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Abstract—The recent development of reinforcement learning
(RL) has boosted the adoption of online RL for wireless radio
resource management (RRM). However, online RL algorithms
require direct interactions with the environment, which may
be undesirable given the potential performance loss due to the
unavoidable exploration in RL. In this work, we first explore the
use of offline RL algorithms in solving the RRM problem. We
evaluate several state-of-the-art offline RL algorithms for a prac-
tical RRM problem that aims at maximizing a linear combination
of total rates and 5-percentile rates via user scheduling. Our
findings indicate that the performance of offline RL for the RRM
problem is heavily contingent upon the behavior policy deployed
for data collection. We propose an innovative offline RL approach
utilizing heterogeneous datasets from various behavior policies.
This method demonstrates that a strategic mixture of datasets
enables near-optimal RL policy generation, even with suboptimal
behavior policies. Additionally, we introduce two enhancements:
an ensemble-based policy to augment dataset mixture training
efficiency, and a novel offline-to-online strategy for seamless
adaptation to new environments. Our data mixture approach
achieves over 95% efficiency of an online RL agent in the
absence of expert data. The ensemble algorithm notably reduces
training duration by half compared to the data mixture method.
Furthermore, our model, when applied with offline-to-online fine-
tuning, surpasses existing benchmarks by approximately 5% in
our user scheduling problem.

Index Terms—Radio Resource Management, Offline Reinforce-
ment Learning, Deep Reinforcement Learning.

I. INTRODUCTION

There is a growing interest in applying reinforcement
learning (RL) to solving radio resource management (RRM)
problems in wireless networks. Several unique properties in
wireless RRM are the driving force behind this new trend.
First, many of the RRM operations are sequential in nature,
where a resource allocation decision is made, the network per-
formance is observed, and then fed back to the decision maker
to update the policy. Second, real-world wireless network
optimization problems are often too complex to be modeled
as simple optimization problems, which calls for model-free
solutions that can be adaptive to the unknown deployment.
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Conference on Signals, Systems, and Computers [1]. The work of K. Yang, C.
Shi, and C. Shen was partially supported by the U.S. National Science Foun-
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ECCS-2030026, ECCS-2143559, and SI1I-2132700. The work of J. Yang was
supported in part by the U.S. NSF under awards CNS-1956276, CNS-2003131
and CNS-2030026.

Third, there are well-established control and feedback mecha-
nisms in modern wireless networks, making it easy to observe
system states and collect performance indicators.

These features have sparked significant efforts in developing
RL solutions for wireless RRM. An overview of related works
is given in Section II. The majority, if not all, of the existing
works utilize online RL, where the RL policy gradually im-
proves by interacting with the environment with no data prior
to deployment. The exploration of the originally unknown
environment, especially during the early stages where infor-
mation about the environment is scarce and RL exploration
is almost random, is an indispensable component for online
RL but is also one of the major obstacles that prevent state-
of-the-art RL algorithms from being deployed in real-world
wireless networks. The lack of performance guarantee during
RL exploration means that the network users may have to tem-
porarily suffer from poor Quality of Service (QoS) so that the
learning agent can gather information about the deployment
for a potentially better RL policy. This tradeoff, however, is
undesirable for the wireless network operator compared with
model-based or rule-based solutions, which may not achieve
as good a performance as online RL after it converges, but
does not suffer from potentially significant initial performance
degradation. This gap between the previous online RL solution
and the real-world wireless device deployment motivates us to
find better algorithms that can train RL policies without costly
online interactions, which is the strength of offline RL.

In this paper, we advocate adopting offline reinforcement
learning [2] for wireless network optimization. Offline RL
aims at training RL agents using accessible datasets collected
a priori and thus completely gets around online interactions.
This paradigm is particularly suitable for wireless RRM,
because in practice wireless operators already have deployed
some policy that controls resource allocation, and there are
mature mechanisms to collect the operational data. Our main
contributions are summarized as follows.

o To the best of our knowledge, this work marks the first
introduction of offline RL to the domain of wireless
network optimization. This approach, while not requiring
real-time interactions, is well suited for wireless systems
and represents an important step towards practical RL
implementations in this field.

« We have identified that combining sub-optimal datasets
when solving offline RL in an RRM system can yield
near-optimal performances. We further develop a data
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mixture strategy that removes the strict requirement of
a high-quality offline dataset.

e We theoretically prove that as long as the behavior
policy used for data collection satisfies certain coverage
requirements of the system, data mixture is helpful. This
theoretical finding is general and not limited to the RRM
setting.

« We further enhance the data mixture strategy by incor-
porating ensemble methods and an offline-to-online fine-
tuning process.

The rest of the paper is organized as follows. Related works
are surveyed in Section II. The wireless network model and
figure of merit are presented in Section III. The Markov
Decision Process formulation of the user scheduling problem
and the online RL solution are discussed in Section IV.
Section V presents the basic framework of offline RL for
wireless user scheduling, and reports the initial experiment
results. The new solution of offline RL with mixture datasets
is presented in Section VI, together with the experimental
results. Theoretical analysis is given in Section VII. The two
enhancement methods are presented in Section VIII and IX,
respectively. Finally, Section XI concludes the paper.

II. RELATED WORKS

Online RL for RRM. To the best of our knowledge, prior
literature on solving the wireless RRM problem via RL all rely
on online RL. Examples include solving coverage and mobility
problems using bandits [3]-[6], solving the power allocation
problem using deep Q-networks in a centralized setting [7],
[8], or solving a joint power and channel allocation problem
using single agent deep RL [9]. Furthermore, the actor-critic
structure is introduced for power allocation in wireless net-
works in [10]. A comparative study of several popular online
RL algorithms for wireless network optimization is reported in
[11]. In addition to a single resource control, [12] introduced a
joint control of the power and spectrum resources using online
RL. Beside centralized algorithms, multi-agent reinforcement
learning (MARL) is another popular online RL framework that
has been adopted in wireless RRM, such as power allocation
[13], user scheduling [14] and general resource management
and interference mitigation [15]. In a recent work [16], the
authors discuss a novel scenario for packet routing, proposing
solutions using MARL.

Offline RL. Unlike the online RL algorithms, offline RL fo-
cuses on learning RL policies exclusively from offline datasets,
and has attracted significant interest in RL research [2].
Because offline RL cannot update policy by interacting with
the environment, most methods choose to be conservative to
mitigate potential distributional shift. Among the algorithms,
batch-constrained Q-learning (BCQ) [17], conservative Q-
learning (CQL) [18] and implicit Q-learning (IQL) [19] are the
most state-of-the-art model-free deep offline RL algorithms.
We will adopt these algorithms in our paper. Theoretical
understanding towards optimal offline RL is also an active
research direction, where data coverage [20], [21] and critical
states [22] have been investigated.

