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AbstractÐThe recent development of reinforcement learning
(RL) has boosted the adoption of online RL for wireless radio
resource management (RRM). However, online RL algorithms
require direct interactions with the environment, which may
be undesirable given the potential performance loss due to the
unavoidable exploration in RL. In this work, we first explore the
use of offline RL algorithms in solving the RRM problem. We
evaluate several state-of-the-art offline RL algorithms for a prac-
tical RRM problem that aims at maximizing a linear combination
of total rates and 5-percentile rates via user scheduling. Our
findings indicate that the performance of offline RL for the RRM
problem is heavily contingent upon the behavior policy deployed
for data collection. We propose an innovative offline RL approach
utilizing heterogeneous datasets from various behavior policies.
This method demonstrates that a strategic mixture of datasets
enables near-optimal RL policy generation, even with suboptimal
behavior policies. Additionally, we introduce two enhancements:
an ensemble-based policy to augment dataset mixture training
efficiency, and a novel offline-to-online strategy for seamless
adaptation to new environments. Our data mixture approach
achieves over 95% efficiency of an online RL agent in the
absence of expert data. The ensemble algorithm notably reduces
training duration by half compared to the data mixture method.
Furthermore, our model, when applied with offline-to-online fine-
tuning, surpasses existing benchmarks by approximately 5% in
our user scheduling problem.

Index TermsÐRadio Resource Management, Offline Reinforce-
ment Learning, Deep Reinforcement Learning.

I. INTRODUCTION

There is a growing interest in applying reinforcement

learning (RL) to solving radio resource management (RRM)

problems in wireless networks. Several unique properties in

wireless RRM are the driving force behind this new trend.

First, many of the RRM operations are sequential in nature,

where a resource allocation decision is made, the network per-

formance is observed, and then fed back to the decision maker

to update the policy. Second, real-world wireless network

optimization problems are often too complex to be modeled

as simple optimization problems, which calls for model-free

solutions that can be adaptive to the unknown deployment.

A preliminary version of this work was presented at the 57th Asilomar
Conference on Signals, Systems, and Computers [1]. The work of K. Yang, C.
Shi, and C. Shen was partially supported by the U.S. National Science Foun-
dation (NSF) under awards CNS-2002902, CNS-2003131, ECCS-2029978,
ECCS-2030026, ECCS-2143559, and SII-2132700. The work of J. Yang was
supported in part by the U.S. NSF under awards CNS-1956276, CNS-2003131
and CNS-2030026.

Third, there are well-established control and feedback mecha-

nisms in modern wireless networks, making it easy to observe

system states and collect performance indicators.

These features have sparked significant efforts in developing

RL solutions for wireless RRM. An overview of related works

is given in Section II. The majority, if not all, of the existing

works utilize online RL, where the RL policy gradually im-

proves by interacting with the environment with no data prior

to deployment. The exploration of the originally unknown

environment, especially during the early stages where infor-

mation about the environment is scarce and RL exploration

is almost random, is an indispensable component for online

RL but is also one of the major obstacles that prevent state-

of-the-art RL algorithms from being deployed in real-world

wireless networks. The lack of performance guarantee during

RL exploration means that the network users may have to tem-

porarily suffer from poor Quality of Service (QoS) so that the

learning agent can gather information about the deployment

for a potentially better RL policy. This tradeoff, however, is

undesirable for the wireless network operator compared with

model-based or rule-based solutions, which may not achieve

as good a performance as online RL after it converges, but

does not suffer from potentially significant initial performance

degradation. This gap between the previous online RL solution

and the real-world wireless device deployment motivates us to

find better algorithms that can train RL policies without costly

online interactions, which is the strength of offline RL.

In this paper, we advocate adopting offline reinforcement

learning [2] for wireless network optimization. Offline RL

aims at training RL agents using accessible datasets collected

a priori and thus completely gets around online interactions.

This paradigm is particularly suitable for wireless RRM,

because in practice wireless operators already have deployed

some policy that controls resource allocation, and there are

mature mechanisms to collect the operational data. Our main

contributions are summarized as follows.

• To the best of our knowledge, this work marks the first

introduction of offline RL to the domain of wireless

network optimization. This approach, while not requiring

real-time interactions, is well suited for wireless systems

and represents an important step towards practical RL

implementations in this field.

• We have identified that combining sub-optimal datasets

when solving offline RL in an RRM system can yield

near-optimal performances. We further develop a data
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mixture strategy that removes the strict requirement of

a high-quality offline dataset.

• We theoretically prove that as long as the behavior

policy used for data collection satisfies certain coverage

requirements of the system, data mixture is helpful. This

theoretical finding is general and not limited to the RRM

setting.

• We further enhance the data mixture strategy by incor-

porating ensemble methods and an offline-to-online fine-

tuning process.

The rest of the paper is organized as follows. Related works

are surveyed in Section II. The wireless network model and

figure of merit are presented in Section III. The Markov

Decision Process formulation of the user scheduling problem

and the online RL solution are discussed in Section IV.

Section V presents the basic framework of offline RL for

wireless user scheduling, and reports the initial experiment

results. The new solution of offline RL with mixture datasets

is presented in Section VI, together with the experimental

results. Theoretical analysis is given in Section VII. The two

enhancement methods are presented in Section VIII and IX,

respectively. Finally, Section XI concludes the paper.

II. RELATED WORKS

Online RL for RRM. To the best of our knowledge, prior

literature on solving the wireless RRM problem via RL all rely

on online RL. Examples include solving coverage and mobility

problems using bandits [3]±[6], solving the power allocation

problem using deep Q-networks in a centralized setting [7],

[8], or solving a joint power and channel allocation problem

using single agent deep RL [9]. Furthermore, the actor-critic

structure is introduced for power allocation in wireless net-

works in [10]. A comparative study of several popular online

RL algorithms for wireless network optimization is reported in

[11]. In addition to a single resource control, [12] introduced a

joint control of the power and spectrum resources using online

RL. Beside centralized algorithms, multi-agent reinforcement

learning (MARL) is another popular online RL framework that

has been adopted in wireless RRM, such as power allocation

[13], user scheduling [14] and general resource management

and interference mitigation [15]. In a recent work [16], the

authors discuss a novel scenario for packet routing, proposing

solutions using MARL.

Offline RL. Unlike the online RL algorithms, offline RL fo-

cuses on learning RL policies exclusively from offline datasets,

and has attracted significant interest in RL research [2].

Because offline RL cannot update policy by interacting with

the environment, most methods choose to be conservative to

mitigate potential distributional shift. Among the algorithms,

batch-constrained Q-learning (BCQ) [17], conservative Q-

learning (CQL) [18] and implicit Q-learning (IQL) [19] are the

most state-of-the-art model-free deep offline RL algorithms.

We will adopt these algorithms in our paper. Theoretical

understanding towards optimal offline RL is also an active

research direction, where data coverage [20], [21] and critical

states [22] have been investigated.

