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Abstract—Federated learning (FL) has been recognized as a
promising collaborative on-device machine learning method in
the design of Internet of Things (IoT) systems. However, most
existing FL. methods fail to deal with IoT applications that con-
tain a variety of IoT devices equipped with different types of
neural network (NN) models. This is because traditional FL
methods assume that local models on devices should have the
same architecture as the global model on cloud. To address this
problem, we propose a novel framework named PervasiveFL
that enables efficient and effective FL. among heterogeneous IoT
devices. Without modifying original local models, PervasiveFL
installs one lightweight NN model named modellet on each device.
By using the deep mutual learning (DML) and our entropy-based
decision gating (EDG) method, modellets and local models can
selectively learn from each other through soft labels using locally
captured data. Meanwhile, since modellets are of the same archi-
tecture, the learned knowledge by modellets can be shared among
devices in a traditional FL manner. In this way, PervasiveFL
can be pervasively applied to any heterogeneous IoT system.
Comprehensive experimental results on four well-known datasets
show that PervasiveFL can not only pervasively enable FL. among
heterogeneous devices within a large-scale IoT system, but also
significantly enhance the inference accuracy of heterogeneous IoT
devices with low communication overhead.

Index Terms—Deep mutual learning (DML), federated learn-
ing (FL), Internet of Things (IoT), model heterogeneity, neural
network (NN).

I. INTRODUCTION

LONG with the increasing popularity of artificial intel-
ligence (AI), more and more devices of Al Internet of
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Fig. 1. Overview of the FL architecture for AloT applications.

Things (AlIoT) systems (e.g., autonomous driving, commer-
cial surveillance, industrial control, and medical monitoring)
are equipped with deep neural network (DNN) models for the
purposes of accurate sensing and intelligent control [1], [2].
However, due to both the restricted access to global data and
limited classification capabilities of local models, the inference
quality of AIoT devices cannot be guaranteed, especially when
AloT systems are deployed within a dynamic and uncertain
environment. To enhance the inference performance of AloT
devices, we are witnessing an increasing number of modern
large-scale AloT systems [3], [4] that resort to the enormous
computing power of cloud computing to quickly figure out
inference results. Although such cloud-based AloT systems
are promising in managing a large number of devices under a
global system view, due to the privacy issues, most of them
cannot share the local data of a device to other devices in the
same system, thus the inference capability of AloT devices is
still greatly restricted in practice.

Due to the merit of central model training on decentral-
ized device data without compromising user privacy, federated
learning (FL) [5] allows knowledge sharing among devices
and is becoming an emerging collaborative Al paradigm in
Internet of things (IoT) design. Instead of uploading local data,
FL methods only send the gradients of DNN models to the
cloud for aggregation. As thus, the inference capability of all
the involved AloT devices are improved, while the privacy of
devices can be guaranteed. Fig. 1 presents an overview of the
FL architecture for an AloT application, where all the AloT
devices are connected to a cloud server. Note that the upload
operation of classical FL assumes that the local device models
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have the same architecture as the global model on the cloud to
aggregate. However, this assumption is too ideal for modern
AloT systems, which typically comprise a variety of devices
equipped with heterogeneous DNN models. The violation of
the assumption strongly hinders the deployment of FL. on AloT
systems. Therefore, how to break through the barrier of model
heterogeneity and enable effective knowledge sharing among
devices is becoming a major bottleneck in the design of FL
framework for AloT systems.

To address the model heterogeneity problem in FL, vari-
ous methods (e.g., FedPer [6], FedDF [7], and HeteroFL [8])
have been investigated. However, most of them focus on
the knowledge sharing by uploading local models or soft
labels rather than gradients to the cloud, thus the user pri-
vacy cannot be guaranteed [9]. Worse still, some of them
make unrealistic architecture-oriented assumptions about DNN
implementations in practice. For example, HeteroFL requires
that the parameters of its local models should be a subset of
its global model parameters. However, sharing the same part
of the neural network (NN) model is not efficient for learn-
ing valuable knowledge in the FL scenario. FedMD requires
that a client in FL uses a global public dataset for knowledge
distillation.

To enable secure FL for IoT devices equipped with hetero-
geneous DNN models, this article proposes a novel lightweight
cloud-based FL framework named PervasiveFL, which enables
the training of heterogeneous device models without losing
any assumptions. Moreover, PervasiveFL can be easily imple-
mented and allows pervasive FL on large-scale heterogeneous
IoT systems for both independent and identically distributed
(IID) and non-IID scenarios. This article makes the following
three major contributions.

1) We introduce the concept of modellet that acts as an
omnipotent portal for FL. Based on the deep mutual
learning (DML) [10], our approach allows the mutual
learning between modellets and local models on devices.
Since modellets in an AIoT system are of the same
architecture, they enable the FL-like knowledge shar-
ing among heterogeneous devices with different types
of local models.

2) Based on our proposed entropy-based loss functions
and the entropy-based decision gating (EDG) method,
we develop an effective ensemble scheme that supports
selective knowledge sharing between modellets and local
models, thus maximizing the benefits of modellets in
various FL scenarios.

3) We conduct comprehensive experiments on four well-
known datasets from different fields. Experimental
results show that PervasiveFL can accommodate large-
scale ToT systems involving various types of local mod-
els. Compared with both nonFL local training methods
and state-of-the-art FL approaches, PervasiveFL can not
only achieve better inference performance, but also have
smaller FL. computation and communication overhead.

The remainder of this article is organized as follows.
Section II introduces the related work on FL for IoT
systems. Section III introduces the preliminaries of FL and
DML. Section IV details our proposed PervasiveFL approach.
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Section V presents the performance evaluation results on four
datasets. Finally, Section VI concludes this article.

