

Leveraging Deep Learning with Progressive Growing GAN and Ensemble Smoother with Multiple Data Assimilation for Inverse Modeling

Michael Tetteh^a, Liangping Li^{a,*}, Arden Davis^a

^a*Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, 57701, USA*

Abstract

The incorporation of hard data in geostatistical modeling is crucial for enhancing the accuracy of interpolating or stochastically estimating subsurface spatial features. The hard data at specified points in the model domain serve as a guide in optimizing the unknown parameters to follow the patterns of the hard data. Recently, a novel approach to solving hydrogeologic/reservoir modeling problems has emerged by using deep generative models, specifically generative adversarial networks (GANs), to generate realistic and diverse images of channelized aquifers. This subsequently can be coupled with [inverse models](#) to solve parameter estimation problems. This study focused on using an improved GAN, called a progressive growing generative adversarial network (PGGAN), conditioned with hard data to perform parameter estimation of complex facies models by coupling an ensemble smoother with multiple data assimilation (ES-MDA). First, the PGGAN was trained to an image with 128×128 resolution. The trained PGGAN was used to generate hydraulic conductivity fields when fed an ensemble of latent variables and hard data. The ES-MDA then was used to update the latent variable with the help of hydraulic head data obtained from the groundwater model. [The approach was tested on synthetic hydraulic conductivity data.](#) Results show that this approach was able to perform efficient estimation of an unknown facies model domain. [Additionally, the proposed method was applied to a different test case of a facies model exhibiting different statistical characteristics.](#) The results were satisfactory, demonstrating that the method is not constrained to the particular hydraulic conductivity fields introduced in the generator's training.

Keywords: Generative adversarial networks, Ensemble smoother, Facies modeling, Deep learning.

^{*}Corresponding author
Email address: Liangping.Li@sdsmt.edu (Liangping Li)

¹ **Contents**

²	1	Introduction	3
³	2	Methodology	7
⁴	2.1	Forward Modeling	7
⁵	2.2	Progressive Growing of GANs	8
⁶	2.3	Training of PGGAN conditioned to hard data	9
⁷	2.4	Ensemble Smoother with Multiple Data Assimilation	10
⁸	3	Synthetic Examples	13
⁹	3.1	Cases	14
¹⁰	3.1.1	Case 1: Conditioning PGGAN on hard data only	14
¹¹	3.1.2	Case 2: Coupling PGGAN and ES-MDA conditioned to only hydraulic head data . .	14
¹²	3.1.3	Coupling PGGAN and ES-MDA conditioned to hard data and head data . .	14
¹³	3.1.4	Methods of Evaluation	15
¹⁴	3.2	Results	17
¹⁵	3.2.1	Analysis of PGGAN conditioned to hard data	17
¹⁶	3.2.2	Influence of head conditioning data	18
¹⁷	3.2.3	Random image as reference field	18
¹⁸	4	Reference field outside the training data	19
¹⁹	5	Conclusion	20

20 **1. Introduction**

21 The spatial distribution of rock properties within an aquifer/reservoir medium significantly influences the
22 movement and transfer of fluids. Early research relied on a limited amount of data for defining the static
23 properties of subsurface reservoirs or aquifers, like facies types, facies proportions, and facies orientations.
24 Similarly, it also aimed at simulating dynamic data, such as the hydraulic head of an aquifer. Consequently,
25 various geostatistical approaches were developed for creating geological models. Early stages of geomodeling
26 used two-point statistics (i.e., mean and covariance) to capture the statistical properties of the data distri-
27 bution (Cressie, 1990). Two-point statistics are limited in their ability to depict the variables following a
28 Gaussian distribution, a presumption that does not always align with the complex nature of hydrological
29 systems (Dupont et al., 2018). In addition, two-point statistics do not capture higher-order moments or
30 non-linear relationships between variables, which can be important in hydrologic modeling. Multiple-point
31 statistics (MPS) have been proposed to model the spatial patterns of variables at a larger scale in order to
32 overcome the limitations of two-point statistics (Caers and Zhang, 2004). By conditioning the simulation on
33 a set of training images or patterns, MPS can capture higher-order moments and non-linear relationships be-
34 tween variables (Mahmud and Baker, 2014). **While the application of MPS in hydrological modeling has been**
35 **explored in numerous papers, addressing the computational complexities associated with high-dimensional**
36 **space remains an ongoing research area (e.g., Tahmasebi, 2018; Zuo et al., 2022).**

37 Deep learning is creating a revolution in science and related industries. Deep learning is a mathematical
38 model that automatically learns a new parametric representation of the data that are fed to them and, in
39 some cases, enables inverse mapping from the learned representation to the original data space (Goodfellow
40 and Courville, 2016). Generative adversarial networks (GANs), developed by Goodfellow et al. (2014),
41 are a type of deep learning model that has gained popularity in recent years because of their ability to
42 generate high-quality images and videos that are often indistinguishable from real-world samples. GANs
43 have numerous applications, including art, fashion, gaming, and virtual reality, and are quickly becoming
44 an indispensable tool in computer vision and machine learning research, where they currently are used
45 widely in hydrogeology and petroleum engineering for aquifer/reservoir modeling **for parameterization of**
46 **geological facies (Laloy et al., 2018; Bao et al., 2022).** For example, Dubrule and Blunt (2017) employed
47 a GAN to create 3D images of porous media, while Laloy et al. (2017) utilized a variational autoencoder
48 (VAE) to develop a low-dimensional parameterization of binary facies models with latent variable **for inverse**
49 **modeling with Markov Chain Monte Carlo method.** In a subsequent study, Laloy et al. (2018), the same
50 researchers expanded on their initial work by incorporating spatial GANs. Canchumuni et al. (2017) applied

51 an autoencoder to represent binary facies values using continuous variables for history matching with an
52 ensemble smoother. In a later publication, Canchumuni et al. (2018) broadened this parameterization using
53 deep belief networks (DBN). Chan and Elsheikh (2017) employed a Wasserstein GAN to generate binary
54 channelized facies realizations.

55 The application of GANs in the field of hydrogeology has become a promising approach. GANs are
56 employed to produce hydrogeologic facies models, which are subsequently incorporated into groundwater
57 modeling systems and in previous studies, they are linked with **inverse models** for performing parameter
58 **estimations** (Mosser et al., 2018; Laloy et al., 2018). GANs can be used to generate **facies models** that
59 closely mimic the statistical properties of real-world **subsurface data**. One of the major advantages of GANs
60 in hydrogeology is that they have been utilized to generate hydrogeologic facies models and have further been
61 incorporated into groundwater models for estimation of hydraulic properties and prediction of groundwater
62 **flow**. GANs can also be used to generate data for scenarios in which data are limited or unavailable. This can
63 be useful in areas where there are difficulties in accessing monitoring wells or other data sources. Although
64 GANs have shown **successes** in generating realistic **hydrogeologic facies models**, recent work by Bao et al.
65 (2020) revealed limitations when reconstructing channel structures of a reference hydraulic conductivity by
66 using a conventional GAN, conditioned to hydraulic head data and coupled with an ensemble smoother
67 with multiple data assimilation. Their results showed that the method was able to reconstruct the channels
68 of the reference hydraulic conductivity that was generated by the GANs but the method was not able to
69 properly reconstruct the hydraulic conductivity field when the reference hydraulic conductivity was randomly
70 obtained from the training image, even as the **observed** hydraulic head data was increased. In real-world
71 applications, the GAN cannot generate its own reference data points to perform data assimilation. It will
72 be given some limited measured data (e.g., facies type, hydraulic heads, etc.) of a particular area of interest
73 that has not been learned by the GAN, to estimate the parameters of the entire area.

74 The exploration of utilizing deep learning for conditioning hard data, such as facies, has garnered sig-
75 nificant attention in research. In Chan and Elsheikh (2018), they integrated an inference network with a
76 pre-trained GAN to generate facies realizations that are conditioned on facies observations, or hard data.
77 Similarly, Dupont et al. (2018) tackled the challenge of conditioning facies to hard data, employing a se-
78 mantic inpainting approach with GAN. Liu et al. (2018) took a different route by utilizing the fast neural
79 style transfer algorithm as a generalization of O-PCA for generating conditional facies realizations using
80 randomized maximum likelihood. Ruffino et al. (2020) delved into the effectiveness of conditioning GANs
81 with limited pixel values. Their framework introduced an explicit cost term to the GAN objective function,

82 enforcing pixel-wise conditioning. Zhang et al. (2019) adopted a different strategy, utilizing a pre-trained
83 GAN and adjusting weights, along with a "context loss" defined using distance transformation to measure
84 the mismatch between GAN-generated samples and conditioning data. Canchumuni et al. (2019) explored
85 the use of prior realizations from Convolutional Variational Autoencoder and ES-MDA to condition hard
86 data, testing parameterization in synthetic history-matching problems involving channelized facies. Abd-
87 dellatif et al. (2022) proposed SPADE-GAN, a conditional Generative Adversarial Network (GAN) model,
88 designed specifically for generating missing facies proportions based on a dataset of geological images. This
89 model was later employed by Fossum et al. (2023) for performing history matching of reservoir simulation
90 using ensemble-based history-matching methods.

91 The majority of the proposed methods focus on conditioning facies models to hard data by first training
92 GANs or VAEs on facies model realizations. The pre-trained generator is then combined with various
93 approaches like semantic inpainting or geostatistical algorithms. However, Ruffino et al. (2020) took a
94 different approach by directly conditioning hard data to the GAN, allowing the network to learn to generate
95 realizations constrained to the hard data during training through adjustments in the GAN network's
96 weights. Traditional GAN architectures, also known as conventional GANs, generate synthetic images using
97 a single generator and discriminator pair. However, traditional GANs have been criticized for producing
98 low-resolution images that lack detail and are unstable during training (Karras et al., 2018; Song et al.,
99 2021). Progressive Growing GANs (PGGANs) developed by Karras et al. (2018) have recently emerged as
100 a promising alternative to traditional GANs for image synthesis. PGGAN is a technique for training GANs
101 in a more stable and efficient manner. The basic idea is to begin training the GAN on a low-resolution
102 image and gradually increase the image resolution as training progresses. This enables the GAN to learn
103 the image's basic shapes and colors first, and then gradually refine its output to capture more detail and
104 complexity. In a PGGAN, the generator and discriminator initially train on low-resolution images, and layers
105 are progressively added to both networks as the resolution increases. This ensures stability in the training
106 process without disrupting existing layers. One notable advantage of PGGAN is its flexibility to add layers
107 at each resolution, allowing for the incorporation of hard data at different resolution levels. This way, the
108 PGGAN model can learn to generate realizations that honor the specified hard data. Song et al. (2021)
109 effectively incorporated hard data, specifically well facies data, into the Progressive Growing of Generative
110 Adversarial Networks (PGGAN). The generated realizations demonstrated a successful alignment with the
111 provided hard data, indicating a well-conditioned outcome.

