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A B S T R A C T

This paper presents an analytic solution for the aerodynamic noise generated by a traveling
wavepacket passing near the edge of a rigid semi-infinite flat plate. The solution is derived
in the time domain for a wavepacket of either constant or spatially-varying wavenumber, for
which novel closed-form expressions are obtained for the incident and scattered sound fields.
The case of a varying wavepacket constitutes a surrogate model for turbulent flow distortions
caused by the edge region and its geometry. This modeling approach permits a relaxation of
the frozen gust assumption that is commonly used in the analytical prediction of trailing-edge
noise, whereby the local vorticity is assumed to be unaffected by the edge. Our results shed
light on the role that spatial variations of the vortical field near the trailing edge have on
the incident and scattered sound contributions to the acoustic far field. In particular, we find
that the wavenumber modification has a significant effect on the incident field but not on the
scattered field amplitude. However, the phase difference between the incident and scattered
fields depends strongly on the spatial variation in the wavepacket wavenumber, which leads to
a variation in the sound level and directivity of the total pressure field.

1. Introduction

The constant growth of air traffic volume and the encroachment of major airports on their neighboring communities have recently
ed to more stringent regulations for aircraft noise [1]. Noise regulations are also a major factor in the future of efficient urban air
ransportation [2]. Thus, there is an accelerating scientific interest in the reduction of aerodynamic noise from air vehicles.
One of the predominant sources of aerodynamic airframe noise is the interaction of turbulence with the wing trailing edge,

nown as trailing-edge noise [3]. A common approach to suppress this noise is the use of serrated trailing edges, which are geometric
aveforms that run periodically along the wing span, as may be inspired by the wings of silent owl species [4,5]. This mechanism
as been shown to be effective in numerous theoretical [6–8], computational [9,10], and experimental [11] studies. However, there
s currently poor agreement between predictive theory and computational and experimental results, accompanied by an incomplete
nderstanding of the mechanism by which serrations alter aerodynamic noise.
The standard aeroacoustic theory for serrated trailing edges by Howe [6,7] is based upon the ‘frozen gust’ assumption, which

ssumes that the vorticity in the turbulent boundary layer is unaffected by the presence of the trailing edge. This theory overestimates
he noise reduction measured in practice for serrated trailing edges by 2 to 5 dB on average [11], in contrast to trailing-edge noise
heory for straight edges for which very good agreement with measurements is observed [12]. Recent studies [8,10] infer that these
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discrepancies are due to the local effect that the serrated edge has on the turbulent field, in violation of the frozen gust assumption.
For example, the experimental velocity- and acoustic-field measurements presented by Moreau and Doolan [9] for a flat plate with
either a straight or serrated trailing edge show that the serrated edge has a significant influence on the hydrodynamic field at the
source location, which strongly affects the acoustic emission from the edge. Avallone et al. [10,13] confirmed this conclusion by
computational analysis and experimental measurements, respectively. The particle image velocimetry measurements that Avallone
et al. [13] present on the suction side of the serrated trailing edge identify counter-rotating streamwise-oriented vortical structures
that distort the wake flow near the edge. This complex flow pattern in the wake is hypothesized to be responsible for the reduced
effectiveness of trailing-edge serrations for noise suppression, as compared to available predictive theory [14]. More details on the
effect of trailing edge geometry on the surrounding flow and its effect on the radiated sound can be found in the recent review
of Lee et al. [14].

The present research seeks to investigate the above hypothesis by incorporating spatial distortions of the vorticity field into a
oise prediction model. This goal is pursued by developing an analytical model to predict the noise from the encounter of a traveling
avepacket with the edge of a semi-infinite flat plate.
The study of noise produced by a static wavepacket originates from Crow [15]. Crow used a simplified one-dimensional

wavepacket model to describe the Lighthill stress tensor, and applied it to the Lighthill integral to predict the sound generated
by the wavepacket (see also details in Crighton [16]). This wavepacket model represented the pressure fluctuations outside of
a turbulent jet, which led to the identification of an exponential polar variation in the resulting sound pressure, referred to as
superdirectivity [17]. Crighton and Huerre [17] showed in their theoretical analysis that this superdirectivity is only obtained for
non-compact wavepackets that are characterized by 𝑘ℎ𝐿1 ≫ 1, where 𝑘ℎ is the convected wavenumber and 𝐿1 is the characteristic
length scale (standard deviation) of the Gaussian envelope of the wavepacket. The superdirectivity phenomenon was confirmed
experimentally by Cavalieri et al. [18] for the axisymmetric mode of the acoustic pressure in subsonic jets; these authors also
validated the use of the line source approximation suggested by Crow [15] for sound pressure prediction.

Recent research by Cavalieri et al. [19] and Nogueira et al. [20] focuses on the sound produced by a wavepacket source near
the edge of a flat plate, as motivated by the study of sound generation from an exhaust jet installed near an aircraft wing. In
particular, Cavalieri et al. [19] combine experimental measurements and two different numerical analyses to study the effect of
the distance between a wavepacket representing the jet turbulence and the plate edge on the scattered sound. Their first numerical
solution uses the method of Ffowcs Williams and Hall [21] to predict wavepacket scattering by a semi-infinite plate edge, while
their second numerical approach, using a boundary element method accelerated by a fast multipole method [22], predicts the
sound scattered from a finite plate. The results from both approaches show an exponential dependence of the radiated sound on
the jet–plate distance, in agreement with their experiments. However, for all of the considered cases, the sound pressure levels
(SPL) predicted by the numerical results of Cavalieri et al. [19] were slightly lower than experimental measurements, a difference
which may be due to the fact that the source model comprises only the axisymmetric mode of the jet. Both numerical approaches
in Cavalieri et al. [19] show that the sound field radiated by the jet–wing interaction presents a low-frequency amplification with
dipolar directivity. As expected, the directivity pattern of their finite-plate solution has additional waviness when compared against
the semi-infinite plate results, which is due to secondary scattering from the leading and lateral edges of the plate and the interference
of scattered sound from several edges in the acoustic far field (e.g., Cavalieri et al. [23] and Ayton et al. [24]). Nogueira et al. [20]
further simplifies the volume wavepacket source used by Cavalieri et al. [19] by assuming a wavepacket that is concentrated on
a cylindrical surface following the jet lipline. The good agreement between the results of Nogueira et al. [20], obtained using the
tailored Green’s function of Ffowcs Williams and Hall [21], and the results that Cavalieri et al. [19] present for a semi-infinite plate
shows that this simplification in the wavepacket model has very little effect on the computed sound.

The current study extends the line-source wavepacket model suggested by Crow [15] to examine the noise produced by a traveling
wavepacket that moves along the surface of a rigid flat plate. This problem is solved analytically in the time domain to allow for
spatial variation in the convected wavenumber of the wavepacket, in contrast to the usual approach in the frequency domain that
describes the solution for a constant wavenumber (e.g., Cavalieri et al. [19]). In effect, the wavepacket with spatial wavenumber
variations is a surrogate model for turbulent flow distortions created by real flows near a trailing edge. Novel closed-form expressions
are obtained for the incident and scattered pressure fields due to the encounter of the wavepacket with the plate edge, which are
verified against previous numerical results by Cavalieri et al. [19] for a static wavepacket of constant wavenumber. In addition, the
effect of the wavenumber spatial distortion is studied, shedding light on the role that distortions in the vorticity field due to trailing
edge geometry could have in the trailing-edge noise mechanism.

The remainder of this paper is organized as follows. Section 2 presents the mathematical formulation of the problem and the
general approach to the solution. The analytical solution is derived in Section 3, and the results of the theoretical model and their
implications are presented and discussed in Section 4. Section 5 closes with concluding remarks.

2. Mathematical model

The mathematical approach in this study considers the incident and scattered pressure fields separately and then superimposes
these fields to obtain the total aerodynamic noise produced by an encounter of a moving wavepacket with the edge of a semi-infinite
plate, as depicted in Fig. 1. The incident field is obtained from Lighthill’s analogy in Section 2.1, and the scattered field is predicted
by utilizing Green’s theorem in Section 2.2.
2
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Fig. 1. Schematic description of the problem: a wavepacket travels along a semi-infinite plate with speed 𝑐𝑔 and produces sound as it passes the plate edge.
We focus on the sound that radiates to an observer in the acoustic far field at a radial distance 𝑟 from the plate edge.

