξ
k
t ) − ∇Fk(wk

t )||2 ≤ α2
k for k = 1, . . . , N and

E||∇Gk(wk
t , δ

k
t ) − ∇Gk(wk

t )||2 ≤ β2
k for k = 1, . . . , N.

Assumption 4: The expected squared norm of stochastic
gradients is uniformly bounded, i.e., E||∇Fk(wk

t , ξ
k
t )||2 ≤ G2

1
and E||∇Gk(wk

t , δ
k
t )||2 ≤ G2

2 for all k = 1, . . . , N and
t = 1, . . . , T − 1.

Assumption 5: From the tth local SGD, the distribution of
soft targets no longer changes, so that Gk(w) is the only
dependent variable of w.

Based on the assumptions above, we first analyze the
convergence rate of our DFL approach with full device partic-
ipation. The update of our DFL model can be described with
the following formulas:

vk
t+1 = wk

t − ηt

(
∇Fk

(
wk

t , ξ
k
t

)
+ ∇Gk

(
wk

t , δ
k
t

))
wk

t+1 =
{

vk
t+1, if T � t + 1∑N

k=1 pkvk
t+1, if T|t + 1

(13)

where wk
t is the local model parameter maintained in the kth

device at the tth SGD step, vk
t+1 is the immediate result of wk

t
with one step of SGD update. T is the local SGD steps within
one training round. If T|t + 1, our DFL activates all the AIoT
devices. In our analysis, we define two virtual sequences

vt =
N∑

k=1

pkvk
t , wt =

N∑
k=1

pkwk
t . (14)

By combining (13) and (14), we always have vt = wt. For
convenience, we define gt = ∑N

k=1 pk[∇Fk(wk
t ) + ∇Gk(wk

t )]
and gt = ∑N

k=1 pk[∇Fk(wk
t , ξ

k
t ) + ∇Gk(wk

t , δ
k
t )]. Therefore,

vt+1 = wt − ηtgt and E[gt] = gt.
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TABLE I
IID AND NON-IID DEVICE DATA SETTINGS FOR MNIST, CIFAR-10, AND CIFAR-100

Let �
 be an optimal value of the loss function shown
in (7), and w
 be its corresponding parameter. According to
the lemmas presented in [24] and [25] (see proof details in
the Appendix), we can get the inequality as follows:

E
[
�(wt)

]
− �
 ≤ L

2
E

∥∥wt − w

∥∥2 ≤ L

2

v

γ + t
(15)

where

v = max

{
β2B

2βμ − 1
, (γ + 1)�1

}
(16)

and

B = 32(T − 1)2
(

G2
1 + G2

2

) N∑
k=1

p2
k

(
α2

k + β2
k

)
+ 8L�. (17)

According to (15), our DFL converges to the global opti-
mum at a rate of O(1/t) for strongly convex and smooth
functions. For the case of partial device participation, similar
to [24], we can claim that the convergence rate of partial device
participation is the same as that of full device participation.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the effectiveness of our DFL approach, we
implemented the approach on top of a cloud-based archi-
tecture consisting of a cloud server and a series of AIoT
devices. Our DFL architecture was built on a workstation (with
Intel i7-9700k CPU, 64-GB memory, NVIDIA GeForce GTX
2080Ti GPU), and ten Nvidia Jetson Nano boards (with ARM
Cortex-A57 processor and 4-GB memory). Note that in the
experiment, only 10 of the AIoT devices were emulated by the
Jetson Nano boards, while the remaining devices were simu-
lated on the workstation. The Jetson Nano boards connect to
the workstation via a WiFi environment. Since not all devices
are able to participate in each round of model training in the
real AIoT application scenario, we set the fraction of AIoT
devices to C = 0.1, i.e., ten devices were randomly selected
to participate in each round of model training. For each AIoT
device, we set the batch size, learning rate, and epoch of local
training to 50, 0.01, and 5, respectively. For the performance
comparisons of five methods, we set the threshold T = 0.6 as
an empirical optimal choice, which is detailed in Section V-C.
Note that for the other hyperparameters of each baseline, we
follow the parameters provided by this article authors.