112 The ensemble Smoother (ES) by Evensen (2018) is a data assimilation method that is used in hydrology

113 and other fields to estimate the state of a system based on observations and a numerical model. The basic idea
114 of ensemble smoother is to use a set of model runs, called an ensemble, to generate a probability distribution
115 of possible states of the system, and then update this distribution based on observations in order to obtain
116 a more accurate estimate of the true state of the system. The ES algorithm works by first generating an
117 ensemble of model runs, where each run represents a possible state of the system. The ensemble runs are used
118 to generate a probability distribution of possible states of the system, which represents the uncertainty in
119 the model predictions. Next, the observations are incorporated into the ensemble using a Bayesian update,
120 which adjusts the probability distribution to better match the observed data. The ES algorithm can be
121 used to directly estimate the state of a system at any given point in time. Like other variants of Kalman
122 Filter, the parameters and states have to follow multi-Gaussian distributions for optimal solutions (Evensen,
123 2018). The accuracy of the estimates depends on the quality of the observations and the model, as well
124 as the size of the ensemble and its degree of representation. In ES, the entire set of model realizations is
125 combined in a single integration to produce a prediction. Subsequently, the ensemble of uncertain parameters
126 is updated using the “Kalman Filter” equations Stordal et al. (2011), assimilating all data simultaneously.
127 ES demonstrates superior performance in the context of linear dynamical models but shows limitations when
128 applied to nonlinear dynamical models, especially in the context of complex aquifers. The intricate nonlinear
129 interactions within these aquifers can contribute to deviations from gaussian behavior in the observed data..
130 After the introduction of ES for history matching by Skjervheim et al. (2011), two iterative variations of
131 the smoother formulation emerged. The Iterative Ensemble Smoother Algorithm (IES) was proposed by
132 Chen and Oliver (2012), while Emerick and Reynolds (2013) developed the Multiple-Data Assimilation ES
133 (ES–MDA). The iterative nature of these variants addresses some challenges associated with nonlinearity,
134 leading to improved outcomes compared to those achieved with ES alone. Evensen (2018), evaluated two
135 iterative ensemble smoothers for solving inverse problems. The results indicated that ES–MDA performs
136 better as the number of Multiple Data Assimilation (MDA) steps increases. However, achieving convergence
137 with ES–MDA may necessitate a considerable number of MDA steps. On the other hand, Iterative Ensemble
138 Smoother (IES) may require fewer iterations for convergence, but its implementation is separate and may
139 encounter convergence challenges if poorly chosen step length values are used.

140 In a previous study conducted by Song et al. (2023) which employed four latent vector search approaches
141 including IES, a hybrid model combining a conditioned PGGAN and a Convolutional Neural Network (CNN)-
142 based surrogate was employed for reservoir inverse modeling. The aim was to estimate the properties of
143 reservoir facies models. The CNN-based surrogate served as a forward simulator within the inverse model-

144 ing framework. The research approach involved training facies models with channel directions constrained
145 within ± 25 degrees of deviation from the north direction. This constraint was implemented to alleviate the
146 training burden on the surrogate. Hydrogeological facies models are often characterized by high heterogene-
147 ity, with properties varying across space and in different directions. Additionally, these models frequently
148 feature complex channels with intricate relationships, posing a computational challenge for the surrogate to
149 effectively learn them. Previous studies by Bao et al. (2020) utilized ES-MDA coupled with GAN, resulting
150 in improved minimization of observed and predicted data. However, only hydraulic head data are considered
151 in their studies.

152 Building on the previous work from Bao et al. (2020) and Song et al. (2023), the current study integrates
153 the conditioned PGGAN with ES-MDA and utilizes MODFLOW as the forward simulator to integrate facies
154 data as well as hydraulic head data into groundwater modeling. To the best of our knowledge, this is the
155 first study to integrate both hard data and soft data (e.g., head data) into hydrogeological modeling by
156 coupling deep learning and data assimilation algorithms. In order to evaluate the influence of conditioned
157 data (both hard and soft data) on hydrogeological inversions, a sensitivity analysis was also conducted.
158 This involved running various scenarios with an incremental increase in conditioned data. Specifically, the
159 study investigates the ability of the coupled conditioned PGGAN and ES-MDA to generate realistic facies
160 data, capturing intricate geological structures, and enhancing the accuracy of hydrogeologic simulations.
161 Furthermore, we assessed the influence of priors sourced from the training image, as opposed to using a
162 generated image from the trained model, aiming for greater realism in the field.

163 2. Methodology

164 2.1. Forward Modeling

165 The single phase groundwater flow equation can be expressed as follows (Fetter, 2018):

$$\frac{\partial}{\partial x}(K_{xx}\frac{\partial h}{\partial x}) + \frac{\partial}{\partial y}(K_{yy}\frac{\partial h}{\partial y}) + \frac{\partial}{\partial z}(K_{zz}\frac{\partial h}{\partial z}) + W = S_s \frac{\partial h}{\partial t} \quad (1)$$

166 where K_{xx} , K_{yy} , and K_{zz} is the hydraulic conductivity tensors in 3D; h is the hydraulic head; W represents
167 sources and sinks; S_s is the specific storage; x , y , and z represent the coordinates; and t is time. The equation
168 is solved using the finite-difference method in which the aquifer is divided into a number of cells and the
169 head is calculated at each node (Harbaugh et al., 2000).

170 *2.2. Progressive Growing of GANs*

171 The framework of how the generator of the PGGAN was trained is illustrated in Figure 1. The inputs
172 consisted of a 128×1 latent vector, sampled from a uniform distribution ($\mathbf{z} \sim U(-1, 1)$), and hard data
173 (observed data). The hard data were obtained by choosing specific points from the training images. These
174 points represented known well facies at the specified locations. For the purpose of this study, the training
175 images consisted of two facies types. The latent vector first went through a transposed convolution with 4
176 $\times 4$ kernel size. The result is a 4×4 latent size. The conditioned hard data then were downsampled from
177 the original 128×128 resolution to various resolutions to match the image sizes of the resolutions at each
178 stage. For resolution 4, a downsampled 4×4 resolution of hard data was concatenated to the output 4×4
179 latent space produced by the transposed convolution. The result then went through two layers of convolution
180 before it was upsampled to 8×8 resolution. The output went through the same steps to produce $16 \times$
181 16 , 32×32 , 64×64 , and 128×128 resolutions. The final 128×128 resolution went through one more
182 convolution with a 1×1 kernel size to produce a 128×128 image. At each resolution stage, the hard
183 data were introduced in order for the generator to learn to create realistic images with the conditioned data
184 provided.

185 The discriminator took in both the images generated by the generator as well as a batch of real images
186 to determine, with probability, categories that were real or fake images. Figure 1 shows the architecture of
187 the discriminator and how it worked inversely to how the generator worked. For the 4×4 resolution, the
188 images first went through a convolutional layer with a kernel size of 3 and padding of 1, followed by a second
189 convolution with a kernel size of 1. For this study, this process was termed the final block of convolutions in
190 the discriminator. The discriminator also had a general block that contained two convolutional layers with
191 kernel size of 3 and a downsample layer that downsampled the image by a scale factor of 2. This general
192 block was implemented on the subsequent image resolutions during training before we applied the final block.
193 For example, the 8×8 image resolution passed through the general block, and afterward, the output passed
194 through the final block. The 16×16 image resolution went through the general block two times. The 32
195 $\times 32$ image resolution passed through the general block three times. In turn, the 64×64 image resolution
196 passed through the general block four times, and the 128×128 passed through the general block five times.
197 An additional input channel was added to the first convolutional layer of the final block. The purpose of this
198 addition is to calculate the standard deviation of the batch of images that went through the discriminator.
199 This enforced the generator to create output of varied images.

200 *2.3. Training of PGGAN conditioned to hard data*

201 Thirty thousand images with size 128×128 were [randomly cropped](#) from the original training image
 202 (TI) (Zahner et al., 2015) for training (Figure 2). The generator was trained with a batch size of 32 and each
 203 resolution was trained for 42 epochs. Only one GPU was used and the total time for completing training was
 204 66 hours. The Adam optimizer was used to train both the generator and discriminator. The Adam optimizer
 205 was used with $\beta_1 = 0$ and $\beta_2 = 0.99$. The generator and the discriminator both used a learning rate of
 206 0.03. The hard data conditioned to the generator were formatted as a two-dimensional array containing the
 207 locations of the wells and the type of facies known at those locations. For this study, the array elements
 208 could have one of three possible values: “1” denoted high conductivity facies, “-1” denoted low conductivity
 209 facies, and “0” denoted areas where the facies type was unknown. The generator and discriminator were
 210 trained to compete with each other with the aim of improving the performance of the generator to generate
 211 images that would convince the discriminator to think they were real images. The discriminator also was
 212 been trained to give a low score to the images coming from the generator. This was done by adjusting
 213 the parameters of both the generator and discriminator at each iteration. In the case of conditioning hard
 214 data, the aim of training the PGGAN conditioned to hard data was to train the generator to create realistic
 215 images that honored the conditioned hard data. Therefore, during optimization, an additional loss function
 216 was introduced called “context loss”, which was added to the generated loss to account for losses caused
 217 when the generator created images conditioned to hard data. The context loss used for this work was the
 218 L2 norm distance between the real image and the fake image measured at well facies locations similar to
 219 the implementation from Song et al. (2021). Figure 3 shows the architecture of how the hard data was
 220 conditioned with PGGAN. Below is the loss function used by the generator:

$$L(G) = -\mathbb{E}_{z \sim p_z} [D(G(z))] + \ln (|(US(G(z)) - x_{ref}) \odot I|_2). \quad (2)$$

221 Also, the loss function of the discriminator was similar to the loss function used by (Gulrajani et al.,
 222 2017) for WGAN-GP, as given below:

$$L(D) = \mathbb{E}_{z \sim p_z} [D(G(z))] - \mathbb{E}_{x \sim p_x} [D(x)] + \lambda \mathbb{E}_{\hat{x} \sim p_{\hat{x}}} \left[(|\nabla_{\hat{x}} D(\hat{x})|_2 - 1)^2 \right]. \quad (3)$$

223 The original loss term was:

$$-\mathbb{E}_{z \sim P_z} [D(G(z))] - \mathbb{E}_{x \sim p_x} [D(x)] \quad (4)$$

224 The gradient penalty term was:

$$\lambda \mathbb{E} \hat{x} \sim p \hat{x} \left[(|\nabla_{\hat{x}} D(\hat{x})|_2 - 1)^2 \right]. \quad (5)$$

225 The discriminator's original loss term was in charge of adjusting the discriminator so that it calculated
226 a small score for images generated by the generator and a large score for images taken from the training
227 set. The gradient penalty term of the discriminator was in charge of ensuring that the discriminator did not
228 change too much, causing instability in the PGGAN training process. The term, λ from the gradient penalty
229 expression determined the weight of the penalty. In this work, it was set to $\lambda = 10$ which was proposed by
230 Gulrajani et al. (2017) to work across a variety of architectures used.