Ensemble methods in offline RL. The concept of ensemble
methods is a well-explored area within the reinforcement
learning community, serving various purposes. In the context
of online reinforcement learning, ensemble methods have been
utilized to enhance exploration efficiency [23]-[25] and to
mitigate modeling errors [26]—-[28]. Furthermore, in the realm
of offline reinforcement learning, such methods have been
employed to manage out-of-distribution (OOD) estimation
errors [29], [30]. However, our application in wireless RRM
presents a unique scenario. Here, we have rule-based behavior
policies that are optimized for specific regimes but perform
suboptimally on a broader scale. We would like to harness the
strengths of these baseline policies as we construct our offline
reinforcement learning policies. Consequently, we propose
an ensemble algorithm that builds upon these fundamental
behavior policies.

Offline-to-online RL. To more efficiently utilize the offline
dataset, offline-to-online RL (also known as hybrid RL) has
emerged in the past few years. Among all the proposed
methods, one of the directions is the research on how to
effectively utilize offline datasets together with the online
environment [31]-[34]. Another one is to directly fine-tune
the offline policy in an online environment [35]-[37]. In this
paper, we assume that the online environment is not always
available; thus we focus on the fine-tuning methods. Existing
fine-tuning methods often utilize regularization or punishment
terms to force the policy to adapt pessimistically, in order to
avoid severe performance collapse. Our method presented in
Section IX improves the previous conservative method in [35].

III. SYSTEM MODEL

In this section, we present the wireless environment and
then discuss the figure of merit for the RRM problem.

A. Wireless Environment

We consider a wireless network consisting of N access
points (APs) and M user equipments (UEs), as depicted in Fig.
1. This system is designed to evolve discretely where changes
happen only at discrete time slots ¢t € {1,--- , T}, where T is
the maximum length of the performance evaluation of RRM.
We consider an episodic setup where each episode consists
of the aforementioned 7' slots, and the system resets after an
episode completes.

The APs are randomly placed in the intended coverage area,
and their locations are fixed throughout the whole duration of
RRM (i.e., they do not change across episodes). The rationale
for randomly dropping APs is to ensure the collected datasets
cover a diverse range of scenarios. By enforcing a minimum
distance between different APs, we ensure that this process
remains practical while effectively representing diverse situa-
tions. At the beginning of each episode, we randomly generate
UEs and place them in the [ X[ square as shown in Fig. 1. There
are (different) minimum distance requirements for both AP-
UE (dy) and AP-AP (d;) distances, and the random placement
is repeated until these requirements are satisfied.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 28,2024 at 19:11:33 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3395624

(t21) H %))
I\ A ﬂ - ]

4 Mirror back if touches
¥| boundary

Fig. 1. Illustration of the wireless environment.

Our primary consideration is a wireless system in which
pedestrian UEs can move around at a slow pace. More specifi-
cally, in each episode, each of the UEs can move independently
randomly with a speed v; that is sampled from [0, 1] m/s, with
their locations updated in each time slot. We adopt a mirror-
back mechanism to handle the situations when the UEs move
to the coverage boundary or violate the distance constraint as
illustrated in Fig. 1.

UEs are associated with one of the APs at the beginning of
each episode, and we ensure that every UE will be associated
with one and only one AP. At each time slot ¢, the channel
between AP ¢ and UE j, denoted as h; ;(t), contains path-loss,
shadowing, and short-term fading effects as detailed below.

1) Path-loss. We adopt the standard 3GPP indoor path-loss
model [38]:

PLZ'}j =15.3+37.6 lOg(d”) + Loun dij > d07 (1)

where d;; represents the distance between the AP i and UE
j, and Ly, = 10 dB is a constant path-loss. We require
the users to maintain at least a minimum distance dy = 1
meter from the APs.

2) Shadowing. We adopt a log-normal shadowing effect on
all the links with a standard deviation of 7 dB.

3) Fading. A standard frequency-flat Rayleigh fading is sim-
ulated to capture the short-term randomness of the channel.

With this definition of channel parameters, we now denote
the received signal of UE; (associated with AP;) at time
period ¢ as

yi () = hij(Dzi(t) + > kg (D (t) +ny(t),
P

where n;(t) is the additive white Gaussian noise (AWGN)
following n;(t) ~ CN{0,o?}. The task of our RRM problem
is user scheduling, i.e., to determine which BS to serve which
UE (or to turn off without serving any UE) for each time slot
t. More specifically, at each time slot ¢, AP; needs to select
one of its associated users for active data communication. In
reality, user association happens at a much slower time scale

2

than user scheduling. Thus, we first perform user association
at the beginning of each episode, and keep this association
unchanged throughout the current episode. User scheduling
then happens on a per-time-slot basis.

Under this setting, we model the instantaneous data rate for
user j using Shannon capacity:

C;(t) = logy(1 + SINR; (2)), 3)

where SINR; () denotes the signal to interference plus noise
ratio (SINR) of user j at time slot ¢t. We further define the
average user throughput for user j as:

. 1 &
Ci=7 > Ci).
t=1

« User association rule. At the beginning of each episode,
a user pool P; is created for each AP i based on the
maximum reference signal received power (RSRP) of
each user [5]. More specifically, user j will be added to
the user pool of AP i if i = argmax,, RSRP,, ;,Vn €
{1,---,N}. An AP is allowed to only observe and
measure users in its own user pool, and scheduling
decisions are limited to these users.

“4)

B. Figure of Merit

If the figure of merit for wireless RRM is to maximize
the system-level averaged data rate (across all users), then the
solution boils down to always selecting the “best” UEs (in
terms of the SINR) at each time step. This can be formulated
as an optimization problem for each time slot, and there are
extensive works studying different variants of this problem.
However, almost all practical wireless networks must consider
fairness across all UEs when solving the RRM problem. From
the data rate perspective, the overall system figure of merit
must consider both the sum and tail behaviors. In practice,
this is often captured by the sum rate and 5-percentile rate as
described below:

1) Sum rate.

M —
Csum = Z g

Jj=1

&)

2) S-percentile rate. We first give its definition as follows.
Definition 1 (5-percentile rate). Suppose a system com-
prises M UEs, with each UE maintaining an average data
rate C’j. The 5-percentile rate, denoted as Csgq, is defined
as the highest data rate that at least 95% of UEs exceed.
Formally, Cs¢, is the solution to the following optimization
problem:

maximize C
subject to  P(C; > C) >0.95, Vje {1,...,M}.

The main figure of merit of this work is a linear combination
of the sum rate and the 5-percentile rate at time step ft,
parameterized by (u,7n):

Rscore(t) == ,Ufcsum(t) + 7’05% (t) (6)

We formally present the optimization problem as follows:
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T

maximize Z Rcore(At),
=t (N
subject to A(t) = (a1(t),...,an(t)),

a;(t) e 0UP;,Vie{l,...,N}.

Here, A(t) represents the actions taken by the APs at time ¢,
where a;(t) is the action for the i-th AP. The decision variable
a;(t) can take a value from the set 0 UP;, where O represents
the option of not serving any user at that time slot, and P; is
the pool of users associated with the ¢-th AP. This formulation
encapsulates our need to control which user (if any) is served
by each AP at every time slot.

