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Abstract
Small area estimation models are critical for dissemination and understanding of important 
population characteristics within sub-domains that often have limited sample size. The classic Fay-
Herriot model is perhaps the most widely used approach to generate such estimates. However, 
a limiting assumption of this approach is that the latent true population quantity has a linear 
relationship with the given covariates. Through the use of random weight neural networks, 
we develop a Bayesian hierarchical extension of this framework that allows for estimation of 
nonlinear relationships between the true population quantity and the covariates. We illustrate 
our approach through an empirical simulation study as well as an analysis of median household 
income for census tracts in the state of California.

Keywords
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1. Introduction

Large surveys conducted by federal agencies provide a rich set of information about the 
underlying population from which the sample was taken. Classical design-based estima-
tion methods are often used for population level analysis with such surveys, however, 
when considering various sub-domains within a population (e.g., county, census tract, 
etc.), sample sizes are often quite small, leading to unreliable direct estimates.

Small area estimation models overcome the issue of small sample sizes by “borrowing 
strength” from other sub-domains in the population. For example, the Small Area Income 
and Poverty Estimates (SAIPE) program and the Small Area Health Insurance Estimates 
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(SAIHE) program are two important use cases for small area estimation models (Bauder 
et al. 2018; Bell et al. 2016). These models can be conducted either at the area level, or the 
unit level, however, unit-level models require access to individual microdata which may be 
confidential (see Parker et  al. (2023a, 2023b) for an overview of unit-level modeling 
approaches). In contrast to this, area-level models are typically feasible for any analyst, as 
they only require access to the design-based direct estimates, along with their associated 
uncertainty. These estimates are often disseminated to the public by various federal statisti-
cal agencies. Due to small sample sizes, these direct estimates often have substantial uncer-
tainty, and area-level models reduce the uncertainty by smoothing in some fashion, typically 
through the use of covariates and/or dependence structure.

The popular Fay-Herriot model (Fay and Herriot 1979) is perhaps the most widely used 
method for constructing small area estimates. The model assumes that the observed direct 
estimates are equal to the true but unknown population quantity plus a sample-induced 
noise term. The true quantity is further modeled as a linear combination of some area-level 
covariates as well as an independent and identically distributed area-level random effect.

There have been numerous extensions to the Fay-Herriot model that relax the various 
assumptions. These range from spatial and/or temporal dependence among the random 
effects (Chandra et al. 2015; Chung and Datta 2020; Marhuenda et al. 2013), to modeling 
of the sample-induced noise term (Parker et al. 2023; Sugasawa et al. 2017; You and 
Chapman 2006), to incorporating multivariate structure (Porter et al. 2015), among oth-
ers. One area that has not seen much attention in the literature is relaxation of the linear-
ity assumption, although Giusti et  al. (2012) do consider a semi-parametric approach 
through the use of penalized splines.

In this work we relax the linearity assumption within the Fay-Herriot model, in order 
to consider general nonlinear relationships between the population quantities of interest 
and the covariates. Specifically, we model the unknown population quantity as a nonlinear 
function of input covariates as well as an area-level random effect. The nonlinear function 
is estimated using a feed-forward neural network where the hidden layer weights are ran-
domly generated and fixed before model fitting. This allows for flexible estimation of the 
nonlinear mean function at very little computational cost. Importantly, we show that the 
nonlinear model has the potential for superior prediction and uncertainty quantification 
compared to the linear alternative. Beyond neural networks, there are a number of popular 
nonlinear regression techniques, including random forests (Breiman 2001) and gradient 
boosting (Friedman 2001), among others. However, it is not immediately clear how to 
embed these approaches into a hierarchical model, such as the Fay-Herriot model, with 
appropriate uncertainty quantification. Alternatively, Gaussian Process regression is a 
powerful nonparametric regression tool (Rasmussen and Williams 2006) that naturally 
fits into a hierarchical framework. Yet, these approaches do not scale well as the number 
of observations becomes large. In addition, specification of a valid and efficient covari-
ance function can become difficult as the number of covariates grows. Our use of a ran-
dom weight neural network both fits nicely into the Fay-Herriot model, and scales easily 
with the number of data points, as demonstrated in the analysis presented in Section 4.

The remainder of this work is outlined as follows. In Section 2 we provide necessary 
background information and introduce our proposed methodology. Section 3 provides an 
empirical simulation study using data from the American Community Survey (ACS). In 
Section 4 we utilize our proposed approach to generate tract level estimates of median 
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household income for the state of California. Finally, we provide discussion and con-
cluding remarks in Section 5.