II. RELATED WORK

Although FL enables collaborative Al among IoT devices,
it suffers from the problem of heterogeneity, which can be
classified into three categories, i.e., device heterogeneity, data
heterogeneity, and model heterogeneity. The device hetero-
geneity refers to the heterogeneity caused by the difference
in hardware resources (e.g., CPU, memory, and network),
which strongly affects the training and transmission time of
individual devices. To address this issue, various cloud-edge-
based scheduling methods have been proposed to optimize
the response time of devices for efficient gradient aggre-
gation on cloud. For example, Liu et al. [11] presented a
client-edge-cloud hierarchical FL system that combines the
advantages of both the cloud and edge servers. Their proposed
HierFAVG algorithm allows partial model aggregation on edge
servers, thus the model can be trained more quickly and better
communication—computation tradeoffs can be achieved.

The data heterogeneity considers the scenarios where IoT
devices are distributed in open environments. In this case, the
distributions of training data captured by devices are differ-
ent, which strongly affects FL convergence performance. To
further understand this problem, Li er al. [12] conducted the
theoretical analysis of convergence bounds for FedAvg, which
shows that heterogeneity of training data and partial device
participation can slow down the convergence. To speedup FL
convergence, Wang et al. [13] proposed an experience-driven
control framework that intelligently chooses client devices to
participate in each round of FL to counterbalance the bias
introduced by non-IID data.

Model heterogeneity has been widely investigated by var-
ious non-FL methods [14], [15] to improve the inference
capabilities of device models individually. However, the model
heterogeneity problem is still a major bottleneck in FL
design. Although existing transfer learning and knowledge
distillation-based FL approaches (e.g., FedDF [7], MIFL [16],
FedGEN [17], and MOON [18]) can achieve knowledge shar-
ing among heterogeneous devices, most of them need to
upload local models or soft labels to the cloud. Consequently,
the user privacy can be easily leaked and the communi-
cation overhead is formidable for these methods. As an
alternative technology, FedPer [6] and HeteroFL [8] do
not rely on transfer learning and knowledge distillation for
knowledge sharing. However, both of them are based on
non-negligible assumptions on the structure of models or
parameters, which significantly restricts the use of FL in
IoT design.

To the best of our knowledge, PervasiveFL is the first
attempt that combines the benefits of DML and EDG to
address the problem of model heterogeneity on IoT devices
with any types of DNN models. Compared with state-of-the-art
FL methods, due to the small size of modellets, the implemen-
tation of PervasiveFL for large-scale IoT systems is simpler
and the computation and communication overhead is much
lower.
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Fig. 2. Architecture and workflow of PervasiveFL training.

III. PRELIMINARIES
A. Federated Learning

Along with the prosperity of distributed machine learning
technologies [19], [20], privacy-aware FL is proposed to effec-
tively solve the problem of data silos, where all the involved
IoT devices can achieve knowledge sharing without leaking
data privacy. Assume that there are a total of K devices in an
AloT system, and in the #-th FL. communication round there
are N (N < K) devices selected. At the end of the 7-th com-
munication round, we need to update each local model of the
selected devices as follows:

LE | < W, + VL] (1)

where ]L/t‘ 1 denotes the local model of the kzh selected device
in round 7+ 1, and W, represents the global model obtained
in round ¢. Here, 1 is the learning rate and V]L’,‘ is the gradient
obtained from Lf . To protect data privacy of devices, at the
end of each communication round, each selected device only
uploads its model gradients (i.e., weight differences) rather
than its newly updated model to the cloud for aggregation. In
each FL communication round, once finishing the gathering of
gradients from all the selected devices, the classic FL method
(i.e., Fedavg [21]) needs to update global model parameters
as follows:

N .
2 im1 VL
N

where ((Zﬁv= 1 V]Lﬁ)/N) denotes the average gradient of N
participating devices in communication round ¢.

Wi < W, + )

B. Deep Mutual Learning

The DML method is inspired by the fact that soft labels
contain more knowledge than hard labels [10], [22]. Suppose
that there are two NN models (i.e., W and S) participating
in DML, whose training data and corresponding labels are x
and y, respectively. The loss function of DML is defined as
follows:

L (x,y, Pw, Ps) = Lid (6 9) + Lobe Pw, Ps)  (3)
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where Smrd(x, y) is the cross-entropy loss function and
£¥Y)ft(PW»PS) is an imitative loss function that can unify
classification probabilities among different students. Based on
the same training data, the two models exchange their soft
labels in each training epoch during the mutual learning pro-
cess of DML. In this way, the inference performance of all
the participating models can be significantly improved.

IV. OUR PERVASIVEFL FRAMEWORK

This section details the design and implementation of our
PervasiveFL framework. First, it introduces the architecture
and workflow of PervasiveFL. Then it presents the modeling
of loss functions used in PervasiveFL. Finally, it describes
the implementation of PervasiveFL in detail and proves the
convergence of modellets in PervasiveFL.

A. Architecture and Workflow of PervasiveFL

PervasiveFL focuses on the sharing of benign knowledge
among heterogeneous device models, which can not only
improve the inference performance of both local models and
modellets but also reduce both computation and communica-
tion overhead.

1) Architecture of PervasiveFL: Different from traditional
FL methods that require homogeneous local device models
PervasiveFL allows FL based on heterogeneous local models
so as to best fit for the resource capacities of devices. In order
to achieve this goal, PervasiveFL introduces a lightweight NN
model, named modellet, to eclipse the heterogeneity of the
local models on devices. Fig. 2 presents the architecture of
PervasiveFL together with its workflow. As illustrated in the
figure, the PervasiveFL framework consists of two parts: 1) the
cloud server that mainly focuses on the aggregation of mod-
ellets and 2) heterogeneous edge IoT devices that concentrate
on the training of local models and modellets based on their
locally collected data. Note that PervasiveFL adopts the same
FL framework as the classic FedAvg.