2.1. Incident field

Lighthill’s analogy yields an expression for the far-field noise radiation in a free space (see Howe [25], pp. 25–29),

𝑝𝑖(𝒙, 𝑡) =
1
4𝜋 ∫

∞

−∞

[

1
|𝒙 − 𝒚|

𝜕2𝑇𝑖𝑗 (𝒚, 𝜏)
𝜕𝑦𝑖𝜕𝑦𝑗

]

𝜏=𝑡− |𝒙−𝒚|
𝑐0

d3𝒚, (1)

where 𝑇𝑖𝑗 is the Lighthill stress tensor, 𝒙 is the observer location, 𝒚 is the sound source position, 𝑐0 is the speed of sound, and d3𝒚
enotes volumetric integration of the source region. This method requires knowledge of the source term, 𝑇𝑖𝑗 , which may be obtained
rom computational fluid dynamics simulations or prescribed by a simplified model. The current study takes the latter approach and
rescribes the form of 𝑇𝑖𝑗 to predict the incident sound produced by a moving wavepacket that can be expressed in closed form.

.2. Scattered field

The compact Green’s function (e.g., Howe [25], Chap. 3) may be used to predict the sound scattered by a rigid boundary for
roblems where the wavelength of the produced sound is large compared to the dimensions of the solid body. Alternatively, this
ethod can also be applied to the half-plane problem of Howe [26] when the acoustic wavelength is large compared to the distance
etween the source and the plane edge. We pursue the Green’s function approach in the time domain, contrarily to the usual
pplication of Green’s functions in the frequency domain (e.g., Cavalieri et al. [19]), with the purpose of introducing a spatial
ariation to the turbulence source that cannot be analyzed in the frequency domain. These spatial distortions aim to represent the
ossible effect of trailing edge geometry on the vorticity field that scatters as noise. However, we note that here the spatially-varying
urbulence source is scattered by a straight edge to focus solely on the effect of the vorticity change on the scattered pressure field.
The appropriate two-dimensional Green’s function that satisfies the boundary conditions of the semi-infinite plate is (see Howe

25], p. 75)

𝐺12𝐷 (𝒙̄, 𝒚̄, 𝑡 − 𝜏) ≅
𝜑∗(𝒙̄)𝜑∗(𝒚̄)

𝜋𝑟
𝛿
(

𝑡 − 𝜏 − 𝑟
𝑐0

+
𝒙̃ ⋅ 𝒚̄
𝑐0

)

, (2)

where

𝜑∗(𝒙̄) =
√

𝑟 sin 𝜃
2
, (3)

𝒙̄ = (𝑥1, 𝑥2) = (𝑟 cos 𝜃, 𝑟 sin 𝜃), 𝒚̄ = (𝑦1, 𝑦2) = (𝑟0 cos 𝜃0, 𝑟0 sin 𝜃0), and 𝒙̃ = 𝒙̄∕𝑟. See the coordinate definitions of 𝑟, 𝜃 in the schematic
drawing of the problem given in Fig. 1. The scattered sound due to the presence of the semi-infinite plate is then computed by

𝑝𝑠(𝒙̄, 𝑡) = ∫

∞

−∞ ∫

∞

−∞

𝜕2𝑇𝑖𝑗 (𝒚̄, 𝜏)
𝜕𝑦𝑖𝜕𝑦𝑗

𝐺12𝐷 (𝒙̄, 𝒚̄, 𝑡 − 𝜏) d2𝒚 d𝜏, (4)

here d2𝒚 denotes spatial integration in the plane normal to the plate surface
(

𝑦1, 𝑦2
)

. The above equation yields the sound scattered
y the encounter of a specified turbulence source, 𝑇𝑖𝑗 , with the plate edge, which is discussed next.

.3. Wavepacket source model

We apply a traveling wavepacket model that is based on the model presented by Crighton [16] for the static wavepacket of an
xisymmetric free jet. We extend the model to represent a two-dimensional wavepacket (with Gaussian envelopes in both 𝑦1 and 𝑦2
irections) that moves in the 𝑦1 direction with speed 𝑐𝑔 :

𝑇11(𝒚̄, 𝜏) = 𝐴 ei(𝜔𝜏−𝑘ℎ𝑦1)e
−
( 𝑦1−𝑐𝑔 𝜏

𝐿1

)2

e
−
( 𝑦2
𝐿2

)2

e−
( 𝑦1

𝐿

)2

. (5)

Here, 𝐴 is the amplitude of the wavepacket source, which in the case of a source that represents the axisymmetric mode of a jet
instability sustains 𝐴 = 2𝜌𝑈𝑢̃, where 𝜌 is the fluid density, 𝑈 is the exit jet velocity, and 𝑢̃ denotes the axial velocity fluctuations [20].
The amplitude 𝐴 is arbitrary in the current study, as it has no effect on the directivity of the sound pressure. The length scales 𝐿 and
3
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Fig. 2. A wavepacket source model with 𝑘ℎ = 6, 𝑐𝑔 = 1, 𝐿1 = 1, 𝐿2 = 0.2, 𝐿 = 5 at two different time steps: (a) 𝑡 = 0; (b) 𝑡 = 5. Dashed and dotted black curves
denote the inside- and outside-envelopes of the wavepacket source in the 𝑦1 direction, respectively. Those envelopes determine the source magnitude as it travels
in the 𝑥1 direction, which is denoted by a blue and red color scheme.

𝐿2 represent the standard deviation of the Gaussian envelopes which are applied in the model in 𝑦1 and 𝑦2 direction, respectively.
The additional outer envelope in 𝑦1, of standard deviation 𝐿 ≫ 𝐿1, 𝐿2, is added to ensure that the source is localized in the vicinity
of the plate edge, and Eq. (4) can be applied to obtain the far field pressure, as suggested by Obrist [27]. In fact, this envelope adds
a finite lifespan of approximately 4𝐿∕𝑐𝑔 to the source, as demonstrated in Fig. 2. Namely, the observer in the far field will hear a
ound for a limited duration.
To study the noise produced by a wavepacket passing the trailing-edge of a semi-infinite plate, we now restrict our analysis to

hat of a wavepacket that is concentrated on the 𝑦2 axis (i.e., on the plate surface), by applying 𝐿2 → 0. We recall that the Dirac
elta function can be expressed as

𝛿(𝑦2) = lim
𝐿2→0

{

1
𝐿2

√

𝜋
e
−
( 𝑦2
𝐿2

)2}

. (6)

Substituting the above relation into Eq. (5) after taking the limit 𝐿2 → 0 yields a simplified expression for the moving wavepacket
line-source,

𝑇11(𝒚̄, 𝜏) ≅ 𝐴
√

𝜋𝐿2 𝛿(𝑦2) e𝑓 (𝑦1 ,𝜏), (7)

here

𝑓 (𝑦1, 𝜏) ≜ i
(

𝜔𝜏 − 𝑘ℎ𝑦1
)

−
( 𝑦1 − 𝑐𝑔𝜏

𝐿1

)2
−
( 𝑦1
𝐿

)2
. (8)

With this simplified source model, the second derivative of 𝑇11 in space is

𝜕2𝑇11(𝒚̄, 𝜏)
𝜕𝑦21

= 𝑔(𝑦1, 𝜏) ⋅ 𝑇11(𝒚̄, 𝜏), (9)

here

𝑔(𝑦1, 𝜏) =

(

2
𝑐𝑔𝜏

𝐿2
1

− i𝑘ℎ

)2

− 2𝛽2 − 4𝛽2
(

2
𝑐𝑔𝜏

𝐿2
1

− i𝑘ℎ

)

𝑦1 + 4𝛽4𝑦21, (10)

and

𝛽2 ≜ 1
𝐿2
1

(

1 + 𝜎21
)