We note that this weighted sum allows us to adjust the
balance between sum and tail rates, by varying the parameters
1 and 1. However, directly maximizing Eqn. (6) is a non-trivial
task with several challenges. Both the sum and 5-percentile
rates are long-term performance measures that depend on
the history of actions in an episode. The time-dependency
of actions implies that we cannot take the optimization-per-
slot approach to find a (near-)optimal solution. Additionally,
the 5-percentile rate itself is a complicated measure that does
not have a closed-form expression, and the dynamic nature of
the system (channel randomness, user movement, etc.) further
adds to the difficulty of optimizing Eqn. (6).

In our original definition of reward R, the second term,
namely the 5-percentile rate, is hard to compute and difficult
to optimize. We thus introduce a related metric proportional
fairness (PF) ratio.

Definition 2 (Proportional Fairness (PF) ratio). The PF ratio
for a user j at time ¢, denoted as PF;(¢), is defined by the
product of a weighting factor w;(t) and the user’s data rate

Cj(t):
w;(t) = 1/C;(t),

where

Cj(t) = aCy(t) + (1 —a)Cy(t — 1), 8)

C;(0) = C;(0). ©)

Although the PF ratio does not have a direct correlation
with tail rates, it is inversely related to the user’s long-term
average data rate, denoted as C’j(t). This implies that if a user
experiences a persistently low data rate, indicating a prolonged
period without adequate service, her PF ratio will subsequently
be higher.

IV. RL FORMULATION

In this section, we show how to solve Problem (7) using RL.
This is accomplished by first formulating the original system
as a Markov Decision Process (MDP), and then presenting
how to train a centralized online RL to control all the APs in
the environment.

A. MDP Formulation

An episodic MDP is described by a tuple M =
(S,A,r,v,P,T), where S and A stand for the state and
action spaces respectively, 7 is the reward function mapping

state-action pairs to a reward signal that reflects our design
objective, v € (0,1) is the discount factor that is widely used
to bound the cumulative reward in the MDP. P is the transition
kernel advancing the current state-action pair to the next state
in a random fashion, and 7" is the maximum time interval
(Iength of the episode).

We define the key components of the episodic MDP for the
wireless scheduling problem as follows.

1) Observation. For each AP i, we apply a top-k selection
of the UEs in its user pool to collect observations. The
criterion of selecting top-k UEs is by sorting all UEs
in the pool based on the PF-ratio w; ;(t) defined in
Eqn. (8) and only keeping the largest & UEs. We note
that this is a common technique in the existing literature
to deal with large amount of UEs [13], [15]. Then, with
the top-k UEs, the AP measures the current SINR for
each UE, and the local observation at AP ¢ is defined
as Oz(t) = (S'NRz’l(t)7 wi’l(t), te 7S|NRi’k(t), ’U}Z’k(t))
Finally, with all local observations, the learning agent
creates the global observation by stacking the local ones
as O(t) = (01(¢), - ,on(1)).

2) Action. For each AP, the possible actions are to either
select one from its top-k users to serve, or to turn itself off
and serve no UE. This decision-making process is rooted
in the definition of PF, where serving a user with a high
PF ratio (indicating a higher urgency for service) results
in a decrease in their PF ratio due to improved service.
Conversely, users who are not served will experience an
increase in their PF ratio, altering their service priority
over time. The action space for each AP is thus k£ + 1,
and the global action space is of size (k4 1)V.

3) Reward. The objective (6) represents the final perfor-
mance and cannot be directly decomposed into reward
signals for each step. We thus adopt an existing design
from [15] that has been shown to achieve a balanced
tradeoff between sum and tail rates:

M
r(t) = 3 (wi ()G (0).

J=1

(10)

By tuning the parameter )\, we can achieve the desired

tradeoff between sum rate and 5% rate as detailed in [15].

We note that although the reward is defined in Eqn. (10), we

still evaluate all designs using the original objective defined
in (6), with 4 = 1/M and n = 3, in the experiment.

B. Online RL

As a baseline, we explore the power of online RL for
solving the aforementioned RRM problem. We choose two
widely used actor-critic-type algorithms, called Soft Actor-
Critic (SAC) [39] and Proximal Policy Optimization (PPO)
[40], as our deep RL solutions and use them to train an
online RL agent. Unlike most other RL problems which
often face the issue of training instability, i.e., the learning
agent may stuck at a saddle point of the loss function, SAC
first introduces policy optimization by minimizing the KL-
divergence (similar to [40]) to control the policy update, while
encouraging exploration at the same time by maximizing the
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entropy of each state. This is achieved by deriving the soft
policy iteration steps for the actor-critic structure. SAC is off-
policy and has faster convergence rate than other algorithms,
and is adopted in our baseline experiment. PPO is chosen as
an on-policy baseline for its ability to stabilize exploration by
constraining the divergence between new and old policies. This
approach ensures more consistent learning, with the potential
cost that it might slightly slow the convergence.

We implement a system-level simulator that follows the
wireless environment in Section III-A. In the online RL
training phase, we create a pool of 20 distinct training envi-
ronments, each with a unique AP and UE topology generated
using different random seeds. The model then goes through
350 epochs, with each epoch comprising 5000 episodes of
200 steps. At the beginning of each episode, we randomly
select an environment from this pool. For evaluation, we
generate a separate set of 10 unique environments, distinct
from the training set, using different random seeds. The
model’s performance is assessed across these 10 environments,
with each conducting one episode. All results reported are
from 10 independent runs, each with different random seeds.
This approach ensures consistent initial states for the training
and evaluation environments, while introducing variation in
UE movements and shadowing effects in each sampled envi-
ronment during the runs.

Other than the online RL policy trained via SAC and
PPO, we also evaluate several rule-based baseline methods
as follows. We note that these baseline methods will be used
as behavior policies in the subsequent offline RL study.

« Random. At each time step, each AP randomly chooses one
of its top-k users in the user pool to serve.

o Greedy. AP always chooses one of its top-k users with the
largest SINR to serve.

o Time division multiplexing (TDM). All top-k UEs are
served in a round-robin fashion. In each time slot, only the
scheduled UE and its serving AP are active. All other APs
are turned off.

o ITLinQ. This is a state-of-the-art, generalized independent
set-based scheduling algorithm where we select UEs based
on the tolerance of interference levels. The method is proved
to be nearly optimal, especially under a dense network
setting like our experiments. Details can be found in [41].
With a small tweak to the original algorithm where each AP
can have multiple active links, we prioritize UEs associated
with each AP based on their PF level. UEs are then actively
served based on an interference tolerance criterion in the
order of priority: maxINR; ; < MSN RZ ;- After selecting
an active UE, no further checks are performed. If no UEs are
activated, the AP is turned off. In our study, we set M =4
and n = 0.5.