In PervasiveFL, each IoT device is equipped with one local
model and one modellet, where the local model is gradually

August 28,2024 at 17:56:32 UTC from IEEE Xplore. Restrictions apply.
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trained using the locally captured data (i.e., nature samples).
Different from local models which are heterogeneous, the
modellets installed on all devices are homogeneous. Note that
it is not required that modellets are installed on devices ini-
tially. Instead, it needs to install a modellet for knowledge
sharing only when a device wants to join the PervasiveFL to
enhance its inference capability. In PervasiveFL, the model-
let acts like a portal of its host device to enable FL among
devices. As a small-size NN model, it can teach the local
model with the shared knowledge from other devices based on
DML. Meanwhile, it can propagate the newly learned knowl-
edge by the local model to other devices in an FL manner.
Note that there is no requirement that modellets need to be
pretrained before installation. The first usable version of a
modellet on some device can be downloaded from the cloud
server or be locally trained from scratch based on DML. As
for the cloud server, it is responsible for three tasks: 1) collect-
ing the gradients of modellets trained on distributed devices
and saving it in the modellet gradient buffer; 2) globally
averaging the collected modellet gradients to form a newly
aggregated modellet; and 3) dispatching the aggregated mod-
ellet to all the AloT devices for further local training or
inference.

2) Workflow of PervasiveFL: In PervasiveFL, the cloud
server and all the connected AloT devices work closely
to enable the global learning via heterogeneous device
models. Before PervasiveFL starts, all the devices request-
ing to participate in PervasiveFL should complete the
installation and initialization of a modellet. Afterward,
PervasiveFL will perform local training on AloT devices,
model aggregation in the cloud, and model synchroniza-
tion between the AloT devices and the cloud. As shown in
Fig. 2, the PervasiveFL training workflow involves six steps
as follows.

Step 1 (Ensemble): At the beginning of local training, each
selected device makes inferences from its local data based on
the ensemble model, whose predictions (i.e., soft labels) are the
average of predictions made by the pair of its corresponding
modellet and local model.

Step 2 (EDG): To judge the quality of knowledge that can
be shared between modellets and local models, we proposed
the EDG method, which compares the entropy of predictions
[see details in (8)] between modellets and ensemble models.

Step 3 (DML): Unlike traditional DML, in PervasiveFL we
find that it is unwise to conduct mutual learning “equally”
between modellets and local models based on locally cap-
tured data. This is because in non-IID scenarios the knowledge
structure (i.e., compositions and distributions) of modellets are
quite different from the ones of local models. During the DML,
if a modellet learns the knowledge from its local model coun-
terpart without any filtering, the knowledge structure of such
a modellet could be degraded due to the biased device data.
To address this issue, our approach uses the ensemble model
together with our proposed EDG method to enable knowl-
edge filtering, which can ensure the quality of the learned
knowledge by modellets from local models. Based on the
entropy definition [see (8)], PervasiveFL computes the entropy
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of predictions for both modellets and ensemble models. If the
soft label entropy of some ensemble model is smaller than
that of its corresponding modellet, the DML will be conducted
between the modellet and the ensemble model rather than its
local model. Note that in our approach, local models need to
learn all the knowledge from the modellets.

Step 4 (Gradient Upload): At the end of local training,
an AloT device will upload its modellet gradients to the
cloud server, which are stored in the gradient buffer as shown
in Fig. 2. Such collected gradients will then be averaged to
derive an aggregated modellet. Since the size of a modellet
is small, in this article we do not take any communication
optimization methods (e.g., gradient compression [23]) into
account. Moreover, when uploading model gradients to the
cloud, there could be some risk of privacy leak. Note that
since our approach uses the same FL framework as FedAvg,
existing privacy protection methods [24], [25] for FL can be
easily integrated into PervasiveFL to address this issue.

Step 5 (Cloud Aggregation) When modellet gradients of all
the selected devices are received, this step will average such
gradients and use this information to form a new modellet.

Step 6 (Modellet Synchronization): The aggregated modellet
on the cloud server will be dispatched to all the selected AloT
devices for the next epoch training.

PervasiveFL repeats all the above six steps until the conver-
gence of both modellets and local models. During the DML
process, a local model and its corresponding modellet need to
selectively learn from each other in each round of PervasiveFL.
Note that at the end of DML, the test accuracy of model-
lets and local models could diverge significantly. However,
this will not affect the convergence of both modellets and
local models. This is because in DML the mutual learning
processes between modellets and local models are based on
local device data. If we do not take DML into account, both the
modellet-based FL method and the pure local training method
will converge eventually. Since the DML scheme can enhance
the learning efficacy of both modellets and local models on
local device data, when DML is applied, the convergence of
both modellets and local models will be accelerated.

B. Loss Function Modeling

Loss functions play an important role in guiding the model
training through measuring the difference between model
prediction values and corresponding label values. On the
device side of PervasiveFL, there are two different types of
models on each device, i.e., the local model and the modellet.
In PervasiveFL, we resort to DML to enable the knowledge
sharing between the two models on each device. To fully make
the full use of DML, in PervasiveFL we adopt two differ-
ent loss functions for both the modellets and local models,
respectively.

Inspired by the work in [10], PervasiveFL uses the following
loss function for a modellet M to enable mutual learning on
some device:

Pu + P
3t P Po) = S + o8 (P, P2

2
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where £y represents the overall loss function of deep mutual
training for modellet M, x indicates the original sample val-
ues, y denotes the classification labels, and D refers to the
local model in DML. Py and Pp represent the probability
distributions of M and D for the same batch of data, respec-
tively. S%rd (x,y) denotes the cross-entropy loss function
for M, which measures the difference between the maximum
values in model’s probability distributions and actual label
values. £1§/J(I)ﬁ (Pm, Pp) is a loss function for M that indi-
cates the Kullback—Leibler (KL) divergence during training,
where the loss is calculated as the probability distribution dif-
ference between M and its ensemble model for the same data
batch.