, (11)

where 𝜎1 = 𝐿1∕𝐿. The terms derived in Eqs. (7)–(11) will be applied to Eqs. (1) and (4) to obtain the far-field incident and scattered
pressures, respectively.
4
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2.4. Nondimensional variables

A compact representation of the mathematical model is possible with the following choice of nondimensional variables:

𝑡 = 𝑡
𝑐𝑔
𝐿1

, 𝜆 = 2𝜋
𝑘ℎ

, 𝐿̄1 =
𝐿1
𝜆
, 𝑅 = 𝑟

𝐿1
, 𝜎1 =

𝐿1
𝐿

, 𝜎2 =
𝐿1
𝐿2

, 𝑀𝑔 =
𝑐𝑔
𝑐0

, 𝑀𝑐 =
𝑘0
𝑘ℎ

, 𝑘0 =
𝜔
𝑐0

,

𝒙̂ = (𝑥̂1, 𝑥̂2) =
(𝑥1, 𝑥2)
𝐿1

, 𝒚̂ = (𝑦̂1, 𝑦̂2) =
(𝑦1, 𝑦2)
𝐿1

. (12)

ote the use of two separate length scales: the wavepacket length in the 𝑦1 direction, 𝐿1, is taken as the length scale of the
physical problem that normalizes the coordinates and time, while the wavelength of the convected wave, 𝜆, is used to normalize the
wavepacket envelope length. This approach is similar to the method presented by Cavalieri et al. [28] in their analysis of the sound
engendered by subsonic jets that is modeled as a static wavepacket source, with the exception that their work uses the jet diameter
as the physical length scale. In the current study the wavepacket moves along the horizontal axis with group Mach number 𝑀𝑔 and
has a convective Mach number 𝑀𝑐 .

Application of the above nondimensional variables to the wavepacket source in Section 2.3 yields

𝑇11(𝒚̂, 𝜏) ≅
𝐴
√

𝜋
𝜎2

𝛿(𝑦̂2) e𝑓 (𝑦̂1 ,𝜏), (13)

where

𝑓 (𝑦̂1, 𝜏) = i2𝜋𝐿̄1

(

𝑀𝑐
𝑀𝑔

𝜏 − 𝑦̂1

)

−
(

𝑦̂1 − 𝜏
)2 − 𝜎21 𝑦̂

2
1. (14)

he second spatial derivative of 𝑇11 is then obtained in nondimensional form:

𝜕2𝑇11(𝒚̂, 𝜏)
𝜕𝑦̂21

= 𝑔̂(𝑦̂1, 𝜏) ⋅ 𝑇11(𝒚̂, 𝜏), (15)

here

𝑔̂(𝑦̂1, 𝜏) =
(

2𝜏 − i2𝜋𝐿̄1
)2 − 2

(

1 + 𝜎21
)

− 4
(

1 + 𝜎21
) (

2𝜏 − i2𝜋𝐿̄1
)

𝑦̂1 + 4
(

1 + 𝜎21
)2 𝑦̂21. (16)

This concludes the nondimensional representation of the current problem.

2.5. Model limitations

The method of solution presented in Sections. 2.1–2.4 yields the far-field sound produced by a wavepacket that passes near the
edge of a semi-infinite plate. Namely, the solution is limited to cases in which the distance between the observer and the edge is
much larger than the distance from the wavepacket source to the edge. In addition, the use of the compact Green’s function in
Section 2.2 implies that the distance between the source and the edge is small compared to the acoustic wavelength, 𝜆0. In other
words we limit our solution to cases of:

𝑘0𝑟 = 2𝜋𝐿̄1𝑀𝑐𝑅 ≫ 1, (17)
𝜆0
𝐿1

= 2𝜋
𝑘0𝐿1

= 1
𝐿̄1𝑀𝑐

≫ |𝒚̂|, (18)

where 𝑘0 is the acoustic wavenumber given in Eq. (12).

3. Analytical solution

We next derive an analytical solution based on the formulation of the problem given in Section 2 for two cases: a wavepacket
traveling rectilinearly in free space, and a wavepacket that moves along a semi-infinite plate. These solutions yield the incident and
scattered pressure fields, respectively, which collectively represent the total sound produced by a wavepacket that passes the edge
of a plate. Special consideration is given here to cases where the wavepacket wavenumber is linearly dependent on the location
of the wavepacket. This special case is explored to examine the effect of vorticity distortions on the aerodynamic noise, namely to
anticipate the effect of relaxing the frozen gust assumption.

3.1. Incident field solution

The incident pressure field is obtained by substituting the second spatial derivative of the wavepacket source (Eq. (15)) into
Lighthill’s integral (Eq. (1)), which yields

𝑝𝑖(𝒙̂, 𝑡) =
𝐴
√ ∫

∞ 𝐿1𝛿(𝑦̂2) [𝑔̂(𝑦̂1, 𝜏) e𝑓 (𝑦̂1 ,𝜏)
]

𝜏=𝑡−𝑀𝑔 |𝒙̂−𝒚̂|
d3𝒚̂. (19)
5

4𝜎2 𝜋 −∞ |𝒙̂ − 𝒚̂|
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Focusing on the far field, where |𝒙̂| ≫ |𝒚̂|, a solution for the integral of Eq. (19) is derived by utilizing Howe’s far-field approximation
see [25], pp. 20–21), which retains possible phase difference effects, and applying identities (A.2)–(A.4) from Gradshteyn and
yzhik [29]. This procedure is detailed in Appendix B and leads to a closed form expression for the incident pressure field:

𝑝𝑖(𝒙̂, 𝑡) ≅
𝐴

4𝜎2
√

−i𝐿̄1𝑀𝑐𝑅𝐹2

e𝐹0−
1
4 𝜁

2
{(

𝐸0 −
𝐸1
𝐹1

)

𝐷0 (𝜁 ) +
(

𝐸2
2𝐹2

−
𝐸1
𝐹1

)

𝐷2 (𝜁 )
}

, (20)

where

𝐸0 = 4
(

𝑡𝑟 − i𝜋𝐿̄1
)2 − 2

(

1 + 𝜎21
)

, (21)

𝐸1 = 8
(

𝑀𝑔 cos 𝜃 − 1 − 𝜎21
) (

𝑡𝑟 − i𝜋𝐿̄1
)

, (22)

𝐸2 = 4
(

1 + 𝜎21 −𝑀𝑔 cos 𝜃
)2 , (23)

𝐹0 = i2𝜋𝐿̄1
𝑀𝑐
𝑀𝑔

𝑡𝑟 − 𝑡2𝑟 , (24)

𝐹1 = −i2𝜋𝐿̄1
(

1 −𝑀𝑐 cos 𝜃
)

+ 2𝑡𝑟
(

1 −𝑀𝑔 cos 𝜃
)

, (25)

𝐹2 = −
(

1 −𝑀𝑔 cos 𝜃
)2 − 𝜎21 , (26)

and 𝑡𝑟 = 𝑡 − 𝑀𝑔𝑅 is the retarded time that describes the time at which sound is emitted from the source to reach the observer at
the physical time, 𝑡. Here 𝜁2 = 𝐹 2

1 ∕(2𝐹2), and 𝐷𝜈 are parabolic cylinder functions, which can be expressed in terms of confluent
hypergeometric functions (Eq. (A.4)) that are commonly used to describe the solution of the wave equation in paraboloidal
coordinates. These functions are useful, for example, in the solution of the Schrödinger equation associated with the hydrogen
atom (see Hochstadt [30], pp. 189–195).

We note that for 𝑐𝑔 → 0 we get 𝐹1 ∼ −i2𝜋𝐿̄1
(

1 −𝑀𝑐 cos 𝜃
)

, 𝐹2 ∼ −
(

1 + 𝜎21
)

, and the superdirectivity reported by Cavalieri et al.
[18] for a static wavepacket, represented by the exponential function exp

(

1 −𝑀𝑐 cos 𝜃
)2, is reproduced. The full solution for the

moving wavepacket includes additional exponential polar variation due to the group velocity (see full expressions given for 𝐹1 and
𝐹2 in Eqs. (25) and (26), respectively) as the location of the wavepacket changes with time.