Important simulation parameters are summarized in Table I,
and the results are presented in Fig. 2. We see that with
sufficient training (large training epochs), online RL has much
better performance than all rule-based baselines. On the other
hand, when the training is insufficient (e.g., fewer than 100
epochs), the performance of online RL agents may be worse,
sometimes significantly, than the rule-based baselines. This

TABLE I
EXPERIMENT PARAMETERS
Parameter Value
Number of APs 4
Number of UEs 10 - 24
Area 100 x 100 m?
Min AP-AP distance 10 m
Min AP-UE distance 1m
Max UE speed 1 m/s
Bandwidth 10 MHz
Transmit power 10 dBm
Episode length (7) 200
Number of UEs in the pool (k) 3
Running average parameter (o) 0.01
Reward discount factor () 0.95
Weight exponent (\) 0.8

demonstrates the price that one has to pay for online learning,
which is due to the inevitable exploration of RL.
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Fig. 2. Training performance of online RL algorithms SAC and PPO. Results
are averaged over 10 independent runs as described in Section I'V-B.

V. OFFLINE RL

To address the limitations of online RL, we resort to offline
RL for RRM. We first describe how to collect offline dataset,
and then evaluate the state-of-the-art offline RL algorithms for
the wireless user scheduling problem.

A. Dataset

Offline RL allows the system to enjoy the advantages of RL
without direct interaction with the environment. This is made
possible by using offline datasets. The most common approach
to have such datasets is through collecting operational data
associated with the existing policies. For example, for the
RRM problem, wireless operators often have existing solutions
that have been deployed in the target environment. We can
rely on the data collected by these existing solutions, which
are called the behavior policies (BPs), to train an offline RL
policy.

In the user scheduling problem, we have implemented four
rule-based policies described in Section IV-B as BPs. In
addition, we include two other BPs that are based on online
RL. These two policies differ in how well they are trained —
one is early stopped at epoch 125 while the other is stopped

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 28,2024 at 19:11:33 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3395624

at epoch 350. Their performances can thus be identified from
the blue curve in Fig. 2.

With datasets collected from these BPs, we summarize the
offline RL experiment procedure as follows.

1) Choose a BP mg from all available BPs.

2) Run 7g on the environment to collect a dataset Dy,.

3) Train policy 7y using an offline RL algorithm (see next
subsection) on the dataset Dy .

We remark that the dataset collected in Step 2) may have
poor quality because the corresponding BP may not achieve
good performance. For example, as we see from Fig. 2, the
four rule-based policies all have significant performance gaps
compared with the well-trained online RL. We are interested
in evaluating whether a “good” RL policy can be trained from
datasets that may come from “bad” BPs.

In the online RL training phase, we utilize a shared pool
of 20 distinct training environments, each characterized by
unique AP and UE topologies, generated via different random
seeds. This pool is also employed during the offline data
collection phase. Here, we execute 5000 episodes for each BP,
with each episode comprising 200 steps, cumulatively yielding
1 million trajectories per policy. Consistently, at the onset of
each episode, we randomly select an environment from this
pool, as detailed in Section IV-B, ensuring uniformity in our
environment sampling strategy across both online training and
offline data collection phases.

B. Offline RL for User Scheduling

Four state-of-the-art model-free offline RL algorithms are
considered for solving the user scheduling RL problem.

« Behavior constrained Q-learning (BCQ) [17]. The key
idea of BCQ is to limit the actions for the policy to those
already in the dataset or in the neighborhood of the observed
actions. More specifically, BCQ enforces the following
restrictions to optimize the reward: (1) distance between the
selected actions and those in the dataset should be small,
and (2) the new action should visit the existing states in
the dataset. We also follow the same approach of training
a variational auto-encoder (VAE) to avoid the complicated
estimation of action distribution.

« Conservative Q-learning (CQL) [18]. Unlike BCQ which
explicitly disallows the actions to be too far away from those
in the dataset, CQL introduces a regularization term to the
reward such that unseen actions incur a larger loss. In [18],
the authors adopt the KL-divergence as a measure for the
regularization to punish actions that are too far away from
those in the dataset. Compared with BCQ, CQL incorporates
conservative exploration in the loss function and is easier to
implement and update.

o Implicit Q-learning (IQL) [19]. The previous two methods
either explicitly constrain the actions to be in-distribution or
regularize the loss values. IQL is a different approach that
treats the state value function as a random variable and then
utilizes expectile regression [42]. Practically, IQL is also
easy to implement by changing the objective to a modified
SARSA-type one.

+ Re-visiting behavior regularized Actor-Critic (ReBRAC)
[43]. While maintaining a regularization term in the loss of
actor and critic networks in offline RL is commonly used.
ReBRAC introduces an active weight to these regularization
terms, which significantly improves the performance of
offline RL on some datasets. The network structure of
ReBRAC largely follows the previous offline RL works.

In order to address the issue of distributional shift, all four
algorithms share the core principle of conservative exploration
[44]. These algorithms differ in how they adjust the standard
RL training procedure to fit the offline dataset. Hence they are
not sensitive to the specific (deep) RL structure as long as it is
off-policy. In our experiments, we use the same Actor-Critic
structure as used in the online RL experiment.
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Fig. 3. Experiment result with different SOTA offline RL algorithms on an
expert dataset, where the expert dataset is collected using the best online RL
policy obtained from Sec. IV-B. All experiment results are conducted with 10
independent runs and evaluated on the same set of 10 validation environments
as the online RL training.

Evaluation of behavior policies. To compare the training
performance of offline RL methods with various behavior
policies, we deploy the behavior policies in the same eval-
uation pool in Section IV-B. We then test each of them for
10 episodes across all evaluation environments and compute
the average reward. This average value is represented as a
straight line in the plots of this section. Notice that we define
one ‘epoch’ in our offline RL experiment as a training of 5000
batch updates, with the batch size of 200. This definition will
align the data samples encountered by both online RL and
offline RL in one ‘epoch’ to be the same. This definition of
epoch stays consistent throughout the offline RL experiments.

High-quality dataset. In this test, we deploy the best online
RL policy (see Sec. IV-B) as the behavior policy and collect
one million trajectories as the offline dataset. In the offline
RL experiments, a single epoch stands for 5,000 mini-batch
updates, and each batch contains 200 data trajectories. The
results are presented in Fig. 3, where we also include the
original online RL performance (blue curve) from Fig. 2 for
comparison. We can see that all three offline RL algorithms
are data-efficient — they have faster convergence than online
RL. This is intuitively reasonable as online RL needs extra
exploration while offline RL only needs to sample within the
dataset. However, we also notice that all the algorithms con-
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verge to approximately the same final performance, indicating
that offline RL does not improve (much) over a high-quality
behavior policy.

Low-quality dataset. It is natural to ask whether offline
RL can produce a good policy when the dataset is of lower
quality. To answer this question, we experiment using rule-
based and the early-stopped online RL as behavior policies.
While we also consider ReBRAC, a more advanced algorithm
for offline RL, we observe only marginal improvements over
IQL in our task. Moreover, ReBRAC introduces an additional
hyper-parameter that requires tuning, adding complexity to the
process. Therefore, for simplicity, we restrict to IQL as the
offline RL algorithm for the rest of the paper since it has
the second-best performance among all algorithms and also
avoids the need for extensive hyper-parameter selection. The
results are given in Fig. 4. We see that IQL is able to improve
the offline RL performance over the baseline of each behavior
policy, but this improvement is still limited. It is clear that
the performance of the offline RL policy is restricted by the
original behavior policy, which has motivated us to propose a
new idea of mixing several low-quality datasets to boost the
offline RL performance in Section VI.

