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Abstract— Federated learning (FL) enables mobile devices to
collaboratively learn a shared prediction model while keeping
data locally. However, there are two major research challenges
to practically deploy FL over mobile devices: (i) frequent wireless
updates of huge size gradients v.s. limited spectrum resources,
and (ii) energy-hungry FL communication and local comput-
ing during training v.s. battery-constrained mobile devices.
To address those challenges, in this paper, we propose a novel
multi-bit over-the-air computation (M-AirComp) approach for
spectrum-efficient aggregation of local model updates in FL
and further present an energy-efficient FL design for mobile
devices. Specifically, a high-precision digital modulation scheme
is designed and incorporated in the M-AirComp, allowing mobile
devices to upload model updates at the selected positions simul-
taneously in the multi-access channel. Moreover, we theoretically
analyze the convergence property of our FL algorithm. Guided
by FL convergence analysis, we formulate a joint transmission
probability and local computing control optimization, aiming
to minimize the overall energy consumption (i.e., iterative local
computing + multi-round communications) of mobile devices in
FL. Extensive simulation results show that our proposed scheme
outperforms existing ones in terms of spectrum utilization, energy
efficiency, and learning accuracy.

Index Terms— Federated learning, over-the-air computation,
gradient quantization, energy efficiency.

I. INTRODUCTION

WITH the development of mobile communications and

Internet-of-Things (IoT) technologies, mobile devices
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with built-in sensors and Internet connectivity have prolifer-

ated huge volumes of data at the network edge. These data

can be collected and analyzed to build increasingly complex

machine learning models. To avoid raw-data sharing among

the untrustworthy parties and leverage the ever-increasing

computation capability of mobile devices, the emerging fed-

erated learning (FL) framework allows participating mobile

devices to collaboratively train a machine learning model

under the orchestration of a centralized server by just

exchanging the local model updates with others via wireless

communications. With such desirable properties, FL over

mobile devices has inspired a wide utilization in a large variety

of intelligent services, such as the keyword prediction [1],

voice classifier [2], and e-health [3], etc.

Although only model updates instead of raw data are

transferred between mobile devices and the FL server, such

updates could contain hundreds of millions of parameters with

complex neural networks. That makes the uplink transmissions

from mobile devices to the FL server for model aggregation

particularly challenging, resulting in a huge burden on both

wireless networks and mobile devices. On the one hand,

the spectrum resource that can be allocated to each device

decreases proportionally as the number of devices increases,

which hampers the scalability of FL to accommodate a large

number of mobile devices with limited spectrum resources.

On the other hand, transmitting a large volume of model

updates periodically and executing heavy local on-device com-

putations can quickly drain out the energy of battery-powered

mobile devices. Such a mismatch restricts mobile devices or

makes them reluctant to participate in FL.

Over-the-air computation (AirComp) provides a promising

solution to address the aforementioned spectrum challenge

by achieving scalable and efficient model update aggregation

in FL. Unlike the conventional orthogonal multiple access

techniques, where each user is restricted to its allocated

spectrum band [4], AirComp allows all the users to utilize the

whole spectrum for simultaneous transmission. By applying

AirComp to FL, all the participating devices can transmit

their model updates on the same channel. Due to the fact

that multi-access channel (MAC) inherently yields an additive

superposed signal, the signals of all the participating devices

are aligned to obtain desired arithmetic computation results

directly over the air, thus significantly improving the spectrum

efficiency. However, most existing works employ the analogy

modulation to design their over-the-air FL schemes, which is

not compatible with commercial off-the-shelf digital mobile
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devices and thus hinders their deployment in current/future

communication systems, such as LTE, 5G, Wi-Fi 6, and 6G,

etc. Besides, most existing efforts focus on single-iteration

transmission design for AirComp-based FL [5], [6], and the

impacts of AirComp on the long-term federated training

performance, especially the convergence rate, are widely over-

looked.

In this work, we design a multi-bit Aircomp (M-AirComp)

FL scheme, named ESOAFL, whose merits are two-fold: i) It

is compatible with the most common Quadrature Amplitude

Modulation (QAM) transmitter where gradient quantization is

incorporated to facilitate the digital modulation, so that one

do not need to modify the modulation protocols manufactured

within commercial off-the-shelf mobile devices for the peri-

odical gradient transmission. ii) It filters the FL participants

with good channel conditions based on a well-controlled

transmission probability to transmit the updated gradients,

which helps save the transmission energy compared with other

AirComp-based FL schemes. We analyze the convergence

property of our ESOAFL algorithm and derive the number of

communication rounds needed for achieving the convergence.

Guided by the theoretical results, we model the energy con-

sumption of all the FL devices from the long-term learning

perspective, where wireless communication (i.e., “talking”)

and local computing (i.e., “working”) are two main focuses.

To make the ESOAFL battery-friendly to the participating

mobile devices, a joint transmission probability and local

computing control scheme is developed to balance “talking”

and “working” during performing the ESOAFL, with the goal

of energy consumption minimization. Our salient contributions

are summarized as follows.

• We propose an energy and spectrum efficient M-AirComp

FL (ESOAFL) scheme where the updated gradients of

every FL participant are quantized into high-precision

bitstreams, adapting to the digital modulation settings.

To facilitate the M-AirComp, a transmission control

policy is integrated in ESOAFL to only allow the FL

participants with good channel conditions for FL model

aggregation by introducing a tunable parameter, i.e.,

transmission probability.

• We theoretically analyze the convergence property of our

ESOAFL to characterize the impacts of the M-AirComp

on FL. Guided by it, the transmission probability and

local computing iterations are jointly optimized from

the long-term learning perspective, aiming to achieve

energy-efficient federated training on mobile devices over

spectrum-constrained wireless networks.

• We conduct extensive simulations to verify the superiority

of the ESOAFL compared to several baselines, under

varying learning models, training datasets, and network

settings. It shows that our ESOAFL scheme can improve

spectral efficiency dozens of times and save at least half

of the energy consumption.

The remainder of the paper is organized as follows.

Section II provides some preliminaries of AirComp and FL.

Section III presents our M-AirComp design and the ESOAFL

scheme. Section IV gives the theoretical analysis of ESOAFL

and elaborates on the joint transmission probability and local

computing control approach. Numerical simulations are pro-

vided in Section V, and VI reviews related works. Section VII

finally concludes the paper and provides future work.

II. PRELIMINARIES OF FL AND AIRCOMP FL

A. Preliminaries of FL

We consider a federated learning system consisting of K
participating users carrying mobile devices, where each user

k ∈ {1, 2, . . . , K} has its own dataset, denoted by Dk. The

goal of FL is to collaborate the users to perform a unified

optimization task, formally written as:

min
w∈Rd

f(w) � 1
K

K∑
k=1

fk(w), (1)

where fk is the local loss function corresponding to user k,

and d is the dimension of the model parameters.