Ensemble methods in offline RL. The concept of ensemble

methods is a well-explored area within the reinforcement

learning community, serving various purposes. In the context

of online reinforcement learning, ensemble methods have been

utilized to enhance exploration efficiency [23]±[25] and to

mitigate modeling errors [26]±[28]. Furthermore, in the realm

of offline reinforcement learning, such methods have been

employed to manage out-of-distribution (OOD) estimation

errors [29], [30]. However, our application in wireless RRM

presents a unique scenario. Here, we have rule-based behavior

policies that are optimized for specific regimes but perform

suboptimally on a broader scale. We would like to harness the

strengths of these baseline policies as we construct our offline

reinforcement learning policies. Consequently, we propose

an ensemble algorithm that builds upon these fundamental

behavior policies.

Offline-to-online RL. To more efficiently utilize the offline

dataset, offline-to-online RL (also known as hybrid RL) has

emerged in the past few years. Among all the proposed

methods, one of the directions is the research on how to

effectively utilize offline datasets together with the online

environment [31]±[34]. Another one is to directly fine-tune

the offline policy in an online environment [35]±[37]. In this

paper, we assume that the online environment is not always

available; thus we focus on the fine-tuning methods. Existing

fine-tuning methods often utilize regularization or punishment

terms to force the policy to adapt pessimistically, in order to

avoid severe performance collapse. Our method presented in

Section IX improves the previous conservative method in [35].

III. SYSTEM MODEL

In this section, we present the wireless environment and

then discuss the figure of merit for the RRM problem.

A. Wireless Environment

We consider a wireless network consisting of N access

points (APs) and M user equipments (UEs), as depicted in Fig.

1. This system is designed to evolve discretely where changes

happen only at discrete time slots t ∈ {1, · · · , T}, where T is

the maximum length of the performance evaluation of RRM.

We consider an episodic setup where each episode consists

of the aforementioned T slots, and the system resets after an

episode completes.

The APs are randomly placed in the intended coverage area,

and their locations are fixed throughout the whole duration of

RRM (i.e., they do not change across episodes). The rationale

for randomly dropping APs is to ensure the collected datasets

cover a diverse range of scenarios. By enforcing a minimum

distance between different APs, we ensure that this process

remains practical while effectively representing diverse situa-

tions. At the beginning of each episode, we randomly generate

UEs and place them in the l×l square as shown in Fig. 1. There

are (different) minimum distance requirements for both AP±

UE (d0) and AP±AP (d1) distances, and the random placement

is repeated until these requirements are satisfied.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3395624

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 28,2024 at 19:11:33 UTC from IEEE Xplore.  Restrictions apply. 



3

Fig. 1. Illustration of the wireless environment.

Our primary consideration is a wireless system in which

pedestrian UEs can move around at a slow pace. More specifi-

cally, in each episode, each of the UEs can move independently

randomly with a speed vt that is sampled from [0, 1]m/s, with

their locations updated in each time slot. We adopt a mirror-

back mechanism to handle the situations when the UEs move

to the coverage boundary or violate the distance constraint as

illustrated in Fig. 1.

UEs are associated with one of the APs at the beginning of

each episode, and we ensure that every UE will be associated

with one and only one AP. At each time slot t, the channel

between AP i and UE j, denoted as hi,j(t), contains path-loss,

shadowing, and short-term fading effects as detailed below.

1) Path-loss. We adopt the standard 3GPP indoor path-loss

model [38]:

PLi,j = 15.3 + 37.6 log(dij) + Low, dij > d0, (1)

where dij represents the distance between the AP i and UE

j, and Low = 10 dB is a constant path-loss. We require

the users to maintain at least a minimum distance d0 = 1
meter from the APs.

2) Shadowing. We adopt a log-normal shadowing effect on

all the links with a standard deviation of 7 dB.

3) Fading. A standard frequency-flat Rayleigh fading is sim-

ulated to capture the short-term randomness of the channel.

With this definition of channel parameters, we now denote

the received signal of UEj (associated with APi) at time

period t as

yj(t) = hi,j(t)xi(t) +
∑

k ̸=i

hk,j(t)xk(t) + nj(t), (2)

where nj(t) is the additive white Gaussian noise (AWGN)

following nj(t) ∼ CN{0, σ
2}. The task of our RRM problem

is user scheduling, i.e., to determine which BS to serve which

UE (or to turn off without serving any UE) for each time slot

t. More specifically, at each time slot t, APi needs to select

one of its associated users for active data communication. In

reality, user association happens at a much slower time scale

than user scheduling. Thus, we first perform user association

at the beginning of each episode, and keep this association

unchanged throughout the current episode. User scheduling

then happens on a per-time-slot basis.

Under this setting, we model the instantaneous data rate for

user j using Shannon capacity:

Cj(t) = log2(1 + SINRj(t)), (3)

where SINRj(t) denotes the signal to interference plus noise

ratio (SINR) of user j at time slot t. We further define the

average user throughput for user j as:

C̄j =
1

T

T
∑

t=1

Cj(t). (4)

• User association rule. At the beginning of each episode,

a user pool Pi is created for each AP i based on the

maximum reference signal received power (RSRP) of

each user [5]. More specifically, user j will be added to

the user pool of AP i if i = argmaxn RSRPn,j , ∀n ∈
{1, · · · , N}. An AP is allowed to only observe and

measure users in its own user pool, and scheduling

decisions are limited to these users.

B. Figure of Merit

If the figure of merit for wireless RRM is to maximize

the system-level averaged data rate (across all users), then the

solution boils down to always selecting the ªbestº UEs (in

terms of the SINR) at each time step. This can be formulated

as an optimization problem for each time slot, and there are

extensive works studying different variants of this problem.

However, almost all practical wireless networks must consider

fairness across all UEs when solving the RRM problem. From

the data rate perspective, the overall system figure of merit

must consider both the sum and tail behaviors. In practice,

this is often captured by the sum rate and 5-percentile rate as

described below:

1) Sum rate.

Csum =

M
∑

j=1

C̄j . (5)

2) 5-percentile rate. We first give its definition as follows.

Definition 1 (5-percentile rate). Suppose a system com-

prises M UEs, with each UE maintaining an average data

rate C̄j . The 5-percentile rate, denoted as C5%, is defined

as the highest data rate that at least 95% of UEs exceed.

Formally, C5% is the solution to the following optimization

problem:

maximize C

subject to P(C̄j > C) ≥ 0.95, ∀j ∈ {1, . . . ,M}.

The main figure of merit of this work is a linear combination

of the sum rate and the 5-percentile rate at time step t,
parameterized by (µ, η):

Rscore(t) = µCsum(t) + ηC5%(t). (6)

We formally present the optimization problem as follows:
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maximize

T
∑

t=1

Rscore(At),

subject to A(t) = (a1(t), . . . , aN (t)),

ai(t) ∈ 0 ∪ Pi, ∀i ∈ {1, . . . , N}.

(7)

Here, A(t) represents the actions taken by the APs at time t,
where ai(t) is the action for the i-th AP. The decision variable

ai(t) can take a value from the set 0∪Pi, where 0 represents

the option of not serving any user at that time slot, and Pi is

the pool of users associated with the i-th AP. This formulation

encapsulates our need to control which user (if any) is served

by each AP at every time slot.

We note that this weighted sum allows us to adjust the

balance between sum and tail rates, by varying the parameters

µ and η. However, directly maximizing Eqn. (6) is a non-trivial

task with several challenges. Both the sum and 5-percentile

rates are long-term performance measures that depend on

the history of actions in an episode. The time-dependency

of actions implies that we cannot take the optimization-per-

slot approach to find a (near-)optimal solution. Additionally,

the 5-percentile rate itself is a complicated measure that does

not have a closed-form expression, and the dynamic nature of

the system (channel randomness, user movement, etc.) further

adds to the difficulty of optimizing Eqn. (6).