231 Once the training was completed, the generator was able to generate a variety of images within seconds.
232 In the case of conditioning with hard data, the generator was able to create images that conditioned the
233 hard data at their specified locations.

234 *2.4. Ensemble Smoother with Multiple Data Assimilation*

235 The methodology for the ensemble smoother with multiple data assimilation consisted of the following
236 steps:

237 Step 1: Ensemble Generation

$$\mathbf{K} = \begin{bmatrix} \mathbf{k}_{11} & \mathbf{k}_{12} & \cdots & \mathbf{k}_{1n} \\ \mathbf{k}_{21} & \mathbf{k}_{22} & \cdots & \mathbf{k}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{k}_{m1} & \mathbf{k}_{m2} & \cdots & \mathbf{k}_{mn} \end{bmatrix} \quad (6)$$

238 The matrix (\mathbf{K}) represents the hydraulic conductivity parameters from the ensemble of prior hydraulic
239 conductivity parameters that was integrated into the forward model. The subscript m is the \mathbf{m}_{th} hydraulic
240 conductivity parameter in the vertical direction and n is the \mathbf{n}_{th} hydraulic conductivity parameter in the
241 horizontal direction. The forward model can be represented as the following:

$$\mathbf{d} = F(\mathbf{K}) \quad (7)$$

242 where \mathbf{d} is a vector containing the number of simulated data points, such as the hydraulic head in this study;
243 $F(\cdot)$ is the forward operator, in this case, MODFLOW-2000.

244 Step 2: Data Assimilation

245 Multiple data assimilation techniques were applied to the ensemble to incorporate observations into the
 246 forecast. We used the **ES-MDA** method proposed by Emerick and Reynolds (2013) to improve the accuracy
 247 of the forecast. The **ES-MDA** method is a **data** assimilation technique that updates the ensemble members
 248 using a smoother, **and which the same measured data can be assimilated multiple times to reach a better**
 249 **result as compared to ES which only assimilates data ones.** The following mathematical implementation of
 250 **ES-MDA** is based on (Emerick and Reynolds, 2013).

251 Define forecast ensemble and observation operator:

$$\mathbf{d} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} & \cdots & \mathbf{h}_{1N_r} \\ \mathbf{h}_{21} & \mathbf{h}_{22} & \cdots & \mathbf{h}_{2N_r} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{h}_{m1} & \mathbf{h}_{m2} & \cdots & \mathbf{h}_{mN_r} \end{bmatrix} \quad (8)$$

252 where **H** is the ensemble of forecasted hydraulic head data **at specified well locations** simulated with the
 253 forward model, **m** denotes the **m_{th}** forecasted hydraulic head data for each prior model parameters in the
 254 **ensemble**, and **N_r** denotes the number of ensembles.

$$\mathbf{H}_{obs} = \begin{bmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ \vdots \\ \mathbf{h}_m \end{bmatrix} \quad (9)$$

255 where **H_{obs}** is the observation or the measured head data.

256 Compute the forecast ensemble mean and covariance matrix:

$$\bar{\mathbf{d}} = \frac{1}{N_r - 1} \sum_{j=1}^{N_r} \mathbf{d}_j \quad (10)$$

$$\mathbf{C}_{DD} = \frac{1}{N_r - 1} \sum_{j=1}^{N_r} (\mathbf{d}_j - \bar{\mathbf{d}})(\mathbf{d}_j - \bar{\mathbf{d}})^T \quad (11)$$

257 where **bar{d}** is the forecast ensemble mean, **C_{DD}** is the forecast ensemble covariance matrix, **N_r** is the number

258 of ensemble members, and \mathbf{d}_j is the j_{th} member (vector) of the forecast ensemble. data

259 Perturb the observation data:

260 Repeat the observation data, N_r times to form a matrix:

$$\mathbf{H}_{obs} = \begin{bmatrix} \mathbf{h}_{obs11} & \mathbf{h}_{obs21} & \cdots & \mathbf{h}_{obsN_r1} \\ \mathbf{h}_{obs12} & \mathbf{h}_{obs22} & \cdots & \mathbf{h}_{obsN_r2} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{h}_{obs1m} & \mathbf{h}_{obs2m} & \cdots & \mathbf{h}_{obsN_rm} \end{bmatrix} \quad (12)$$

261

$$\mathbf{d}_{uc} = \mathbf{H}_{obs} + \sqrt{\alpha_i} \mathbf{U}^{1/2} \quad (13)$$

262 where α_i is the inflation coefficient of the i th iteration ($\sum_{i=1}^{N_a} \frac{1}{\alpha_i} = 1$), \mathbf{U} is a dot product of the observation
263 error covariance \mathbf{C}_D and random noise, \mathbf{C}_D is rescaled with Cholesky decomposition, N_a is the number of
264 iterations, \mathbf{d}_{uc} is the perturbed observation data

265 Compute the forecast anomalies:

$$\mathbf{A} = \mathbf{d}_{uc} - \mathbf{d} \quad (14)$$

266 where \mathbf{A} is the forecast ensemble anomaly.

267 Compute the cross-covariance between the forecast ensemble anomalies and the ensemble of latent vector
268 anomalies:

$$\mathbf{C}_{ZD} = \frac{1}{N_r - 1} \sum_{j=1}^{N_r} (\mathbf{z}_j - \bar{\mathbf{z}})(\mathbf{d}_j - \bar{\mathbf{d}})^T \quad (15)$$

269 where \mathbf{C}_{ZD} is the cross-covariance matrix between the variance of the ensemble of latent vectors and the
270 variance of the ensemble of forecast data, \mathbf{z}_j is the j_{th} latent vector in the ensemble, $\bar{\mathbf{z}}$ is the mean latent
271 vector.

272 Update the ensemble members for the i_{th} iteration:

$$\mathbf{z}^{i+1} = \mathbf{z}^i + \mathbf{C}_{ZD}^i (\mathbf{C}_{DD}^i + \alpha_i \mathbf{C}_D)^{-1} (\mathbf{A}^i) \quad (16)$$

273 In the equation where we need to invert the matrix $C = (\mathbf{C}_{DD}^i + \alpha_i \mathbf{C}_D)$, we face potential issues like

274 singularity and instability due to small singular values. To tackle this, the observation error covariance
275 C_D , was rescaled with the Cholesky decomposition resulting in $C_D = C_D^{1/2}(C_D^{1/2})^T$ as implemented in
276 Emerick (2012), and Truncated Singular Value Decomposition (TSVD) was applied to find the pseudo-
277 inverse, resulting in a matrix $\hat{C} = U_n \wedge_n V_n^T$. \wedge_n is a diagonal matrix with the N_n largest singular values.
278 Determining N_n involves considering the ratio of the sum of these largest singular values to the total sum
279 (N_T). This ratio must be less than or equal to a given energy threshold E which is 0.99 in this work. In
280 simpler terms, we want to retain enough significant singular values to capture at least E proportion of the
281 total energy. The pseudoinverse C^+ is obtained through $V_n \wedge_n^+ U_n^T$, where \wedge_n^+ is the pseudo-inverse of \wedge_n .
282 This whole process ensures stability and accuracy in handling the inversion of C .

283 **3. Synthetic Examples**

284 To evaluate our proposed approach, we initially acquired the reference facies model randomly, as depicted
285 in Figures 4 and 5. The hard data were then generated based on this reference model, illustrated in four
286 scenarios in Figure 4. Combining the hard data with an ensemble of 100 latent vectors, each of size (128×1) ,
287 we fed them into the trained generator, resulting in facies models of size $(128 \times 128 \times 1)$. These generated
288 facies models were further translated into hydrogeological properties, specifically hydraulic conductivity in
289 this study. The hydraulic conductivity fields, derived from the generated facies models, acted as prior model
290 parameters. These parameters were integrated into the forward model to simulate dynamic data, namely
291 hydraulic head. Simultaneously, the reference facies models were also transformed into hydraulic conductivity
292 fields and integrated into the forward simulator to simulate hydraulic heads, serving as our observed hydraulic
293 head data. Hydraulic heads from specified well locations, along with latent vectors and observed hydraulic
294 head data, were assimilated into the ES-MDA algorithm. Through multiple data assimilation steps, the
295 ES-MDA algorithm updated the latent vectors. When these updated latent vectors, along with the hard
296 data, were reintegrated into the trained PGGAN, they produced facies models that closely matched the
297 initial reference facies model.