We conducted experiments on four well-known benchmarks,
i.e., MNIST, CIFAR-10, CIFAR-100 [26], and FEMNIST [27],
respectively. In the experiments, we assumed that there are
100 AIoT devices for the first three benchmarks, respectively.
Considering that all the AIoT devices are memory limited,
we set the training samples of each benchmark equally to all
the AIoT devices while putting the 10 000 test samples in the
cloud server. In order to verify the model performance for
different data distributions, we set two data scenarios (i.e.,
the IID scenario and the non-IID scenario) shown in Table I
based on the Dirichlet Distribution according to [29]. For the
IID scenario, all data samples were uniformly distributed on
all the 100 AIoT devices. For the non-IID scenario, we set
that 80% of the data samples on each device belong to one
label, while the other 20% belong to other labels evenly. Note
that the CIFAR-100 data set has two types of sample labels,
i.e., the fine-grained label (100 classes) and the coarse-grained
label (20 superclasses). According to the settings of our exper-
imental scenario, we chose the coarse-grained labels as the
sample categories to better distinguish the performance of
different methods. For the data set FEMNIST from LEAF,
we considered a non-IID scenario with 180 AIoT devices,
where each device consists of more than 100 local samples.1

Note that the raw data of FEMNIST is naturally non-IID dis-
tributed, involving class imbalance, data imbalance, and data
heterogeneity.

To fairly validate the effectiveness of different methods,
we conducted experiments using four randomly initialized
models, i.e., CNN models used in [1], and three popu-
lar models (ResNet-20, VGG-16, and MobileNetV2) from
Torchvision [28]. McMahan et al. [1] designed CNN mod-
els for MNIST and CIFAR-10. For the FEMNIST data set,
we modified the output of the MNIST CNN model to 62,
which is the labels of the samples. For the CIFAR-100 data
set, we modified the output of the CIFAR-10 CNN model to
20, which is the coarse-grained labels of the samples. The
Torchvision platform can provide the corresponding model
interfaces according to the benchmarks we set. Therefore, the
structure of these three models was fine-tuned according to
different benchmarks.

The following sections first compare the performance of
our proposed DFL with the state-of-the-art methods (i.e.,

1Using the command:./preprocess.sh -s niid –sf 0.05 -k 100 -t sample.
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(a) (b) (c)

Fig. 3. Test accuracy comparison for the IID scenario using CNN. (a) MNIST. (b) CIFAR-10. (c) CIFAR-100.

TABLE II
TEST ACCURACY COMPARISON FOR THE IID SCENARIO USING FOUR MODELS

FedAvg [1], FD [11], SCAFFOLD [13], and FedGen [21]).
Then, we investigate the impact of the loss function ratio and
find the empirical optimal ratio of the two-loss functions with
a series of experiments. To avoid the interference of random
model initialization and out-of-order data set training on the
experimental results, we ran each experiment ten times and
took its mean value for a fair comparison.

B. Performance Evaluation

1) Performance Comparison for IID Scenarios: In the first
experiment, we compared the performance of our method with
four baseline methods using the IID scenario set in Table I.
During the model training process of all the five methods, we
tested the inference accuracy of the global models after each
round of model aggregation in the cloud server. The model
accuracy is equal to the ratio of the correctly predicted sam-
ples over the total testing samples using the cloud aggregated
model. Due to the space limitation, we show the model accu-
racy trends using the CNN model on three benchmarks (i.e.,
MNIST, CIFAR-10, and CIFAR-100) along with the number of
training rounds in Fig. 3. For each figure, the x-axis denotes
the number of training rounds, and the y-axis indicates the
model accuracy. Five curves with different colors represent
the trends of the model inference accuracy of five different
methods. From Fig. 3, we can find that the model accuracy of
all the methods improves with the increase of training rounds.
When the model accuracy does not increase significantly, we

believe that the model converges. Since the FD method con-
verges difficultly, we adaptively present the model convergence
process of other methods in Fig. 3.