In our original definition of reward Rscore, the second term,

namely the 5-percentile rate, is hard to compute and difficult

to optimize. We thus introduce a related metric proportional

fairness (PF) ratio.

Definition 2 (Proportional Fairness (PF) ratio). The PF ratio

for a user j at time t, denoted as PFj(t), is defined by the

product of a weighting factor wj(t) and the user’s data rate

Cj(t):

wj(t) = 1/C̃j(t), C̃j(t) = αCj(t)+ (1−α)C̃j(t−1), (8)

where

C̃j(0) = Cj(0). (9)

Although the PF ratio does not have a direct correlation

with tail rates, it is inversely related to the user’s long-term

average data rate, denoted as C̃j(t). This implies that if a user

experiences a persistently low data rate, indicating a prolonged

period without adequate service, her PF ratio will subsequently

be higher.

IV. RL FORMULATION

In this section, we show how to solve Problem (7) using RL.

This is accomplished by first formulating the original system

as a Markov Decision Process (MDP), and then presenting

how to train a centralized online RL to control all the APs in

the environment.

A. MDP Formulation

An episodic MDP is described by a tuple M =
(S,A, r, γ, P, T ), where S and A stand for the state and

action spaces respectively, r is the reward function mapping

state-action pairs to a reward signal that reflects our design

objective, γ ∈ (0, 1) is the discount factor that is widely used

to bound the cumulative reward in the MDP. P is the transition

kernel advancing the current state-action pair to the next state

in a random fashion, and T is the maximum time interval

(length of the episode).

We define the key components of the episodic MDP for the

wireless scheduling problem as follows.

1) Observation. For each AP i, we apply a top-k selection

of the UEs in its user pool to collect observations. The

criterion of selecting top-k UEs is by sorting all UEs

in the pool based on the PF-ratio wi,j(t) defined in

Eqn. (8) and only keeping the largest k UEs. We note

that this is a common technique in the existing literature

to deal with large amount of UEs [13], [15]. Then, with

the top-k UEs, the AP measures the current SINR for

each UE, and the local observation at AP i is defined

as oi(t) = (SINRi,1(t), wi,1(t), · · · , SINRi,k(t), wi,k(t)).
Finally, with all local observations, the learning agent

creates the global observation by stacking the local ones

as O(t) = (o1(t), · · · , oN (t)).
2) Action. For each AP, the possible actions are to either

select one from its top-k users to serve, or to turn itself off

and serve no UE. This decision-making process is rooted

in the definition of PF, where serving a user with a high

PF ratio (indicating a higher urgency for service) results

in a decrease in their PF ratio due to improved service.

Conversely, users who are not served will experience an

increase in their PF ratio, altering their service priority

over time. The action space for each AP is thus k + 1,

and the global action space is of size (k + 1)N .

3) Reward. The objective (6) represents the final perfor-

mance and cannot be directly decomposed into reward

signals for each step. We thus adopt an existing design

from [15] that has been shown to achieve a balanced

tradeoff between sum and tail rates:

r(t) =

M
∑

j=1

(wj(t))
λCj(t). (10)

By tuning the parameter λ, we can achieve the desired

tradeoff between sum rate and 5% rate as detailed in [15].

We note that although the reward is defined in Eqn. (10), we

still evaluate all designs using the original objective defined

in (6), with µ = 1/M and η = 3, in the experiment.

B. Online RL

As a baseline, we explore the power of online RL for

solving the aforementioned RRM problem. We choose two

widely used actor-critic-type algorithms, called Soft Actor-

Critic (SAC) [39] and Proximal Policy Optimization (PPO)

[40], as our deep RL solutions and use them to train an

online RL agent. Unlike most other RL problems which

often face the issue of training instability, i.e., the learning

agent may stuck at a saddle point of the loss function, SAC

first introduces policy optimization by minimizing the KL-

divergence (similar to [40]) to control the policy update, while

encouraging exploration at the same time by maximizing the
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entropy of each state. This is achieved by deriving the soft

policy iteration steps for the actor-critic structure. SAC is off-

policy and has faster convergence rate than other algorithms,

and is adopted in our baseline experiment. PPO is chosen as

an on-policy baseline for its ability to stabilize exploration by

constraining the divergence between new and old policies. This

approach ensures more consistent learning, with the potential

cost that it might slightly slow the convergence.

We implement a system-level simulator that follows the

wireless environment in Section III-A. In the online RL

training phase, we create a pool of 20 distinct training envi-

ronments, each with a unique AP and UE topology generated

using different random seeds. The model then goes through

350 epochs, with each epoch comprising 5000 episodes of

200 steps. At the beginning of each episode, we randomly

select an environment from this pool. For evaluation, we

generate a separate set of 10 unique environments, distinct

from the training set, using different random seeds. The

model’s performance is assessed across these 10 environments,

with each conducting one episode. All results reported are

from 10 independent runs, each with different random seeds.

This approach ensures consistent initial states for the training

and evaluation environments, while introducing variation in

UE movements and shadowing effects in each sampled envi-

ronment during the runs.

Other than the online RL policy trained via SAC and

PPO, we also evaluate several rule-based baseline methods

as follows. We note that these baseline methods will be used

as behavior policies in the subsequent offline RL study.

• Random. At each time step, each AP randomly chooses one

of its top-k users in the user pool to serve.

• Greedy. AP always chooses one of its top-k users with the

largest SINR to serve.

• Time division multiplexing (TDM). All top-k UEs are

served in a round-robin fashion. In each time slot, only the

scheduled UE and its serving AP are active. All other APs

are turned off.

• ITLinQ. This is a state-of-the-art, generalized independent

set-based scheduling algorithm where we select UEs based

on the tolerance of interference levels. The method is proved

to be nearly optimal, especially under a dense network

setting like our experiments. Details can be found in [41].

With a small tweak to the original algorithm where each AP

can have multiple active links, we prioritize UEs associated

with each AP based on their PF level. UEs are then actively

served based on an interference tolerance criterion in the

order of priority: max INRi,j ≤ MSNR
η
i,j . After selecting

an active UE, no further checks are performed. If no UEs are

activated, the AP is turned off. In our study, we set M = 4
and η = 0.5.

Important simulation parameters are summarized in Table I,

and the results are presented in Fig. 2. We see that with

sufficient training (large training epochs), online RL has much

better performance than all rule-based baselines. On the other

hand, when the training is insufficient (e.g., fewer than 100

epochs), the performance of online RL agents may be worse,

sometimes significantly, than the rule-based baselines. This

TABLE I
EXPERIMENT PARAMETERS

Parameter Value

Number of APs 4
Number of UEs 10 - 24

Area 100× 100 m2

Min AP-AP distance 10 m
Min AP-UE distance 1 m

Max UE speed 1 m/s
Bandwidth 10 MHz

Transmit power 10 dBm
Episode length (T ) 200

Number of UEs in the pool (k) 3
Running average parameter (α) 0.01

Reward discount factor (γ) 0.95
Weight exponent (λ) 0.8

demonstrates the price that one has to pay for online learning,

which is due to the inevitable exploration of RL.