According to the findings in [10], regardless of the dif-
ference of heterogeneous NN models deployed on different
devices, the DML approach can be used to facilitate local
models and modellets to learn from each other through
mutual knowledge transfer, which can greatly improve the
performance of both models. To achieve this goal, we
optimize the modellet parameters (i.e., wyy) on a device based
on (5), i.e.,

®)

To achieve globally optimized modellets in an FL manner, we
design the following loss function for modellets as a whole

wy = argmin,, E {€p(x, y, Pum, Pp)}-

Red _ N T - Sy Py Ph)
v = Z N .
ZJ:] TX]

where 7, means the data size of x, x' indicates the nature
samples on the i-th device, Sg‘gd equals to the weighted average
of all the loss function values of modellets on all the N devices.
As for the local model on each device, its loss function is
formulated as follows:

(6)

i=1

Lp, Y, Puts Pp) = Lhard @ 3) + Lo P, Py) - (7)

where the definitions of Sgard(x, y) and SHSDOﬂ(PD, Pn) are
similar to the ones in (4).

C. Entropy-Based Decision Gating

Inspired by the entropy-based classification method
presented in [26] that uses the entropy of soft labels to judge
the prediction confidence of some classifier, we use the soft
label entropy of both the modellet and ensemble model to
determine the usefulness of the current training data batch to
the modellet. Based on the classic definition, we calculate the
entropy using the following equation:

entropy(y) = ¥ _ yc - log(vc) ®)

ceC

where C and y are class labels and predictions for corre-
sponding classes, respectively. By using this equation, we can
calculate the soft label entropy of both modellets and ensemble
models for the comparison purpose. If the modellet entropy is
higher than the ensemble model entropy, the prediction con-
fidence of the modellet is lower than the ensemble model.
In this case, our EDG-based DML method will use the soft
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Algorithm 1: Local Training Procedure (Devices)

Input: i) S, the cloud server; ii) k, index of device; iii)
E, number of training epochs; iv) M, modellet; v)
D, local device model.

Output: wy, wp

1 (x, y) = Collect();

2 for e < 1 t0o E do

3 (WM PMY  M(x);

4 | (V2.PP) « D)

s | PE— (PP 4+ PMy/2;

6 E%rd < CrossEntropy(y, VM),

7 ’QBard <« CrossEntropy(y, VP);

8 Sggﬁ <« KLLoss(PM, pEny.

9 SHS){)ﬂ <« KLLoss(P®, PM);

10 LM <« S%Iar ;

11 if entropy(P™) > entropy(PE") then

12 ‘ Ly« M+ Qg/gﬂ;

13 end

14 L£p < SBard + ’Q?oft;

15 Vwiy < SGD.get_gradients(SM, wM);

16 Vwy, < SGD.get_gradients(Lp, wp);

17 wp < Update(Vwip, wp);

18 Send(Vw‘M, k, S);

19 wnm < Receive();

20 end

labels of an ensemble model to train its corresponding model-
let. Otherwise, the modellet will be trained by the hard labels
of its local natural samples.

D. Implementation of PervasiveFL

This section presents the implementation of PervasiveFL
on devices and cloud, respectively. Algorithm 1 describes the
local training procedure on devices and Algorithm 2 depicts
the model aggregation procedure on the cloud server.

1) Implementation of Local Training: Assume that there
are N devices involved in the training process of PervasiveFL,
and the index of the current device is k. Algorithm | details the
local training procedure for a device. Note that this procedure
will be invoked on all the participating devices if a new request
of local training is launched in PervasiveFL.

In line 1, the device collects a set of labeled nature sam-
ples for the purpose of local training. Here, we use x and y
to denote the collected training data and their labels, respec-
tively. Lines 2-20 conduct E epochs of local training, where
each epoch indicates one interaction with the cloud server for
the modellet update. Lines 3 and 4 apply the training dataset
on both modellet M and local model D, and figure out their
corresponding model prediction results (i.e., V™, VP) and
soft labels (i.e., pM, PD), respectively. Line 5 calculates the
ensemble predictions by both the modellet and local model.
Based on the obtained model prediction results and soft labels,
lines 6 and 7 calculate the cross-entropy losses, and lines 8
and 9 calculate the KL divergence losses for both the mod-
ellet and local model. Lines 10-14 calculate the total losses
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Algorithm 2: Training Procedure (Cloud)

Input: i) NV, number of devices; ii) E, number of
training epochs; iii) M, global modellet.

1 while true do

2 for ¢ < 1 t0o E do

3 for k < 1 to N do

4 Vw&k < Receive(k);
5 end

6 VW <« 1%/22’:1 Vw&[k;

7 wn < SGD.get_weights(wyr, Vwy, );
8 for k < 1 to N do

9 ‘ Send(k, wyr);

10 end

11 end

12 end

for both M and D based on our EDG method. Lines 15 and
16 figure out the gradients for both M and D using the clas-
sic stochastic gradient descent (SGD) method, where wy and
wp denote the parameters of M and D, respectively. Line 17
updates the parameters of D based on the newly obtained gra-
dients from line 16. For the knowledge sharing, line 18 sends
the gradients of M to the cloud server S. Line 19 waits for the
aggregated modellet information from the server, and uses it
for the update of its local modellet. Note that Receive() is a
blocking function.

2) Implementation of Cloud Aggregation: Algorithm 2
presents the PervasiveFL training process on the cloud server,
including averaging gradients and model aggregation.