298 The groundwater flow model produced from MODFLOW was used as a forward model. An image
299 randomly extracted from the training image as well as an image generated by PGGAN were used as the
300 reference hydraulic conductivity. All areas marked as “1” represent high hydraulic conductivities and areas
301 marked as “-1” are areas representing low hydraulic conductivities. The confined aquifer had a size of 128 m
302 \times 128 m \times 1 m, which was discretized into 128 rows by 128 columns by 1 layer Figure 6. The northern and
303 southern boundaries were taken to be no-flow boundaries. The western side was a constant head boundary

304 ($h = 0m$). The eastern side was given a constant flux of $-12.9 \text{ m}^3/\text{d}$. The initial hydraulic head was equal to
305 the depth of the aquifer (10 m) over the simulated domain. The specific storage of the aquifer was assumed
306 to be a constant value of 0.003 m^{-1} . The porosity was set to 0.3 everywhere. MODFLOW-2000 (Harbaugh
307 et al., 2000) was used to model groundwater flow for 100 days

308 *3.1. Cases*

309 *3.1.1. Case 1: Conditioning PGGAN on hard data only*

310 In this case, we compared the output of the PGGAN to the reference data when conditioned on only
311 hard data. Figure 4 shows the scenarios considered. This comprised four scenarios in which we increased
312 progressively the number of well facies data to examine the incremental impact on the output when compared
313 to the reference image. Scenario 1 included 9 wells of facies data; Scenario 2 had 25 wells of facies data;
314 Scenario 3 had 49 wells of facies data; and Scenario 4 had 81 wells of facies data. It was expected that the
315 output realization after each increase should be closer to the reference image than in the previous scenario.

316 *3.1.2. Case 2: Coupling PGGAN and ES-MDA conditioned to only hydraulic head data*

317 Algorithm 1 described the steps used for this case. The image generated by the PGGAN Figure 5 was
318 used as the reference image in this case for the forward modeling in MODFLOW. The reference image was
319 converted to hydraulic conductivity data, which passed through the forward model to produce hydraulic
320 head data at specified well locations, which then were used as reference head data. The reference head data
321 aided in optimizing the ensemble of latent vectors with the help of the ensemble smoother algorithm, in order
322 to generate images that were close to the reference image. Figure 5 shows well locations, where we want to
323 generate hydraulic heads. Two scenarios were considered, 9 well locations (Scenario 6) and 25 well locations
324 (Scenario 7) equally distributed in the domain. We first generated the reference hydraulic head at these well
325 locations. We generated our random ensemble of the initial latent vector from a uniform distribution. The
326 latent vector, with the help of PGGAN was used to generate the ensemble of hydraulic conductivity fields.
327 These hydraulic conductivity fields were used to simulate the hydraulic heads with the help of the forward
328 model generated by MODFLOW. The ES-MDA was used to optimize the latent vector with the help of the
329 simulated hydraulic head and the reference hydraulic head. The process went through six iterations until
330 the latent vector has been optimized and is able to generate images close to the reference image.

331 *3.1.3. Case 3: Coupling PGGAN and ES-MDA conditioned to hard data and head data*

332 Algorithm 1 describes the steps used in this case. We obtained our hard data from the reference image
333 shown in Figure 7. In case 3, we examine how the number of hard data and head data points affect the

Table 1: Scenarios studies.

Case	Scenario	Ensemble size	Obs Wells	Well facies
1	1	100	0	9
	2	100	0	25
	3	100	0	49
	4	100	0	81
2	5	100	0	0
	6	100	9	0
	7	100	25	0
3	8	100	9	9
	9	100	9	25
	10	100	25	25
4	11	100	25	25
	12	100	49	49

334 parameter estimation. This was characterized by different scenarios. Scenario 8 looked at the case of 9
 335 observation wells and 9 well facies locations, Scenario 9 included 9 observation wells and 25 well facies
 336 locations. Scenario 10 looked at 25 observation wells and 25 well facies locations. We first generated
 337 the reference hydraulic head at these well locations. The random ensemble of the initial latent vector
 338 was generated from a uniform distribution. In this case, the generator of the PGGAN will take both the
 339 latent vector and the hard data as inputs to generate the ensemble of hydraulic conductivity fields that were
 340 conditioned on hard data from the reference image. These hydraulic conductivity fields were used to simulate
 341 the hydraulic heads with help of the forward model generated by MODFLOW. During optimization, the
 342 hard data remained fixed and only the latent vector was optimized with the help of the simulated hydraulic
 343 head and the reference hydraulic head. The aim was to show that in real-world applications when provided
 344 with some sort of data of a particular hydrogeologic or reservoir domain (for example, hydraulic head and
 345 facies at well locations), this method will be able to estimate with a high degree of certainty the hydraulic
 346 head of the entire geological area under study.

347 *3.1.4. Methods of Evaluation*

348 Two metrics were used to evaluate the results. The first evaluation was by visually analyzing the indi-
 349 vidually generated images from cases 1 to 3 to see how closely they match their various reference images.
 350 The mean and variance of each scenario were computed to inspect the closeness of the reference images and
 351 the images generated after parameter estimation and to determine how the ensemble of hydraulic con-
 352 ductivity parameters varied from each other. The second evaluation was by plotting the root mean square error
 353 (RMSE) and spread of the generated hydraulic conductivities of the scenarios. These metrics have been used
 354 in other studies (Chen and Zhang, 2006; Bao et al., 2020). RMSE measured the bias between the reference

355 hydraulic conductivity and the estimated hydraulic conductivity of each scenario which helped determine
 356 the accuracy of the estimation. The spread measured the uncertainty of ensemble realizations. Below are
 357 the equations for the RMSE and the spread:

$$\text{RMSE} = \sqrt{\frac{1}{N_k} \sum_{j=1}^{N_k} (K_j - K_{\text{ref}})^2} \quad (17)$$

$$\text{Spread} = \sqrt{\frac{1}{N_k} \sum_{j=1}^{N_k} \text{Var}(K_j)} \quad (18)$$

358 where N_k is the number of parameters, K_j is the mean of the estimated parameters, K_{ref} is the reference
 359 parameters, and $\text{Var}(K_j)$ is the variance at each point.

Algorithm 1: Coupling PGGAN with ES-MDA

Set: N_w = Number of iterations
Set: \mathbf{d}_{obs} = Observation data (hydraulic head)
Set: N_r = The number of ensemble

begin

 Generate the conditioning hard data from the reference hydraulic conductivity, **cond_array**
 Sample initial \mathbf{z} from the uniform distribution $\mathbf{z} \sim U(-1, 1)$
for $i = 1, 2, \dots, N_{iter}$ **do**
 $\alpha_i = 2^{N_{iter}-i}$
 for $j = 1, 2, \dots, N_r$ **do**
 Generate ensemble of hydraulic conductivity field with the trained generator:
 if *cond_array* **then**
 $\mathbf{K}_j^i = G(\mathbf{z}_j^i, \text{cond_array})$
 else
 $\mathbf{K}_j^i = G(\mathbf{z}_j^i)$
 Run forward modeling using the generated \mathbf{K}_j^i to obtain the hydraulic head \mathbf{d}_j^i
 Perturb the observation data: $\mathbf{d}_{uc,j}^i = \mathbf{d}_{obs} + \sqrt{\alpha_i} \mathbf{U}^{1/2}$
 Compute the mean of the ensembled hydraulic conductivity \mathbf{z}^i
 Compute the mean of the ensembled hydraulic head \mathbf{d}^i
 Calculate: $\mathbf{C}_{ZD}^i = \frac{1}{N_r-1} \sum_{j=1}^{N_r} (\mathbf{z}_j - \bar{\mathbf{z}})(\mathbf{d}_j - \bar{\mathbf{d}})^T$, the cross-covariance matrix
 Calculate: $\mathbf{C}_{DD}^i = \frac{1}{N_r-1} \sum_{j=1}^{N_r} (\mathbf{d}_j - \bar{\mathbf{d}})(\mathbf{d}_j - \bar{\mathbf{d}})^T$,
 the auto covariance of the predicted head data
 Update: $\mathbf{z}^{i+1} = \mathbf{z}^i + \mathbf{C}_{ZD}^i (\mathbf{C}_{DD}^i + \alpha_i \mathbf{C}_D)^{-1} (\mathbf{A}_j^i)$
end

360 3.2. Results

361 3.2.1. Analysis of PGGAN conditioned to hard data

362 Figure 8 shows individual realizations for four scenarios obtained from the trained generator that was
363 conditioned to hard data only. The channels from the individual realizations clearly show similarities to the
364 channels in the reference image. From the hard data conditioned to the PGGAN, it can be seen that the
365 generator considered the positions of the hard data and therefore generated realizations that honored the
366 conditioned hard data. All conditioning points in all of Scenarios 1 to 4 show that their resulting realizations
367 honor the hard data. It appears that as the hard data points increased from 9 to 81 the realizations more
368 closely matched the reference image. Pictorially, it also appears that as the hard data increased, the variance
369 was reduced, Figure 9. The variance of Scenario 4 (81 hard data points) was the lowest among the four
370 scenarios. The variance was greatest for Scenario 1 (9 hard data). The diversity of the realizations for
371 scenarios 1 to 4 also clearly illustrates that implementation of the mini-batch standard deviation worked in
372 aiding the generator to produce diverse image realizations. It also appears from Figure 8 that the hard data

373 were well conditioned on the generated images.

374 *3.2.2. Influence of head conditioning data*

375 We performed a sensitivity analysis of how an increase in hydraulic head data will influence the estimation
376 of the ensembled hydraulic conductivities with respect to the reference hydraulic conductivity. For this
377 analysis, the reference hydraulic conductivity was created by the generator of the PGGAN after it was
378 trained. It was not randomly cut from the training image. Bao et al. (2020) have indicated that obtaining
379 reference hydraulic conductivity data from the generator of the PGGAN to be used for parameter estimation
380 will result in realizations close to the reference hydraulic conductivity after parameter estimation. Figures
381 10 and 11 show realizations, mean, and variance of hydraulic conductivities over 100 ensemble members for 9
382 and 25 observation wells, respectively, as well as a scenario with no observation data. The realizations show
383 that, when the number of wells increased from 9 in Scenario 6 to 25 in Scenario 7 in case 2, the estimated
384 hydraulic conductivities were improved and were close to the reference hydraulic conductivity. Statistically,
385 when there were more measured data, the estimated parameters tended to approach the true parameter.
386 The mean map of Scenario 7 with 25 wells was closer to the reference map than Scenario 6 with 9 wells. The
387 variance map of Scenario 6 shows greater variance than in Scenario 7. The variance of Scenario 7, which is
388 close to zero, indicates a near convergence of the ensembled hydraulic conductivities after optimization.