Fig. 2. Training performance of online RL algorithms SAC and PPO. Results
are averaged over 10 independent runs as described in Section IV-B.

V. OFFLINE RL

To address the limitations of online RL, we resort to offline

RL for RRM. We first describe how to collect offline dataset,

and then evaluate the state-of-the-art offline RL algorithms for

the wireless user scheduling problem.

A. Dataset

Offline RL allows the system to enjoy the advantages of RL

without direct interaction with the environment. This is made

possible by using offline datasets. The most common approach

to have such datasets is through collecting operational data

associated with the existing policies. For example, for the

RRM problem, wireless operators often have existing solutions

that have been deployed in the target environment. We can

rely on the data collected by these existing solutions, which

are called the behavior policies (BPs), to train an offline RL

policy.

In the user scheduling problem, we have implemented four

rule-based policies described in Section IV-B as BPs. In

addition, we include two other BPs that are based on online

RL. These two policies differ in how well they are trained ±

one is early stopped at epoch 125 while the other is stopped

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3395624

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 28,2024 at 19:11:33 UTC from IEEE Xplore.  Restrictions apply. 



6

at epoch 350. Their performances can thus be identified from

the blue curve in Fig. 2.

With datasets collected from these BPs, we summarize the

offline RL experiment procedure as follows.

1) Choose a BP πβ from all available BPs.

2) Run πβ on the environment to collect a dataset Dπβ
.

3) Train policy πθ using an offline RL algorithm (see next

subsection) on the dataset Dπβ
.

We remark that the dataset collected in Step 2) may have

poor quality because the corresponding BP may not achieve

good performance. For example, as we see from Fig. 2, the

four rule-based policies all have significant performance gaps

compared with the well-trained online RL. We are interested

in evaluating whether a ªgoodº RL policy can be trained from

datasets that may come from ªbadº BPs.

In the online RL training phase, we utilize a shared pool

of 20 distinct training environments, each characterized by

unique AP and UE topologies, generated via different random

seeds. This pool is also employed during the offline data

collection phase. Here, we execute 5000 episodes for each BP,

with each episode comprising 200 steps, cumulatively yielding

1 million trajectories per policy. Consistently, at the onset of

each episode, we randomly select an environment from this

pool, as detailed in Section IV-B, ensuring uniformity in our

environment sampling strategy across both online training and

offline data collection phases.

B. Offline RL for User Scheduling

Four state-of-the-art model-free offline RL algorithms are

considered for solving the user scheduling RL problem.

• Behavior constrained Q-learning (BCQ) [17]. The key

idea of BCQ is to limit the actions for the policy to those

already in the dataset or in the neighborhood of the observed

actions. More specifically, BCQ enforces the following

restrictions to optimize the reward: (1) distance between the

selected actions and those in the dataset should be small,

and (2) the new action should visit the existing states in

the dataset. We also follow the same approach of training

a variational auto-encoder (VAE) to avoid the complicated

estimation of action distribution.

• Conservative Q-learning (CQL) [18]. Unlike BCQ which

explicitly disallows the actions to be too far away from those

in the dataset, CQL introduces a regularization term to the

reward such that unseen actions incur a larger loss. In [18],

the authors adopt the KL-divergence as a measure for the

regularization to punish actions that are too far away from

those in the dataset. Compared with BCQ, CQL incorporates

conservative exploration in the loss function and is easier to

implement and update.

• Implicit Q-learning (IQL) [19]. The previous two methods

either explicitly constrain the actions to be in-distribution or

regularize the loss values. IQL is a different approach that

treats the state value function as a random variable and then

utilizes expectile regression [42]. Practically, IQL is also

easy to implement by changing the objective to a modified

SARSA-type one.

• Re-visiting behavior regularized Actor-Critic (ReBRAC)

[43]. While maintaining a regularization term in the loss of

actor and critic networks in offline RL is commonly used.

ReBRAC introduces an active weight to these regularization

terms, which significantly improves the performance of

offline RL on some datasets. The network structure of

ReBRAC largely follows the previous offline RL works.

In order to address the issue of distributional shift, all four

algorithms share the core principle of conservative exploration

[44]. These algorithms differ in how they adjust the standard

RL training procedure to fit the offline dataset. Hence they are

not sensitive to the specific (deep) RL structure as long as it is

off-policy. In our experiments, we use the same Actor-Critic

structure as used in the online RL experiment.

Fig. 3. Experiment result with different SOTA offline RL algorithms on an
expert dataset, where the expert dataset is collected using the best online RL
policy obtained from Sec. IV-B. All experiment results are conducted with 10
independent runs and evaluated on the same set of 10 validation environments
as the online RL training.

Evaluation of behavior policies. To compare the training

performance of offline RL methods with various behavior

policies, we deploy the behavior policies in the same eval-

uation pool in Section IV-B. We then test each of them for

10 episodes across all evaluation environments and compute

the average reward. This average value is represented as a

straight line in the plots of this section. Notice that we define

one ‘epoch’ in our offline RL experiment as a training of 5000
batch updates, with the batch size of 200. This definition will

align the data samples encountered by both online RL and

offline RL in one ‘epoch’ to be the same. This definition of

epoch stays consistent throughout the offline RL experiments.

High-quality dataset. In this test, we deploy the best online

RL policy (see Sec. IV-B) as the behavior policy and collect

one million trajectories as the offline dataset. In the offline

RL experiments, a single epoch stands for 5, 000 mini-batch

updates, and each batch contains 200 data trajectories. The

results are presented in Fig. 3, where we also include the

original online RL performance (blue curve) from Fig. 2 for

comparison. We can see that all three offline RL algorithms

are data-efficient ± they have faster convergence than online

RL. This is intuitively reasonable as online RL needs extra

exploration while offline RL only needs to sample within the

dataset. However, we also notice that all the algorithms con-
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verge to approximately the same final performance, indicating

that offline RL does not improve (much) over a high-quality

behavior policy.

Low-quality dataset. It is natural to ask whether offline

RL can produce a good policy when the dataset is of lower

quality. To answer this question, we experiment using rule-

based and the early-stopped online RL as behavior policies.

While we also consider ReBRAC, a more advanced algorithm

for offline RL, we observe only marginal improvements over

IQL in our task. Moreover, ReBRAC introduces an additional

hyper-parameter that requires tuning, adding complexity to the

process. Therefore, for simplicity, we restrict to IQL as the

offline RL algorithm for the rest of the paper since it has

the second-best performance among all algorithms and also

avoids the need for extensive hyper-parameter selection. The

results are given in Fig. 4. We see that IQL is able to improve

the offline RL performance over the baseline of each behavior

policy, but this improvement is still limited. It is clear that

the performance of the offline RL policy is restricted by the

original behavior policy, which has motivated us to propose a

new idea of mixing several low-quality datasets to boost the

offline RL performance in Section VI.

Impact of dataset size. Understanding the impact of dataset

size on offline RL performance is crucial in practice. We

test this by varying the dataset size from 100, 000 to 5
million trajectories using the expert BP to collect datasets. The

comparison is shown in Fig. 5. We can see that insufficient

data can significantly impact the performance of offline RL.

This gap reduces as we gradually increase the sample size

from 100, 000 to 500, 000, where all four methods share a

compatible performance compared to the online RL baseline.