3.2. Scattered field solution

We next utilize the compact Green’s function method for computing the sound scattered by a wavepacket passing the edge of a
semi-infinite plate. Substitution of Eqs. (2) and (9) into Eq. (4), yields

𝑝𝑠(𝒙̂, 𝑡) ≅
𝐴𝐿2 sin

𝜃
2

√

𝜋𝑟 ∫

∞

−∞
𝛿(𝑦2)𝜑∗(𝒚̄)

[

𝑔(𝑦1, 𝜏) e𝑓 (𝑦1 ,𝜏)
]

𝜏=𝑡− 𝑟
𝑐0

+ 𝒙̃⋅𝒚̄
𝑐0

d2𝒚, (27)

here the velocity potential of incompressible flow around the edge of a half-plane, 𝜑∗(𝒚), satisfies

𝜑∗ (𝒚) =
√

𝑟0 sin
𝜃0
2

= ℜ
{

−i
√

𝑦1 + i𝑦2
}

. (28)

On the plate we obtain

𝜑∗ (𝒚)|
|𝑦2=0

= ℜ
{

−i
√

𝑦1
}

=

{

0, 𝑦1 > 0,
√

−𝑦1, 𝑦1 < 0.
(29)

Substitution of the above expression into Eq. (27) leads to

𝑝𝑠(𝒙̂, 𝑡) ≅
𝐴 sin 𝜃

2

𝜎2
√

𝜋𝑅
e𝐹0 ∫

∞

0

{

𝐸0𝑦̂
1∕2
1 − 𝐸1𝑦̂

3∕2
1 + 𝐸2𝑦̂

5∕2
1

}

e−𝐹1 𝑦̂1+𝐹2 𝑦̂
2
1d𝑦̂1. (30)

Substitutions of the integral identities (A.1) and (A.3) into Eq. (30) leads to a closed-form solution for the scattered pressure
ield:

𝑝𝑠(𝒙̂, 𝑡) ≅
𝐴 sin 𝜃

2

2𝜎2
(

−2𝐹2
)3∕4 √𝑅

e𝐹0−
1
4 𝜁

2
{(

𝐸0 −
3𝐸1
2𝐹1

)

𝐷− 3
2
(−i𝜁 ) + 15

4

(

𝐸1
𝐹1

−
𝐸2
2𝐹2

)

𝐷− 7
2
(−i𝜁 )

}

. (31)

We note that when comparing the above results with the incident field solution (Eq. (20)) the exponential terms are identical, as
expected. In addition, the amplitude of the scattered pressure field is proportional to sin 𝜃

2 , which is known to control the directivity of
the scattering of a point-source from the edge of a semi-infinite plate. However, it is noteworthy that the pressure field dependence
on 𝜃 is also withheld implicitly in the expressions for 𝐸1, 𝐸2, 𝐹1 and 𝐹2 (see Eq. (22), (23), (25), and (26), respectively). This
ependence is proportional to 𝑀𝑔 cos 𝜃 and 𝑀𝑐 cos 𝜃, which encompass the effect of the wavepacket group speed and convected
ave speed on the scattered sound.
6
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Fig. 3. Wavepacket source models with nominal parameters and three values of linear modification parameters: (a) 𝜖 = −0.4; (b) 𝜖 = 0.4; and (c) 𝜖 = 0. Nominal
parameters are detailed in Section 4, Table 1.

.3. Wavenumber modification effect

We next consider a moving wavepacket model in which the wavenumber of the convected wave changes with location 𝑦1,
amely 𝑘ℎ = 𝑘ℎ(𝑦1). Specifically, we assume linear modification of the wavenumber: 𝑘ℎ(𝑦1) = 𝑘ℎ0 + 𝑎𝑦1 where |𝑎| ≪ 𝑘ℎ0 , which in
ondimensional variables becomes 𝑘ℎ𝐿1 = 2𝜋

(

𝐿̄1 + 𝜖𝑦̂1
)

. Under these conditions the second spatial derivative of the source term is

𝜕2𝑇11(𝒚̂, 𝜏)
𝜕𝑦̂21

= 𝑔̂𝑚(𝑦̂1, 𝜏) ⋅ 𝑇11(𝒚̂, 𝜏), (32)

where

𝑔̂𝑚(𝑦̂1, 𝜏) = 4
(

𝜏 − i𝜋𝐿̄1
)2 − 2

(

1 + 𝜎21 + i2𝜋𝜖
)

+ 4𝑦̂21
(

1 + 𝜎21 + i2𝜋𝜖
)2

− 8
(

1 + 𝜎21 + i2𝜋𝜖
) (

𝜏 − i𝜋𝐿̄1
)

𝑦̂1. (33)

Fig. 3 demonstrates the effect of the wavenumber modification parameter, 𝜖, on the wavepacket model as it passes the plate edge
at time 𝑡 = 0. This model is not intended to represent the exact behavior of the flow near a serrated edge, but rather provide new
information on the effect that small local changes in the wavenumber could introduce in the sound produced by the wing trailing
edge during flight. We note that the 𝜖 values in Fig. 3 are large for demonstration purposes. In our analysis (Section 4.2) we apply
𝜖 values that are an order of magnitude smaller to sustain the model assumptions (|𝜖| ≪ 𝐿̄1).

Application of the modified wavepacket model to the method presented in Section 3.1 (see also Appendix B) leads to modified
expressions for the auxiliary Eq. (21)–(23) and (26):

𝐸𝑚0
= 4

(

𝑡𝑟 − i𝜋𝐿̄1
)2 − 2

(

1 + 𝜎21 + i2𝜋𝜖
)

, (34)

𝐸𝑚1
= 8

(

𝑀𝑔 cos 𝜃 − 1 − 𝜎21 − i2𝜋𝜖
) (

𝑡𝑟 − i𝜋𝐿̄1
)

, (35)

𝐸𝑚2
= 4

(

1 + 𝜎21 + i2𝜋𝜖 −𝑀𝑔 cos 𝜃
)2 , (36)

𝐹𝑚2
= −

(

1 −𝑀𝑔 cos 𝜃
)2 − 𝜎21 − i2𝜋𝜖, (37)

while the functions 𝐹0 and 𝐹1 are unaffected by the linear modification in the wavenumber. By applying 𝜖 → 0 to Eqs. (34)–(37)
the respective expressions for the constant wavenumber case, Eq. (21)–(23) and (26), are reproduced.

Both the incident and the scattered pressure fields can now be computed by simple replacement of the functions 𝐸0, 𝐸1, 𝐸2, and
𝐹2 in the corresponding pressure field expression (Eqs. (20) and (31), respectively) with the modified functions 𝐸𝑚0

, 𝐸𝑚1
, 𝐸𝑚2

, and
𝐹𝑚2

. This step closes the formulation of the analytical solution for the sound produced by a wavepacket with a spatially-varying
convective wavenumber that passes the edge of a semi-infinite plate.

4. Results

This section presents the pressure field due to a wavepacket passing the edge of a semi-infinite plate for various scenarios of
constant or linearly-varying convective wavenumbers. The wavepacket parameters are selected to enable comparison with previous
studies of the noise introduced from static wavepackets located at specific vertical distances from the plate edge [19,20], as detailed
7

n Table 1. These parameters constitute the nominal case in the following text. As our nondimensional variables do not permit
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Table 1
Nominal parameters and their range in the current study.

𝑀𝑐 𝑀𝑔 𝑘ℎ0
𝐿1 𝜎1 𝜎2 𝜖 𝑅

Nominal value 0.54 0.01 6 0.1 10 0 35
Examined range – 0.01–0.54 – – – −0.05–0.05 10–50

Fig. 4. Real part of the normalized pressure field obtained for a nominal wavepacket source at time 𝑡 = 0.35: (a) incident field; (b) scattered field; (c) total
field. In (b, c) the semi-infinite plate is denoted with a black solid line. Nominal parameters are detailed in Table 1.

the substitution of 𝑀𝑔 = 0, a small value of the group Mach number facilitated comparison with the static wavepacket case. In
addition, we focus here on small values of |𝑡𝑟| for which the wavepacket source remains close to the edge, as required by our model
assumptions. A validation of the present analytical model is detailed in Appendix C. For the convenience of the reader the hats
above the nondimensional variables are hereafter removed.