Impact of dataset size. Understanding the impact of dataset
size on offline RL performance is crucial in practice. We
test this by varying the dataset size from 100,000 to 5
million trajectories using the expert BP to collect datasets. The
comparison is shown in Fig. 5. We can see that insufficient
data can significantly impact the performance of offline RL.
This gap reduces as we gradually increase the sample size
from 100,000 to 500,000, where all four methods share a
compatible performance compared to the online RL baseline.
Notably, when the dataset size reaches 1 million, offline RL
performance closely mirrors that of online RL. Beyond this
point, from 1 million to 5 million trajectories, the benefits of
increasing dataset size diminish, although they do not vanish
entirely. This trend is consistent across all four state-of-the-
art (SOTA) offline RL algorithms tested in the experiments,
leading to the conclusion that while larger datasets generally
enhance offline RL training, there exists a threshold beyond
which additional data yields diminishing returns.
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1QL (ITLinQ)
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Fig. 4. Testing offline RL with datasets generated from different behavior
policies. All the horizontal dash lines stand for the average performance of
the behavior policy over a single episode’s evaluation over all validation
environments. The training results using datasets collected from different
behavior policies are compared.
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Fig. 5. Testing result with different amount of data in the dataset. Ranging
from 100, 000 trajectories to 5,000,000 trajectories. All other experimen-
tal results, unless explained separately, are tested with a dataset size of
1,000, 000 trajectories.

VI. OFFLINE RL WITH MIXTURE DATASETS

A. Mixture Datasets from Multiple BPs

The previous results demonstrate the potential of offline RL
for the user scheduling problem in wireless RRM, but also
suggest that the gain can be limited by the adopted behavior
policy that is used to collect the dataset. The key open problem
we would like to answer is the following.

Can we train a high-performance offline RL policy using
datasets from low-performance behavior policies?

We answer this question positively by proposing a novel
offline RL solution. Our key new idea is that although the
dataset generated by a single low-performance BP may not
contain enough information to learn a near-optimal RL policy,
the cumulative dataset from multiple low-performance BPs
may have sufficient diversity to cover the (near-)optimal state-
action pairs, although each BP only covers a portion of them.
Specifically, the mixture dataset is created with the following
procedure.

1) For a given set of L BPs Il = {mj, 73, - , 7} }, generate
an offline dataset for each BP following the procedure in
Section V-A. Evaluate Rmrmg for each BP [ according to
Eqn. (6).

2) Select data samples from each BP’s dataset uniformly at
random to create the final dataset D. The portion of data
samples from BP [, denoted as Pﬂzf, should intuitively be
proportional to the quality of this BP. One such allocation
mechanism, which is adopted in our experiment, is

exXp (Rscore,ﬂ'g)
P = =1

e ny:l €xXp (RSCOI‘e,ﬂ'E}) 7

3) Use the final dataset D to train the offline RL policy.

We evaluate this solution using the same experimental
setting as in Section V, and report the results in Fig. 6. We
consider two different combinations of BPs, both with L = 4.

1) Mixed-RL: “bad” online RL (trained with 125 epochs),
Greedy, TDM, and Random.
2) Mixed-ITLinQ: ITLinQ, Greedy, TDM, and Random.
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To have a consistent comparison, we adopt the same data
allocation' for both cases: online RL / ITLinQ (50%), Greedy
(20%), TDM (20%), and Random (10%). The results are
plotted in Fig. 6. We can see that although the trajectories
come from low-performance BPs, using the mixture dataset
leads to a significant reward improvement for offline RL. In
fact, Mixed-RL can almost converge to the optimal online RL
performance as shown in Fig. 6, and Mixed-ITLinQ is only
slightly worse. Both outperform all their individual BPs by
noticeable margins. These results demonstrate that even with
low-performance BPs, we can still leverage the offline datasets
to achieve near-optimal RL performance.

Why selecting ITLinQ and RL-125 as basic BP methods?
We choose ITLinQ and RL-125 as the foundational BPs for
our mixed dataset due to their distinct characteristics and
performances. ITLinQ stands out as the most effective rule-
based method, consistently outperforming other rule-based
baselines. RL-125 is a representative early stopped online RL
policy, which is commonly used in offline RL data collection
for creating sub-optimal quality datasets [45]. Our action
behavior analysis, illustrated in Fig. 7, shows that despite sim-
ilar rewards, ITLinQ and RL-125 exhibit different behaviors.
ITLinQ selects users effectively but lacks the strategy to power
off when unhelpful. On the other hand, RL-125, with a more
distributed action approach, learns when to disengage. The
combination of these distinct strategies in the dataset mixture
allows ITLinQ to benefit from TDM insights and RL-125 from
Greedy strategies, suggesting a potential performance gain that
will be further discussed in the subsequent section.
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Fig. 6. Testing offline RL with a mixture dataset. where the mixed dataset
consists of RL-125 / ITLinQ (50%), Greedy (~20%), TDM (~20%), Random
(~10%) of the data Results are validated across the same 10 validation
environments as before.

B. Mixture Dataset with Varying Combinations

In our initial dataset mixture experiment, we assume strin-
gent storage constraints, restricting the mixed dataset to
one million trajectories. Recognizing that practical scenarios
might not always prioritize storage limitations, we expand
our experiment to encompass different mixtures of datasets
to assess performance implications.

'Note that online RL-125 and ITLinQ have very similar performances;
hence their allocations are the same.
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Fig. 7. The frequency of selecting certain users or turning itself off for an
AP, showing the different behavior of these two selected BPs.

TABLE 1T
TEST OF DIFFERENT BP DATASET MIXTURES

Mixture Type Average reward
Original mixture (RL-125) 1.383 +- 0.035
Original mixture (ITLinQ) 1.332 +- 0.051

Full mixture 1.435 +- 0.032
Mixture w/o RL-125 1.386 +- 0.041
Mixture w/o ITLinQ 1.401 +- 0.025
Mixture w/o Greedy 1.412 +- 0.031

Mixture w/o TDM 1.405 +- 0.032
Mixture w/o Random 1.431 +- 0.028

As outlined in Table II, we explore various combinations of
data mixtures. We designate our original mixture, constrained
by a 1 million data samples limit, as the ‘Original mixture’.
This is compared against a comprehensive mixture comprising
all suboptimal datasets (RL-125, ITLinQ, Greedy, TDM, and
Random) amounting to a total of 5 million trajectories. To
discern the individual contribution of each dataset, we sequen-
tially remove one dataset at a time from the complete mixture.
These variations are referred to as ‘Mixture w/o [xxx]’ in the
table. This methodology allows us to not only confirm the
advantages of integrating additional data but also to evaluate
the relative importance of each behavior policy’s dataset within
the context of the fully mixed dataset.