Notably, when the dataset size reaches 1 million, offline RL

performance closely mirrors that of online RL. Beyond this

point, from 1 million to 5 million trajectories, the benefits of

increasing dataset size diminish, although they do not vanish

entirely. This trend is consistent across all four state-of-the-

art (SOTA) offline RL algorithms tested in the experiments,

leading to the conclusion that while larger datasets generally

enhance offline RL training, there exists a threshold beyond

which additional data yields diminishing returns.

Fig. 4. Testing offline RL with datasets generated from different behavior
policies. All the horizontal dash lines stand for the average performance of
the behavior policy over a single episode’s evaluation over all validation
environments. The training results using datasets collected from different
behavior policies are compared.

Fig. 5. Testing result with different amount of data in the dataset. Ranging
from 100, 000 trajectories to 5, 000, 000 trajectories. All other experimen-
tal results, unless explained separately, are tested with a dataset size of
1, 000, 000 trajectories.

VI. OFFLINE RL WITH MIXTURE DATASETS

A. Mixture Datasets from Multiple BPs

The previous results demonstrate the potential of offline RL

for the user scheduling problem in wireless RRM, but also

suggest that the gain can be limited by the adopted behavior

policy that is used to collect the dataset. The key open problem

we would like to answer is the following.

Can we train a high-performance offline RL policy using

datasets from low-performance behavior policies?

We answer this question positively by proposing a novel

offline RL solution. Our key new idea is that although the

dataset generated by a single low-performance BP may not

contain enough information to learn a near-optimal RL policy,

the cumulative dataset from multiple low-performance BPs

may have sufficient diversity to cover the (near-)optimal state-

action pairs, although each BP only covers a portion of them.

Specifically, the mixture dataset is created with the following

procedure.

1) For a given set of L BPs Π = {π1
β , π

2
β , · · · , π

L
β }, generate

an offline dataset for each BP following the procedure in

Section V-A. Evaluate Rscore,πl
β

for each BP l according to

Eqn. (6).

2) Select data samples from each BP’s dataset uniformly at

random to create the final dataset D̂. The portion of data

samples from BP l, denoted as Pπl
β

, should intuitively be

proportional to the quality of this BP. One such allocation

mechanism, which is adopted in our experiment, is

Pπl
β
=

exp (Rscore,πl
β
)

∑L
w=1 exp (Rscore,πw

β
)
, l = 1, · · · , L. (11)

3) Use the final dataset D̂ to train the offline RL policy.

We evaluate this solution using the same experimental

setting as in Section V, and report the results in Fig. 6. We

consider two different combinations of BPs, both with L = 4.

1) Mixed-RL: ªbadº online RL (trained with 125 epochs),

Greedy, TDM, and Random.

2) Mixed-ITLinQ: ITLinQ, Greedy, TDM, and Random.
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To have a consistent comparison, we adopt the same data

allocation1 for both cases: online RL / ITLinQ (50%), Greedy

(20%), TDM (20%), and Random (10%). The results are

plotted in Fig. 6. We can see that although the trajectories

come from low-performance BPs, using the mixture dataset

leads to a significant reward improvement for offline RL. In

fact, Mixed-RL can almost converge to the optimal online RL

performance as shown in Fig. 6, and Mixed-ITLinQ is only

slightly worse. Both outperform all their individual BPs by

noticeable margins. These results demonstrate that even with

low-performance BPs, we can still leverage the offline datasets

to achieve near-optimal RL performance.

Why selecting ITLinQ and RL-125 as basic BP methods?

We choose ITLinQ and RL-125 as the foundational BPs for

our mixed dataset due to their distinct characteristics and

performances. ITLinQ stands out as the most effective rule-

based method, consistently outperforming other rule-based

baselines. RL-125 is a representative early stopped online RL

policy, which is commonly used in offline RL data collection

for creating sub-optimal quality datasets [45]. Our action

behavior analysis, illustrated in Fig. 7, shows that despite sim-

ilar rewards, ITLinQ and RL-125 exhibit different behaviors.

ITLinQ selects users effectively but lacks the strategy to power

off when unhelpful. On the other hand, RL-125, with a more

distributed action approach, learns when to disengage. The

combination of these distinct strategies in the dataset mixture

allows ITLinQ to benefit from TDM insights and RL-125 from

Greedy strategies, suggesting a potential performance gain that

will be further discussed in the subsequent section.

Fig. 6. Testing offline RL with a mixture dataset. where the mixed dataset
consists of RL-125 / ITLinQ (50%), Greedy (∼20%), TDM (∼20%), Random
(∼10%) of the data Results are validated across the same 10 validation
environments as before.

B. Mixture Dataset with Varying Combinations

In our initial dataset mixture experiment, we assume strin-

gent storage constraints, restricting the mixed dataset to

one million trajectories. Recognizing that practical scenarios

might not always prioritize storage limitations, we expand

our experiment to encompass different mixtures of datasets

to assess performance implications.

1Note that online RL-125 and ITLinQ have very similar performances;
hence their allocations are the same.

(a) RL-125 (b) ITLinQ

Fig. 7. The frequency of selecting certain users or turning itself off for an
AP, showing the different behavior of these two selected BPs.

TABLE II
TEST OF DIFFERENT BP DATASET MIXTURES

Mixture Type Average reward

Original mixture (RL-125) 1.383 +- 0.035

Original mixture (ITLinQ) 1.332 +- 0.051

Full mixture 1.435 +- 0.032

Mixture w/o RL-125 1.386 +- 0.041

Mixture w/o ITLinQ 1.401 +- 0.025

Mixture w/o Greedy 1.412 +- 0.031

Mixture w/o TDM 1.405 +- 0.032

Mixture w/o Random 1.431 +- 0.028

As outlined in Table II, we explore various combinations of

data mixtures. We designate our original mixture, constrained

by a 1 million data samples limit, as the ‘Original mixture’.

This is compared against a comprehensive mixture comprising

all suboptimal datasets (RL-125, ITLinQ, Greedy, TDM, and

Random) amounting to a total of 5 million trajectories. To

discern the individual contribution of each dataset, we sequen-

tially remove one dataset at a time from the complete mixture.

These variations are referred to as ‘Mixture w/o [xxx]’ in the

table. This methodology allows us to not only confirm the

advantages of integrating additional data but also to evaluate

the relative importance of each behavior policy’s dataset within

the context of the fully mixed dataset.

The results from these varying mixtures are presented in

Table II, which indicates that enhancing the dataset size can

elevate the performance gained from the mixed suboptimal

dataset to levels nearing those attained by the offline RL

using an expert dataset. This reveals that the performance of

the sampled dataset mixture can be amplified by increasing

its size. Our theoretical analysis in Section VII delves into

explaining this phenomenon. While expanding a single offline

dataset (Fig. 5) might sometimes yield limited improvements, a

combination of datasets offers distinct advantages. It is evident

from our findings that among all the suboptimal behavior poli-

cies, RL-125 contributes most significantly to offline training

performance, whereas the Random dataset contributes the least

impact.