2. Methodology

Before introducing methodology for small area estimation, we briefly establish some 
notation. We let yi  be an observed direct estimate of some unobserved population quan-
tity θi  for areas i d= 1, , .  For example, the Horvitz-Thompson estimator (Horvitz and 
Thompson 1952) and Hájek-type estimators (Hájek 1960) are commonly used direct 
estimators for many survey datasets. Alternatively, when dealing with small sample 
sizes, one may consider bias corrected direct estimates. Associated with each direct esti-
mate is a design-based variance, σ i

2 ,  that is assumed to be known and included with the 
data. Additionally, associated with each area is a length p  vector of covariates, xi .

2.1. Basic Fay-Herriot Model

The standard Fay-Herriot model (Fay and Herriot 1979) is written hierarchically as
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where Normal( , )2µ σ  denotes a normal distribution with mean m and variance σ 2.  In 
other words, each direct estimate yi( )  is assumed to be normally distributed around the 
true population quantity of interest θi( ) , with known sampling variance σ i

2( ) . The true 
population quantity is then modeled as a linear combination of observed area-level covari-
ates xi( )  as well as an area-level random effect ηi( ) . Finally, this model can be estimated 
in a Bayesian fashion by placing an appropriate prior distribution over the length p  vec-
tor of regression coefficients, ββ  as well as the random effect variance, τ 2 .

2.2. Feed-Forward Neural Networks

Our goal is to replace the linear function assumed by the Fay-Herriot model with a non-
linear function. In other words, rather than assuming E i i( ) = ,θ ′x ββ  we will assume 
E fi i( ) = ( )θ x  for some nonlinear function f ( ).⋅  In order to estimate this nonlinear 
function, we appeal to the literature on neural networks.

A single layer feed-forward neural network can be written as

f g bi
j

N

j i j j( ) = ,
=1

x a x∑ ′ +( )β 	 (1)

where N  is considered the number of hidden nodes. In other words, N  different affine 
transformation of the input data are taken, distinguished by their parameters a j  and bj .  
These parameters are typically termed hidden layer weights. Each affine transformation 
is followed by a nonlinear transformation according to the function g( ).⋅  This function 
is known as an activation function, and common choices are the sigmoid function,
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or the ReLU function,

g x x( ) = (0, ).max

Finally, the parameters β j , j N= 1, ,  are known as the output layer weights. Thus, the 
nonlinear function f ( )⋅  can be viewed as a weighted average of N  different nonlinear 
transformations of the input data, xi .  Note that the input variables are typically scaled to 
have mean zero and variance of one.

Ordinarily to fit such a model, a loss function would be chosen relating the input data 
to the response data, and stochastic gradient descent would be used to estimate the entire 
set of weights (parameters), a j , bj , and β j  for j N= 1, ,  (Goodfellow et al. 2016). 
However, there has been interest recently in alternative approaches that randomly gener-
ate and fix the hidden layer weights ( a j  and bj ) , only requiring estimation for the out-
put layer weights β j( )  (e.g., see Huang et  al. 2006). Because the model is linear 
conditional on the hidden layer weights, estimation of β j  is straightforward.

The random weight feed-forward neural network may be considered part of the 
broader class of reservoir computing, where weights are randomly generated rather than 
estimated. For example, random projection techniques are often used for dimension 
reduction (Bingham and Mannila 2001) and echo state networks are popular in the con-
text of sequential data (Prokhorov 2005). Still, these random weight methodologies are 
most often used outside of a statistical context through optimization of a loss function 
rather than through the use of a likelihood. However, recently the echo state network has 
been incorporated into a statistical framework under both classical (McDermott and 
Wikle 2017) and Bayesian (McDermott and Wikle 2019) approaches. Furthermore 
(Parker and Holan 2023) utilize the random weight feed-forward neural network for unit-
level modeling of survey data under informative sampling.