389 The simulated heads from Figure 12 were obtained from the forward modeling for each scenario. Three
390 heads from each scenario were selected at the same positions to compare how close the simulated heads
391 from the ensembled hydraulic conductivities were to the reference heads. The simulated hydraulic heads of
392 Scenario 7 were closer to the reference hydraulic heads, which also indicates that conditioning with more head
393 data aids in reaching convergence of the calibrated parameters and the reference parameters. The results of
394 the RMSE and the Spread are shown in figure 13. Both the RMSE and the Spread show a downward trend,
395 which means that the error and uncertainty significantly reduce when the head data is increased.

396 *3.2.3. Random image as reference field*

397 We looked at the case of extracting a random image from the training image that was not used for
398 the training of the PGGAN, which is reasonable for real-world applications, in which the generator of the
399 PGGAN will have little (scanty measured data) or no clue of the area under study. Therefore, testing the
400 generator based on a new reference hydraulic conductivity field should be a useful way to test the PGGAN.
401 However, (Bao et al., 2020) experimented on a conventional GAN conditioned to only hydraulic head data
402 to estimate the hydraulic conductivity field, given the hydraulic conductivity field randomly cut from the

403 reference image. Their results showed that the estimated hydraulic conductivity fields get closer to the
404 reference hydraulic conductivity as the data points for hydraulic head increase but they still do not fully
405 mimic the channels in the reference image.

406 In certain cases, some sort of measured data (hard data) can be acquired that will help in parameter
407 estimations and reduce uncertainties. Figures 14 and 15 show realizations, mean, and variance of three
408 scenarios analyzed when both hard data and hydraulic head data were conditioned, to estimate the hydraulic
409 conductivity with respect to the reference hydraulic conductivity field randomly cut from the training image.
410 Based on the three scenarios, it is clear that as both the hydraulic head data and the hard data increased, the
411 estimated hydraulic conductivity fields were closer to the reference hydraulic conductivity. Scenario 10 (25
412 head data and 25 hard data) was the closest to the reference image, followed by Scenario 9 (9 head data and
413 25 hard data), and then Scenario 8 (9 head data and 9 hard data). This demonstrates that the estimation
414 error and uncertainty are reduced as the number of conditioned data is increased. In all scenarios, the hard
415 data were well conditioned, which affirms that they play a major role in estimating hydraulic conductivity
416 fields that are close to the reference hydraulic conductivity. Another observation is that realizations from
417 scenarios 9 and 10 were close which is evident from the head data plot in Figure 16. This is because the
418 number of hard data points conditioned to the PGGAN was the same for both scenarios; therefore, when
419 more hard data were conditioned to the PGGAN it was able to generate data that were closer to the true
420 data of the particular model domain.

421 Figure 17 shows the RMSE and Spread. The uncertainty and the errors were reduced when the con-
422 ditioned data were increased. It also indicates that the RMSE and the spread of scenarios 9 and 10 were
423 closer, which is a result of the increased hard data.

424 4. Reference field outside the training data

425 The effectiveness of the proposed technique was further evaluated using different reference hydraulic
426 conductivity fields from Strelbelle (2002), which is not part of the training data used for the PGGAN.
427 In contrast to the reference fields in cases 1, 2, and 3, which are oriented in a north-east to south-west
428 direction, this reference field used in case 4 exhibit a north-south direction for the channels. The parameter
429 estimation process involved 25 hard data points and hydraulic heads from 25 observation wells for scenario
430 11, and 49 hard data points and hydraulic heads from 49 observation wells for scenario 12. The results
431 from generated realizations (Figure 18) illustrate that the approach produced hydraulic conductivity fields
432 that closely resemble the reference data field. As the number of conditioned data increased, the realizations

433 more closely matched the reference field. The results obtained from parameter estimation suggest that the
434 method is capable of handling a variety of hydraulic conductivity fields with different statistical properties,
435 extending beyond the specific hydraulic conductivity fields introduced during the training of the generator.

436 **5. Conclusion**

437 In this study, an approach to directly conditioning on hard data and head data when performing pa-
438 rameter estimations in hydrogeologic modeling by leveraging the deep learning method, PGGAN and data
439 assimilation was proposed. First, the PGGAN was trained by introducing hard data at each resolution stage,
440 with the aim that the generator of the PGGAN would generate facies model realizations that honored the
441 hard data. After training, the generator was coupled with ES-MDA to perform parameter estimation, given
442 a reference image either generated by the PGGAN or randomly cut from the training image. An ensemble
443 of random uniform distribution was generated, and together with the hard data obtained at point locations
444 from the reference image, the generator generated an ensemble of realizations, which in this work were hy-
445 draulic conductivity parameters. The parameters went through a forward model to produce hydraulic heads
446 at specified observation wells. The ES-MDA method was applied to optimize the parameters of the latent
447 space with the help of both the observed and modeled hydraulic head data. The results demonstrate that
448 using PGGAN conditioned to hard data and coupled to ES-MDA can reconstruct a channelized aquifer of
449 an unknown model domain when some measured data from the unknown aquifer domain are obtained. This
450 also can reduce the uncertainty of hydraulic head predictions. Synthetic examples were used to test the
451 method. A PGGAN that was not conditioned to hard data was trained in order to test its efficiency in
452 generating images that mimic the channels of a reference image generated by the trained PGGAN when
453 coupled with ES-MDA and conditioned to only head data. The results show that the PGGAN was efficient
454 in reconstructing the channels of the reference image when conditioned with head data. Results also show
455 that, as the head data are increased, the image more closely resembles the reference image.

456 The results from PGGAN conditioned to hard data and coupled with ES-MDA show that when the well
457 facies data were increased, the generated image realizations were able to mimic the channel structures in
458 the reference image and reduce the uncertainty of the estimation. This is evident in the RMSE and spread,
459 calculated which displayed a significant reduction when the conditioned data were increased. Results also
460 show that having some sort of hard data during parameter estimation helps to reduce uncertainty.

461 **Acknowledgements** This work has been supported through a grant from the National Science Foun-
462 dation (OIA-1833069). The authors wish to thank three anonymous reviewers for their comments, which

⁴⁶³ substantially helped to improve the final version of the manuscript.

464 **References**

465 Abdellatif, A., Elsheikh, A.H., Graham, G., Busby, D., Berthet, P., 2022. Generating unrepresented
466 proportions of geological facies using generative adversarial networks. *Computers & Geosciences*
467 162, 105085. URL: <https://www.sciencedirect.com/science/article/pii/S0098300422000474>,
468 doi:<https://doi.org/10.1016/j.cageo.2022.105085>.

469 Bao, J., Li, L., Davis, A., 2022. Variational autoencoder or generative adversarial networks? a comparison
470 of two deep learning methods for flow and transport data assimilation. *Mathematical Geosciences* 54,
471 1017–1042.

472 Bao, J., Li, L., Redolaza, F., 2020. Coupling ensemble smoother and deep learning with generative adversarial
473 networks to deal with non-gaussianity in flow and transport data assimilation. *Journal of Hydrology* 590,
474 125443.

475 Caers, J., Zhang, T., 2004. Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs
476 into multiple reservoir models. *AAPG Mem* 80, 383–394.

477 Canchumuni, S.A., Emerick, A.A., Pacheco, M.A., 2017. Integration of ensemble data assimilation and deep
478 learning for history matching facies models. In *Proceedings of the Offshore Technology Conference*, Rio
479 de Janeiro, Brazil, 24–26 October, number OTC28015-MS .

480 Canchumuni, S.A., Emerick, A.A., Pacheco, M.A., 2018. History matching channelized facies models using
481 ensemble smoother with a deep learning parameterization. In *Proceedings of the 16th European Conference*
482 on the Mathematics of Oil Recovery (ECMOR XVI), Barcelona, Spain, 3–6 September .

483 Canchumuni, S.W., Emerick, A.A., Pacheco, M.A.C., 2019. Towards a robust parameterization for condition-
484 ing facies models using deep variational autoencoders and ensemble smoother. *Computers & Geosciences*
485 128, 87–102. URL: <http://dx.doi.org/10.1016/j.cageo.2019.04.006>, doi:[10.1016/j.cageo.2019.04.006](https://doi.org/10.1016/j.cageo.2019.04.006).

487 Chan, S., Elsheikh, A.H., 2017. Parametrization and generation of geological models with generative adver-
488 sarial networks. URL: <https://arxiv.org/abs/1708.01810>.

489 Chan, S., Elsheikh, A.H., 2018. Parametric generation of conditional geological realizations using generative
490 neural networks. URL: <https://arxiv.org/abs/1807.05207>.

491 Chen, Y., Oliver, D.S., 2012. Ensemble randomized maximum likelihood method as an iterative ensemble
492 smoother. *Mathematical Geosciences* 44, 1–26.

493 Chen, Y., Zhang, D., 2006. Data assimilation for transient flow in geologic formations via ensemble kalman
494 filter. *Advances in Water Resources* 29, 1107–1122.

495 Cressie, N., 1990. The origins of kriging. *Math Geol* 22, 239–252.

496 Dubrule, L.M.O., Blunt, M.J., 2017. Reconstruction of three-dimensional porous media using generative
497 adversarial neural networks. doi:10.1103/PhysRevE.96.043309 96(043309), 1 – 6.

498 Dupont, E., Zhang, T., Tilke, P. and Liang, L., Bailey, W., 2018. Generating realistic geology conditioned
499 on physical measurements with generative adversarial networks. URL: <https://arxiv.org/abs/1802.03065>.

500

501 Emerick, A., 2012. History Matching and Uncertainty Characterization: Using Ensemble-based Methods.
502 LAP LAMBERT Academic Publishing.

503 Emerick, A.A., Reynolds, A.C., 2013. Ensemble smoother with multiple data assimilation. *Computers &*
504 *Geosciences* 55, 3–15.

505 Evensen, G., 2018. Analysis of iterative ensemble smoothers for solving inverse problems. *Computational
506 Geosciences* 22, 885–908.

507 Fetter, C.W., 2018. *Applied hydrogeology*. Waveland Press.

508 Fossum, K., Alyaev, S., Elsheikh, A., 2023. Ensemble history-matching workflow using interpretable spade-
509 gan geomodel 2023, 1–5. URL: <https://www.earthdoc.org/content/papers/10.3997/2214-4609.202335020>.
510 doi:<https://doi.org/10.3997/2214-4609.202335020>.