From Fig. 3, we can find that our DFL method achieves the
highest model accuracy compared with the other four meth-
ods on all three benchmarks. Since our dynamic adjustment
strategy gives the soft targets a small proportion in the early
stage of model training, we can greatly reduce the side effects
on model convergence caused by the insufficient knowledge
of soft targets. We increase the proportion of the soft tar-
gets along with the training process, which can improve the
model accuracy by maximizing the knowledge of soft targets.
Therefore, our method can effectively improve the model infer-
ence accuracy without slowing down the model convergence
rate. The model accuracy improvement of SCAFFOLD for the
IID scenario is insignificant, and the model convergence speed
of SCAFFOLD slows down. This is mainly because the added
randomly initialized global variable misleads the optimization
direction of the model in the early stage of model training.
FedGen uses its built-in generators to generate extra samples,
thereby speeding up model training. However, the samples
generated by the generators of FedGen is naive, which will
decrease the model accuracy in the late stage of the model
training.

Table II presents the complete experimental results of the
model accuracy of five methods. We tested the model accuracy
of all the methods using four models on three benchmarks,
and the highest model accuracy with the same model for the
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TABLE III
TEST ACCURACY COMPARISON FOR THE NON-IID SCENARIO USING FOUR MODELS

same data set is bolded. From Table II, we can find our DFL
method achieves the highest model inference accuracy in 11
out of 12 cases. For example, when training the CNN model
on the CIFAR-10 data set, the inference accuracy of FedAvg
is 57.92%, while SCAFFOLD can achieve 58.32%, FedGen
can achieve 55.22%, and our DFL can achieve 61.48%. This
is mainly because the soft targets added by our method can
improve the model inference accuracy effectively by enhanc-
ing the model knowledge. The global variables added in
the SCAFFOLD method are based on the data distribution
relationships among the AIoT devices to guide the model
optimization direction of each AIoT device. Therefore, this
method does not greatly improve the model inference accu-
racy for the IID scenario. Since the knowledge of the soft
targets of FD is less than that of the model gradient, the FD
model accuracy is lower than the FedAvg model accuracy.
Note that the generators of FedGen can only generate simple
data. Therefore, the model accuracy of this method becomes
worse as the data set becomes more complex.

2) Performance Comparison for Non-IID Scenarios: To
evaluate the performance of our DFL method for the non-
IID scenario, we compared the five methods (i.e., FedAvg,
FD, SCAFFOLD, and FedGen) using four benchmarks (i.e.,
MNIST, CIFAR-10, CIFAR-100, and FEMNIST), where the
former three benchmarks follow the non-IID setting presented
in Table I and the data set FEMNIST follows the non-IID
setting provided by LEAF. Fig. 4 shows the trends of model
accuracy using the CNN model along with the number of train-
ing rounds. Similar to the observations from Fig. 3, we can
find that our approach outperforms the other four methods.
Our DFL method achieves the highest model accuracy and
the fastest model convergence speed on all four data sets.

Table III presents the complete experimental results of the
model accuracy for the non-IID scenario. From Table III,
we can find that our DFL method can achieve the best
performance in 14 out of 16 cases. For example, when training

(a) (b)

(c) (d)

Fig. 4. Test accuracy comparison for the non-IID scenario using CNN.
(a) MNIST. (b) CIFAR-10. (c) CIFAR-100. (d) FEMNIST.

the CNN model on the CIFAR-10 data set, our DFL method
outperforms FedAvg, SCAFFOLD, and FedGen by 7.06%,
5.73%, and 9.68%, respectively. The reason why our approach
is superior is mainly because the added soft targets can
enhance model knowledge, which is effective for both IID
and non-IID scenarios. Therefore, the local training process
can use the knowledge of soft targets to improve the model
accuracy. Note that the model accuracy of the FD method is
11.53% for this case, which is similar to that of a randomly
initialized model. This is mainly because the knowledge of soft
targets is insufficient to train a model. Therefore, the model
trained by FD using soft targets alone is inaccurate.