2.3. Nonlinear Fay-Herriot Model

Through the use of a random weight feed-forward neural network, we construct a non-
linear Fay-Herriot model (NFH). We construct the NFH as a Bayesian hierarchical 
model, allowing for uncertainty quantification as well as regularization of the output 
layer weights. More specifically, the NFH is written as
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The NFH model requires specification of prior distributions for τ 2  and κ 2 . More 
detail on these choices is given in the subsequent paragraph. Here, gi  is the length N  
vector that results from the hidden layer applied to xi .  Note that the sigmoid activation 
function (applied elementwise) is used here. Although other activation functions could 
be explored, we have found that results are usually not sensitive to this choice. The 
N p×  matrix A  comprises the hidden layer weights. We note that by including a value 
of one in the first element of xi  for all i,  this matrix implicitly contains both a j  and bj  
for j N= 1, ,  as defined in Equation (1). Importantly, we randomly generate the ele-
ments of A  independently from a standard normal distribution. This is done a single 
time before model fitting, and these values are considered fixed. Thus, the hidden layer 
term, gi  is completely predetermined before model fitting. Again, other distributions 
may be used to generate the weights, such as Uniform( 1,1),−  however we have found 
minimal impact on the results from such choices.

The model is completed by placing a prior distribution over the parameters τ 2  and 
κ 2.  For τ 2  we use a vague inverse gamma prior distribution with shape, ατ ,  and scale, 
βτ ,  both equal to 0.1. The hierarchical model for ββ  is designed to induce regularization, 
an important component of neural networks and deep learning approaches in general. 
The normal prior here is analogous to Bayesian ridge regression, with the amount of 
regularization controlled through κ 2 ,  where smaller values induce more regularization. 
Thus, with the goal of regularization in mind, we develop a prior that gives more weight 
to small values. More specifically, we use an inverse gamma prior distribution with 
shape ακ( )  equal to 20 and scale βκ( )  equal to 8. For illustration purposes, we do not 
explore alternative values for these hyperparameters. However, it may be possible to use 
cross-validation or further modeling of these parameters to improve results beyond those 
presented herein. Furthermore, there is a large literature on Bayesian variable selection 
and shrinkage priors. For example, as an alternative to the Bayesian ridge regression 
prior that was used herein, one may use a Bayesian Lasso prior (Park and Casella 2008), 
or a global-local shrinkage prior (Carvalho et al. 2010; Piironen and Vehtari 2017).

The Bayesian hierarchical model that makes up the NFH is conditionally conjugate. 
This allows for the posterior distribution of the NFH model to efficiently be sampled 
using Gibbs sampling. That is, one can iteratively sample from the following full-condi-
tional distributions:
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One of the primary advantages of the random weight neural network here is the ability 
to link the neural network to a likelihood. This is straightforward due to the fact that the 
hidden layer is completely predetermined before model fitting is done. Thus, linking the 
neural network to the likelihood is akin to inclusion of extra predictors in the model, 
where the predictors are the randomly generated outputs of the hidden layer. Furthermore, 
conditional on the known hidden layer, the model is linear, allowing for a straightforward 
procedure to sample from the posterior distribution, similar to the linear Fay-Herriot 
model. Thus, one attains the benefit of a complex nonlinear model with little to no addi-
tional computational constraint.

Finally, unlike most machine learning approaches, the random weight neural network 
used here requires little tuning. Because the hidden layer weights are randomly gener-
ated, they do not require tuning parameters related to regularization. We do encourage 
regularization on the output layer weights, however in our case, this is done naturally 
through the Bayesian model fitting procedure, again without tuning. Lastly, because we 
do not use stochastic gradient descent, which is typically required for neural networks, 
we avoid the need to tune parameters related to optimization. The primary tuning choice 
to be made with the NFH model is the number of hidden nodes, N . In general, larger 
values of N  can result in more flexible models, but with diminished returns at the cost 
of increased computation time. We have found that in practice one hundred to two hun-
dred nodes can work quite well across many different datasets. Furthermore, neural net-
works typically rely on large amounts of data, so we recommend setting N  much smaller 
than the number of data points. As a general strategy, when possible, we recommend 
fitting a series of models with an increasing number of hidden nodes until diminishing 
returns for predictive accuracy are observed.

3. Empirical Simulation Study

In order to evaluate the utility of the NFH, we construct a simulation study. Rather than 
simulating data from a parametric model, which could unnecessarily favor one approach, 
we build our simulation around an existing dataset. Specifically, we obtain the five-year 
period estimates of median household income at the census tract level for the state of 
California and treat these estimates as the true population quantity of interest. Doing so 
preserves existing structure in the underlying data and potential covariates of interest. 
From there, we generate noise around the “true” values according to the reported sam-
pling errors associated with the original estimates. This results in simulated data with 
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similar structure and sampling error variance as the original dataset. The simulated noisy 
data can be considered as direct estimates that may be used in a Fay-Herriot or NFH 
model, and the sampling error variances are still known. Note that the California census 
tracts result in the number of areas d = 8,927  for this simulation. We repeat the simula-
tion and estimation procedure one hundred times. We consider five covariates: the tract 
level poverty rate, and the proportion of the population associated with four different 
race groups (white, black, hispanic, and asian). All data is collected from the tidycensus 
package in R (Walker and Herman 2021). Lastly, all models are fit on the log scale, and 
then estimates are transformed back to the original scale. MCMC was run for two thou-
sand iterations, discarding the first five hundred as burn-in. Convergence was assessed 
visually through inspection of the trace-plots, where no lack of convergence was detected.