As shown in Algorithm 2, the cloud server periodically con-
ducts the PervasiveFL training, where each training involves E
epochs (lines 2—11). In the algorithm, lines 3-5 try to receive
all the modellet gradients from the N heterogeneous devices,
and line 6 calculates the average of all the received gradients.
Note that the function Receive() in line 4 is a blocking func-
tion. Line 7 performs the modellet aggregation by applying the
averaged gradients to the modellet obtained in previous train-
ing round. Lines 810 dispatch the newly aggregated modellet
to all the N devices in an asynchronous way, i.e., the function
Send() is nonblocking.

During the PervasiveFL training, it is possible that some
local IoT device crashes due to some failure. To deal with
such a scenario where some local IoT device does not answer,
we can set a timeout for each device. If a device does not
reply in time for a given timeout, we can safely remove it
from the FL group. Note that PervasiveFL allows to hot-plug
IoT devices. Since PervasiveFL adopts the same FL framework
as the classic FedAvg, any solutions to address the problems
in FL, such as device crashes and training synchronization are
also suitable for PervasiveFL.

E. Proof of PervasiveFL Convergence

In our approach, we assume that the soft labels generated
by local models will not change (or the change is negligible)
after a specific number of training rounds. This is because the
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number of training data on a device is limited and the sizes
of local models are typically larger than the modellet size.
Note that the local model training involves two loss functions,
i.e., cross-entropy loss for the training on nature samples, and
KL divergence loss for the distribution differences between
modellet soft labels and local model soft labels. Here, the
contribution of KL divergence loss to the overall loss is much
smaller than the one of cross-entropy loss. Therefore, after a
certain number of local training, the local models will converge
earlier than the modellet. Since the local device model fits
the local data better than the modellet, we assume that the
entropy of local model soft labels is smaller than that of the
modellet soft labels. Similarly, we can assume that within a
device the entropy of ensemble model soft labels is lower than
that of modellet soft labels in most cases since the ensemble
model soft labels are the average of both the modellet soft
labels and local model soft labels. Based on the following
six assumptions, we can prove the modellet convergence of
PervasiveFL.
Assumption 1: After a certain number of rounds,
Algorithm 1 will always execute the if branch for any device.
Assumption 2: After a certain number of rounds, soft labels
generated by local models do not change for all the devices.
The cross-entropy loss computes the distance between
predictions of modellet and hard labels. Therefore, cross-
entropy loss only depends on modellet w. The KL diver-
gence loss computes the difference between the predictions
of modellet and that of local ensemble model (i.e., the
average predictions of modellet and local model). Due to
Assumption 2, the predictions of local models are fixed.
Therefore, the KL divergence loss only depends on modellet w.
According to Assumptions 1 and 2, after a certain number
of training rounds, we can achieve the optimization objective
is defined as follows:

N
rrgn!@(w) = Z Or(fr(w) + pr(w)) )

k=1

where N is the number of participating devices in PervasiveFL,
Oy is the weight of the k-th device such that ®; > 0 and
Zivzl O = 1. fr(w) and pr(w) are two loss functions, where
fr(w) denotes the distance between some hard label and its
target, and pr(w) denotes the difference between probability
distributions of M and ((ID + M)/2) predictions. Here, M is
the modellet and DD is the local model, where the probability
distribution of ID’s predictions is fixed. Similar to [12], we use
the following four assumptions based on the two loss function
sets, i.e., i, 1) and UY, (0i)-

Assumption 3: Assume that the elements in the two function
sets (i.e., f1, ..., fy and p1, ..., pN) are M-smooth, i.e., for all
A and B, fi(A) —fi(B) — (A —B)! Vi(B) < (M/2)||A—B|%,
pr(A) — pr(B) — (A —B) Vo (B) < (M/2)||A — BJ|%.

Assumption 4: Assume that the elements in the two function
sets (i.e., f1,...,fy and pi,..., pNy) are wu-strongly convex,
ie., for all A and B, fi(A) — fi(B) — (A — BYIVAB) >
(W/DIA — BJ% ok(A) — pe(B) — (A — B Vor(B) =
(/2D11A — BJ>.
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TABLE I
MODEL SETTINGS FOR DIFFERENT DATASETS

Model CIFAR10 CIFAR100 ImageNet-10 Shakespeare
Type Configuration [ Size (M) Configuration [ Size (M) | Configuration | Size (M) Configuration [ Size (M)
Modellet ResNet20_CIFAR10 0.87 ResNet20_CIFAR100 0.95 MobileNetV2 8.71 CharLSTM-64 0.23
Small ResNet56_CIFAR10 2.33 ResNet56_CIFAR100 242 ResNet18 42.70 CharLSTM-128 0.71
Middle ResNet101_CIFAR10 4.17 ResNet101_CIFAR100 4.26 ResNet50 90.00 CharLSTM-256 3.3
Large MobileNetV2 8.71 MobileNetV2 9.23 ResNet101 162.00 CharLSTM-512 12.9

Assumption 5: Let Etk be the samples that are randomly
sampled from local data of the kth device in a uniform way.
For the modellet in each device, the variance of its stochastic
gradients is bounded in each communication round, i.e., for
each k € {1,...,N}, E[|Vi(wk, &) — VAWN|> < of and
E[|V oe(wy, £ — Vor 11> < B

Assumption 6: The expected squared norm of stochastic
gradients is upper bounded, i.e., for each ¢+ € {l,...,T}
and each k € {l,...,N}, E[[VAWs EHI? < G and
ElIVor(wi, EDII* < G5.