3) Comparison of Communication Overhead: Table IV
presents the size information for: 1) different neural network
models for all the data sets and 2) the built-in generators
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TABLE IV
SIZE OF MODELS AND GENERATORS

used by FedGen.2 Note that the model size information in this
table can be considered as the communication overhead of the
classical FedAvg method. Due to additional global variables
during the interaction between the cloud server and all the
AIoT devices, the communication overhead of SCAFFOLD is
always twice the overhead of FedAvg. During each round of
FL training, FD dispatches and uploads only the soft targets,
which is determined by the number of categories of data sets
(i.e., 3.13 kB for CIFAR-100 with coarse-grained labels and
0.78 kB for the other data sets). Note that although FD requires
much less communication overhead, its inference improve-
ments on local models are limited due to the lack of model
information, which strongly restricts its application in AIoT
scenarios. Unlike the above four methods, the communication
overhead of our DFL method equals the overhead sum of both
FedAvg and FD, since the local training of DFL relies on both
soft targets and model gradients. For example, when training
the model ResNet-20 on data set FEMNIST using our DFL
approach, the total size of both model gradients and soft targets
is (962.2+ 0.78)× 2 = 1925.96 kB, which requires 0.36 s on
average for one DFL training round. However, SCAFFOLD
needs 0.71 s for one training round, where the total size
of both the global model and the global control variable is
(962.2 + 962.2) × 2 = 3848.8 kB. To conduct one round of
FL training in this case, FedGen will lead to a communication
overhead of 962.2+691.1+962.2 = 2615.5 kB, which requires
0.48 s for the transmission of both model gradients and its
built-in generator. Compared with the state-of-the-art methods
(i.e., SCAFFOLD and FedGen), our DFL method results in
much less communication overhead while the trained models
can achieve higher accuracy.

C. Impacts of Dynamic Adjustment Strategy

Since the ratio (i.e., ρ) of the two-loss functions controls
the proportion of hard labels and soft targets during the local
training, it plays an important role in our DFL approach.
To investigate the impacts of dynamic adjustment strategy,
we conducted a series of experiments to verify the role of
loss function ratio in different stages of model training. As a
representative, Fig. 5 shows the trends of model accuracy of
FedAvg and our DFL method with three different loss func-
tion ratio settings using the CNN model for the IID scenario
of CIFAR-10. In Fig. 5, four curves with different colors rep-
resent the model accuracy trends of four methods, i.e., the
DFL method with Fixed loss function Ratio named DFL-FR

2FedGen needs to dispatch both built-in generators and the global model,
where the size of generators is shown in Table IV.

Fig. 5. Model accuracy trends of four methods.

(marked in blue), the DFL method with Dynamic changing
Ratio without the Threshold named DFL-DRw/T (marked in
yellow), the DFL method with Dynamic changing Ratio and
the Threshold named DFL-DRwT (marked in green), and
FedAvg (marked in red).

From Fig. 5, we can find that the model accuracy of DFL-
DRwT and DFL-DRw/T increases rapidly in the early stage of
training while the DFL-FR model accuracy increases slowly.
This is mainly because the knowledge of soft targets is insuf-
ficient in the early stage of model training, which can mislead
the model optimization direction. The knowledge of soft tar-
gets increases as the model trains. In the late stage of training,
there is sufficient knowledge of soft targets to guide the model
training. Therefore, assigning a higher proportion to soft tar-
gets is beneficial to the model training as the number of
training rounds increases. However, the model accuracy drops
sharply in the final stage of the DFL-DRw/T model training.
This is mainly because the proportion of hard labels is too
small, and the model trained with soft targets alone is inac-
curate. Therefore, we need to control the ratio between the
two-loss functions to achieve the best model performance after
the soft targets gain sufficient knowledge.

To investigate the empirical optimal threshold of the loss
function ratio, we conducted experiments with thresholds from
0 to 1 with a step length of 0.1. Table V shows the experi-
mental results of the model accuracy obtained on CIFAR-10
using different thresholds and our two data distribution set-
tings, and the highest model accuracy is bolded. We can find
that our DFL method achieves the highest model accuracy in
7 out of 8 cases when the threshold is set to 0.6. Only when
MobileNetV2 is used for the IID scenario the model does not
achieve the highest accuracy at T = 0.6. In this case, the
model obtains the highest accuracy at T = 0.5, which is only
0.08 more than T = 0.6. Therefore, to achieve the best model
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TABLE V
TEST ACCURACY COMPARISON WITH DIFFERENT THRESHOLDS

performance, we set T = 0.6 to maximize the use of soft
targets and hard labels.