511 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.,
512 2014. Generative adversarial nets, in: *Advances in neural information processing systems*, pp. 2672–2680.

513 Goodfellow, Ian, Y.B., Courville, A., 2016. Deep learning <http://www.deeplearningbook.org>.

514 Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C., 2017. Improve training of wasserstein
515 gans. arXiv:1704.00028 .

516 Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G., 2000. Modflow-2000, the u. s. geological survey
517 modular ground-water model-user guide to modularization concepts and the ground-water flow process.
518 Open-file Report. U. S. Geological Survey , 134.

519 Karras, T., Aila, T., Laine, S., Lehtinen, J., 2018. Progressive growing of gans for improved quality, stability,
520 and variation. [arXiv:1710.10196](https://arxiv.org/abs/1710.10196) .

521 Laloy, E., Héroult, R., Jacques, D., Linde, N., 2018. Training-image based geostatistical inversion using a
522 spatial generative adversarial neural network. *Water Resources Research* 54, 381–406.

523 Laloy, E., Héroult, R. and Jacques, D., Linde, N., 2017. Inversion using a new low-dimensional representation
524 of complex binary geological media based on a deep neural network. *Advances in Water Resources* 110,
525 387–405.

526 Liu, Y., Sun, W., Durlofsky, L.J., 2018. A deep-learning-based geological parameterization for history
527 matching complex models. [arXiv:1807.02716](https://arxiv.org/abs/1807.02716).

528 Mahmud, K., G.M.J.C.P., Baker, A., 2014. Simulation of earth textures by conditional image quilting. *Water
529 Resources Research* 50, 3088–3107. Doi:10.1002/2013WR015069.

530 Mosser, L., Dubrule, O., Blunt, M.J., 2018. Conditioning of three-dimensional generative adversarial net-
531 works for pore and reservoir-scale models. [arXiv:1802.05622](https://arxiv.org/abs/1802.05622) .

532 Ruffino, C., Héroult, R., Laloy, E., Gasso, G., 2020. Pixel-wise conditioned generative adversar-
533 ial networks for image synthesis and completion. *Neurocomputing* 416, 218–230. URL: <https://www.sciencedirect.com/science/article/pii/S0925231220305154>, doi:<https://doi.org/10.1016/j.neucom.2019.11.116>.

536 Skjervheim, J.A., Evensen, G., et al., 2011. An ensemble smoother for assisted history matching, in: SPE
537 Reservoir Simulation Symposium, Society of Petroleum Engineers.

538 Song, S., Mukerji, T., Hou, J., 2021. Gansim: Conditional facies simulation using an improved progressive
539 growing of generative adversarial networks (gans). *Mathematical Geosciences* 53, 1413–1444.

540 Song, S., Zhang, D., Mukerji, T., Wang, N., 2023. Gansim-surrogate: An integrated framework for stochastic
541 conditional geomodelling. *Journal of Hydrology* 620, 129493. URL: <https://www.sciencedirect.com/science/article/pii/S0022169423004353>, doi:<https://doi.org/10.1016/j.jhydrol.2023.129493>.

543 Stordal, A.S., Karlsen, H.A., Nævdal, G., Skaug, H.J., Vallès, B., 2011. Bridging the ensemble kalman filter
544 and particle filters: the adaptive gaussian mixture filter. Computational Geosciences 15, 1573–1499. URL:
545 <https://doi.org/10.1007/s10596-010-9207-1>.

546 Strebelle, S., 2002. Conditional simulation of complex geological structures using multiple-point statistics.
547 Mathematical Geology 34, 21. URL: <https://doi.org/10.1023/A:1014009426274>, doi:<https://doi.org/10.1023/A:1014009426274>.

549 Tahmasebi, P., 2018. Multiple Point Statistics: A Review. Springer International Publishing, Cham. pp. 613–
550 643. URL: https://doi.org/10.1007/978-3-319-78999-6_30, doi:10.1007/978-3-319-78999-6_30.

551 Zahner, T., Lochbühler, T., Mariethoz, G., Linde, N., 2015. Image synthesis with graph
552 cuts: a fast model proposal mechanism in probabilistic inversion. Geophysical Journal Interna-
553 tional 204, 1179–1190. URL: <https://doi.org/10.1093/gji/ggv517>, doi:10.1093/gji/ggv517,
554 arXiv:<https://academic.oup.com/gji/article-pdf/204/2/1179/1621207/ggv517.pdf>.

555 Zhang, T.F., Tilke, P., Dupont, E., Zhu, L.C., Liang, L., Bailey, W., 2019. Generating geologically realistic
556 3d reservoir facies models using deep learning of sedimentary architecture with generative adversarial
557 networks. Petroleum Science 16, 541–549. URL: <https://doi.org/10.1007/s12182-019-0328-4>.

558 Zuo, C., Pan, Z., Yin, Z., Guo, C., 2022. A nearest neighbor multiple-point statistics method for fast
559 geological modeling. Computers & Geosciences 167, 105208. URL: <https://www.sciencedirect.com/science/article/pii/S0098300422001595>, doi:<https://doi.org/10.1016/j.cageo.2022.105208>.

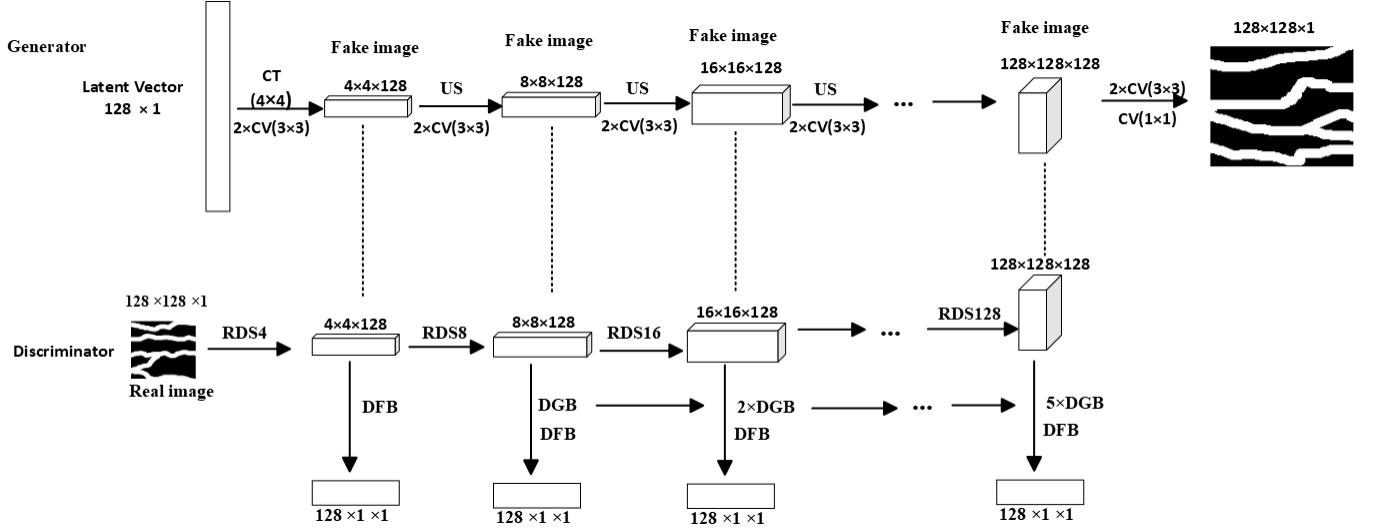


Figure 1: The architecture of the unconditional progressive growing of GAN. CT(4×4) represents transposed convolution with a kernel size of 4. US represents the upsampling layer used to upscale the images from low resolution to high resolution. RDS4, RDS8, RDS16, ..., RDS128 represents real images downsampled to $(4 \times 4), (8 \times 8), (16 \times 16), \dots, (128 \times 128)$ image sizes. DGB represents the general block of the discriminator which has two convolutional layers with (3×3) kernel size and a downsampling layer with a scale factor of 2. DFB is a final block of the discriminator $(3 \times 3), (4 \times 4), (1 \times 1)$ convolutional layers

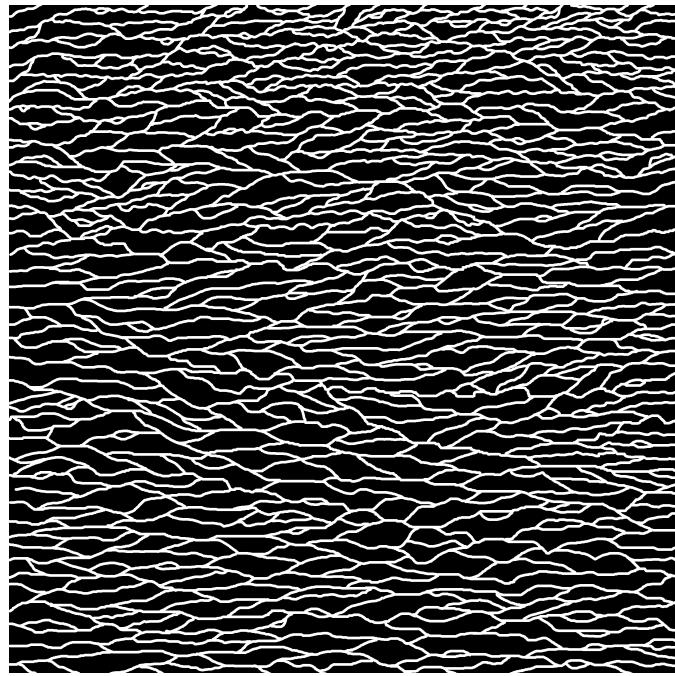


Figure 2: Training image (2500×2500).