Let r ∈ {1, 2, . . . , R} be the index of FL global com-

munication round, and H be the number of local training

iterations executed between every two consecutive global

communication rounds. Moreover, we define wr as the global

model at the r-th communication round and define wr,h
k as

the local model of user k at the h-th local iteration in the r-th

communication round. Then the local training process of user

k in the r-th communication round is given by:

wr,h+1
k = wr,h

k − η∇Fk(wr,h
k ) for h = 0, 1, . . . , H − 1,

(2)

where ∇Fk(wr,h
k ) is a stochastic gradient of function f(·)

with a random batch-size data, and η is the local learn-

ing rate. Here, ∇Fk(wr,h
k ) is an unbiased estimation of

∇fk(wr,h
k ), i.e., Eξ∼Dk

[∇Fk(w) | ξ] = ∇fk(w), where ξ
represents the randomness like the batch-size index. After

finishing the local training, every participating user uploads

its local model updates to the server for global aggregation,

i.e., η
∑H−1

h=0 ∇Fk(wr,h
k ), and the server then broadcasts the

most recent global model to initiate a new round of local

training. The above process is repeated until the global model

converges.

B. Preliminaries of AirComp FL

During the FL process, all the users have to transmit their

local updates to the server for global aggregation, which

may result in severe transmission congestion and consume

significant communication resources, especially in cases with

massive participating users. As one of the advanced wireless

techniques, over-the-air computation (AirComp) enables all

the users to simultaneously transmit the local gradients over

the same wireless medium without spectrum allocation and

naturally aggregates the local updates during the signal propa-

gation, which exhibits great potentials to improve the spectrum

utilization.

Let X := {x1, x2, . . . , xK} and ỹ denote the input set

and the output objective of the AirComp operation, respec-

tively. Here, xk is the gradients to be transmitted by user

k, and ỹ is the global aggregation result received at the
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Fig. 1. Over-the-Air federated learning (AirComp FL).

server with AirComp. Generally, an AirComp-based wireless

communication system adopts precoding and amplification at

transmitters, while receivers often have equalization blocks for

signal detection. Therefore, AirComp computes the aggregated

objective as

ỹ := Air (X ) =
a

K

[
K∑

k=0

hkpkxk + n

]
, (3)

where hk ∈ C is the channel coefficient between user k and the

server, and n ∼ N(0, σ2
z) is the additive white Gaussian noise

(AWGN) at the receiver. The Tx-scaling factor pk ∈ C, a.k.a.

power control policy, compensates the phase shift posed by

the channel and amplifies the transmit signal. The goal of the

Tx-scaling is to ensure that each participating user contributes

equally at the receiving antenna and the superposed signal is

proportional to the ideal summation, which is defined as the

average operation over the input set without AirComp, i.e.,

y := 1
K

∑K
k=1 xk. Accordingly, the Rx-scaling factor a ∈ R

acts as an equalizer and recovers the sampled analog result to

its expected value.

C. Preliminary Experiments on AirComp FL

To demonstrate the spectrum-efficient benefit of AirComp

FL, we conduct the preliminary experiments on AirComp

FL and the classic FedAvg without AirComp, as shown in

Fig. 1. Here, 10 users are considered to participate in an

FL task and collaboratively train a ResNet-20 model on the

CIFAR-10 dataset. Both the communication bandwidth and

the number of training epochs are set to be the same for

Fig. 2. Design of multi-bit Over-the-Air computation.

these two schemes. Taking test accuracy as the measure,

Fig. 1(a) depicts the convergence performance of the training

process, while Fig. 1(b) displays the communication resource

consumption during the training. It shows that, compared

with FedAvg, AirComp FL only requires a little more or

even the same number of data epochs to achieve the target

accuracy. This impies that AirComp operation imposes neg-

ligible impacts on the convergence rate of FL. Meanwhile,

the communication resource consumption of the AirComp FL

is much less than that of FedAvg, since the latter forces the

users to use orthogonal channels for interference avoidance

instead of performing concurrent transmission over the same

spectrum like AirComp FL does. Note here that we use the

normalized communication resources for Fig. 1(b) illustration

and assume one unit communication resource is consumed in

each communication round in AirComp FL.

III. THE DESIGN OF M-AIRCOMP AND

M-AIRCOMP-BASED FL

A. M-AirComp Design

Different from the most existing AirComp methods with an

analogy modulation scheme, we establish a digital modulation

scheme for the AirComp to cater for the commercial trans-

mit devices and design a multi-bit over-the-Air computation

scheme (M-AirComp). To this end, the Rx-scaling factor

a performs as a digital domain equalizer, and the division

operation in Eq. (3) to calculate the arithmetic average is also

in the digital domain. In order to eliminate the burden of

redesigning the modulation scheme, we tend to integrate the

gradient quantization to the most common Quadrature Ampli-

tude Modulation (QAM) in LTE, 5G, and Wi-Fi 6 standard [7].

Instead of transmitting arbitrary values, gradients to transmit

are clipped and quantized as Multiple Amplitude Shift Keying

(MASK) symbols, so as to be compatible with modern digital

devices. Two MASK-modulated gradients can be transmitted

orthogonally using in-phase (I) and quadrature (Q) channel

simultaneously. We notice that it is equivalent to mapping two

separate gradients onto a symbol from the square M2 QAM

constellation. Here, we limit M between 2 to 2b. For example,

when b is set as 3, the user will use 64QAM to transmit

two gradients, as shown in Fig. 2. In this way, altering the

value M at the transmitter according to the estimated channel
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gain allows full digital data transmission while preserving b-bit

resolution.

Assume that the server equips with a high-resolution analog-

to-digital converter (ADC) (e.g., 16-bit). While receiving,

multiple QAM symbols superpose at the sampling instance,

which can be viewed from (a part of) a higher-order rectangu-

lar QAM constellation diagram (when the number of mobile

devices is odd) or a zero-centered constellation diagram (when

the number of users is even). Since the biggest possible value

after aggregation can be obtained from user feedback, we can

utilize this value as the ADC reference voltage. In order to alle-

viate the detection complexity, we directly use the quantized

samples followed by Rx-scaling defined in Eq. (3) in the digital

domain. In this way, the transmission module is implemented

in a digital manner, which enables the M-AirComp to have

better compatibility compared with traditional AirComp. The

process is also illustrated in Fig. 2. This result can be viewed

as the desired computational result added by quantization

error and channel noise, whose impacts on federated learning

performance are analyzed in the following section.

In the transmission process, every device is subject to an

average transmitting power budget, i.e., P 0. The transmission

power constraint is given by

E[|pk|2] ≤ P 0, ∀k, (4)

where the expectation is taken over the distribution of random

channel coefficients. Recall that gradient parameters transmit-

ted by different devices are received with identical amplitudes

for implementing gradient aggregation via AirComp, which

can be achieved by inverting the channels via power control.