VI. CONCLUSION AND FUTURE WORK

Although FL techniques are becoming popular in AIoT
applications, they are suffering from the problem of model
inaccuracy. How to improve the model accuracy of FL under
the limited network bandwidth and memory resources is
becoming a major bottleneck in the design of AIoT appli-
cations. To address the above problem, this article presents a
novel FL architecture based on KD named DFL, which can
increase the model generalization ability. By adding soft tar-
gets to each round of model training, our proposed approach
can increase the inference accuracy of the FL model without
introducing significant communication and memory overhead.
To further improve the performance of our DFL model, we
designed a strategy to dynamically adjust the ratio of the two
loss functions in KD to maximize the use of knowledge of
soft targets. Comprehensive experimental results on four well-
known benchmarks prove the effectiveness of our approach.
For future work, we need to consider a better dynamic adjust-
ment strategy, where the loss function ratio is controlled by
the feedback of the model accuracy.

APPENDIX

A. Convergence Analysis of Our DFL Approach

Based on the assumptions we proposed in Section IV-D, we
analyze the convergence of our DFL approach with full device
participation. The update process of our DFL model can be
formulated as follows:

vk
t+1 = wk

t − ηt

(
∇Fk

(
wk

t , ξ
k
t

)
+ ∇Gk

(
wk

t , δ
k
t

))
wk

t+1 =
{

vk
t+1, if T � t + 1∑N

k=1 pkvk
t+1, if T|t + 1

(18)

where wk
t is the local model parameters maintained by the kth

device at the tth SGD step, vk
t+1 is the immediate result of

wk
t with one step of SGD update. T is the local SGD steps

within one training round. Here, we use the notation “a|b” to
indicate that b can be divided exactly by a. If T|t + 1, our
DFL activates all the AIoT devices. In our analysis, we define
two virtual sequences

vt =
N∑

k=1

pkvk
t , wt =

N∑
k=1

pkwk
t . (19)

By combining (18) and (19), we always have vt = wt. For
convenience, we define gt = ∑N

k=1 pk[∇Fk(wk
t ) + ∇Gk(wk

t )]
and gt = ∑N

k=1 pk[∇Fk(wk
t , ξ

k
t ) + ∇Gk(wk

t , δ
k
t )]. Therefore,

vt+1 = wt − ηtgt and E[gt] = gt.
Let �
 be an optimal value of the loss function shown in (7),

and w
 be its corresponding parameters, we have∥∥vt+1 − w

∥∥2 = ∥∥wt − ηtgt − w
 − ηtgt + ηtgt

∥∥2

= ∥∥wt − w
 − ηtgt

∥∥2︸ ︷︷ ︸
A1

+ 2ηt<wt − w
ηtgt, gt − gt>︸ ︷︷ ︸
A2

+ η2
t

∥∥gt − gt

∥∥2︸ ︷︷ ︸
A3

. (20)

Note that EA2 = 0. We next focus on bounding A1. We
divide A1 into three terms

A1 = ∥∥wt − w
 − ηtgt

∥∥2

= ∥∥wt − w

∥∥2︸ ︷︷ ︸− 2ηt < wt − w
, gt >︸ ︷︷ ︸

B1

+ η2
t ||gt||2︸ ︷︷ ︸

B2

. (21)

We aim to bound B1

B1 = −2ηt<wt − w
, gt>

= −2ηt

N∑
k=1

pk<wt − w
,∇Fk

(
wk

t

)
+ ∇Gk

(
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t

)
> (22)

where

<wt − w
,∇Fk

(
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t

)
+ ∇Gk

(
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t ,∇Fk

(
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> + < wk
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(
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t
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>
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t ,∇Gk

(
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t

)
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(
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t

)
>.