Based on above six assumptions, we analyze the con-
vergence rate of modellet in PervasiveFL with full device
participation as follows. In our approach, the model update
for modellets is defined as follows:

Vﬁrl = wf — m(ka(Wf, é,k) + Vpk(“’f, ézk))

k .
k _ V[+]v lf T'i’ (t + 1)
W, = . 10)
s { ZkNﬂ ®kvf+1’ it T|@+1) (

where wk is the local model of the k-th device at the ¢-th SGD
step, vf 41 is the immediate result of wk after executing one
SGD update, and 1, is the learning rate of #-th round. 7T is a
local SGD step within one training round. If 7 can be divided
by t+1, all the devices are activated. Similar to [12], we define
two virtual sequences as follows:

N N
=Y Opf, W= Ow
Vi = Vi W = KWy -
k=1 k=1

By combining (10) and (11), we always have v; = wy.
We define A, = 22\]:1 ®k[ka(Wf) + V,ok(wf)] and A, =
S OV WE, EFY + V pr(wE, €51, where A, is the gradi-
ent and A, is the expectation of gradient. Therefore, v,y =
w; — ;A and E[A;] = A,

Let ®* be the optimal value of the loss function (9), and
w* be its corresponding parameter. According to the lemmas
presented in [12], [27], we can get the inequality as follows:

M 2Z
(— + %Euwl - w*||2)

uw
(12)

(11)

E®(w) — " < ————
uly +1—1)

where Z = 32(T — D)*(G? + G3) Yo, ©%(a} + B2) + 8MT
and y is a constant defined in [12]. The right-hand side of the
inequality (12) decreases as ¢ increases. Therefore, we prove
the convergence of PervasiveFL.

V. EXPERIMENTS

To evaluate the effectiveness of our approach, we
implemented our PervasiveFL. framework using Pytorch

(version 1.4.0). Aiming at eclipsing the impact of randomness
during PervasiveFL, we set the participation ratio of devices in
each round to 1. We set the mini-batch size of both DML and
modellet-based FL to 64. All the experiments were conducted
on an Ubuntu workstation (with Intel 19 CPU, 16-GB memory,
and GTX3080 GPU) and ten Nvidia Jetson Nano boards (with
ARM Cortex-AS57 processor and 4-GB memory). Note that the
ten boards were used to emulate partial involved devices with
heterogeneous models, while the other remaining devices (only
for the scalability analysis in Section V-C1) were simulated on
the workstation. The Jetson Nano boards connect to the cloud
server (i.e., the workstation) via a WiFi environment.

A. Experimental Settings

1) Dataset Settings: To comprehensively justify the “per-
vasiveness” of our approach, we considered two Kkinds
of datasets: 1) three image datasets, i.e., CIFARIO0,
CIFARI100 [28], and ImageNet-10 [29] and 2) one text dataset,
i.e., Shakespeare [30]. For the image datasets, both CIFAR10
and CIFAR100 have a training set of 500 00 images and a test
set of 10000 images, respectively. Based on the first ten cate-
gories of ImageNet, ImageNet-10 has a training set of 13000
images and a test set of 500 images. To facilitate the training of
image datasets, the data augmentation includes horizontal flips
and random crops from images that are padded by four pixels
on each side, where the missing pixels of an image are filled
with the reflections of its original version. Since one com-
plex IoT scenario may involve a large quantity of devices, to
avoid the overfitting problem in PervasiveFL caused by insuf-
ficient training data for individual devices, we expanded the
PervasiveFL training datasets using the generative adversarial
network (GAN) method [31] in the three image datasets. As
a text dataset, Shakespeare involves 1129 users, where each
user has an average of 3734.2 training samples. Note that since
the samples in Shakespeare follow a non-1ID distribution natu-
rally, we did not consider the IID performance of PervasiveFL
on Shakespeare in the experiment.

2) Model Settings: Since different datasets require different
DNN models and devices with different sizes can accommo-
date DNN models with different scales, in this experiment, we
considered two kinds of heterogeneity (i.e., model type and
memory size) for DNN models under the same PervasiveFL
framework. Table I shows the model settings for the four
datasets. We assumed that there are three types of models
involved in one IoT system, i.e., small, middle, and large,
which are of different sizes. For example, in CIFARIO, the
small model has a size of 2.33M, the middle model has a
size of 4.17M, and the large model has a size of 8.71M. Note
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that these three models are heterogeneous with different archi-
tectures (i.e., ResNet56_CIFAR10, ResNet101_CIFAR10 [32],
and MobileNetV2 [33]). In each experiment, we used a
lightweight model to act as the modellet for PervasiveFL. For
instance, in the experiment on ImageNet-10 the large model
has a size of 162M while the modellet only has a size of
8.71M. Typically, IoT devices equipped with large models
have large memories to capture more data. To mimic this
scenario, in the experiments on image datasets, we assumed
that devices containing large, middle, and small models have
15000, 10000, and 5000 images for PervasiveFL training,
respectively, and there is no overlap between images on differ-
ent devices. For Shakespeare, we assumed that there are 1129
devices, where each device hosts the same number of text sam-
ples as specified by the dataset. For the image datasets, we set
learning rates of all the involved local models and modellets to
0.1, which will be reduced by 90% in every 30 and 80 epochs
for IID and non-IID scenarios, respectively. For Shakespeare,
we set learning rates of all the involved models to 1.4, which
will be reduced by 90% in every 80 epochs. Note that to show
the effectiveness of PervasiveFL, we considered one state-of-
the-art FL. method (i.e., MOON [18]), whose framework is
built on top of the modellets shown in Table I for different
datasets.

B. Performance Evaluation

1) Experimental Results of CIFARIO: We conducted both
IID and non-IID experiments on CIFARIO dataset. For the
non-IID scenario, we assumed that each device captures 80%
images randomly from one single category and the other 20%
images randomly from all the other categories. To verify the
scalability of PervasiveFL, we considered three heterogeneous
IoT systems with 10, 30, and 50 devices, respectively. For
each of these three systems, we set the percentage of devices
with small, middle, and large models to 40%, 30%, and 30%,
respectively. Note that we tested each local model using a
test dataset with 100 00 images. Due to the limited space, this
section only presents the detailed results for the system with
ten devices. Please refer to Fig. 10 for the results of the other
two systems.