In practice, some devices facing severe signal fading may not

completely align their amplitude due to the power limit, i.e.,

the Tx-scaling factor pk ∈ C cannot be infinitely enlarged to

meet the amplitude alignment requirement. This work adopts

an energy efficient power control policy that performs channel-

inversion-based power control only for the users with desired

channel gain. The users with poor channel conditions are not

allowed to transmit, i.e. its transmit power is set to be zero. Let

gth be the channel gain threshold for possible transmission, and

the power control policy pk for any user k can be represented

as:

pk =

{ √
�h†

k

|hk|2 , |hk|2 ≥ gth

0, |hk|2 < gth .
(5)

Here, � is a scaling factor to guarantee the desired SNR,

which determines the receiving power of the gradient update

from each user; hk represents the channel coefficient and its

conjugate is denoted by h†
k. Under the above power control

policy, only users facing channel gain larger than gth can

be allowed to transmit their updated gradients. Note that

the threshold gth can be adjusted to control the gradient

transmissions. With the power constraint in Eq. (4), we have

|hk|2 = �/|pk|2 ≥ �/P 0. It means that the threshold gth

can be set as an arbitrary value larger than the minimum

value gmin
th := �

P 0 . Specifically, in a certain communication

environment, the greater the threshold gth we set, the more the

users are allowed to upload their updated gradients. By varying

the threshold gth, our M-AirComp design has the potential to

Algorithm 1 ESOAFL Algorithm

Initialization: Initialize the global model w0 and set w0,0
k =

w0,∀k ∈ K; Set the learning rate γ and η, local computing

iterations H , and the channel gain threshold gth

Initialize the communication index r = 0 and the local

computing iteration count h = 0
1: while r < R do
2: for h = 0, . . . , H − 1 do
3: Each device k computes the unbiased stochastic

gradients ∇Fk(wr,h
k ) of fk(wr

k) with one batch size of

data from the dataset Dk

4: Each device k in parallel updates its local model:

wr,h+1
k = wr,h

k − η∇Fk(wr,h
k ), ∀k

5: end for
6: Each device k calculates the accumulated gradients

with gradient quantization as Q
(
η
∑H−1

h=0 ∇Fk(wr,h
k )
)

.

7: Each device k transmits the quantized accumulated

gradients if the observed channel gain larger than the

pre-selected threshold gth , i.e., |hk|2 ≥ gth ; otherwise,

no transmission.

8: All the local gradients are aggregated over the air to

update the global model via Eq. (7).

9: Update r ← r + 1.

10: Each device k updates its local model wr,0
k = wr.

11: end while

only involve the users with good channel conditions, which

allows to lower the transmit power of the edge devices and

thereby benefits in energy-saving. We define ρ as the average

transmission probability that the users’ channel gain is above

the power-cutoff threshold gth, which reflects the participation

degree of the FL users. Note here that any threshold gth

will correspond to a transmission probability ρ. Assume that

the channel coefficient is Rayleigh distributed, i.e., hk ∼
CN(0,

√
λ) and thus the channel gain gk = |hk|2 follows

an exponential distribution. The transmission probability ρ
corresponding to the threshold gth can be calculated as:

ρ = Pr(gk ≥ gth) =
∫ ∞

gth

λe−λxdx = e−λgth . (6)

With the transmission probability ρ, the Rx-scaling factor a
will be set as 1√

�ρ to rescale the received signal. By substitut-

ing gmin
th := �

P 0 into Eq. (6), we have the highest transmission

probability ρmax as ρmax = e−λgmin
th = e−λ �

P0 . It implies that,

due to the fading channel and the devices’ power budget, the

transmission probability is upper-bounded.

B. M-AirComp-Based FL Design

Based on M-AirComp, this subsection presents an Energy

and Spectrum Efficient Over the Air Federated Learning

(ESOAFL) algorithm integrating gradient quantization, where

the overview is illustrated in Fig. 2. The pseudocode of our

ESOAFL is given in Alg. 1, and the details are described in

the following.
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TABLE I

SUMMARY OF NOTATIONS

Following the ESOAFL, all the participating users start

the training procedure with the initialized model parameters.

Here, we assume a synchronized FL setting where every user

periodically performs the same number of local iterations, i.e.,

H , with mini-batch size data drawn from its own dataset for

model aggregation. After the local training, a uniform gradient

quantization operator Q(·) is utilized to quantize the updated

gradients into low bits, i.e., 4-bit or 8-bit. Taking b-bit quan-

tization for example, the local updates of all the participants

are quantized to 2b levels with a specific maximum/minimum

value, catering to the digital wireless transmission scheme.

Next, every 2 gradient element is modulated into one dig-

ital symbol for transmission. We assume the symbol-level

synchronization among all the mobile devices that ensures

coherent and concurrent transmission. This assumption can be

realized by dedicating the bandwidth for mobile device syn-

chronization, e.g., 1.08 MHz primary synchronization channel

(PSCH) and secondary synchronization channel (SSCH) in

LTE system [8], or the AirShare [9] for distributed MIMO

synchronization. Then we employ the M-AirComp operator

Air(·), along with the proposed energy efficient power control

policy. In specific, the threshold gth is determined firstly,

which is one-to-one mapped with transmission probability

ρ by ρ = e−λgth , and then the FL user whose channel

gain larger than gth can be allowed to transmit its gradient

updates. Because M-AirComp integrates wireless transmission

and model aggregation over the air, the server receives only

the aggregated gradients, based on which the global model is

updated by:

wr+1 = wr − Air

({
Q

(
η

H−1∑
h=0

∇Fk(wr,h
k )

)}
K

)
. (7)

After that, the server will broadcast the global model to all

devices for the next-round federated training. We repeat the

above procedure for R rounds until the model converges to a

stationary point. Particularly, the convergence requirement can

be represented as 1
R

∑R−1
r=0 ‖∇fr‖2

2 ≤ ε, where ε denotes the

target training loss and ∇fr is the global function gradient at

the r-th communication round.

IV. SPECTRUM AND ENERGY EFFICIENT FL:

FORMULATION AND SOLUTION

In this section, we formulate an overall energy minimization

problem and establish the communication and computation

energy models of the proposed ESOAFL algorithm. Based

on the derived convergence analysis, we then optimize the

control policy in terms of the transmission probability ρ
and local computing iterations H to minimize the overall

energy consumption. In Table I, we summarize the important

notations we use throughout the paper.

A. Energy Minimization Problem Formulation

It is challenging to deploy energy-hungry FL tasks on

mobile devices due to their limited battery capacity. Hence,

in this work, we aim to minimize the total energy consumption

of FL training via joint control of local computing iterations H
and transmission probability ρ. The average energy consump-

tion per communication round of mobile device is cast as E =
Ecomm(ρ)+EcompH . Here, Ecomm(ρ) is the communication

energy consumed to transmit the updated gradients, which is

related to the transmission probability ρ, and Ecomp is the

computing energy of performing one local iteration. Our goal

is to minimize the overall energy consumption during the

federated training while guaranteeing the model convergence,

which is formulated as:

min E [Etot] � E [REcomm(ρ)] + E [REcompH]

s.t.,
1
R

R−1∑
r=0

E
[‖∇fr‖2

2

] ≤ ε. (8)

Here, ε is the target FL accuracy, and R indicates the

number of global communication rounds required for conver-

gence. Note that the value of R is related to the model update

behaviors and the target training accuracy, which is difficult to

determine before completing the training. Thus, in the follow-

ing, we first give the energy models for edge devices, and then

quantify the number of global communication rounds required

for achieving a ε-global model convergence, i.e., satisfying
1
R

∑R−1
r=0 E

[‖∇fr‖2
2

] ≤ ε, via rigorous convergence analysis.