4.1. Constant-wavenumber wavepacket: nominal case

Fig. 4 illustrates the far-field acoustic pressure obtained in the incident, scattered, and total fields from a nominal wavepacket
source at time 𝑡 = 0.35. Note that the far-field assumption implies that near-field results in Fig. 4 should be disregarded. Furthermore,
our model asserts that the center of the wavepacket reaches the plate edge at time 𝑡 = 0 and at time 𝑡 = 0.35 the wavepacket
center is located at (𝑦1, 𝑦2) = (0.35, 0), which indicates that the wavepacket still travels along the edge (see Fig. 3(c)) and the
disturbance due to this continuous encounter is spread along the field. In both the scattered and the total pressure fields (Figs. 4(b)
and 4(c), respectively) a pressure jump is observed between the two sides of the plate, as expected, and the sound is scattered in
all directions with an opposite phase between the upper and lower half planes, in agreement with the numerical and experimental
results of Cavalieri et al. [19]. In addition, a significant drop in the scattered pressure field is obtained around zero polar angle
(Fig. 4(b)), while the incident field is most dominant in the small polar angle regime. The combination of the fields yields the total
8
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Fig. 5. Polar plot of the normalized pressure amplitude, |𝑝∕𝐴|, obtained for a nominal wavepacket source at 𝑅 = 35 and varying time steps: (a,b) incident field;
(c,d) scattered field. Left and right columns present results for 𝑡𝑟 ≤ 0 and 𝑡𝑟 ≥ 0, respectively. Nominal parameters are detailed in Table 1.

pressure field in Fig. 4(c), in which a strong drop in pressure is evident around a low polar angle of about 15◦. This polar angle
n fact depends on the chosen time step, as will be shown next. In general, these pressure fields are in good qualitative agreement
ith the maps reported by Nogueira et al. [20] for a static wavepacket located below the edge of the plate.
Fig. 5 presents the directivity of the incident and scattered acoustic fields as a function of retarded time. Polar plots of these

ressure field amplitudes are obtained for a nominal wavepacket source at a distance 𝑅 = 35 from the origin, and at varying times
bout 𝑡𝑟 = 0 (i.e., the instant when the sound produced by a wavepacket that is located at the plate edge reaches the observer). The
ncident field presented in Figs. 5(a) and 5(b) for 𝑡𝑟 ≤ 0 and 𝑡𝑟 ≥ 0, respectively, is practically unaffected by the movement of the
avepacket source, while the maximum incident pressure amplitude is obtained at 𝜃 = 0◦, as expected. In contrast, the scattered

field in Figs. 5(c) and 5(d) is strongly affected by 𝑡𝑟 and its maximal amplitude is obtained at 𝑡𝑟 = 0 for a nominal wavepacket source,
while the directivity is dominated by the sin 𝜃

2 term. As expected, the scattered field amplitude reduces as the distance between the
wavepacket and the plate edge increases. In addition, in all of the considered cases both the incident and scattered field amplitudes
remain symmetric with respect to the horizontal axis.

The combination of the incident and scattered pressure fields produces the total pressure field presented in Figs. 6(a) and 6(b)
for 𝑡𝑟 ≤ 0 and 𝑡𝑟 ≥ 0, respectively. The total pressure field results show a distinct dependence on 𝑡𝑟 in the entire polar angle regime.
In general, the total pressure amplitude decreases with increased distance between the source and the plate edge for all polar angles
except for the small positive angle regime. As both the incident and scattered field amplitudes are practically indifferent to changes
in 𝑡𝑟 for small polar angles (Fig. 5), the variation in the total field in this polar angle regime is attributed to the phase difference
etween both fields. This phase difference is also responsible to the break of symmetry in the total pressure directivity plot, as the
9

ymmetry that was evident in the incident and scattered field directivity plots no longer exists in the total field.
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Fig. 6. Polar plot of the normalized total pressure amplitude, |𝑝∕𝐴|, obtained for a nominal wavepacket source at 𝑅 = 35 and varying time steps: (a) 𝑡𝑟 ≤ 0; (b)
𝑡𝑟 ≥ 0. Nominal parameters are detailed in Table 1.

Fig. 7. Phase difference between the incident and scattered fields obtained for a nominal wavepacket source at 𝑅 = 35 and varying time steps: (a) 𝑡𝑟 < 0; (b)
𝑡𝑟 ≥ 0. Shaded areas identify regions where the total pressure amplitude is larger than the individual field amplitudes in cases in which |𝑝𝑖| ∼ |𝑝𝑠|. Nominal
arameters are detailed in Table 1.

Figs. 7(a) and 7(b) present this phase difference for 𝑡𝑟 ≤ 0 and 𝑡𝑟 ≥ 0, respectively, in which the shaded areas denote phase
difference angles that are in the right half plane. These shaded regions identify cases in which the total amplitude is larger than the
scattered field amplitude when |𝑝𝑖| ∼ |𝑝𝑠|, while white areas denote regions where the amplitude of the total field is small compared
to the individual fields. In general, for small negative polar angles the phase difference angle is in the right half plane, while for low
positive polar angles the phase difference angle is in the left half plane, which reduces the total amplitude. Therefore, the symmetric
shape of the scattered field becomes asymmetric in the total field plot with decreased amplitude in the low positive polar angles
region and increased amplitude at small negative polar angles (Fig. 6). This asymmetry is reduced as the distance between the
avepacket source and the plate edge increases (i.e., as |𝑡𝑟| increases).
The appropriate SPL distribution is presented in Figs. 8(a) and 8(b) for a nominal wavepacket source at negative and positive

alues of 𝑡𝑟, respectively. At large values of |𝜃| the sound level reduces with increase in the distance between the wavepacket and
he edge, as expected, while for small polar angles a region of reduced sound level relative to that of the incident field is observed.
oth of these trends bear resemblance to the results reported by Cavalieri et al. [19] in their Figure 13a, where they used the method
f Ffowcs Williams and Hall [21] to compute the sound from a static wavepacket placed in different vertical locations under the
late edge. However, Cavalieri et al. [19] focused on cases where the distance between the wavepacket and the edge is (1), and
ot small as considered here. Further details on the comparison between the current solution and the results obtained by Cavalieri

.

10

t al. [19] are available in Appendix C
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Fig. 8. SPL obtained for a nominal wavepacket source at 𝑅 = 35 and varying time steps: (a) 𝑡𝑟 ≤ 0; (b) 𝑡𝑟 ≥ 0. Dashed black lines denote the appropriate SPL
istribution of the incident field. SPL is calculated for the normalized pressure field, relative to a reference pressure of 𝑝𝑟𝑒𝑓 ∕𝐴 = 2 ⋅ 10−5. Nominal parameters
are detailed in Table 1.

4.2. Spatially-varying wavepackets

The above results for the nominal case were obtained for a wavepacket of constant wavenumber (𝜖 = 0). The effect of loosening
this constraint is examined next in Fig. 9, where the incident and scattered pressure amplitudes are presented for varying values of
the wavenumber modification parameter. The incident field presented in Figs. 9(a) and 9(b) for 𝜖 = −0.01 and 𝜖 = 0.01, respectively,
s clearly affected by the modification parameter, where the pressure amplitude increases with a decrease in the wavenumber.
owever, the scattered pressure field in Fig. 9(c) is practically unaffected by this modification for the case considered. The total
ressure amplitudes computed for 𝜖 = −0.01, 0, 0.01 are presented in Fig. 9(d), where it is clear that the wavenumber modification
ffects the small polar angles regime and has less impact on the large polar angle regime where the scattered field is most dominant.
To further explore the effect of the linear wavenumber modification on the pressure amplitude, Fig. 10 shows the results obtained

or the nominal case parameters used in Fig. 9, computed for a specific retarded time of 𝑡𝑟 = 0.5 and a wide range of 𝜖. We note
similarity to the cases of varying retarded time plotted in Fig. 9: an increase in 𝜖 while 𝑡𝑟 is kept constant leads to a decrease in
he incident field amplitude while only slightly affecting the scattered field. However, when combining the separate fields to obtain
he total pressure field amplitude (Fig. 10(c)), the effect of the wavepacket modification is not limited to small polar angles of, say,
30◦ ≤ 𝜃 ≤ 30◦ where the incident field amplitude is most dominant, but rather this effect is expanded to angles of −60◦ ≤ 𝜃 ≤ 60◦

hich must be related to the phase difference between the scattered and incident fields. This phase difference, plotted in Fig. 10(d),
s in fact negative for 𝜃 < 0◦ and positive for 𝜃 > 0◦ with a 180◦ jump at 𝜃 = 0◦. We further note that when the phase difference
epresents an angle in the left half plane (white areas in Fig. 10(d)) and the individual field amplitudes are of the same order of
agnitude, the total pressure amplitude will be reduced compared to the scattered contribution alone, as is confirmed in Fig. 10(c).
hese phase differences also explain the asymmetry that is evident in the total pressure amplitude relative to 𝜃 = 0◦, although the
ncident and scattered field amplitudes are each symmetric in 𝜃.