Fig. 3 presents the average inference results of the
ten devices for both IID and non-IID scenarios. Here,
PervasiveFL(Ensemble) indicates our PervasiveFL approach,
whose inference results come from the ensemble of both mod-
ellets and local models. PervasiveFL(Modellet) denotes the
case where the inference results come from the modellets
of PervasiveFL, while PervasiveFL(Local) specifies that the
inference results come from the local models of PervasiveFL.
Although FedAvg(Ensemble) also makes inferences based on
the ensemble model, its training process is totally differ-
ent from PervasiveFL(Ensemble), where the local models
and modellets are trained independently without using DML.
Similarly, FedAvg(modellet) conducts FL based on model-
lets and uses modellets for inference. IL(Local) indicates the
nonFL case without modellets, where only local models are
used for inference. Note that in the subfigure, we use differ-
ent colors to indicate the pair of inference results using our
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Fig. 3. Inference performance comparison for CIFARI10. (a) PervasiveFL
versus FedAvg (IID). (b) PervasiveFL versus FedAvg (Non-IID).

PervasiveFL method and its counterpart with different infer-
ence models (i.e., Ensemble, Modellet, and Local). To show
the effectiveness of our approach, we also present the results
of MOON [18] with the same settings.

From Fig. 3, we can find that PervasiveFL(Ensemble) can
achieve the best results in the IID scenario. Compared with
IL(Local), PervasiveFL(Ensemble) achieves more than 10%
improvement. Furthermore, we can find that our PervasiveFL
methods always outperform their counterparts. For instance,
PervasiveFL(Ensemble) outperforms FedAvg(Ensemble) by
3%." In other words, the mutual learning between mod-
ellets and local models can enhance the inference capa-
bilities of both kinds of models. The comparison between
PervasiveFL(Local) and IL(Local) proves that local models
can benefit from modellets to learn the knowledge shared
among devices. Note that PervasiveFL(Ensemble) outper-
forms MOON by 5.1% in the IID scenario. The reason why
PervasiveFL(Ensemble) beats PervasiveFL(Modellet) here is
mainly because in the IID scenario the training data are
uniformly distributed on devices. In this case, the accu-
racy difference between PervasiveFL(Modellet) and IL(Local)
is small, since the local models and modellets have the
same knowledge composition and distribution. Therefore, with
the synergy between modellets and local models by selec-
tive DML, PervasiveFL(Ensemble) can achieve the best FL
performance for IID scenarios.

From Fig. 3(b), we can observe that PervasiveFL(Modellet)
achieves the best inference performance in the non-IID sce-
nario, where it outperforms IL(Local) by 31%. Similar to
the 1ID case, our PervasiveFL methods always outperform
their counterparts in the non-IID case, which again shows the
superiority of PervasiveFL. Note that PervasiveFL(Modellet)
outperforms MOON by 19.8% in the non-IID scenario. Unlike
IID scenarios, in non-IID scenarios PervasiveFL(Modellet)
can achieve the best performance. This is because the dis-
tributions of the data on local devices are totally differ-
ent from the distribution of overall device data. In other

Un this article, we denote test accuracy improvements using absolute
change.
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Fig. 4. Impacts on heterogeneous models for CIFAR10. (a) PervasiveFL
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words, the knowledge composition and distribution of a mod-
ellet are quite different from the ones of local models.
However, since the test set has the same data distribution
as the training set and the modellet learns from the over-
all training data, PervasiveFL(Modellet) can achieve the best
performance. Although the modellet can share some new
knowledge to local models, PervasiveFL(Ensemble) cannot
beat PervasiveFL(Modellet) due to its biased knowledge from
local models. Note that even in this case, the modellet can still
help to improve the generalization of local models.

In order to investigate the impact of PervasiveFL on dif-
ferent kinds of heterogeneous IoT devices within a system,
Fig. 4 presents the average inference accuracy for different
types of devices in IID and non-IID scenarios, respectively.
We use the notations PervasiveFL(X) and IL(X) to indi-
cate the averaged inference results of all the local models
of type x in PervasiveFL(Local) and IL(Local), respectively.
For example, we use PervasiveFL(ResNet56_CIFARIO) to
denote the average inference results of the four devices
equipped with small local models. Note that for fair com-
parison, all the inference results in Fig. 4 are produced by
the local models of devices. From this figure, we can find
that PervasiveFL outperforms IL for all kinds of local models,
since PervasiveFL enables the sharing of knowledge among
devices via modellets. Meanwhile, the DML between model-
lets and local models can practically enhance their inference
capabilities.

2) Experimental Results of CIFARI0O0: With the same
experimental settings as CIFAR10 dataset, we investigated the
inference performance of PervasiveFL. on CIFAR100 dataset.

Based on the inference comparison results shown in
Fig. 5, we can find that PervasiveFL methods always out-
perform their competitors. Although in the non-IID sce-
nario PervasiveFL(Modellet) and FedAvg(Modellet) have
the similar inference performance, it does not mean that
DML has no effect, since PervasiveFL(Local) outper-
forms IL(Local) by 8.3%. Note that in the non-IID sce-
nario, PervasiveFL(Modellet) outperforms FedAvg(Modellet)
by 3.9%, and PervasiveFL(Local) outperforms IL(Local) by
6.9%. It means that by DML the inference capabilities of
both modellets and local models are enhanced. Note that
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Fig. 5. Comparison results for CIFAR100. (a) PervasiveFL versus FedAvg
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Fig. 6. Impacts on heterogeneous models for CIFAR100. (a) PervasiveFL
versus IL (IID). (b) PervasiveFL versus IL (Non-IID).