B. Energy Model

1) Communication Energy Model: If we consider the

M-AirComp power control policy with transmission probabil-

ity ρ whose value is smaller than pmax
b , the threshold channel

gain is mapped as gth := − 1
λ ln ρ. In this way, the average

power consumption among all the users and time slots will

be:

P comm = ρ�

∫ ∞

gth

λ
1
x

e−λxdx

= −ρ�λEi (−λgth) = −ρ�λEi (ln ρ) , (9)
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where Ei(x) is the exponential integral function denoted as

Ei(x) =
∫ x

−∞
et

t dx. Due to the fact that − ln ρ is positive,

we have Ei (ln ρ) = −E1 (− ln ρ) where E1(x) =
∫∞

x
e−t

t dx.

Then we have P comm = −ρ�λEi (ln ρ) = ρ�λE1 (− ln ρ).
For any x with positive real value, E1(x) can be tightly upper

bounded by an elementary function as follows:

E1(x) < e−x ln
(

1 +
1
x

)
. (10)

We note that the gap between the original E1(x) function

and its bound is negligible, but the calculation of the func-

tion E1(x) is much more complex than that of its bound

due to the integral operator. Recall that we wish to reduce

the transmission energy consumption that is proportional to

the value of E1(− ln pb). For ease of solution, we replace

E1(− ln pb) (− ln ρ ≥ 0 always holds) with its upper bound

eln pb ln
(
1 + 1

− ln pb

)
, implying that we minimize the trans-

mission energy consumption for the worst case. Then we have

P comm ≈ ρ�λeln ρ ln
(

1 +
1

− ln ρ

)
= �λρ2 ln(1 − 1

ln ρ
).

(11)

After executing a fixed number of local iterations, each

device is required to quantize the updated gradients into

low-bit precision for digital transmission. Here, we adapt

MASK to modulate the gradients, which means the magni-

tude of each symbol is sufficient to decode the transmission

gradient. Let Ts denote the symbol duration that is in inverse

proportion to channel bandwidth. To transmit the gradients

with the size of d, d/2 symbol is required according to

the M-AirComp design. Thus, the transmission time can

be represented as T comm = d
2Ms

Ts, where Ms symbols

are transmitted in parallel. Accordingly, the communication

energy consumption for each device in each communication

round is computed as

Ecomm = P comm × T comm. (12)

2) Computational Energy Model: With massive data stored

and processed by edge devices, on-device training can natu-

rally be treated as computation-hungry tasks. Luckily, most

modern smart devices are equipped with high-performance

GPUs and can handle such heavy training tasks. This work

considers the GPU computational energy model. We model

the energy consumed to process a mini-batch of data in one

iteration as

Ecomp = P comp × T comp, (13)

where P comp and T comp are runtime power and execution

time of the edge device, respectively. Both of them are related

to the GPU core frequency/voltage and the memory frequency

in the forms of [10]

P comp = P 0 + afmem + b(vcore)2fcore, (14)

T comp = T 0 +
u

fmem
+

v

fcore
. (15)

Here, P0 and T0 are the static power and static time

consumption. fcore/vcore and fmem represent the core fre-

quency/voltage and memory frequency, respectively. a, b, u,

and v are constants reflecting the sensitivity of the task execu-

tion to GPU memory and core frequency/voltage scaling [10],

[11]. Given a specific FL task, i.e., a neural network model

with a dataset, these constants can be well estimated based

on experiments by measuring the average runtime energy

consumption. Since every user performs H local iterations

between two consecutive communication rounds, the energy

consumption of local computing in one communication round

can be calculated as the product of the energy consumption of

one iteration and the number of local iterations, i.e., Ecomp ·H .

C. Impacts of Control Variables on ESOAFL Convergence

In this subsection, we theoretically analyze the impacts of

control variables ρ and H on the convergence rate of ESOAFL.

We consider the following three standard assumptions.

Assumption 1 Smoothness: The objective function fk is dif-
ferentiable and L-smooth:

‖∇fk(x) −∇fk(y)‖ ≤ L‖x − y‖, ∀k. (16)

Assumption 2 Bounded variances and second moments:
The variance and the second moments of stochastic gradients
evaluated with a mini-batch can be bounded as

Eξi∼Di
‖∇Fi (w; ξi) −∇f(w)‖2 ≤ σ2, ∀w, ∀i, (17)

Eξi∼Di ‖∇Fi (w; ξi)‖2 ≤ δ2, ∀w, ∀i, (18)

where σ and δ are positive constants.
Assumption 3 Quantization bounded variances: The

output of a q-quantization operator Q(x) is an unbiased
estimator of its input x, and its variance grows with the
squared of L2-norm of its argument, i.e., E[Q(x)] = x and
E[||Q(x) − x||2] ≤ q||x||2, where the expectation E[·] is
taken over the randomness of Q. Here, q could be a function
reflecting compression distortion w.r.t the dimension of the
input and the number of quantization levels.

Basically, Assumption 3 is customary in the analysis of

distributed learning methods with compression [12], [13],

and there are some quantization operators subjecting to the

conditions in the assumption, such as QSGD [14], Stochastic

Quantization [15], [16], etc. Based on the above assumptions,

we have the following lemma on the bounded variances of M-

AirComp, where the power control policy with a transmission

probability ρ is applied for gradient uploading.

Lemma 1 M-AirComp bounded variances: The output of
the M-AirComp operator Air(X ) with the proposed power
control scheme is an unbiased estimator of its input set X ,i.e.,
E[Air(X )] = y, and the transmission probability ρ affects the
variance of M-AirComp by

Var(Air(X )) =
1

K2
(
1
ρ
− 1)

∑
xk∈X

x2
k +

σ2
z

K2ρ2
. (19)

Proof: Let X be the input set of the M-AirComp

operator. Given the transmission probability ρ of the FL users,

the expected output of M-AirComp is

E[Air(X )] = E

[
1

ρK

[ ∑
xk∈X

xk + n

]]
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=
1

ρK

[ ∑
xk∈X

(xkρ + 0 · (1 − ρ)) + E [n]

]
= y,

(20)

and the mean of the square of Air(X ) is given by

E[(Air(X ))2] (21)

= E

⎡
⎣ 1

ρ2K2

(∑
xk∈X

xk + n

)2
⎤
⎦

= E

⎡
⎣ 1

ρ2K2

⎛
⎝ ∑

xk,xk′∈X
xkxk′ + 2

∑
xk∈X

xkn + n2

⎞
⎠
⎤
⎦

=
1

ρ2K2

⎡
⎣ ∑

xk,xk′∈X ,k �=k′
xkρxk′ρ +

∑
xk∈X

x2
kρ + σ2

z

⎤
⎦

=
1

ρ2K2

[
ρ2

(
(
∑

xk∈X
xk)2 −

∑
xk∈X

x2
k

)
+ ρ

∑
xk∈X

x2
k + σ2

z

]