.3. Parametric investigation of the group mach number effect

Fig. 11 presents the effect that variation in the group Mach number has on the incident, scattered, and total pressure field
mplitudes for a nominal wavepacket that moves at speeds between 𝑀𝑔 = 0.05𝑀𝑐 and 𝑀𝑔 = 𝑀𝑐 . Similarly to the effect of the
odification parameter, 𝜖, presented in Fig. 10, variations in 𝑀𝑔 only affect the amplitude of the incident field in any practical
ense, while the scattered field amplitude remains virtually unchanged. As a result, the total pressure amplitude is only affected by
𝑔 at small polar angles of −30◦ ≤ 𝜃 ≤ 30◦. In addition, the effect of 𝑀𝑔 is only evident in the total pressure amplitude obtained
ith low Mach numbers of 𝑀𝑔 < 0.35𝑀𝑐 , as higher group Mach numbers yield a very low-amplitude incident field such that the
cattered field controls the total pressure field for all 𝜃 except 𝜃 = 0◦.
Fig. 12 presents the effect of linear variation in the wavepacket wavenumber on the total pressure field obtained for cases where

he wavepacket is moving with 𝑀𝑔 between 0.1𝑀𝑐 and 0.4𝑀𝑐 . As is expected from Fig. 11(a), the incident field is most dominant
or the lower values of 𝑀𝑔 , and as the group Mach number is increased the effect of 𝜖 diminishes in the low polar angles regime.
n general, negative values of 𝜖 have the strongest effect on the far-field pressure amplitude computed at 𝑡𝑟 = 0.5, as these values
n fact reduce the wavenumber behind the edge, which is equivalent to increasing the convective Mach number while keeping the
roup Mach number constant. Namely, a negative 𝜖 is analogous to a local decrease in the ratio 𝑀𝑔∕𝑀𝑐 . These negative values of 𝜖
mplify the total pressure field for low polar angles where the incident field is most dominant, whereas for moderate polar angles
11
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Fig. 9. Polar plot of the normalized pressure amplitude, |𝑝∕𝐴|, obtained for a wavepacket source of nominal parameters and various values of the wavenumber
modification, 𝜖: (a) incident field with 𝜖 = −0.01; (b) incident field with 𝜖 = 0.01; (c) scattered field obtained with 𝜖 = −0.01, 0, 0.01; (d) total field obtained with
= −0.01, 0, 0.01. Results are presented for 𝑅 = 35 and retarded time 𝑡𝑟 ≥ 0, when the wavepacket passes the plate edge. Nominal parameters are detailed in
able 1.

he phase difference between the incident and scattered fields leads to amplification of the pressure amplitude in the upper half
lane and reduction in amplitude for the lower half plane (see discussion above on the phase difference in Fig. 10(d)). As 𝑀𝑔∕𝑀𝑐
increases, the effect of the incident field reduces; however, the asymmetric contribution of the phase difference is still clearly evident
for negative values of 𝜖.

5. Concluding remarks

An analytical model is developed to predict the sound produced by a wavepacket moving past the edge of a semi-infinite flat plate.
Closed-form expressions for the incident and scattered acoustic fields are obtained in the time domain for traveling wavepackets
with constant or spatially-varying wavenumbers. The solution for a spatial variation in the wavepacket wavenumber enables the
effect of relaxing the frozen gust assumption for theoretical edge-noise prediction to be examined for the first time.

Analytical results for a wavepacket of constant wavenumber moving with very low velocity (𝑀𝑔 = 0.01) show good qualitative
agreement with numerical results presented by Cavalieri et al. [19] for a static wavepacket positioned at various vertical distances
under the plate edge. The speed of the wavepacket, as described parametrically by the group Mach number, affects the incident
field amplitude but has no significant effect on the amplitude of the scattered field. Thus, the total pressure field is parametrically
affected by changes in the incident field amplitude and the phase difference between the incident and scattered fields.

An extension of the analytical solution to model linear spatial variations in the wavepacket wavenumber serves as a surrogate
model to study the effect of turbulence distortions, which are known to occur for example near serrated trailing edges (e.g., Avallone
et al. [13]), on the far-field sound. However, we focus on the effect of the vorticity distortion by separating it from the effect of
12
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Fig. 10. Polar plot of the normalized pressure amplitude, |𝑝∕𝐴|, obtained for a wavepacket source of nominal parameters and varying values of 𝜖: (a) incident
field; (b) scattered field; (c) total field; (d) phase difference between incident and scattered fields. Results are presented for 𝑅 = 35 and retarded time 𝑡𝑟 = 0.5,
after the wavepacket passed the plate edge. Shaded area in (d) identifies the regions where the total pressure amplitude is larger than the individual field
amplitudes in cases in which |𝑝𝑖| ∼ |𝑝𝑠|. Nominal parameters are detailed in Table 1.

trailing edge geometry and solving the problem for a straight trailing edge. Closed-form analytical expressions are derived for the
far-field acoustic pressure in cases of linear wavenumber modification, where the parabolic cylinder functions play a key role; note
that the analytical formulation derived here could also be applied to other prescribed spatial wavenumber variations. Our results
show that a linear modification in the wavepacket wavenumber affects mainly the incident field amplitude, whereas the scattered
field amplitude is practically unaffected by the wavenumber modification parameter, 𝜖. However, the phase difference between
the incident and scattered fields is strongly affected by 𝜖, and therefore the total pressure amplitude is altered beyond the region
dominated by the incident field.

This work reveals that vorticity distortions in the vicinity of the wing trailing edge may have very little influence on the scattered
pressure amplitude, while significantly affecting the total pressure field through its effect on the incident field amplitude and the
phase difference between both fields. Further extension of the current model to realistic distortions in the vorticity fields, based on
computational or experimental results, are expected to yield further scientific understanding of the role of the frozen gust assumption
(or its violation) in the sound radiated from a trailing edge. Such an extension invites a numerical investigation that could present
a wide parametric analysis to which the current closed-form expressions could serve as verification points. Further advancement
could also be achieved by combining the current model with a novel analytical Green’s function that describes the serrated-edge
scattering (e.g., Lyu [31]). This combined model could reveal the role of the frozen gust assumption in the acoustic scattering of
errated edges, and expose the reasons for current disagreement between theoretical and computational or experimental studies of
he sound produced by a geometrically-varying trailing edge.
13
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Fig. 11. Polar plot of the normalized pressure amplitude, |𝑝∕𝐴|, obtained for a wavepacket source of nominal parameters and varying values of 𝑀𝑔 : (a) incident
ield; (b) scattered field; (c) total field; (d) phase difference between incident and scattered fields. Results are presented for 𝑅 = 35 and retarded time 𝑡𝑟 = 0.5,
fter the wavepacket passed the plate edge. Shaded area in (d) identifies the regions where the total pressure amplitude is larger than the individual field
mplitudes in cases in which |𝑝𝑖| ∼ |𝑝𝑠|. Nominal parameters are detailed in Table 1.
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𝑀

d

Fig. 12. Polar plot of the total pressure amplitude obtained for a wavepacket source of nominal parameters for varying values of 𝜖 and four values of 𝑀𝑔 : (a)
𝑔 = 0.1𝑀𝑐 ; (b) 𝑀𝑔 = 0.2𝑀𝑐 ; (c) 𝑀𝑔 = 0.3𝑀𝑐 ; (d) 𝑀𝑔 = 0.4𝑀𝑐 . Results are presented for 𝑅 = 35 and retarded time 𝑡𝑟 = 0.5, after the wavepacket passed the

plate edge. Nominal parameters are detailed in Table 1.