The primary consideration when fitting the NFH is the choice of how many hidden 
nodes to include. In order to assess the impact of this choice, we fit variations of the NFH 
considering N = 30,50,  and 100.  We compare this with the standard Fay-Herriot model 
(FH) as well as the “direct estimates” (i.e., using the simulated data as the estimator 
itself). We evaluate the quality of the point estimates and uncertainty estimates for each 
approach. In terms of point estimates, we value estimators with low mean squared error 
(MSE),

MSE
Ki

k

K ki i
= .

=1

2

∑
−( )θ θ

Here, θi  represents the true population quantity of interest for area i  while θ ki  repre-
sents an estimate for sample dataset k . In terms of uncertainty, we construct 95% cred-
ible intervals, and then evaluate the interval score (IS) (Gneiting and Raftery 2007),

IS
K

u I u I ui
k

K

ki ki ki i i ki i ki i ki=
1 2

<
2

>
=1
∑ −( ) + −( ) ( ) + −( )  

α
θ θ

α
θ θ(( )








,

where α = 0.05,  uki  is the upper bound of the interval, and  ki  is the lower bound of the 
interval for sample dataset k  and area i.  A low interval score is desirable as it strikes a 
balance between accurate interval coverage as well as interval width, similar to the bias 
and variance decomposition of MSE. In addition to the MSE and interval score, we 
report the absolute bias and the interval coverage rate. Table 1 presents a summary of 
these results, where MSE is presented relative to the direct estimator and all results are 
averaged across tracts.

The direct estimator exhibits roughly zero bias and perfect coverage by design. 
However, the bias was more or less negligible in all cases given the scale of the data 
(median household incomes are in the tens of thousands). Interestingly, there is a slight 
increase in bias as the number of hidden nodes increases for the NFH model. This was 
investigated by looking at the bias of the fixed effects component only (i.e., not including 
the random effects) and the opposite pattern was found. In other words, the bias of the 
fixed effects only component decreases as the number of hidden nodes increases. This 



324	 Journal of Official Statistics 40(2)

Table 1.  Mean Squared Error (MSE), Absolute Bias, Coverage Rate, and Interval Score for 
the Empirical Simulation Using Tract Level Data from the American Community Survey Five-
Year Period Estimates. MSE is Presented Relative to the Direct Estimator. The 25th and 75th 
Percentiles Are Also Given in Parentheses

Estimator N Rel. MSE Abs. Bias (×10-3) Cov. Rate Int. Score (×10-4)

Direct - 1.000 0.961 (0.27, 1.25) 0.950 (0.94, 0.96) 5.608 (3.07, 7.08)
FH - 0.758 (0.18, 0.84) 3.537 (0.68, 4.21) 0.946 (0.94, 0.97) 5.308 (2.98, 6.57)
NFH 30 0.693 (0.17, 0.74) 3.978 (0.84, 4.95) 0.939 (0.93, 0.97) 5.068 (2.91, 6.12)
NFH 50 0.668 (0.16, 0.70) 4.378 (0.94, 5.43) 0.937 (0.93, 0.97) 4.996 (2.85, 5.91)
NFH 100 0.659 (0.16, 0.68) 4.507 (1.00, 5.58) 0.937 (0.93, 0.98) 4.969 (2.82, 5.83)

The model with the lowest MSE and interval score is shown in bold.

leads us to believe that the slight increase in overall bias is due to a slight departure from 
normality for the random effects as the fixed effects component becomes more complex. 
If one were strictly interested in decreasing the bias, it might be worth considering more 
complex models for the random effects. However, in our case, the goal is to reduce the 
MSE of the point estimates, which is achieved, so we do not pursue more complex ran-
dom effects models. Unsurprisingly, all model-based approaches outperformed the direct 
estimator both in terms of MSE as well as interval score. The primary goal of small area 
estimation is to reduce the uncertainty around the direct estimates, so this result is to be 
expected. Beyond that, the NFH was able to outperform the standard Fay-Herriot model 
in all three cases. This indicates that relaxation of the linearity assumption is leading to 
superior point and uncertainty estimates. As expected, the NFH performs better when a 
larger number of hidden nodes is selected, although this appears to have diminishing 
returns, as the gains are minimal between fifty and one hundred nodes. This provides 
indication that there would be little value to increasing the number of nodes beyond one 
hundred for this example. Finally, although the NFH has slightly worse interval coverage 
rate compared to the FH, it results in substantially narrower intervals, leading to an over-
all preferable interval estimate in terms of the interval score.