=
1

K2

[
(
∑

xk∈X
xk)2 + (

1
ρ
− 1)

∑
xk∈X

x2
k

]
+

σ2
z

K2ρ2
(22)

Thus, the variance is calculated as:

Var(Air(X )) = E[(Air(X ))2] − E[Air2(X )]

= y2 +
1

K2
(
1
ρ
− 1)

∑
xk∈X

x2
k +

σ2
z

K2ρ2
− y2

=
1

K2
(
1
ρ
− 1)

∑
xk∈X

x2
k +

σ2
z

K2ρ2
. (23)

�
Theorem 1: For the proposed ESOAFL approach, under the

above assumptions, if learning rates θ and η satisfy

1 ≥ L2η2H2 + HLθη
q(2 − ρ) + Kρ

Kρ
, (24)

the convergence rate after R communication rounds can be
bounded as:

1
R

R−1∑
r=0

‖∇fr‖2
2 ≤ 2(f(w0) − f(w∗)

ηθHR
+

ηθL

K

(ρ + q)
ρ

σ2

+ η2L2Hσ2 +
θηL

HK2ρ2
σ2

z , (25)

where q is the gradient quantization precision, ρ is the
M-AirComp transmission probability, H is the local computing
iterations, and f(w∗) is the minimum value of the loss.

Proof: Please refer to the Appendix. A for the proof. �
The above Theorem 1 is derived based on the L-smoothness

gradient assumption on global objective [12]. After expanding

the inequality of the global objective, we first bound the

inner product between the stochastic gradient and full batch

gradient, while we can also bound the distance between the

global model and the local model. Further, we bound the

updated gradients with M-AirComp and quantization opera-

tors. Finally, by integrating the derived results above, we finish

the convergence analysis of the ESOAFL algorithm.

Corollary 1: To achieve the linear speedup, we need
to have θη = O

( √
K√

RH

)
. If we further choose θη =

O
(

1
L

√
Kρ

RH(ρ+q)

)
, the convergence rate can be represented

as:

1
R

R−1∑
r=0

‖∇fr‖2
2 ≤ 2L(f(w0) − f(w∗)

√
(ρ + q)√

KRHρ

+
√

ρ + q√
KRHρ

σ2 +
K

Rθ2
σ2 +

√
1

K3RH3(ρ + q)ρ3
σ2

z

(a)
= O

( √
ρ + q√

KRHρ
(2L(f(w0) − f(w∗) + σ2)) +

K

Rθ2
σ2

)
(b)
= O

(
χ√

KRH

)
+ O

(
K

R

)
, (26)

where (a) is due to the fact that O(
√

1
K3R ) decays faster than

O(
√

1
KR ), and we replace

√
ρ+q

ρ by χ in (b).
We note that, for the ESOAFL without probabilistic trans-

mission, i.e., ρ = 1, the bound in Eq. (26) matches the

best-known rate given by [12] with a tight convergence

analysis. This implies that our ESOAFL will retain the same

linear speedup property as its counterpart without probabilistic

transmission and M-AirComp operation. Based on the conver-

gence analysis, we further give the following corollary on the

communication complexity, i.e., the number of communication

rounds required for achieving convergence, of our ESOAFL

algorithm.

Corollary 2: From the Corollary 1, the required maximum
number of communications for achieving the ε target training
loss, i.e., satisfying ε = 1

R

∑R−1
r=0 ‖∇fr‖2

2, is given by

R = O

(
2εσ2HK2 + χ2(δ + σ2)2θ2

2ε2θ2HK

)
(27)

+ O

(
+χ(δ + σ2)θ

√
4εσ2HK2 + χ2(δ + σ2)2θ2

2ε2θ2HK

)

= O (K) + O

(
χ2

HK

)
+ O

(
χ√
H

)
, (28)

where χ =
√

ρ+q
ρ and δ = 2L(f(w0) − f(w∗)).

D. Overall Energy Minimization Reformulation and Solution

With the above models, we calculate the total energy

consumed by the participating mobile devices during the entire

training process as:

Θ(ρ, H) = R × (Ecomm + HEcomp)

=
(

A0(ρ + q)
ρH

+
B0

√
ρ + q√
ρH

+ C0

)

·
(

�λρ2 ln(1 − 1
ln ρ

)T comm + HEcomp

)
, (29)

where A0, B0, and C0 are constants used to approximate the

big-O notion in Eq. (27). From the above formula, we observe

that a larger H lead to the reduced number of communication

rounds R (“talking”), but increases the computational energy

consumption per round (“working”). Also, adjusting ρ affects
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Algorithm 2 JCP Control Algorithm

Initialization: ξ = 10−5, ι = 10−5, γ0 ∈ (0, 1], κ = 0.

Input: Parameters pmax
b , Hmin and Hmax; Value access to

function Θ(·).
1: repeat
2: Solve (34) and set the optimal value as φ∗(φκ)

3: Set φκ+1 = φκ + γ0(φ∗(φκ) − φκ)
4: Set κ = κ + 1 and γκ = γκ−1(1 − ξγκ−1)
5: until ||φκ − φκ−1||22 ≤ ι
6: Round the current H to the nearest integer in H
7: return The current solutions of ρ and H .

the required communication rounds and the communication

energy consumption in each round. Thus, it is necessary

to optimize H and ρ to balance “working” and “talking”

for minimizing the overall energy consumption. To this end,

we formulate the Joint local Computing and transmission

Probability (JCP) control problem as:

min
ρ,H

(
A0(ρ + q)

ρH
+

B0
√

ρ + q√
ρH

+ C0

)
(30a)

·
(

�λρ2 ln(1 − 1
ln ρ

)T comm + HEcomp

)
(30b)

s.t. 0 < ρ ≤ pmax
b , (30c)

H ∈ H. (30d)

For notational brevity, we define φ = {ρ, H} and represent

the objective function as Θ(φ) = Θ1(φ) × Θ2(φ), where

Θ1(φ) =
A0(ρ + q)

ρH
+

B0
√

ρ + q√
ρH

+ C0, (31)

Θ2(φ) = �λρ2 ln(1 − 1
ln ρ

)T comm + HEcomp. (32)

Noticing the decoupled constraints in (30c-30d), we relax

the constraint in (30d) as Hmin ≤ H ≤ Hmax, where Hmin

and Hmax are the minimum and the maximum integer in

H, respectively. Moreover, we can identify that both function

Θ1(φ) and Θ2(φ) are positive and convex after calculating the

first and second-order partial derivative of these two functions.

(Please refer to Appendix. B for the detailed derivation.)