The results from these varying mixtures are presented in
Table II, which indicates that enhancing the dataset size can
elevate the performance gained from the mixed suboptimal
dataset to levels nearing those attained by the offline RL
using an expert dataset. This reveals that the performance of
the sampled dataset mixture can be amplified by increasing
its size. Our theoretical analysis in Section VII delves into
explaining this phenomenon. While expanding a single offline
dataset (Fig. 5) might sometimes yield limited improvements, a
combination of datasets offers distinct advantages. It is evident
from our findings that among all the suboptimal behavior poli-
cies, RL-125 contributes most significantly to offline training
performance, whereas the Random dataset contributes the least
impact.

VII. THEORETICAL ANALYSIS

In this section, we provide some theoretical insights to
explain the empirical observations in Sections V and VI, espe-
cially performing offline RL with one and mixture datasets. In
particular, the concept of data coverage is leveraged as a key
tool to obtain these theoretical insights, which is introduced
in the recent offline RL theory studies [20], [21].
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To gain some fundamental intuitions, we focus on the basic
tabular MDP case, with |S|,|A] < oo and v = 1. Also,
to facilitate discussions, for the MDP M, we denote the
deterministic optimal policy for one MDP as 7* and the value
function of a policy mas V(m) = E[}_,c (7 Yire(se, ar)| M, 7,
where the expectation is over the randomness in the induced
trajectory of m on M. Furthermore, a policy 7 is called &-
optimal if V(7*) — V(7) <e.

A. Offline RL with One Dataset

The key observation from experimental results in Section V
is that when performing offline RL with one dataset collected
from one behavior policy, the learned performance is often
limited, i.e., it cannot approach the optimal performance. To
formalize this, we denote the considered behavior policy as p
and define its single-policy coverage coefficient as follows:

ds (s, a)
max 5 ,
(s,a,t)€Sx Ax[T] df (8, a)

*

= (12)
where d} (s, a) and df (s, a) are probability of visiting the state-
action pair (s, a) at step ¢ induced via the optimal policy 7*
and behavior policy p, respectively. It can be observed that a
smaller C* indicates that the behavior policy is more similar
to the optimal policy. In the worst case, if the optimal policy
would visit one state-action pair (s, a) that is not covered by
the behavior policy, i.e., dj(s,a) > 0 but d?(s,a) = 0, the
coverage coefficient would be infinity i.e., C* = oo.

Intuitively, when the behavior policy provides poor coverage
of the optimal policy, i.e., a large C*, the offline RL would be
difficult since the behavior policy can only provide limited
information about the optimal policy, which matches our
observed experimental results. To capture this phenomenon,
recent theoretical RL analyses [20], [21], [46] have established
the corresponding hardness results: in the worst case, learning
an e-optimal policy 7 when the coverage coefficient is C*
would require the number of available trajectories contained
in the dataset K to be

C*T3S8
K>Q ( 5 ) . (13)
€
It can be observed that with a large C'*, i.e., poor coverage, a
large offline dataset is required to obtain a good learned policy.
Moreover, if C* = oo as aforementioned, even an unlimited
amount of available offline data is insufficient for offline RL
algorithms to approach the optimal policy, which explains the

observations in Section V.

B. Offline RL with Mixture Datasets

With the limitations of performing offline RL with one
dataset collected via one behavior policy explained, we then
move to discuss the theoretical insights of using a mixture
of datasets. Especially, we consider that there are L available
datasets {D1, Do, -+, D}, whose aggregation is denoted as
D. These datasets are of size { K1, Ko, -+, K1} and collected
from behavior policies {pi, p2, - ,pL}, respectively. Then,
the following theorem indicates that the theoretical framework
of pessimistic-value iteration (PEVI), recently proposed in

[20], [21], [47], can effectively learn from the mixture of
datasets. The details of PEVI are provided in Algorithm 1
for completeness.

Theorem 3. With probability at least 1 — 6, the output policy
7 of PEVI satisfies that

V(r*) = V(7)< O <\/C**T4S/ ZZE[L] Kl) . (19

where

S Y e Kidi (s, a)

c* = max

(s,a,t)ESX AxX[T] Zle[L] Kid?' (s,a)’

15)

It can be observed that as long as the newly defined collec-
tive coverage coefficient is finite, i.e., C* < 0o, with enough
amount of data, the optimal performance can be approached.
Furthermore, to have C* < 00, it is sufficient to guarantee that
for each (s, a,t) € Sx Ax[T] that d; (s,a) > 0, there exists a
behavior policy p; such that df’(s,a) > 0. In other words, the
behavior policies can collectively cover the optimal policy. We
note that this is a much less stringent requirement than having
one single policy covering the entire optimal policy itself as
in Section VII-A. This result also explains our observations in
Section VI that a good policy can be learned from multiple
poor behavior policies since they may provide good collective
coverage.

Proof of Theorem 3. From Lemma B.3 of [21], with proba-
bility at least 1 — 4, it holds that

Vi) -vim=0> Y

te[T] (s,a)eESxA

dy (s,a)T¢(s,a) |,

(16)

with T'4(s,a) as a confidence interval and set to be
cy/T?log(SAT/8)/Ni(s,a) V1 as in Algorithm 1, where ¢
is a universal constant and N¢(s, a) is the count of visitations
on the state-action pair in the overall dataset D. Note that the
effectiveness of this confidence bound can be proved following
the standard Hoeffding inequality as in Lemma B.1 of [21].

Furthermore, denoting K = Y, eir) K and di(s,a) =
>ien Ki d?" (s, a) /K with the multiplicative Chernoff bound,
it holds that

f(d}(s,a)) >1—exp <;Kdt(s,a)> ,
(17)

1
P (Nt(s,a) > 3

which means when d, (s, a) > 8log(SAT/§)/K, with proba-

bility at least 1 — <5, it holds that

. Kdy(s,a)
Kdi(s,a) 2 gi0eisaT 5y
(18)

Ni(s,a) V1> Ni(s,a) >

N |

which is also naturally guaranteed when di(s,a) <
8log(SAT/d)/ K. Thus, using a union bound, with probability
at least 1—4, this inequality holds for all (s, a,t) € SxAX[T].
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Finally, we can obtain that

a -~ T2
Vi) -v@E) <o Y. > di(sa)]| =
te[T] (s,a)ESX A Kdy(s,a)
®) -
<0 Z > Vi (s, 7 (s))

te[T] s€S
2o (m) ,
(19)

where inequality (a) is from the definition of I';(s, a), inequal-
ity (b) is from the definition of C*, and inequality (c) is from
the Cauchy-Schwarz inequality and the deterministic optimal
policy. The theorem is then proved. O

We note that the sufficiency of collective coverage broadly
applies to different offline RL settings and designs. For exam-
ple, besides the model-based PEVI, the following result can
be established for the model-free LCB-Q algorithm in [48] by
adapting its Theorem 1.