VII. THEORETICAL ANALYSIS

In this section, we provide some theoretical insights to

explain the empirical observations in Sections V and VI, espe-

cially performing offline RL with one and mixture datasets. In

particular, the concept of data coverage is leveraged as a key

tool to obtain these theoretical insights, which is introduced

in the recent offline RL theory studies [20], [21].
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To gain some fundamental intuitions, we focus on the basic

tabular MDP case, with |S|, |A| < ∞ and γ = 1. Also,

to facilitate discussions, for the MDP M , we denote the

deterministic optimal policy for one MDP as π∗ and the value

function of a policy π as V (π) = E[
∑

t∈[T ] γ
trt(st, at)|M,π],

where the expectation is over the randomness in the induced

trajectory of π on M . Furthermore, a policy π is called ε-

optimal if V (π∗)− V (π) ≤ ε.

A. Offline RL with One Dataset

The key observation from experimental results in Section V

is that when performing offline RL with one dataset collected

from one behavior policy, the learned performance is often

limited, i.e., it cannot approach the optimal performance. To

formalize this, we denote the considered behavior policy as ρ
and define its single-policy coverage coefficient as follows:

C∗ := max
(s,a,t)∈S×A×[T ]

d∗t (s, a)

dρt (s, a)
, (12)

where d∗t (s, a) and dρt (s, a) are probability of visiting the state-

action pair (s, a) at step t induced via the optimal policy π∗

and behavior policy ρ, respectively. It can be observed that a

smaller C∗ indicates that the behavior policy is more similar

to the optimal policy. In the worst case, if the optimal policy

would visit one state-action pair (s, a) that is not covered by

the behavior policy, i.e., d∗t (s, a) > 0 but dρt (s, a) = 0, the

coverage coefficient would be infinity i.e., C∗ =∞.

Intuitively, when the behavior policy provides poor coverage

of the optimal policy, i.e., a large C∗, the offline RL would be

difficult since the behavior policy can only provide limited

information about the optimal policy, which matches our

observed experimental results. To capture this phenomenon,

recent theoretical RL analyses [20], [21], [46] have established

the corresponding hardness results: in the worst case, learning

an ε-optimal policy π̂ when the coverage coefficient is C∗

would require the number of available trajectories contained

in the dataset K to be

K ≥ Ω

(

C∗T 3S

ε2

)

. (13)

It can be observed that with a large C∗, i.e., poor coverage, a

large offline dataset is required to obtain a good learned policy.

Moreover, if C∗ = ∞ as aforementioned, even an unlimited

amount of available offline data is insufficient for offline RL

algorithms to approach the optimal policy, which explains the

observations in Section V.

B. Offline RL with Mixture Datasets

With the limitations of performing offline RL with one

dataset collected via one behavior policy explained, we then

move to discuss the theoretical insights of using a mixture

of datasets. Especially, we consider that there are L available

datasets {D1, D2, · · · , DL}, whose aggregation is denoted as

D. These datasets are of size {K1,K2, · · · ,KL} and collected

from behavior policies {ρ1, ρ2, · · · , ρL}, respectively. Then,

the following theorem indicates that the theoretical framework

of pessimistic-value iteration (PEVI), recently proposed in

[20], [21], [47], can effectively learn from the mixture of

datasets. The details of PEVI are provided in Algorithm 1

for completeness.

Theorem 3. With probability at least 1− δ, the output policy

π̂ of PEVI satisfies that

V (π∗)− V (π̂) ≤ Õ

(√

C̃∗T 4S/
∑

l∈[L]
Kl

)

, (14)

where

C̃∗ := max
(s,a,t)∈S×A×[T ]

∑

l∈[L] Kld
∗
t (s, a)

∑

l∈[L] Kld
ρl

t (s, a)
. (15)

It can be observed that as long as the newly defined collec-

tive coverage coefficient is finite, i.e., C̃∗ <∞, with enough

amount of data, the optimal performance can be approached.

Furthermore, to have C̃∗ <∞, it is sufficient to guarantee that

for each (s, a, t) ∈ S×A×[T ] that d∗t (s, a) > 0, there exists a

behavior policy ρl such that dρl

t (s, a) > 0. In other words, the

behavior policies can collectively cover the optimal policy. We

note that this is a much less stringent requirement than having

one single policy covering the entire optimal policy itself as

in Section VII-A. This result also explains our observations in

Section VI that a good policy can be learned from multiple

poor behavior policies since they may provide good collective

coverage.

Proof of Theorem 3. From Lemma B.3 of [21], with proba-

bility at least 1− δ, it holds that

V (π∗)− V (π̂) = O





∑

t∈[T ]

∑

(s,a)∈S×A

d∗t (s, a)Γt(s, a)



 ,

(16)

with Γt(s, a) as a confidence interval and set to be

c
√

T 2 log(SAT/δ)/Nt(s, a) ∨ 1 as in Algorithm 1, where c
is a universal constant and Nt(s, a) is the count of visitations

on the state-action pair in the overall dataset D. Note that the

effectiveness of this confidence bound can be proved following

the standard Hoeffding inequality as in Lemma B.1 of [21].

Furthermore, denoting K̃ =
∑

l∈[L] Kl and d̃t(s, a) =
∑

l∈[L] Kld
ρl

t (s, a)/K̃ with the multiplicative Chernoff bound,

it holds that

P

(

Nt(s, a) ≥
1

2
K̃d̃t(s, a)

)

≥ 1− exp

(

1

8
K̃d̃t(s, a)

)

,

(17)

which means when d̃t(s, a) ≥ 8 log(SAT/δ)/K̃, with proba-

bility at least 1− δ
SAT , it holds that

Nt(s, a) ∨ 1 ≥ Nt(s, a) ≥
1

2
K̃d̃t(s, a) ≥

K̃d̃t(s, a)

8 log(SAT/δ)
,

(18)

which is also naturally guaranteed when d̃t(s, a) <
8 log(SAT/δ)/K̃. Thus, using a union bound, with probability

at least 1−δ, this inequality holds for all (s, a, t) ∈ S×A×[T ].
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Finally, we can obtain that

V (π∗)− V (π̂)
(a)

≤ Õ





∑

t∈[T ]

∑

(s,a)∈S×A

d∗t (s, a)

√

T 2

K̃d̃t(s, a)





(b)

≤ Õ





√

C̃∗T 2

K̃

∑

t∈[T ]

∑

s∈S

√

d∗t (s, π
∗(s))





(c)

≤ Õ

(
√

C̃∗T 4S/K̃

)

,

(19)

where inequality (a) is from the definition of Γt(s, a), inequal-

ity (b) is from the definition of C̃∗, and inequality (c) is from

the Cauchy-Schwarz inequality and the deterministic optimal

policy. The theorem is then proved.

We note that the sufficiency of collective coverage broadly

applies to different offline RL settings and designs. For exam-

ple, besides the model-based PEVI, the following result can

be established for the model-free LCB-Q algorithm in [48] by

adapting its Theorem 1.

Proposition 4. With probability at least 1−δ, the output policy

π̂ of LCB-Q (Algorithm 1 in [48]) satisfies that

V (π∗)− V (π̂) ≤ Õ

(√

C̃∗T 5S/
∑

l∈[L]
Kl

)

, (20)

where C̃∗ follows the definition in Eqn. (15)

Moreover, similar results hold beyond tabular MDPs. The

following proposition, modified from Corollary 4.5 in [47], can

be established for linear MDPs considering the features of each

state-action pair (see Assumption A in [49] and Definition 4.3

in [47] for a complete definition). It can be observed that the

parameter C̃∗
lin serves as the same role as C̃∗ in measuring the

collective coverage of behavior policies {ρ1, · · · , ρL} for the

optimal policy π∗.