PervasiveFL(Modellet) outperforms MOON, especially for the
non-IID scenario.

Fig. 6 presents the impacts of PervasiveFL on local mod-
els. From this figure, we can clearly observe the benefits of
PervasiveFL to various kinds of local models in both IID and
non-IID scenarios.

3) Experimental Results of ImageNet-10: Based on the
same experimental settings as previous two experiments,
this experiment adopted modellets based on MobileNetV2.
From Fig. 7, we can observe that the test accuracy trend
here is similar to the ones of CIFARIO and CIFAR100
datasets, which again prove the superiority of our proposed
PervasiveFL.  framework. From Fig. 7(b), we can find
that PervasiveFL(Modellet) outperforms FedAvg(Modellet) by
3.2%. Since the overall test accuracy of PervasiveFL(Modellet)
is only 41.4%, such improvement is significant.

Fig. 8 shows the impacts of PervasiveFL on the infer-
ence improvements of local models by DML. For example,
PervasiveFL(ResNet101) outperforms IL(ResNet101) by 3.2%
in IID scenario, while PervasiveFL(ResNetl8) outperforms
IL(ResNetl8) by 5.5% in non-1ID scenario.

4) Experimental Results of Shakespeare: Since the text
dataset Shakespeare is naturally non-IID, this experiment only
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Fig. 8. Impacts on heterogeneous models for ImageNet-10. (a) PervasiveFL
versus IL (IID). (b) PervasiveFL versus IL (Non-IID).

considers the non-IID scenario with 1129 devices. Fig. 9
shows both the performance comparison results and the
impacts of PervasiveFL on local models. From Fig. 9(a), we
can find that our PervasiveFL methods outperform all of their
counterparts, and can achieve the similar performance as the
one of MOON. In this case, PervasiveFL(Local) improves
IL(Local) by 6.1%, indicating that the modellets can greatly
benefit local models by DML in practice. In Fig. 9(b), we can
find that the classification performance of all the three types
of local models are improved significantly.

C. Discussions

1) Scalability Analysis: As more and more heterogeneous
devices are integrated into complex IoT systems, the scalability
plays an important role in the deployment of PervasiveFL. By
using the same experimental settings used in the previous sec-
tion, Fig. 10 compares the inference accuracy of IoT systems
with different scales in both IID and non-IID scenarios. Note
that since the Shakespeare dataset fixes the number of users
(i.e., 1129 users), we did not investigate its scalability here.
For each image dataset, we constructed three IoT systems
with 10, 30, and 50 devices based on Table I, respectively.
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We assumed that for the three systems PervasiveFL converges
at the 100th and 200th round for IID scenarios and non-IID
scenarios, respectively. To avoid jitters, for each case we used
the average of the last ten test accuracy values for the infer-
ence performance comparison. From Fig. 10, we can find that
when more devices are involved in PervasiveFL, the over-
all inference accuracy will increase in both IID and non-IID
scenarios. Our PervasiveFL. methods always outperform their
counterparts for all the three image datasets.

2) Computation Overhead: To evaluate the computation
overhead of components (i.e., modellets and DML) introduced
by PervasiveFL in both IID and non-IID scenarios, we con-
ducted various experiments to investigate their impacts on the
overall training time. Fig. 11 shows the evaluation results from
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Fig. 11. Analysis of PervasiveFL computation overhead. (a) Average training
time per round. (b) Training time to achieve same accuracy.

two perceptiveness: 1) average training time (on workstation)
per FL training round and 2) training time to achieve a specific
test accuracy.

From Fig. 11(a), we can find that one PervasiveFL round
needs slightly more training time than one FedAvg round.
However, as shown in Fig. 11(b), PervasiveFL needs much less
training time to achieve a specific test accuracy. For example,
to achieve a test accuracy of 80% for CIFAR10, PervasiveFL
only needs only 13 rounds, while FedAvg requires 30 rounds.
This is because our DML-based method enables selective
learning that can share high-quality knowledge between mod-
ellets and local models, thus accelerating the overall con-
vergence process. Note that before the training it is hard to
figure out the number of epochs for an existing FL. method
to achieve convergence. However, based on the observations
in Section V-B and Fig. 11, PervasiveFL can quickly con-
verge to a higher test accuracy. Since the current version
of PervasiveFL is built on top of FedAvg, any existing FL
convergence optimization methods can be easily applied on
PervasiveFL to further improve the convergence.

3) Communication Overhead: Since PervasiveFL shares
knowledge among devices via small-scale modellets, the com-
munication overhead of PervasiveFL is much smaller than
traditional FL approaches. After finishing the local training of
a batch of images, our approach only needs to send the gra-
dients of modellets for aggregation. The size of the proposed
method is much smaller than that of local models (see Table I).
As an example for ImageNet-10, the size of modellet gradi-
ents is 8.71M, which needs 1.65 s on average for one round
of communication including both modellet uploading and dis-
patching operations. However, the gradient size of the large
model is 162M, which requires 30.96 s for one round of com-
munication. Evidently, the overall PervasiveFL. communication
overhead is significantly smaller than the ones of traditional
FL methods.

VI. CONCLUSION

This article proposed a novel framework named PervasiveFL
that enables effective and scalable FL on various heteroge-
neous devices with different kinds of models. By installing a
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lightweight DNN model on each device, PervasiveFL allows
mutual selective learning between the modellet and local mod-
els on each device by using DML and our proposed EDG
method. Meanwhile, since all the modellets in PervasiveFL are
of the same structure, they can be used to conduct the FL-style
knowledge sharing among devices. In this way, PervasiveFL
enables “pervasive” FL on a large set of heterogeneous IoT
devices with different types of local models. Comprehensive
experiments on well-known datasets demonstrate the effec-
tiveness of PervasiveFL from the perspectives of inference
performance and scalability.
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