Figure 1 examines the MSE for individual tracts, comparing the NFH to FH estimates. 
Note that the left subplot zooms into a smaller region that contains the majority of the 
data points for clarity (there are roughly 9,000 total points). The line indicates one-to-one 
correspondence in MSE, and points falling below the line indicate a reduction in MSE 
through the use of the NFH when compared to the standard FH. We can see that the 
majority of points fall below the line, and thus experience reduced MSE through the use 
of the proposed model. For reference, roughly four out of five tracts exhibited lower 
MSE from the NFH than the FH. Thus, although the proposed approach did not outper-
form the FH uniformly, the vast majority of tracts saw an improvement, and there was a 
substantial improvement on average.

4. California Median Household Income Estimation

Estimation of household income for various geographic areas is an important use case for 
small area estimation. For example, both poverty and income county level estimates are 
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produced by the Small Area Income and Poverty Estimates program (SAIPE) (Bell et al. 
2016). In fact, these estimates are utilized for administration of various federal programs 
as well as for local allocation of federal funds (https://www.census.gov/programs-sur-
veys/saipe/about.html).

Using the NFH, we construct estimates of median household income by census tract 
for the state of California. We use the direct estimates of median household income for 
the 2021 five-year period based on the American Community Survey as our response, as 
well as the same covariates outlined in Section 3. California contains 9,129 census tracts, 
although only 8,927 of these have direct estimates available. Tracts without direct esti-
mates could be due to privacy concerns in the case of extremely small sample size, or due 
to unpopulated areas, such as industrial land. The direct estimates range from USD8,667 
to USD249,901 with a mean of USD90,177 and the sampling standard errors range from 
about USD63 to USD83,000 with a mean of about USD12,000. Figure 2 shows an explor-
atory plot of the California median income data. Specifically, we show scatterplots of log 
median income direct estimates against four different covariates. This exploratory analy-
sis gives early indication that some degree of nonlinearity exists in the relationship 
between log median income and the covariates. Note that the plots presented only show 
pairwise relationships between the response of interest and a single covariate, however 
interactions may exist between the covariates that add another degree of nonlinearity.

Figure 1.  Scatterplot of tract-level MSE of the NFH model versus the FH model for the 
empirical simulation using tract level data from the American Community Survey five-year 
period estimates. The left subplot zooms into the region with most of the points.

https://www.census.gov/programs-surveys/saipe/about.html
https://www.census.gov/programs-surveys/saipe/about.html
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We fit the standard FH model as well as the NFH model using N = 100,  generating 
point estimates (posterior means) of household median income for each tract, as well as 
standard errors (posterior standard deviations) for both models. These are compared to 
the direct estimates. Figure 3 shows the three point estimates. All three estimators result 
in the same general spatial trend. That is, median income tends to be higher in densely 
populated areas such as the San Francisco Bay and Los Angeles, and generally lower in 
more rural regions of the state. There is little discernible difference across the methods in 
tracts with low sampling error, which tend to be in more populated areas. However, in 
certain rural regions with high sampling variability, there is some variation in estimates 
across the three estimators. Figure 4 presents scatterplots of these estimates, where again 
we see that all three methods generally result in similar point estimates.

Figure 2.  Pairwise scatterplots of log median income versus four covariates for the census 
tracts in the state of California.
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Figure 3.  Point estimates of household median income for California census tracts using 2021 
American Community Survey five-year period data. Results include direct estimates, Fay-
Herriot (FH) estimates, and nonlinear Fay-Herriot (NFH) estimates.

Figure 4.  Scatterplots of direct estimates of household median income for California census 
tracts using 2021 American Community Survey five-year period data versus Fay-Herriot (FH) 
estimates, and nonlinear Fay-Herriot (NFH) estimates.
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Figure 5.  Standard errors of household median income for California census tracts using 
2021 American Community Survey five-year period data. Results include direct estimates, Fay-
Herriot (FH) estimates, and nonlinear Fay-Herriot (NFH) estimates.