Proposition 5. Considering a linear MDP with feature map-

ping ϕ(·, ·) : S ×A→ R
d, with probability at least 1− δ, the

output policy π̂ of the linear MDP version of PEVI (Algorithm

2 in [47]) satisfies that

V (π∗)− V (π̂) ≤ Õ

(√

C̃∗
linT

4d3/
∑

l∈[L]
Kl

)

, (21)

if there exists a constant C̃∗
lin < ∞ such that for all t ∈

[T ], C̃∗
lin ·

∑

l∈[L] Kl · Eρl
[ϕ(st, at)

⊤ϕ(st, at)] ⪰
∑

l∈[L] Kl ·

Eπ∗ [ϕ(st, at)
⊤ϕ(st, at)].

VIII. ENSEMBLE-BASED MIXTURE ALGORITHM

Our previous experiments, as depicted in Figs. 6 and 4,

reveal that despite a limited final performance, offline RL

applied to a single-source dataset (using one BP) tends to

converge faster than when using mixed datasets (using mul-

tiple BPs). We hypothesize this outcome is at least partially

attributed to the fact that the mixing dataset does not exploit

any information related to the behavioral policies. This obser-

vation and assumption led us to develop an ensemble-based

method to accelerate the convergence speed by leveraging the

Algorithm 1 PEVI [20], [21], [47]

1: Input: Dataset D = {Dl : l ∈ [L]}
2: ∀(s, a, s′, t) ∈ S×A×S×[T ], obtain Nt(s, a, s

′), Nt(s, a)
as the number of visitation on (s, a, s′, t) and (s, a, t) in

D; then calculate P̂t(s
′|s, a) = Nt(s, a, s

′)/(Nt(s, a)∨1)
3: Initialize V̂T+1(s)← 0, ∀s ∈ S
4: for t = T, T − 1, · · · , 1 do

5: for (s, a) ∈ S ×A do

6: Set Γt(s, a)← c
√

T 2 log(SAT/δ)
Nt(s,a)∨1

7: Set

Q̂t(s, a)← rt(s, a) +
∑

s′∈S

P̂t(s
′|s, a)Vt+1(s

′)− Γt(s, a).

8: end for

9: for s ∈ S do

10: π̂t(s)← argmaxa∈A Q̂t(s, a)
11: V̂t(s)← Q̂t(s, π̂t(s))
12: end for

13: end for

14: Output: Policy π̂

information embedded in different behavior policies. This new

method is detailed in Algorithms 2 and 3.

Algorithm 2 Training for Ensemble Policies

Require: N datasets collected by different behavior policies

{D1, D2, ..., DN}, Offline RL training algorithm algo,

Batch size b
1: Initialize offline RL policies for each dataset

{π1, π2, ..., πN}
2: for i = 1 to N do

3: while πi is not converged do

4: Sample a minibatch b from Di

5: Update πi using algo
6: end while

7: end for

8: return set of policies {π1, π2, ..., πN}

In the training phase, our algorithm independently trains N
policies, leveraging the advantage that convergence on indi-

vidual suboptimal datasets is typically faster than on a mixed

dataset These separately trained policies are subsequently

utilized to construct an ensemble policy in the inference phase.

As delineated in Algorithm 3, in the inference phase, we

iterate through the datasets to compute a similarity measure

for each behavior policy. Each policy is then assigned a weight

based on this similarity, which is defined in terms of the L2

norm. The ensemble process integrates these weighted policies

to form a comprehensive policy. The action is subsequently

determined by this ensembled policy.

To thoroughly evaluate the effectiveness of the ensemble

method, we conduct a comparison between the proposed

ensemble method and the data mixture method. Specifically,

the ensemble method utilizes four datasets, namely RL-125,

ITLinQ, Greedy, and TDM, as mentioned earlier. To ensure

a fair comparison, we combine all the datasets during dataset

mixture so that both methods have an equal size in total data
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Algorithm 3 Ensembled Inference

Require: N datasets collected by different behavior policies

{D1, D2, ..., DN}, Policy set {π1, π2, ..., πN}
1: Receive state for inference st
2: for i = 1 to N do

3: Set minimum distance in dataset i as di = inf
4: for States sn in Di do

5: Compute di = min(di, ||sn − st||) ▷ Find the

most similar state in the dataset

6: end for

7: end for

8: Compute wi = e−di ▷ Larger distance → smaller weight

9: Ensemble all policies πens =
∑

i wi ∗ πi(st)
10: Choose action from this new policy at = argmaxπens

samples. Furthermore, in each epoch, we have 5, 000 mini-

batch updates in the offline RL training. For a fair comparison

of the ensemble method, we equally distribute these 5, 000
mini-batches to 4 policies, meaning that each policy has 1, 250
mini-batch updates in one epoch in the ensemble training

phase. The testing result, as depicted in Fig. 8, aligns with

our expectations: the ensemble-based algorithm, supplemented

by additional behavior policy information, converges approx-

imately 30% faster than training on the mixed dataset, while

maintaining comparable performance.

Fig. 8. The training efficiency of the ensembled policy.

While the ensemble method outlined above offers several

benefits, it is important to also acknowledge areas for improve-

ment. One aspect to consider is the complexity and efficiency.

The necessity of iterating through datasets to determine sim-

ilarity weights can lead to a slowdown during inference, as

evidenced in Table III. However, it is worth noting that this

increase in inference time is counterbalanced by the faster

convergence during training on individual datasets compared

to a mixed dataset. Additionally, our observations from Fig. 8

indicate that the final convergence of the ensembled policy is

marginally less optimal compared to a dataset mixture policy.

This could potentially be attributed to a reduced level of

exploration in the absence of a mixed dataset.

To address these limitations, we outline a few promising

research ideas in the following for possible future research.

First, directly learning an ensembled policy, as opposed to

learning individual policies and then ensembling them, may

improve execution efficiency. Furthermore, the training ef-

ficiency can be enhanced by transitioning to a distributed

training framework, where we have different BPs (or their

datasets) at different clients.

TABLE III
COMPARISON OF INFERENCE TIMES FOR SINGLE AND ENSEMBLED

POLICIES

Policy Type Inference Time/sample (ms)

Single Policy 29

Ensembled Policy 1035

IX. OFFLINE-TO-ONLINE FINE-TUNING WITH ADAPTIVE

REGULARIZATION

So far, we have focused exclusively on offline RL, where

online interaction is strictly prohibited. In reality, however,

once the offline policy is obtained, there can be an offline-

to-online adaptation phase where the offline policy is further

optimized to address the issue of potential policy collapse

in an unfamiliar environment. Some SOTA offline RL works

[19], [43] have discussed the effect of offline-to-online fine-

tuning, and compared their post fine-tuning efficiency. How-

ever, no details of how the fine-tuning is conducted were

reported. In other works that concentrate on the fine-tuning

process, a significant challenge in fine-tuning methods is the

trade-off between the possible performance degradation due

to optimistic exploration [37] and the conservative behavior

resulting from the conservative policy updates [35]. In the

method proposed in [35], the authors control the stepsize of the

policy optimization during fine-tuning with Langrangian-style

optimization and this method uses Lagrangian dual variable γ
to control the level of conservativeness, as shown in Eqn. (22),

where θ and θ′ stand for the parameters of the actor network

and the target actor network in a Soft Actor-Critic (SAC) style

algorithm.

max
θ

min
γ≤0

Es B [Qϕ(s, a)− γ[ϵ− (a− πθ′(s))2]], a = πθ(s).