Proposition 4. With probability at least 1—4, the output policy
7 of LCB-Q (Algorithm 1 in [48]) satisfies that

V(r*) - V(x) <O (\/C’*T5S/ ZZG[L] Kl> . (20)

where C* follows the definition in Eqn. (15)

Moreover, similar results hold beyond tabular MDPs. The
following proposition, modified from Corollary 4.5 in [47], can
be established for linear MDPs considering the features of each
state-action pair (see Assumption A in [49] and Definition 4.3
in [47] for a complete definition). It can be observed that the
parameter C%, serves as the same role as C* in measuring the
collective coverage of behavior policies {p1,- -, pr} for the

optimal policy 7*.

Proposition 5. Considering a linear MDP with feature map-
ping ¢(-,-) : S x A — R?, with probability at least 1 — 4, the
output policy 7 of the linear MDP version of PEVI (Algorithm

2 in [47]) satisfies that
(\/ T Y ) @
if there exists a constant Cy;, < oo such that for all t €

[T, Cf, Zle[L] Ki By [6(si,a1) " $s1,00)] = ZZE[L] K -
Er- [¢(St;at)T¢(5tvat)]

V(r®) = V(n) <

VIII. ENSEMBLE-BASED MIXTURE ALGORITHM

Our previous experiments, as depicted in Figs. 6 and 4,
reveal that despite a limited final performance, offline RL
applied to a single-source dataset (using one BP) tends to
converge faster than when using mixed datasets (using mul-
tiple BPs). We hypothesize this outcome is at least partially
attributed to the fact that the mixing dataset does not exploit
any information related to the behavioral policies. This obser-
vation and assumption led us to develop an ensemble-based
method to accelerate the convergence speed by leveraging the

Algorithm 1 PEVI [20], [21], [47]

1: Input: Dataset D = {D; : [ € [L]}

2: V(s,a,8',t) € Sx AxSX[T], obtain N¢(s,a,s’), N¢(s,a)
as the number of visitation on (s,a,s’,t) and (s, a,t) in
D:; then calculate P;(s'|s,a) = Ny(s,a,s')/(Ni(s,a) V1)
Initialize Vi1 (s) < 0,¥s € S
fort=T,T—1,---,1do

for (s,a) € S x A do
Set T'¢(s,a) < ¢
Set

Qu(s,a) « r(s,a) + Z Py(s'|s,a)Vig1(s') — Ti(s, a).
s’eS

T2 log(SAT/9)
Ny(s,a)V1

A

end for
: for s € S do
10: 7ie(s) «— argmax,e 4 Q4(s,a)
11: Vi(s) < Q:(s, ()
12: end for
13: end for
: Output: Policy 7

—_
~

information embedded in different behavior policies. This new
method is detailed in Algorithms 2 and 3.

Algorithm 2 Training for Ensemble Policies
Require: N datasets collected by different behavior policies
{D1, Dy, ..., Dy}, Offline RL training algorithm algo,
Batch size b
1: Initialize offline
{m1, T2, ., TN }
2: fori=1to N do
3 while 7; is not converged do
4: Sample a minibatch b from D;
5: Update m; using algo
6
7
8

RL policies for each dataset

end while
: end for
: return set of policies {7y, w2, ...

,TrN}

In the training phase, our algorithm independently trains N
policies, leveraging the advantage that convergence on indi-
vidual suboptimal datasets is typically faster than on a mixed
dataset These separately trained policies are subsequently
utilized to construct an ensemble policy in the inference phase.

As delineated in Algorithm 3, in the inference phase, we
iterate through the datasets to compute a similarity measure
for each behavior policy. Each policy is then assigned a weight
based on this similarity, which is defined in terms of the L2
norm. The ensemble process integrates these weighted policies
to form a comprehensive policy. The action is subsequently
determined by this ensembled policy.

To thoroughly evaluate the effectiveness of the ensemble
method, we conduct a comparison between the proposed
ensemble method and the data mixture method. Specifically,
the ensemble method utilizes four datasets, namely RL-125,
ITLinQ, Greedy, and TDM, as mentioned earlier. To ensure
a fair comparison, we combine all the datasets during dataset
mixture so that both methods have an equal size in total data
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Algorithm 3 Ensembled Inference
Require: N datasets collected by different behavior policies
{D1, Ds, ..., Dn}, Policy set {my,m2,..., TN}

1: Receive state for inference s;

2: for i =1to N do

3: Set minimum distance in dataset 7 as d; = inf
4

5

for States s,, in D; do
Compute d; = min(d;, ||s, — st||)
most similar state in the dataset
6: end for
7: end for
8
9

> Find the

. Compute w; = e~% > Larger distance — smaller weight
: Ensemble all policies meps = Y, w; * m;(s¢)
10: Choose action from this new policy a; = argmax meys

samples. Furthermore, in each epoch, we have 5,000 mini-
batch updates in the offline RL training. For a fair comparison
of the ensemble method, we equally distribute these 5,000
mini-batches to 4 policies, meaning that each policy has 1,250
mini-batch updates in one epoch in the ensemble training
phase. The testing result, as depicted in Fig. 8§, aligns with
our expectations: the ensemble-based algorithm, supplemented
by additional behavior policy information, converges approx-
imately 30% faster than training on the mixed dataset, while
maintaining comparable performance.

20.8:
o
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o
0.61
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0.0
0 50 100 150 200 250 300 350

Training Epochs
Fig. 8. The training efficiency of the ensembled policy.

While the ensemble method outlined above offers several
benefits, it is important to also acknowledge areas for improve-
ment. One aspect to consider is the complexity and efficiency.
The necessity of iterating through datasets to determine sim-
ilarity weights can lead to a slowdown during inference, as
evidenced in Table III. However, it is worth noting that this
increase in inference time is counterbalanced by the faster
convergence during training on individual datasets compared
to a mixed dataset. Additionally, our observations from Fig. 8
indicate that the final convergence of the ensembled policy is
marginally less optimal compared to a dataset mixture policy.
This could potentially be attributed to a reduced level of
exploration in the absence of a mixed dataset.

To address these limitations, we outline a few promising
research ideas in the following for possible future research.
First, directly learning an ensembled policy, as opposed to
learning individual policies and then ensembling them, may

improve execution efficiency. Furthermore, the training ef-
ficiency can be enhanced by transitioning to a distributed
training framework, where we have different BPs (or their
datasets) at different clients.