Capturing such the “product-of-convexity” property of the

objective function Θ(φ), we use the inner convex approxi-

mation method [17] to solve the relaxed JCP control problem

by optimizing a sequence of strongly convex inner approxi-

mations of Θ(φ) in the form: given φκ

Θ(φ; φκ) = Θ1(φ)Θ2(φκ) + Θ1(φκ)Θ2(φ), (33)

where φκ = {ρκ, Hκ} refers to the intermediate φ obtained

in the κ-th iteration. Obviously, the approximated objective

function in (33) is strongly convex with the fixed φκ. With

the surrogate function above, we are essentially required

to compute the optimal solutions of the following convex

optimization problem in each iteration, while preserving the

feasibility of the iterates to the original problem in (30).

min
ρ,H

Θ(φ; φκ) (34a)

s.t. 0 < ρ ≤ pmax
b , (34b)

Fig. 3. M-AirComp based FL testbed.

Hmin ≤ H ≤ Hmax. (34c)

Notice that the problem (34) can be solved by various

commercial solvers, e.g., IBM CPLEX optimizer [18]. The

formal description of the Joint Power and Aggregation Control

Algorithm is presented in Alg. 2. Starting from a feasible

point φ0, the method consists in iteratively computing the

solution φ∗(φκ) to the surrogate problem (34), and then

taking a step from φκ towards φ∗(φκ). Here, instead of

using a constant step-size, we use a diminishing step-size

rule, i.e, γκ = γκ−1(1 − ξγκ−1), as it is more efficient to

control the iteration complexity and the convergence speed

in practice [17]. The process is repeated until it meets the

termination criterion, and the value of H is rounded afterward

to ensure its feasibility, i.e., H ∈ H.

V. PERFORMANCE EVALUATION

A. Implementation of M-AirComp

As shown in Fig. 3, we first set up experiments to elaborate

on the usage of M-AirComp for an FL testbed. The system

consists of one edge server and two edge devices. We let

one RTX-8000 server with one USRP X310 play the role

of the over-the-air FL aggregator. Each FL client consists of

the NVIDIA Jetson TX2 as the computing unit and USRP

N210 as the wireless transmitter. We also use WBX 50-2200

MHz Rx/Tx USRP daughterboards, with up to 200mW output

power. The synchronization is provided by USRP X310 REF

and PPS output ports through cable connection. In the end,

all the USRPs are connected to an internet switch. We run

MATLAB codes from the Communication Toolbox Support

Package for USRP Radio to control the transmitting and

receiving in different sessions on the RTX-8000 server.

We first verify the feasibility of M-AirComp by the in-lab

experiments, where two edge devices transmit QAM sym-

bols with quantization, e.g., 16 QAM for 4-bit quantization.

From the constellation in Fig. 4, the receiving symbol set is

expanded into a constellation for higher-order modulations,

which explains the addition carried by the over-the-air compu-

tation from the communication point of view. The aggregated

symbol will be further decoded as a quantized model update,

with a certain probability of bit error with regards to the signal-

to-noise ratio (SNR).

Authorized licensed use limited to: University of Houston. Downloaded on August 28,2024 at 17:50:59 UTC from IEEE Xplore.  Restrictions apply. 



1236 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2024

Fig. 4. Constellation diagram of M-AirComp demo (left: transmitter; right:
receiver).

Fig. 5. Training performance under poor channel conditions.

B. Some Observations of the ESOAFL

As we have discussed in Sec. II-C, AirComp can dra-

matically improve the spectrum efficiency in the FL training

process. Particularly, our ESOAFL scheme has great potential

to retain the training performance in the case of many partic-

ipating devices, even if the communication environment (i.e.,

channel condition) is extremely poor. In Fig. 5, we consider

a severe communication environment with SNR = 5dB over

different number of FL participants, i.e., K = 10, 20, and 30,

and train the ResNet-20 model with the CIFAR-10 dataset.

Here, we partition the dataset into several sub-datasets, where

one sub-dataset is for one FL participant. As a result, the size

of the local dataset decreases as the number of participants K
grows. This results in the degrading performance of FedAvg

with increasing K. Unlike such the monotone impact in

FedAvg, the impacts of K on the performance of ESOAFL

could be more complicated. With the increasing number of

participants, the variance of AirComp is decreasing, as indi-

cated in Eq. (23), which helps improve the performance of our

ESOAFL. This can be validated by the shrinking gap between

the ESOAFL scheme and its ideal case (i.e., FedAvg without

channel noise) as the number of devices grows in Fig. 5.

Especially with a large set of participants (e.g., K = 30),

the performance of ESOAFL is very close to that of FedAvg,

which also implies that our ESOAFL scheme has strong ability

to resist on the poor channel condition.

Recall that the parameters A0, B0, and C0 exist in the JCP

control problem, which are related to the specific learning

Fig. 6. Communication rounds with varying pb and H.

model and dataset. Here, we use a sampling-based method to

estimate the values of the constants A0, B0, and C0, where we

empirically sample different combinations (ρ,H) and use the

derived convergence bound in Eq. (27) to infer their values.

In specific, we repeatedly train a ResNet-20 model on the

CIFAR-10 dataset using varying local computing iterations H
and transmission probabilities ρ, where we set a fixed target

training loss and record the number of communication rounds

correspondingly. With these experimental results, we use the

non-linear least squares curve fitting algorithm [19] to estimate

the values of A0, B0, and C0 in the JCP control problem.

Fig. 6 shows the fitting results. We observe that, with the

increase of local computing iterations H and transmission

probability ρ, the number of required communication rounds

is decreasing, but this effect is gradually weakened. At the

same time, the computing energy consumption of each round

increases linearly with the incremental of local computing

iterations H . Thus, the trade-off between local computing

and wireless communications has to be considered to reduce

the overall energy consumption, where local iterations H
and transmission probability ρ are necessary to carefully

determine.

C. Spectrum and Energy Efficiency of the ESOAFL

After the parameter estimation, we implement the proposed

JCP control scheme to find the optimal local computing

iterations H and transmission probability ρ. Here, we use

two different image classification datasets, i.e., MNIST and

CIFAR-10, to verify the effectiveness of our proposed

approach, both of which consist of 50000 training images and

10000 test images in 10 classes. In particular, the MNIST

dataset contains 28×28 black and white images of handwritten

digits, while the CIFAR-10 dataset is rather complicated that

contains 32×32 color images of animals and vehicles. A LeNet

model and a ResNet-20 model are trained on the two datasets

respectively, where the former is light and the latter has a

more complex structure to fit the dataset. We set the batch

size as 128 for ResNet-20 and 32 for LeNet. In each round

of FL, we set K = 10 participating devices to execute H
iterations of stochastic gradient descent (SGD) in parallel,

and the maximum transmission probability ρmax is set to

0.77 according to the simulated communication environment

and the power constraint. The initial learning rate is η =
0.2 with a fixed decay rate. Particularly, we compare our

Authorized licensed use limited to: University of Houston. Downloaded on August 28,2024 at 17:50:59 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: ENERGY AND SPECTRUM EFFICIENT FL VIA HIGH-PRECISION OVER-THE-AIR COMPUTATION 1237

Fig. 7. Training performance of LeNet on MNIST dataset.