(22)

While the approach in [35] partially addresses the conservative

limitation, it still retains some level of pessimism throughout

the fine-tuning process. Sustaining this pessimistic perspective

may not be optimal, which motivates us to employ regu-

larizers akin to Proximal Policy Optimization [40] with a

progressively decreasing regularization weight during fine-

tuning. This strategy ensures the initial conservatism to prevent

performance degradation, while fostering exploration as the

policy solidifies. The updated objective function encapsulating

our methodology is delineated as:

max
θ

Es B [Qϕ(s, a)− γ[(a− πθ′(s))2]], a = πθ(s). (23)

In our method, γ decays by half every 25 epochs. This

modification ensures early-phase conservatism to counteract

instability and subsequently minimizes conservativeness to

amplify the online performance.

The key difference between our algorithm and prior base-

lines is the dynamic regularization weight. Initially, we limit

exploration to ensure the online policy mirrors the offline one.
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Fig. 9. The comparison of fine-tuning algorithms where we have two offline
RL agents in the experiment: one at 125 epoch while the other from 200
epoch

As fine-tuning advances, these limits are gradually eased. We

hypothesize that our method offers better safety levels compa-

rable with static regularization but with enhanced performance

after fine-tuning.

This hypothesis is supported by the results in Fig. 9. We

evaluate the performance of our fine-tuning techniques on

two offline agents, from the 125th and 200th training epochs

respectively. Our observations indicate that:

1) Fine-tuning of agents with better initial performances is

easier than those with poor early performances.

2) With a larger regularization term γ at the beginning phase,

our fine-tuning method had a slower convergence speed

compared to SAC-C. This slow-down behavior tends to

be more significant with a worse starting point ± where

the system is regularized to a worse starting point.

3) Both strategies experience an initial performance drop,

which could be mitigated with stronger safety constraints,

at the cost of compromised fine-tuning results.

We also noted that refining a high-performing agent is more

straightforward than a suboptimal one, with the latter demand-

ing more online training for satisfactory results.

X. DISCUSSIONS

Difference between simulator and real-world system.

While our experiments show promising results, they are con-

ducted in a simplified simulator with certain limitations. To

name a few:

• We use a single pattern pathloss module, whereas real-

world pathloss can be more complex.

• Our indoor environment simulation does not include

obstacles, which are common in real-world scenarios.

• The system focuses solely on user scheduling, omitting

other real-world resource management aspects like power

and bandwidth allocation.

Generalization ability of dataset mixture. While this work

focuses on the dataset mixture of user scheduling problems,

the recent work [50] has deployed a similar method under the

network slicing use case, showing a similar near-optimal pol-

icy performance using only sub-optimal datasets. Furthermore,

the offline RL work in robotics [51] uses data augmentation

methods to increase the data coverage, which shares the same

philosophy with our dataset mixture approach.

Computation efficiency. While our proposed RL methods

demonstrate superior performance over rule-based approaches,

it is important to note that they require additional training. The

training for the neural network, whose structure is detailed

in Appendix A, takes around 40 hours on a single Nvidia

RTX 3090. However, a two-layer neural network is expected

to exhibit comparable inference times to rule-based methods

when deployed on modern devices after training. Besides the

training cost, the ensemble model, though faster in training,

introduces greater computational complexity. This is primarily

due to its search mechanism; see Section VIII and Table III.

Performance summary. Summarizing our method’s perfor-

mance, we find that the direct application of offline RL with

an expert dataset is effective for the considered RRM problem

and is a more stable solution. However, when equipped with

only sub-optimal datasets, the dataset mixture strategy nearly

matches the performance of online RL but requires 40%
more training time. The enhanced ensemble method, while

improving training efficiency, sacrifices 5% performance and

incurs about 35 times slower inference speed.

XI. CONCLUSION

In our work, we have presented offline RL as a potential

solution to the wireless RRM problem, using a specific wire-

less user scheduling problem as a case study. We assessed

various representative offline RL algorithms for their long-term

performance and convergence rate in the wireless problem.

Notably, offline RL performance is significantly influenced by

the quality of the behavior policy used for data collection.

Motivated by this key observation, we introduced a unique

offline RL strategy that mixes datasets from diverse behavior

policies. Our findings indicated that this method can produce

a near-optimal RL policy even when all contributing behavior

policies are suboptimal. Additionally, we enhanced our data

mixture technique into an ensemble-based method, utiliz-

ing state similarity for action determination. This ensemble

method converges faster than the original dataset mixture,

with a marginal performance decline as a trade-off. We also

experimented with an adaptive fine-tuning approach, enabling

offline RL agents to transition to superior online policies using

minimal online steps. For possible future research directions,

we note that our method relies on a centralized offline RL

framework for RRM policy generation, which may hinder

scalability. Future research could explore multi-agent offline

RL solutions and potentially federated learning for training

across diverse data sources.

APPENDIX

In the appendix, we discuss how we set up the wireless

environment in the simulation and perform RL training in

detail.
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A. Wireless Environment

We implement a Python-based wireless network simulator

for the experiments, which can be entirely recreated using

the numpy Python package. The setup involves the following

components:

TABLE IV
THE NETWORK STRUCTURE FOR ALL OFFLINE RL ALGORITHMS

Actor

Input dim: 24
Hidden dim ×2: 256

Output dim: 256

Critic

Input dim: 280
Hidden dim ×2: 256

Output dim: 1

BCQ (Q-learning style)

Input dim: 24
Hidden dim ×2: 256

Output dim: 256

• AP and UE generation: APs are randomly generated

with a minimum distance of 10 meters between them.

If two APs are too close, one is randomly picked and

regenerated. UEs are then generated ensuring that the

minimum initial distance from any AP is greater than

1 meter. These positions are controlled by random seeds,

allowing the reproducibility of the AP-UE topology.

• UE association: With the AP-UE distribution set, we

assume all APs are at full power and compute the RSRP

to associate UEs with APs.

• Pathloss and shadowing: For detailed large-scale fading

modeling, please refer to Section III-A.

• Small-scale fading: Rayleigh fading is simulated using

the ‘Sum of Sinusoids’ method with a total of 100

sinusoids.

• Random walk: A UE would randomly select a walking

direction and a step length between 0 and 1. Steps are

projected onto the x and y axes, with UEs bouncing back

upon encountering APs or boundaries.

• Reset: During resets, all APs and UEs return to their

initial positions, and cumulative data rates are reset to

zero.

B. Deep Neural Network Training

Since all the SOTA offline RL algorithms, except for BCQ,

share a similar Actor-Critic structure, all the hidden layer

settings for these algorithms stay the same in the experiment,

as shown in Table IV.

The batch definition is given in Section V. All the other

hyper-parameters used for training are listed below. Notice that

CQL, IQL, and ReBRAC have 2 critic networks that function

as an ‘ensemble’ mechanism to improve the performance2.
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