TABLE III
COMPARISON OF INFERENCE TIMES FOR SINGLE AND ENSEMBLED
POLICIES

Policy Type Inference Time/sample (ms)
Single Policy 29
Ensembled Policy 1035

IX. OFFLINE-TO-ONLINE FINE-TUNING WITH ADAPTIVE
REGULARIZATION

So far, we have focused exclusively on offline RL, where
online interaction is strictly prohibited. In reality, however,
once the offline policy is obtained, there can be an offline-
to-online adaptation phase where the offline policy is further
optimized to address the issue of potential policy collapse
in an unfamiliar environment. Some SOTA offline RL works
[19], [43] have discussed the effect of offline-to-online fine-
tuning, and compared their post fine-tuning efficiency. How-
ever, no details of how the fine-tuning is conducted were
reported. In other works that concentrate on the fine-tuning
process, a significant challenge in fine-tuning methods is the
trade-off between the possible performance degradation due
to optimistic exploration [37] and the conservative behavior
resulting from the conservative policy updates [35]. In the
method proposed in [35], the authors control the stepsize of the
policy optimization during fine-tuning with Langrangian-style
optimization and this method uses Lagrangian dual variable ~y
to control the level of conservativeness, as shown in Eqn. (22),
where 6 and 6’ stand for the parameters of the actor network
and the target actor network in a Soft Actor-Critic (SAC) style
algorithm.

maxmin B, 5(Qu(s. @) — 1fe = (a = m:()%]].a = mo(s).

(22)
While the approach in [35] partially addresses the conservative
limitation, it still retains some level of pessimism throughout
the fine-tuning process. Sustaining this pessimistic perspective
may not be optimal, which motivates us to employ regu-
larizers akin to Proximal Policy Optimization [40] with a
progressively decreasing regularization weight during fine-
tuning. This strategy ensures the initial conservatism to prevent
performance degradation, while fostering exploration as the
policy solidifies. The updated objective function encapsulating
our methodology is delineated as:

max E; [Qy(s,a) —v[(a — mp(s))?]],a = m(s). (23)

In our method, v decays by half every 25 epochs. This
modification ensures early-phase conservatism to counteract
instability and subsequently minimizes conservativeness to
amplify the online performance.

The key difference between our algorithm and prior base-
lines is the dynamic regularization weight. Initially, we limit
exploration to ensure the online policy mirrors the offline one.
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Fig. 9. The comparison of fine-tuning algorithms where we have two offline
RL agents in the experiment: one at 125 epoch while the other from 200
epoch

As fine-tuning advances, these limits are gradually eased. We
hypothesize that our method offers better safety levels compa-
rable with static regularization but with enhanced performance
after fine-tuning.

This hypothesis is supported by the results in Fig. 9. We
evaluate the performance of our fine-tuning techniques on
two offline agents, from the 125th and 200th training epochs
respectively. Our observations indicate that:

1) Fine-tuning of agents with better initial performances is
easier than those with poor early performances.

2) With a larger regularization term -y at the beginning phase,
our fine-tuning method had a slower convergence speed
compared to SAC-C. This slow-down behavior tends to
be more significant with a worse starting point — where
the system is regularized to a worse starting point.

3) Both strategies experience an initial performance drop,
which could be mitigated with stronger safety constraints,
at the cost of compromised fine-tuning results.

We also noted that refining a high-performing agent is more
straightforward than a suboptimal one, with the latter demand-
ing more online training for satisfactory results.

X. DISCUSSIONS

Difference between simulator and real-world system.
While our experiments show promising results, they are con-
ducted in a simplified simulator with certain limitations. To
name a few:

o We use a single pattern pathloss module, whereas real-
world pathloss can be more complex.

e Our indoor environment simulation does not include
obstacles, which are common in real-world scenarios.

o The system focuses solely on user scheduling, omitting
other real-world resource management aspects like power
and bandwidth allocation.

Generalization ability of dataset mixture. While this work
focuses on the dataset mixture of user scheduling problems,
the recent work [50] has deployed a similar method under the

network slicing use case, showing a similar near-optimal pol-
icy performance using only sub-optimal datasets. Furthermore,
the offline RL work in robotics [51] uses data augmentation
methods to increase the data coverage, which shares the same
philosophy with our dataset mixture approach.

Computation efficiency. While our proposed RL methods
demonstrate superior performance over rule-based approaches,
it is important to note that they require additional training. The
training for the neural network, whose structure is detailed
in Appendix A, takes around 40 hours on a single Nvidia
RTX 3090. However, a two-layer neural network is expected
to exhibit comparable inference times to rule-based methods
when deployed on modern devices after training. Besides the
training cost, the ensemble model, though faster in training,
introduces greater computational complexity. This is primarily
due to its search mechanism; see Section VIII and Table III.

Performance summary. Summarizing our method’s perfor-
mance, we find that the direct application of offline RL with
an expert dataset is effective for the considered RRM problem
and is a more stable solution. However, when equipped with
only sub-optimal datasets, the dataset mixture strategy nearly
matches the performance of online RL but requires 40%
more training time. The enhanced ensemble method, while
improving training efficiency, sacrifices 5% performance and
incurs about 35 times slower inference speed.

XI. CONCLUSION

In our work, we have presented offline RL as a potential
solution to the wireless RRM problem, using a specific wire-
less user scheduling problem as a case study. We assessed
various representative offline RL algorithms for their long-term
performance and convergence rate in the wireless problem.
Notably, offline RL performance is significantly influenced by
the quality of the behavior policy used for data collection.
Motivated by this key observation, we introduced a unique
offline RL strategy that mixes datasets from diverse behavior
policies. Our findings indicated that this method can produce
a near-optimal RL policy even when all contributing behavior
policies are suboptimal. Additionally, we enhanced our data
mixture technique into an ensemble-based method, utiliz-
ing state similarity for action determination. This ensemble
method converges faster than the original dataset mixture,
with a marginal performance decline as a trade-off. We also
experimented with an adaptive fine-tuning approach, enabling
offline RL agents to transition to superior online policies using
minimal online steps. For possible future research directions,
we note that our method relies on a centralized offline RL
framework for RRM policy generation, which may hinder
scalability. Future research could explore multi-agent offline
RL solutions and potentially federated learning for training
across diverse data sources.

APPENDIX

In the appendix, we discuss how we set up the wireless
environment in the simulation and perform RL training in
detail.
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A. Wireless Environment

We implement a Python-based wireless network simulator
for the experiments, which can be entirely recreated using

TABLE V
HYPER-PARAMETERS FOR DIFFERENT OFFLINE RL ALGORITHMS

. . General Discount factor ~: 0.99
the numpy Python package. The setup involves the following Optimizer: Adam
. 7 :0.005
components: BCQ gy
Actor Ir: 3e — 5
Critic Ir: 3e — 4
TABLE IV cQL Behavior cloning steps: 0
THE NETWORK STRUCTURE FOR ALL OFFLINE RL ALGORITHMS a3
Actor [r: 1e — 4
Tnput dim: 24 1QL Critic gf ge—d
Actor Hidden dim x2: 256 - 0.7
Output dim: 256 Tigl: -
: Actor Ir: 1le — 4
Input dim: 280 Critic Ir+ 1e — 3
Critic Hidden dim X 2: 256 ReBRAC 81 :0.01
Output dim: 1 Bt 0.1
Input dim: 24 7'26 0'05
BCQ (Q-learning style) | Hidden dim x2: 256 —
Output dim: 256

AP and UE generation: APs are randomly generated
with a minimum distance of 10 meters between them.
If two APs are too close, one is randomly picked and
regenerated. UEs are then generated ensuring that the
minimum initial distance from any AP is greater than
1 meter. These positions are controlled by random seeds,
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