ESOAFL-OPT (i.e., ESOAFL with optimal JCP control) with

the following schemes:

• FedAvg [1]: FL without AirComp and gradient quantiza-

tion, where ideal noise-free transmission is supposed.

• FedPAQ [20]: FL with gradient quantization, where the

users transmit the quantized model updates in every

communication round.

• OBDA-ADV [21]: A modified version of the OBDA

(one-bit digital AirComp), where we improve the original

scheme by ignoring the quantization at the receiver to

preserve the learning precision.

• ESOAFL-MAX: the proposed ESOAFL scheme without

the transmission control, where we adopt the maximum

transmission probability ρmax to transmit the model

updates.

We assume the same communication bandwidth for all the

schemes. We consider the Nvidia TX2 as FL device and

utilize the Jtop [22] tool to measure the computing energy.

It measures that the LeNet model consumes 0.03J and the

ResNet model consumes 0.5J for one training iteration. For

example, training the ResNet model for one iteration takes

130ms, and the GPU power is nearly 4W. We assume the

AirComp is deployed in the commercial LTE system for wire-

less transmissions. For all the schemes, we set the maximum

transmit power as 0.2W and set the average SNR as 15dB for

the FL participants, whose channel quality can be reflected by

the CQI (Channel Quality Indicator) category 11. In this case,

the modulation scheme, code rate, bits per resource element

are 64QAM, 0.8525, 5.115, respectively.

Fig. 8. Training performance of ResNet-20 on CIFAR-10 dataset.

Fig. 7(a) and Fig. 7(b) show the performance of training

a LeNet model on the MNIST dataset. Here, we set the

target training loss ε as 0.07 and assume the data sam-

ples are independent and identically distributed (IID). The

local computing iteration and transmission probability used

in ESOAFL-OPT are with the values of H = 3 and ρ =
0.29 respectively, which are obtained by performing the JCP

control algorithm in Alg. 2. Here, we integrate the local

SGD method (i.e., taking several training steps among the

sequential communication rounds) into OBDA-ADV scheme

for a fair comparison. Let the spectrum resource consumed

in each round of ESOAFL be a unit communication resource.

We set the gradient quantization level as 4-bit in ESOAFL

and FedPAQ. Fig. 7(a) illustrates the communication resources

consumption during the training procedure, and we can obvi-

ously find that the proposed ESOAFL significantly improves

the spectrum efficiency compared with FedAvg and FedPAQ.

This is because that the FL devices in FedAvg and Fed-

PAQ cannot take the concurrent transmission with the same

bandwidth as ESOAFL does. Besides, ESOAFL allows each

pair of gradients to be transmitted orthogonally using in-

phase (I) and quadrature (Q) channels simultaneously, while

FedAvg and FedPAQ only allow each resource element to

carry several bits of a gradient for fitting in with the LTE

protocol. Since OBDA-ADV applies one-bit digital AirComp,

the precision of the model updates can be seriously scarified

in every communication round. Due to such information

distortion, it is required to take more communication rounds

to achieve a specific accuracy, and thereby consumes more

communication resources than our high-precision AirComp FL
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TABLE II

PERFORMANCE COMPARISON UNDER DIFFERENT LEARNING SETTINGS (ResNET20 ON CIFAR-10)

scheme during training, as shown in Fig. 7(a). Fig. 7(b) further

illustrates the behaviours of energy consumption during FL.

The results show that our ESOAFL scheme consumes the least

energy among all the schemes. Specifically, when achieving

the same target training loss, the energy consumption of FL

devices in ESOAFL-OPT is twice and three times lower

than that of FedPAQ and OBDA-ADV, respectively. This is

because the energy efficient power control policy and the

digital modulation scheme in the M-AirComp design save both

the transmit power and time. Moreover, since the optimized

transmission probability is much lower than the maximum

value, our ESOAFL-OPT approach only consumes nearly half

of the ESOAFL-MAX approach’s energy, which demonstrates

the necessity of the JCP control. Note that the low-precision

OBDA-ADV approach cannot reach the target training loss we

set, and thus we consider the target loss ε = 0.12 especially

for the OBDA-ADV approach to present the results.

Fig. 8(a) and Fig. 8(b)demonstrate the performance com-

parison of all the schemes using ResNet-20 model on the

CIFAR-10 dataset. We set the target training loss ε as 0.12, and

obtain the optimal control strategies H = 11 and ρ = 0.51 for

ESOAFL-OPT. As expected, the proposed ESOAFL approach

dramatically improves the spectrum efficiency and reduces

the energy consumption of devices. Particularly, ESOAFL-

OPT saves hundreds of times of communication resources

compared with FedAvg and FedPAQ in this case. It also

saves more than 8× of communication resources compared

with the OBDA method. Besides, our proposed ESOAFL-OPT

scheme saves nearly one-third and two-thirds of energy con-

sumption than FedPAQ and FedAvg schemes. Notice that

the OBDA-ADV scheme has relatively poor convergence

performance compared with other approaches due to the high

precision requirement of the complex ResNet-20 model.

We further show the scalability of the ESOAFL scheme

with more learning settings. Here, we consider different data

distributions in the content of different levels of non-IID data.

Let ς ∈ [0, 1] denotes the non-IID level [23]. For example,

ς = 0.3 indicates that 30% of the data belong to one label

and the remaining 70% data belong to others. Following this

setting, we generate the local dataset for each user by drawing

the data from the whole dataset with specific labels, instead

of evenly partition the dataset with all the labels. We ignore

the OBDA-ADV scheme since its performance is not good

in non-IID data settings. From Table. II, we can observe

that training with non-IID data incurs a larger energy and

communication resources consumption to converge. Despite

all this, our ESOAFL, compared with FedAvg and FedPAQ,

achieves the indistinguishable testing accuracy at all non-IID

levels while saving communication resources and overall

energy consumption. We also conducted the simulations with

K = 100 participants, obtaining the similar observations.

Here, compared with K = 10 participants settings, we put

less computing loads (B = 32, H = 5) in each commu-

nication round of the K = 100 setting, thus causing more

communication loads. Therefore, the communication resources

consumption of FedAvg and FedPAQ at K = 100 increases

significantly compared with the scenario of K = 10. Benefit-

ing from concurrent transmission, ESOAFL does not introduce

extra communication resource consumption as K increases,

revealing its significant potentials for involving massive FL

participants.

VI. RELATED WORKS

Much attention has recently been paid to improve the energy

efficiency of wireless FL over mobile devices via integrating

various advanced techniques [24]. For saving the energy con-

sumed for communication, gradient sparsification [25], [26],

[27] and gradient quantization [14], [15] techniques are used

to compress the model updates and thereby reduce the trans-

mission load in every FL round. In [28] and [29], momentum

GD/SGD methods are adopted to accelerate the convergence

where the involved communications and energy consumption

during training can be reduced accordingly. For saving the

energy consumed for local training, some researchers propose

to quantize the model parameters into low bit-width at edge

devices to facilitate computationally-efficient on-device train-

ing [30], [31]. Despite their benefits in improve the energy

efficiency of FL, these methods are mainly considered from

the perspective of learning algorithms and widely ignore the

wireless communication environments, especially with the

physical-layer aspects of communication [32].