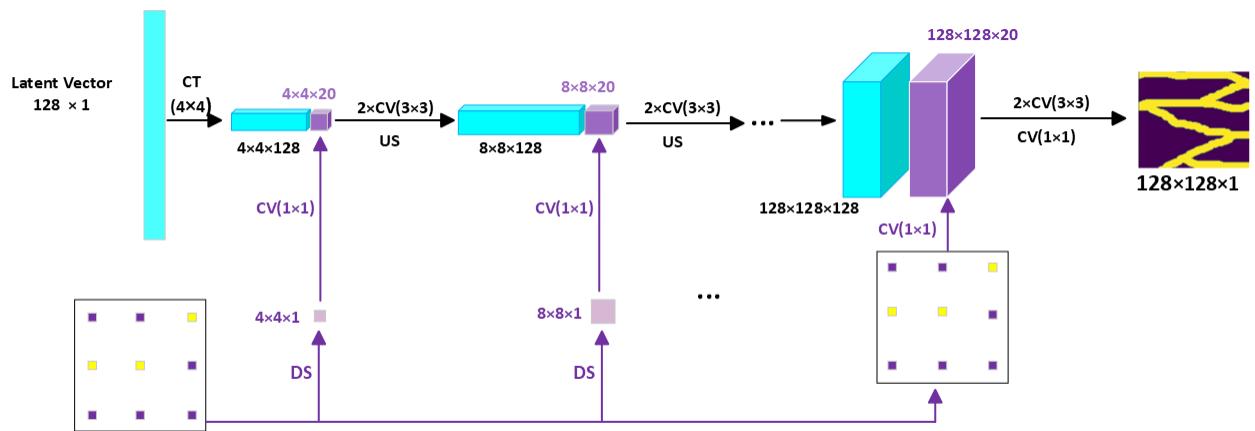


Figure 3: The architecture of the generator conditioned to hard data. CT(4×4) is a transposed convolution with (4×4) kernel sizes. CV(3×3) is a convolutional layer with (3×3) kernel size. CV(1×1) is a convolutional layer with (1×1) kernel size. US is an upsampling layer and DS is a downsampling layer

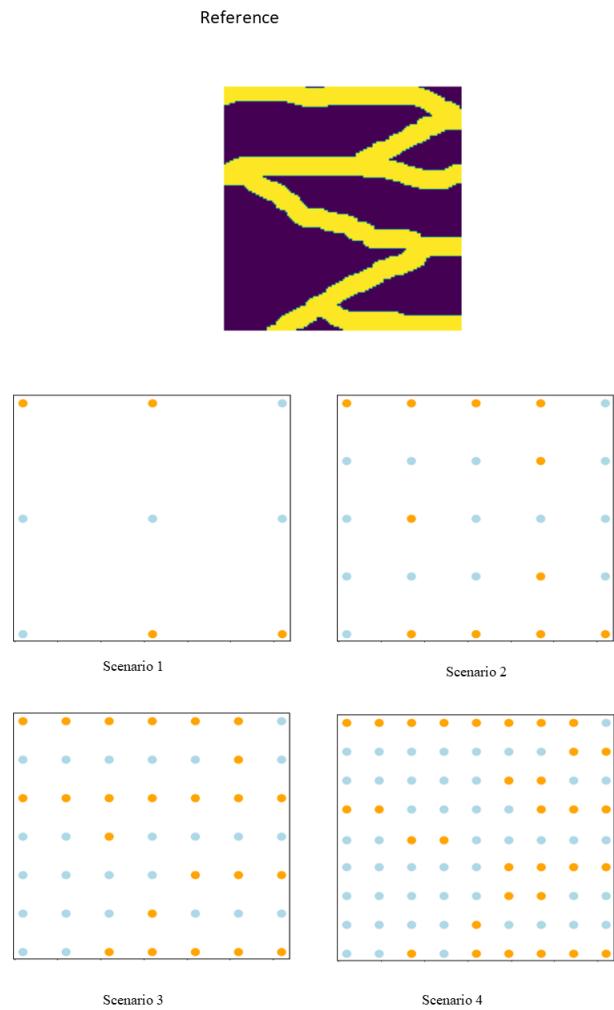


Figure 4: Well facies locations for case 1.

Reference

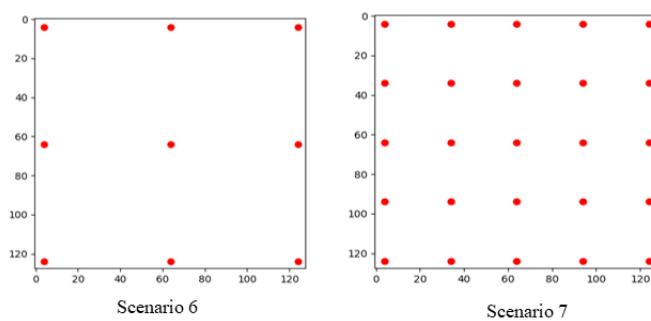


Figure 5: Observation well locations for case 2.

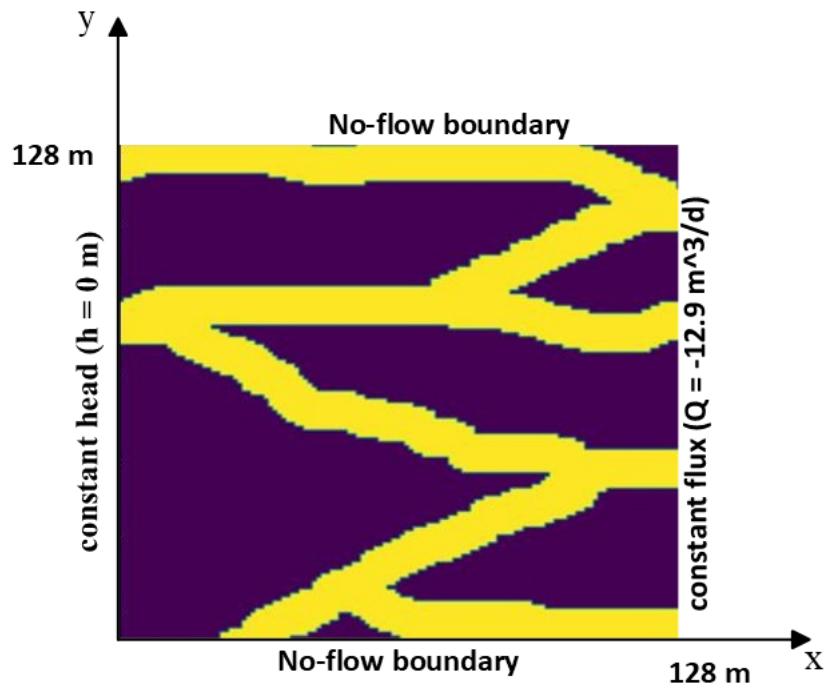


Figure 6: The reference hydraulic conductivities with boundary conditions. No-flow boundary on north and south, constant head on the western boundary, and constant flux on the eastern boundary. The yellow areas represent the channels with high hydraulic conductivity.

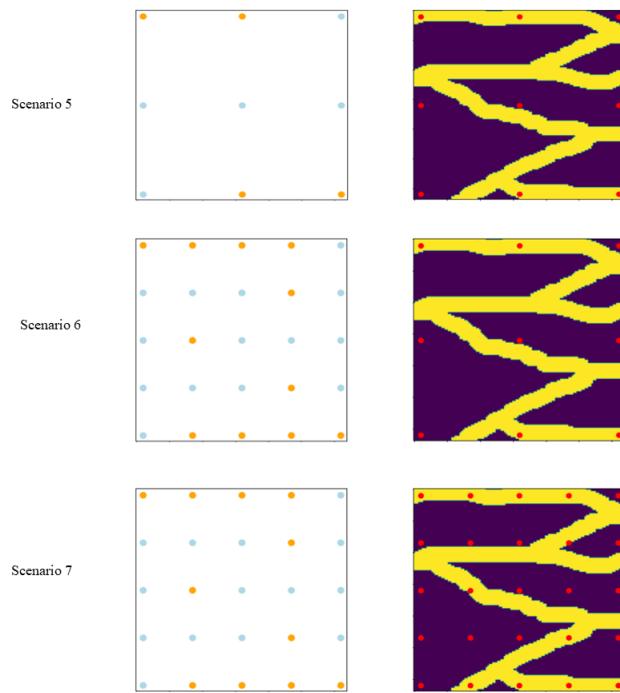


Figure 7: Well facies locations and observation well locations for case 3.

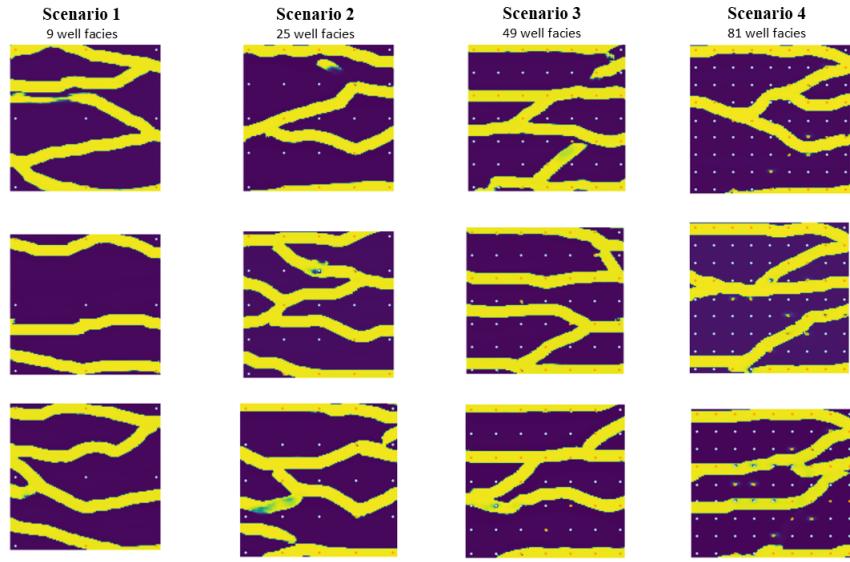


Figure 8: Realizations for PGGAN conditioned on hard data (well facies data).