(23)

By using the Cauchy–Schwarz inequality and the inequality
of arithmetic and geometric means (AM-GMs), we can get

−<wt − wk
t ,∇Fk

(
wk

t

)
>

≤ 1

2ηt

∥∥∥wt − wk
t

∥∥∥2 + 1

2
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(
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(
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≤ 1

2ηt

∥∥∥wt − wk
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∥∥∥2 + 1

2
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Therefore, B1 can be presented as (25) based on (22), (23),
and (24), i.e.,

B1 ≤ ηt
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By using Assumption 1, Fk(·) and Gk(·) can be bounded
with the following formulas:∥∥∥∇Fk

(
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)
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Consequently, B2 can be bounded using (27) based on the
convexity of || · ||2 and (26)
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Therefore, A1 can be presented as (28) by combin-
ing (21), (25), and (27), i.e.,

A1 ≤ (1 − 2μηt)
∥∥wt − w


∥∥2 + 2
N∑

k=1

pk

∥∥∥wt − wk
t

∥∥∥2

+6Lη2
t

N∑
k=1

pk

(
Fk

(
wk

t

)
− F


k

)
+ 6Lη2

t

N∑
k=1

pk

(
Gk

(
wk

t

)
− G


k

)
︸ ︷︷ ︸

C

−2ηt

N∑
k=1

pk

(
Fk

(
wk

t

)
− Fk

(
w


)) − 2ηt

N∑
k=1

pk

(
Gk

(
wk

t

)
− Gk

(
w


))
︸ ︷︷ ︸

C

.

(28)

Aiming to bound C, we define γt = 2ηt(1 − 3Lηt), � =
�
 − ∑N

k=1 pkF

k − ∑N

k=1 pkG

k . We split C into three terms

C = −2ηt(1 − 3Lηt)

N∑
k=1

pk

(
Fk

(
wk

t

)
− F


k

)

− 2ηt(1 − 3Lηt)
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(
Gk

(
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t

)
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)
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(
Fk

(
w


) − F

k

) + 2ηt

N∑
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pk
(
Gk

(
w


) − G

k

)

= −γt

N∑
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(
Fk

(
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t

)
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)
− γt

N∑
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(
Gk

(
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t

)
− �


)

+ (2ηt − γt)
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(
�
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= −γt
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(
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(
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(
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D

+ 6Lη2
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pk�



︸ ︷︷ ︸
. (29)

To bound D, we have
N∑

k=1

pk

(
Fk

(
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t

)
− �


)

=
N∑

k=1

pk

(
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(
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t

)
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)
+

N∑
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pk
(
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)

≥
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N∑
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pkFk(wt) − �


≥ −1

2
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[
ηt‖vFk(wt)‖2 + 1

ηt

∥∥∥wk
t − wt
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[
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(
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2ηt
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∥∥∥2]

+
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pkFk(wt) − �
 (30)

where the first inequality of (30) is derived based on the con-
vexity of Fk, the second inequality of (30) is from AM-GM
inequality and the third inequality of (30) is derived based
on (26). We use the same method to bound terms related to
Gk. Then, we have

D ≤ γt

N∑
k=1

pk

[
ηtL

(
Fk(wt) − F


k

) + 1

2ηt

∥∥∥wk
t − wt

∥∥∥2]

− γt

(
N∑

k=1

pkFk(wt) − �


)

+ γt

N∑
k=1

pk

[
ηtL

(
Gk(wt) − G
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2ηt

∥∥∥wk
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(
N∑

k=1

pkGk(wt) − �


)
. (31)
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By combining (29) and (31), we can get

C ≤ γt(ηtL − 1)
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pk
(Fk(wt) − �


)

+ γt

2ηt

N∑
k=1

pk

∥∥∥wk
t − wt

∥∥∥2 + γtηtL
N∑

k=1

pk
(
�
 − F


k

)

+ γt(ηtL − 1)
N∑

k=1

pk
(Gk(wt) − �


)