Similarly, Figure 5 shows the standard errors for each of the three estimators. As 
expected, the largest standard errors are associated with the direct estimators, especially 
in less populated tracts. Both model-based estimators are able to reduce the standard 
errors substantially in many cases, however the NFH results in the most reduction, yield-
ing lower standard errors than that of the FH. Finally, Figure 6 shows scatterplots of the 
direct estimate standard errors versus the two model-based standard errors. Note that 
points falling above the diagonal line corresponse to a reduction in standard error through 
the model. As expected, most tracts saw a reduction in standard error when using a 
model-based approach. This is the primary advantage of SAE models. However, the 
NFH model results in a greater number of tracts that experience a reduction, and gener-
ally larger reductions when compared to the standard FH model.

One interesting point concerns the variance of the random effects, τ 2 , under both 
models. For reference, the posterior mean of τ 2  was roughly twice as large under the FH 
model compared to the NFH model. This gives indication that the nonlinearity modeled 
by the NFH approach is reducing the reliance on random effects.

Both models were run using a standard 2.3 GHz 8-Core Intel Core i9 processor. The 
total computation time of the FH was around 17.5 seconds while the total computation 
time of the NFH was around 76.5 seconds. Thus, although the NFH model took longer in 
terms of total clock time, both models were extremely quick to run and pose minimal 
computational burden to the analyst. For reference, the total computation time for the 
NFH model when using only thirty hidden nodes was roughly thirty-two seconds. Thus, 
in extremely high-dimensional cases where computation could become a bottle-neck, 
one may consider using fewer hidden nodes in order to attain computation time on the 
order of the standard FH model, while still seeing potential gains in precision attributable 
to the nonlinear model. In total, there is a large potential advantage to the use of the NFH 
in terms of constructing precise and accurate small area estimates, with little to no trade-
off in terms of computational resources that are required.
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Figure 6.  Scatterplots of direct estimate standard errors of household median income for 
California census tracts using 2021 American Community Survey five-year period data versus 
Fay-Herriot (FH) standard errors, and nonlinear Fay-Herriot (NFH) standard errors.

5. Discussion

Small area estimation is an important problem that offers tremendous value to federal 
statistical agencies. Area-level models in particular have become widely used, with a 
great deal of research taking place on how to incorporate various dependence structures 
into the model. However, the research on nonlinear modeling of covariates for these 
area-level models has been quite limited. We contribute to the literature by building a 
nonlinear Fay-Herriot model. Our approach uses random weight neural networks to flex-
ibly model the mean function. A key point is that due to the nature of the hidden layer 
weights being random, estimation only takes place for the output layer weights, which is 
straightforward and computationally efficient.

We assess our proposed approach through an empirical simulation study that builds 
on data from the American Community Survey. We were able to show that the use of the 
nonlinear Fay-Herriot model has the potential to generate estimates with substantially 
lower MSE as well as more desirable interval estimates with reduced uncertainty. Finally, 
we use the NFH model to generate estimates of median household income at the census 
tract level for the state of California. The R code used to run both the simulation study 
and the data analysis can be found at https://github.com/paparker/NFH. Importantly, the 

https://github.com/paparker/NFH
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estimates generated by the NFH approach yielded lower standard errors compared to 
both the direct estimates as well as the standard linear Fay-Herriot model.

Still, there are some unanswered questions that leave opportunity for future work. 
First, the NFH proposed herein did not explore spatial or other dependence structure 
among the random effects. In some cases, different spatial patterns have been observed 
for different subgroups within the population (Janicki et al. 2022). For such situations, an 
extension of the NFH that considers nonlinear spatial dependence with covariate interac-
tions could be valuable. One challenge when considering spatial dependence will be the 
scalability as the number of areas in the model becomes large. Another aspect worth 
considering is measurement error within the covariates. For example, when covariates 
are themselves estimated from a survey, there is opportunity to improve the model 
through acknowledgment of the measurement error process. Although these topics are 
beyond the scope of the current work, they present interesting future directions.

Finally, the results presented here were based on a relatively small number of covari-
ates. In situations where the number of covariates is large, the number of of potential 
interactions grows quickly. We suspect that in such situations the linearity assumption 
becomes quite limiting, and thus we may expect even greater accuracy and precision 
gains through the use of the proposed nonlinear model.
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