By exploiting the waveform superposition property of the

wireless medium [33], some pioneering works propose the

AirComp FL to enable a large number of simultaneous local

model uploading for improving the spectrum efficiency during

FL [34]. Cao et al. in [35] and Amiri and Gündüz in [36] apply

AirComp to mitigate the communication bottleneck when a

large number of participants aggregate the data together, where

power allocation schemes are derived to satisfy the mean

square error requirements. The authors in [5] and [6] propose

a joint device selection and communication scheme to improve

the learning performance for AirComp FL. Some works further

utilize the reconfigurable intelligent surface (RIS) technology

to mitigate the communication bottleneck and relieve the

straggler issue in FL by reconfiguring the wireless propagation
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environment [37], [38], [39]. All these works take analogy

modulation schemes for wireless transmission, which are dif-

ficult to be implemented on commercial devices. In addition,

the convergence analysis for the whole FL training procedure

is rarely discussed in existing works. Noticing the limitations

above, Zhu et al. [21] applies the 1-bit digital modulation and

derives the convergence analysis accordingly. However, the

1-bit based scheme could seriously scarify the precision, and

the energy consumption issue is overlooked in designing the

scheme. Different from the existing approaches, our design

targets at facilitating the general multi-bit digital modula-

tion scheme, where a convergence-guaranteed FL scheme

integrating both the AirComp and the gradient quantization

is proposed to improve the energy and spectrum efficiency

simultaneously.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the ESOAFL scheme for

energy and spectrum efficient FL over mobile devices, where

M-AirComp was applied for model updates transmission in

a joint compute-and-communicate manner. A high-precision

digital modulation scheme with multi-bit gradient quantization

was designed for the participating devices to upload their

model updates during FL. With the theoretical convergence

analysis of the modified FL algorithm, we further developed

a joint local computing and transmission probability control

approach aiming to minimize the overall energy consumed by

all devices. Extensive simulations were conducted to verify our

theoretical analysis, and the results showed that the ESOAFL

scheme effectively improves the spectrum efficiency with the

learning precision guarantee. Besides, it also saved at least

half of energy consumption compared with other FL schemes.

We hope our analysis will promote future endeavors in improv-

ing the energy and spectrum efficiency of FL. For example,

non-orthogonal multiple access and reconfigurable intelligent

surface techniques can be integrated into an M-AirComp

FL framework, which may improve the FL performance

when facing massive connectivity and unfavorable propagation

channel.

APPENDIX

A. Proof of Theorem 1

We consider a non-convex FL model setting. From the

L-smoothness gradient assumption on global objective f ,

we have

E
[
EQ

[
EAir

[
f(wr+1) − f(wr)

]]]
≤ −θηE

[
EQ

[
EAir

[〈∇fr,∇F r
Q

〉]]]
+

θ2η2L

2
E
[
EQ

[
EAir

[‖∇F r
Q‖2

]]]
, (35)

where we take the expectation over the sampling and opera-

tions.

Next, we give three important lemmas where the first two

are borrowed from [12] and the last one is proved in the

following.

Lemma 2: The inner product between the stochastic gradi-
ent ∇F r

Q and full batch gradient ∇fr can be bounded by

Eξ(r)EQEAir
[〈∇fr,∇F r

Q

〉]
= Eξ(r)

[〈
∇fr,

1
K

K∑
k=1

H−1∑
h=0

∇F r,h
k

〉]

≤ 1
2K

K∑
k=1

H∑
h=0

[
−‖∇fr‖2

2 − ‖∇fr,h
k ‖2

2 + L2‖wr − wr,h
k ‖2

2

]
.

(36)

Here, we set ∇F r
k =

∑H−1
h=0 ∇F r,h

k and ∇F r
k,Q =

Q
(∑H−1

h=0 ∇F
(h,r)
k

)
. We further define ∇F r

Q =

AirK
(
Q
(∑H−1

h=0 ∇F r,h
k

))
.

Lemma 3: Under Assumption 2, the distance between the
global model and the local model at r-th communication round
can be bounded by

E

[
‖wr − wr,h

k ‖2
2

]
≤ η2Hσ2 + η2

H−1∑
h=0

H‖∇fr,h
k ‖2

2 (37)

Lemma 4: The last term in (35) can be calculated as

Eξ(r)EQEAir

[
‖AirK

(
Q

(
H−1∑
h=0

∇F r,h
k

))
‖2

]
≤ σ2

z

K2ρ2

+
K∑

k=1

q + ρ

K2ρ
Var(∇F r

k ) +
K∑

k=1

q(2 − ρ) + Kρ

K2ρ
‖∇fr

k‖2

(38)
Proof: Applying Lemma 1 into the left-hand-side of(38),

we get (39), shown at the bottom of the next page. Then we

complete the proof of Lemma 4

�
From Assumption 2, we have Var(∇F r

k ) ≤ Hσ2.

Further, we have ‖∇fr
k‖2 = ‖∑H−1

h=0 ∇fr,h
k ‖2 ≤

H
∑H−1

h=0 ‖∇fr,h
k ‖2 and

Eξ(r)EQEAir

[
‖AirK

(
Q

(
H−1∑
h=0

∇F r,h
k

))
‖2

]

≤ q + ρ

Kρ
Hσ2+H

q(2 − ρ) + Kρ

K2ρ

K∑
k=1

H∑
h=0

‖∇fr,h
k ‖2+

σ2
z

K2ρ2

(40)

Applying Lemma 2, 3, and 4 together into (35), we get (41),

shown at the bottom of the next page.

By taking 1 − L2η2H2 − HLθη q(2−ρ)+Kρ
Kρ ≥ 0, we have

E
[
EQ

[
EAir

[
f(wr+1) − f(wr)

]]] ≤ −ηθH

2
‖∇fr‖2

2

+
θη2LH

2K
(ηLHK +

(ρ + q)θ
ρ

)σ2 +
θ2η2σ2

zL

2K2ρ2
(42)

Recursively applying the above inequality from r = 0 to

r = R− 1 yields (43), shown at the bottom of the next page.

Until now we complete the proof of Theorem 1.
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B. Proof of the Convexity of Θ1 and Θ2

The second-order partial derivative of functions Θ1 and

Θ2 can be calculated as:
∂Θ1

∂ρ
= − A0q

ρ2H
− B0q

2ρ
3
2 H

1
2 (ρ + q)

1
2

(44)
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∂2Θ2

∂ρ2
= λ

ln2 ρ − 3 ln ρ + 1
ρ ln2 ρ(ln ρ − 1)2

T comm (50)

∂2Θ2

∂H2
=

∂2Θ2

∂H∂ρ
=

∂2Θ2

∂ρ∂H
= 0 (51)

With the equations above, we can easily conclude that the

Hessian matrix of both the functions Θ1 and Θ2 are positive

semi-definite. It implies that Θ1 and Θ2 are convex. This

completes the proof.
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