+ γt

2ηt

N∑
k=1

pk

∥∥∥wk
t − wt

∥∥∥2 + γtηtL
N∑

k=1

pk
(
�
 − G


k

)

+ 6Lη2
t � − γt

N∑
k=1

pk�



≤ γt(ηtL − 1)
N∑

k=1

pk

(
Fk(wt) − 1

2
�


)

+ γt(ηtL − 1)
N∑

k=1

pk

(
Gk(wt) − 1

2
�


)

+ γt

ηt

N∑
k=1

pk

∥∥∥wk
t − wt

∥∥∥2 + γtηtL
N∑

k=1

pk

(
1

2
�
 − F


k

)

+ γtηtL
N∑

k=1

pk

(
1

2
�
 − G


k

)
+ 6Lη2

t �

− γt(ηtL − 1)�
 + γtηtL�
 − γt�



= γt(ηtL − 1)
N∑

k=1

pk
(Fk(wt) + Gk(wt) − �


)

+ γt

ηt

N∑
k=1

pk

∥∥∥wk
t − wt

∥∥∥2 + γtηtL
(
�
 − F


k − G

k

) + 6Lη2
t �

≤ 2
N∑

k=1

pk

∥∥∥wk
t − wt

∥∥∥2 +
(
6Lη2

t + γtηtL
)
�

≤ 2
N∑
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t �. (32)

In the last inequality of (32), we use the following three facts:
1) ηtL − 1 ≤ −(3/4) ≤ 0 and

∑N
k=1 pk(Fk(wt) + Gk(wt) −

�
) = �(wt) − �
 ≥ 0; 2) � ≥ 0 and 6Lη2
t + γtηtL ≤

8η2
t L; and 3) (γt/2ηt) ≤ 1. Recalling the expression of A1 and

plugging C into it, we have

A1 ≤ (1 − 2μηt)
∥∥wt − w


∥∥2

+ 4
N∑

k=1

pk

∥∥∥wt − wk
t

∥∥∥2 + 8Lη2
t �. (33)

According to Assumption 3, the variance of the stochastic
gradients F and G in device k is bounded by α2

k and β2
k .

Consequently, we have
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(
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. (34)

Since our DFL requires a communication round each T SGD
steps, for any t ≥ 0, there exists a t0 ≤ t, such that t−t0 ≤ T−1
and wk

t0 = wt0 for all k = 1, 2, . . . , N. Based on the fact that
ηt is nonincreasing and ηt0 ≤ 2ηt for all t − t0 ≤ T − 1, we
can get
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2
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Therefore, we can obtain (36) by combining (33)–(35)

E||wt+1 − w
||2 ≤ (1 − 2μηt)E||wt − w
||2 + η2
t B

B = 32(T − 1)2
(

G2
1 + G2

2

) N∑
k=1

p2
k

(
α2

k + β2
k

)
+ 8L�. (36)

For a diminishing stepsize similar to [24], ηt = (β/t + γ )

for some β > (1/μ) and γ > 0 such that η1 ≤
min{(1/μ), (1/4L)} = (1/4L) and ηt ≤ 2ηt+T . Let �t =
E||wt − w
||2. Based on (36), we have

�t+1 ≤ (1 − 2ηtμ)�t + η2
t B. (37)

According to [24], �t ≤ (v/γ + t), where v =
max{([β2B]/[2βμ − 1]), (γ + 1) �1}.

Then, by the L-smoothness of �(·), we can get

E
[
�(wt)

]
− �
 ≤ L

2
E

∥∥wt − w

∥∥2 ≤ L

2

v

γ + t
(38)
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where

v = max

{
β2B

2βμ − 1
, (γ + 1)�1

}
(39)

and

B = 32(T − 1)2
(

G2
1 + G2

2

) N∑
k=1

p2
k

(
α2

k + β2
k

)
+ 8L�. (40)

According to (38), our DFL converges to the global opti-
mum at a rate of O(1/t) for strongly convex and smooth
functions given L, v, and γ are constants. For the case of par-
tial device participation, similar to [24], we can claim that the
convergence rate of partial device participation is the same as
that of full device participation.
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