Appendix A. Mathematical identities

The following identities appear in [29] as Eqs. 3.462(1), 3.462(3), 9.247(1), and 9.24, respectively, and are used in the
erivations of Section 3:

∫

∞

0
𝑥𝜈−1e−𝛽𝑥

2−𝛾𝑥d𝑥 = (2𝛽)−𝜈∕2 𝛤 (𝜈) e
𝛾2
8𝛽 𝐷−𝜈

(

𝛾
√

2𝛽

)

, (A.1)

where 𝐷−𝜈 are parabolic cylinder functions, 𝛤 is the Gamma function, and ℜ {𝛽} > 0,ℜ {𝜈} > 0.

∫

∞

−∞
(i𝑥)𝜈 e−𝛽

2𝑥2−i𝑞𝑥d𝑥 = 2−𝜈∕2
√

𝜋𝛽−𝜈−1e
− 𝑞2

8𝛽2 𝐷𝜈

(

𝑞

𝛽
√

2

)

, (A.2)

where ℜ {𝛽} > 0,ℜ {𝜈} > −1,ℑ {𝑥} = 0.

𝐷𝜈+1(𝑧) − 𝑧𝐷𝜈 (𝑧) + 𝜈𝐷𝜈−1(𝑧) = 0. (A.3)

𝐷𝜈 (𝑧) = 2
1
4+

𝜈
2 𝑊 1 𝜈 1

(

𝑧2
)

𝑧−
1
2
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= 2
𝜈
2 e−

1
4 𝑧

2
⎧

⎪

⎨

⎪

⎩

√

𝜋

𝛤
(

1−𝜈
2

)𝛷
(

− 𝜈
2
, 1
2
; 1
2
𝑧2
)

−

√

2𝜋𝑧

𝛤
(

− 𝜈
2

)𝛷
(

−1 − 𝜈
2

, 3
2
; 1
2
𝑧2
)

⎫

⎪

⎬

⎪

⎭

(A.4)

where 𝑊𝜉,𝜇

(

1
2 𝜁

2
)

is the Whittaker function, and 𝛷 (𝛼, 𝛾; 𝑧) is the confluent hypergeometric function. Our numerical validation
(Appendix C) revealed that the above relation between the parabolic cylinder functions and the Whittaker functions is not valid for
cases in which both 𝜈 and 𝑧 are negative. Therefore, in the Matlab presentation of the analytical solutions we utilize the second
equivalence in Eq. (A.4), where the parabolic cylinder functions are expressed in terms of the confluent hypergeometric functions.

Appendix B. Derivation of the incident pressure field

This appendix details the derivation of the closed-form expression for the incident field, given by Eq. (20). We begin by evaluating
the integral of Eq. (19) in 𝑦3. We are interested in the far-field solution, |𝒙| ≫ |𝒚|, so we can define: 𝒙̂ = (𝑥̂1, 𝑥̂2), 𝒚̂ = (𝑦̂1, 𝑦̂2), 𝜉 = 𝑦̂3−𝑥̂3,
and 𝑅 =

√

𝑥̂21 + 𝑥̂22 ≫ |𝒚̂|, which leads to

|𝒙̃ − 𝒚̃| ≅ 𝑅
√

1 + 𝜇2 −
𝑦̂1 cos 𝜃 + 𝑦̂2 sin 𝜃

√

1 + 𝜇2
, (B.1)

1
|𝒙̃ − 𝒚̃|

≅ 1
𝑅
√

1 + 𝜇2
, (B.2)

where 𝜇 = 𝜉∕𝑅, and 𝒙̃ = 𝒙∕𝐿1 and 𝒚̃ = 𝒚∕𝐿1 are the normalized three-dimensional spacial coordinate vectors. This approximation
follows the method of Howe [25, pp. 20–21], to retain possible phase difference effects in the far-field solution. We can now continue
to solve the integral

𝐼3 ≜ ∫

∞

−∞

[

𝑔̂(𝑦̂1, 𝜏)
|𝒙̃ − 𝒚̃|

e𝑓 (𝑦̂1 ,𝜏)
]

d𝑦̂3, (B.3)

where the square brackets denote retarded time, 𝜏 = 𝑡 −𝑀𝑔|𝒙̃ − 𝒚̃|, such that

[

𝑔̂(𝑦̂1, 𝜏)
]

≅

(

2𝑡 − 2𝑀𝑔𝑅
√

1 + 𝜇2 +
2𝑀𝑔

(

𝑦̂1 cos 𝜃 + 𝑦̂2 sin 𝜃
)

√

1 + 𝜇2
− i2𝜋𝐿̄1

)2

− 4(1 + 𝜎21 )

(

2𝑡 − 2𝑀𝑔𝑅
√

1 + 𝜇2 +
2𝑀𝑔

(

𝑦̂1 cos 𝜃 + 𝑦̂2 sin 𝜃
)

√

1 + 𝜇2
− i2𝜋𝐿̄1

)

𝑦̂1

− 2(1 + 𝜎21 ) + 4(1 + 𝜎21 )
2 𝑦̂21, (B.4)

nd
[

𝑓 (𝑦̂1, 𝜏)
]

≅ i2𝜋𝐿̄1

(

𝑀𝑐
𝑀𝑔

𝑡 −𝑀𝑐𝑅
√

1 + 𝜇2 +
𝑀𝑐

(

𝑦̂1 cos 𝜃 + 𝑦̂2 sin 𝜃
)

√

1 + 𝜇2
− 𝑦̂1

)

−

(

𝑡 −𝑀𝑔𝑅
√

1 + 𝜇2 +
𝑀𝑔

(

𝑦̂1 cos 𝜃 + 𝑦̂2 sin 𝜃
)

√

1 + 𝜇2
− 𝑦̂1

)2

− 𝜎21 𝑦̂
2
1. (B.5)

e note that 𝑘0𝑟 → ∞ (𝑀𝑐𝑅 → ∞) for the far-field solution, and the exponent in the integrand of 𝐼3 oscillates increasingly rapidly,
s seen from the imaginary part of

[

𝑓 (𝑦1, 𝜏)
]

(first term in Eq. (B.5)). The exponential amplitude, which is equivalent to the exponent
f the real part of

[

𝑓 (𝑦1, 𝜏)
]

(second and third terms in Eq. (B.5)) is finite, as evident by the negative value of ℜ
[

𝑓 (𝑦1, 𝜏)
]

. We thus
conclude that the main contribution to the 𝐼3 integral comes from the vicinity of 𝜇 = 0, where stationary oscillations are obtained.
n other words, the stationary phase method is applied to Eq. (B.3) for 𝑀𝑐𝑅 → ∞, yielding

𝐼3 ≅ ∫

∞

−∞

[

𝑔̂(𝑦̂1, 𝜏)
√

1 + 𝜇2
e𝑓 (𝑦̂1 ,𝜏)

]

d𝜇 ≅ e
i2𝜋𝐿̄1

(

𝑀𝑐
𝑀𝑔

𝑡−𝑦̂1

)

−
(

𝑡𝑟+𝑀𝑔(𝑦̂1 cos 𝜃+𝑦̂2 sin 𝜃)−𝑦̂1
)2−𝜎21 𝑦̂

2
1

⋅
[

𝑔̂(𝑦̂1, 𝜏)
]

𝜇=0 ∫

∞

−∞
e
−i2𝜋𝐿̄1𝑀𝑐𝑅

(

√

1+𝜇2− 𝑦̂1 cos 𝜃+𝑦̂2 sin 𝜃

𝑅
√

1+𝜇2

)

d𝜇, (B.6)

where 𝑡𝑟 = 𝑡 −𝑀𝑔𝑅, and

∫

∞

−∞
e
−i2𝜋𝐿̄1𝑀𝑐𝑅

(

√

1+𝜇2− 𝑦̂1 cos 𝜃+𝑦̂2 sin 𝜃

𝑅
√

1+𝜇2

)

d𝜇 ≅

√

1
i𝐿̄1𝑀𝑐𝑅

e−i2𝜋𝐿̄1𝑀𝑐𝑅
(

1− 𝑦̂1 cos 𝜃+𝑦̂2 sin 𝜃
𝑅

)

. (B.7)

pplying the above result to Eq. (B.6) yields

𝐼3 ≅

√

1
̄

[

𝑔̂(𝑦̂1, 𝜏)
]

𝜇=0 e
i2𝜋𝐿̄1

(

𝑀𝑐
𝑀𝑔

𝑡𝑟−𝑦̂1(1−𝑀𝑐 cos 𝜃)+𝑦̂2𝑀𝑐 sin 𝜃
)

−
(

𝑡𝑟−𝑦̂1
(

1−𝑀𝑔 cos 𝜃
)

+𝑦̂2𝑀𝑔 sin 𝜃
)2−𝜎21 𝑦̂

2
1 . (B.8)
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Fig. C.1. SPL distribution obtained for the incident field and compared against the results of Cavalieri et al. [18] for a wavepacket source of 𝑀𝑐 = 0.36, 𝑅 = 35,
= 0: (a) 𝑘ℎ0

𝐿1 = 1, 3, 6, 𝑀𝑔 = 0.01; (b) 𝑘ℎ0
𝐿1 = 6 and 𝑀𝑔 varies. Good agreement is obtained between [18] and the current solution as 𝑀𝑔 → 0. Values at

= 20◦ are fixed at 0 dB.

Fig. C.2. SPL distribution of the incident and total fields obtained for a wavepacket source of 𝑀𝑐 = 0.54, 𝑅 = 35, 𝑘ℎ0
𝐿1 = 6, 𝜖 = 0, and 𝑀𝑔 = 0.01. Results of the

current solution are presented with solid lines for three different time steps: 𝑡𝑟 = 0.9, 1.1, 1.3, which represent moments when the wavepacket have passed the
plate edge, and compared against the results of Cavalieri et al. [19] obtained for a static wavepacket located at a distance of 𝑟𝑝∕𝐷 = 1, 1.5, 2 beneath the plate
dge, where 𝐷 is the jet diameter and 𝑟𝑝 is a radial distance between the jet axis and the plate edge. The SPL values from Cavalieri et al. [19] were shifted
ownward by 50 dB for comparison with the current model. This shift has no effect on the directivity of the distribution.

ubstitution of Eq. (B.8) into the pressure field expression in Eq. (19) yields

𝑝𝑖(𝒙̂, 𝑡) ≅
𝐴

4𝜎2
√

i𝜋𝐿̄1𝑀𝑐𝑅
e𝐹0 ∫

∞

−∞

{

𝐸0 + 𝐸1𝑦̂1 + 𝐸2𝑦̂
2
1
}

e𝐹1 𝑦̂1+𝐹2 𝑦̂
2
1d𝑦̂1, (B.9)

here
[

𝑔̂(𝑦̂1, 𝜏)
]

𝜇=0
𝑦2=0

≜ 𝐸0 + 𝐸1𝑦̂1 + 𝐸2𝑦̂
2
1, (B.10)

nd the expressions for 𝐸0, 𝐸1, 𝐸2, 𝐹0, 𝐹1, and 𝐹2 are given in Eqs. (21)–(26), respectively.
Eq. (B.9) is solved by applying the integral identities given in Eqs. (A.2) and (A.3), which leads to the closed-form expression in

q. (20).

ppendix C. Validation of solution

This appendix presents a validation analysis for the analytical solutions presented in Eqs. (20) and (31) for the incident and
scattered fields, respectively. Validation of the incident field results is first sought through comparison of the SPL directivity obtained
17
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Fig. C.3. Numerical validation of the analytical expressions obtained for (a, b) the incident field, (c, d) the scattered field, and (e, f) the total field, for a
nominal wavepacket source with 𝜖 = −0.02, 0, 0.02, at a distance 𝑅 = 35 and retarded time 𝑡𝑟 = −0.5 (left column) and 𝑡𝑟 = 0.5 (right column).
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in the current study with the results that Cavalieri et al. [18] obtained for a static line-source wavepacket model of 𝑀𝑐 = 0.36, at
𝑅 = 35, using three different values of 𝑘ℎ0𝐿1 (Fig. C.1(a)). The comparison is achieved by applying 𝑀𝑔 = 0.01 to the current moving
wavepacket model and focusing on retarded time 𝑡𝑟 = 0, when the sound produced by a wavepacket that is located at the axis origin
reaches the observer. The SPL values at 𝜃 = 20◦ are fixed at 0 dB in Fig. C.1, following the convention in [18]. The current results
agree well with the results of [18] for all of the examined cases. In addition, variation in the group Mach number seems to affect
the 𝜃 range in which the sound is radiated, with that range reducing to lower angles as 𝑀𝑔 → 0 and converging to the static solution
of [18] (see Fig. C.1(b)), as expected. The good agreement between the current solution, obtained for 𝑀𝑔 = 0.01, and the results
of Cavalieri et al. [18] validate the expressions derived for the incident field in Section 3.1.

A similar validation of the analytical solution obtained for the sound generated by a wavepacket that passes the edge of a semi-
infinite plate is sought through comparison of the total SPL distribution obtained with the analytical solutions derived in Section 3,
and the numerical solutions of Cavalieri et al. [19] and Nogueira et al. [20] for a static wavepacket model. Fig. C.2 presents the
total SPL field obtained with the current analytical solution for three different time steps: 𝑡𝑟 = 0.9, 1.1, 1.3 for a wavepacket model
of 𝑀𝑐 = 0.54, 𝑅 = 35, 𝑘ℎ0𝐿1 = 6, 𝜖 = 0, and 𝑀𝑔 = 0.01. These time-steps were chosen as they presented the best fit with the results
reported by [19] for a static wavepacket located at a distance of 𝑟𝑝∕𝐷 = 1, 1.5, 2 beneath the plate edge, where 𝐷 is the jet diameter
and 𝑟𝑝 denotes radial distance from the jet axis. For the sake of comparison, the SPL plots of Cavalieri et al. [19] were shifted
downward by 50 dB to fit the current results. This shift has no effect on the directivity of the solutions. In fact, the directivity of
the present results shows good agreement with the results of [19] in the upper half plane (𝜃 > 0◦), more so for cases in which the
wavepacket is closer to the edge. In the lower half plane the agreement is not as good as the differences in the models are more
significant there. Indeed, Cavalieri et al. [19] have applied a volume wavepacket source to represent the axisymmetric mode of a
subsonic jet positioned below the edge of a plate. This model was later simplified by Nogueira et al. [20] as a cylindrical surface
along the jet lipline with no evident effect on the radiated sound. In contrast, the current study applies a line-source wavepacket
that moves along the plate axis. Therefore, for a very close distance between the wavepacket and the edge a good agreement is
expected with [19,20], whereas for larger distances the differences between the models are expected to play a bigger role, especially
in the lower half-plane where stronger sound reflections are expected in the cases where the wavepacket is underneath the plate
edge. This is indeed the case shown in Fig. C.2.

The above results show qualitative validation of the current solution through comparison with previous computational studies of
various wavepacket models. Further quantitative validation of the analytical expressions presented in Section 3 is next pursued by
comparing the closed form expressions in Eqs. (20) and (31), with the appropriate numerical solution of Eq. (19) (after substitution
of Eqs. (B.3) and (B.6)) and (27), respectively. Fig. C.3 presents the results of this comparison for the nominal parameters described
n Table 1, at two retarded time steps (𝑡𝑟 = ±0.5) and for three different values of linear modification in the wavenumber,
= −0.02, 0, 0.02. Very good agreement between the numerical and analytical solutions of the incident, scattered, and total fields is
bserved in all of the considered cases, validating the novel analytical expressions of Section 3.
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