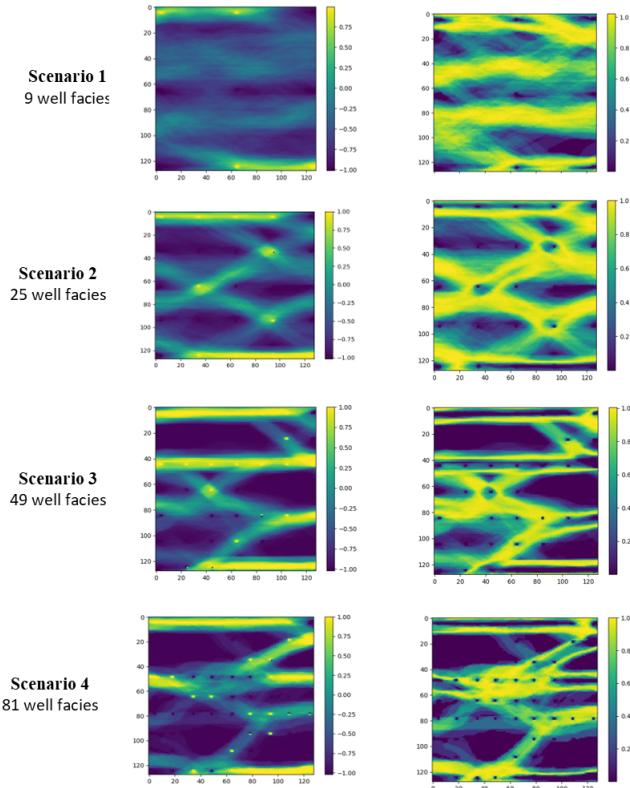


Figure 9: The mean and variance of hydraulic conductivity for case 1.

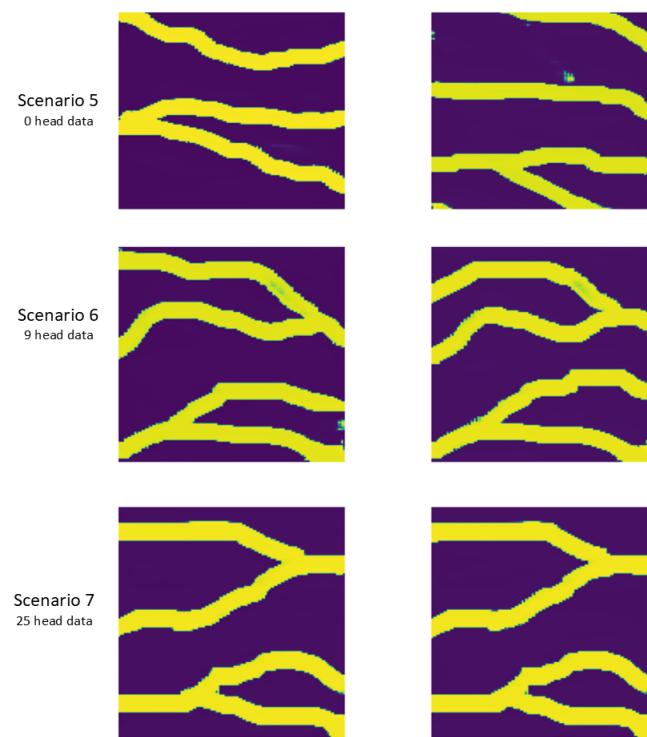


Figure 10: Realizations for PGGAN conditioned to head data.

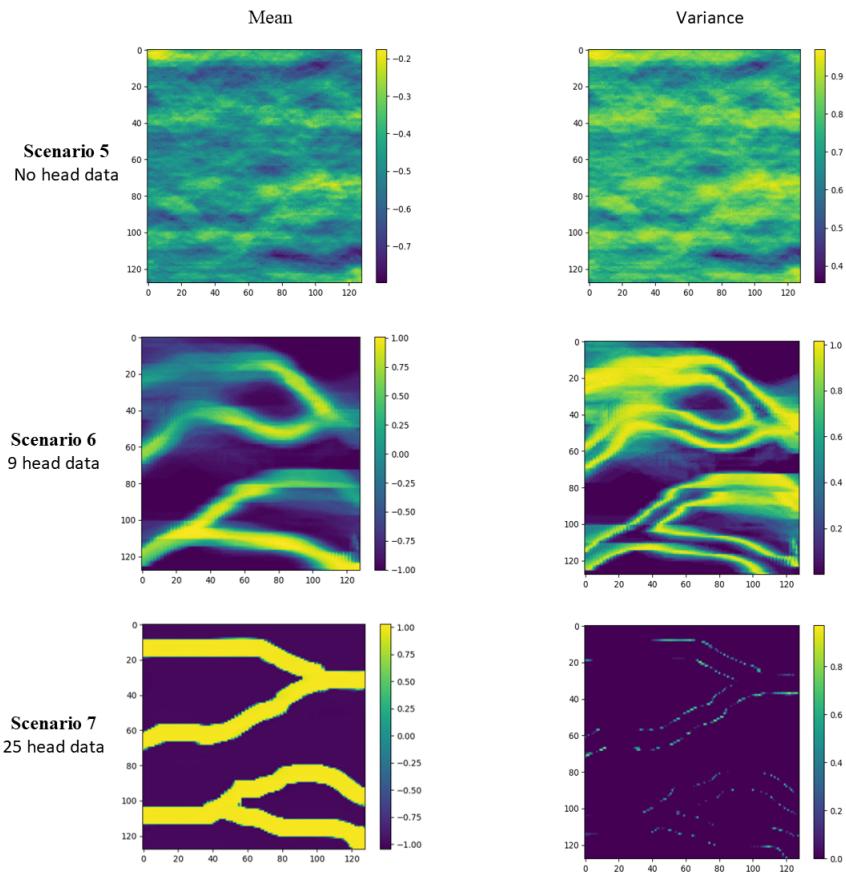


Figure 11: The mean and variance of hydraulic conductivity for case 2.

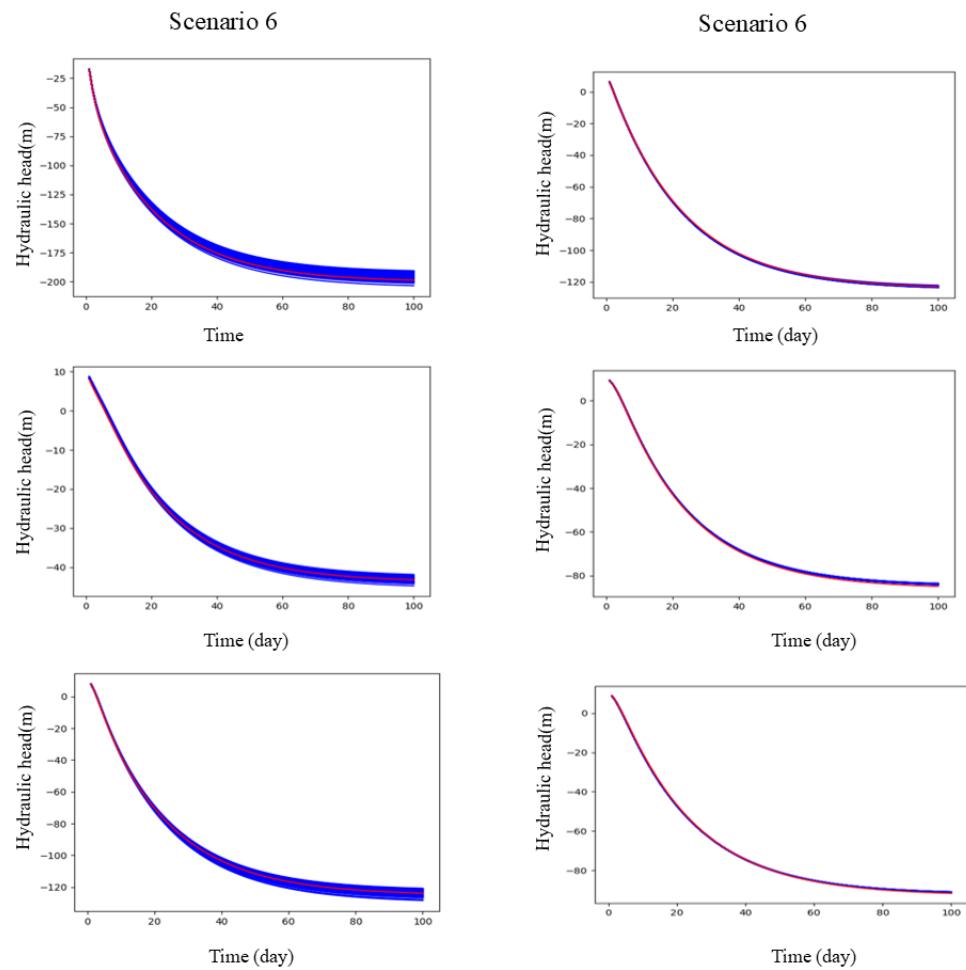


Figure 12: Hydraulic head for three observation well locations for case 2.

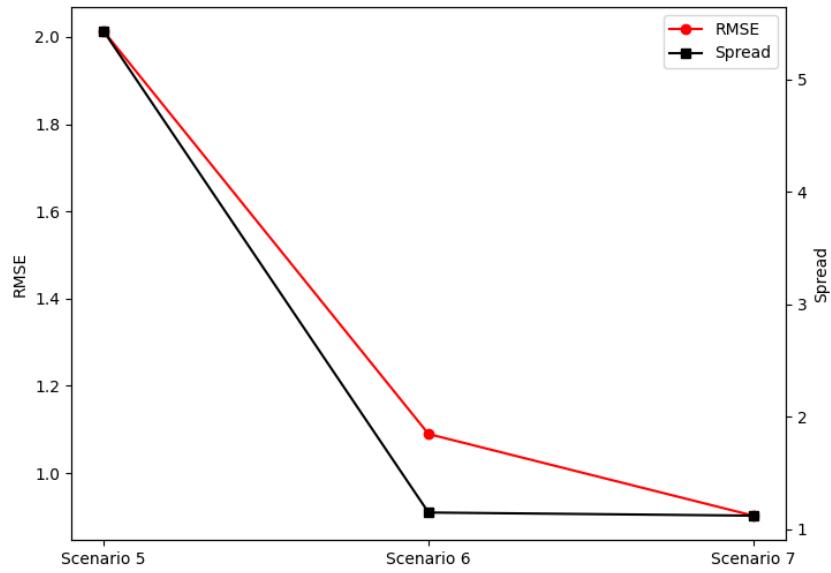


Figure 13: The RMSE and spread for case 2. The red line represents the RMSE between the reference and predicted hydraulic conductivity fields and the black line represents the spread of the predicted hydraulic conductivity fields.

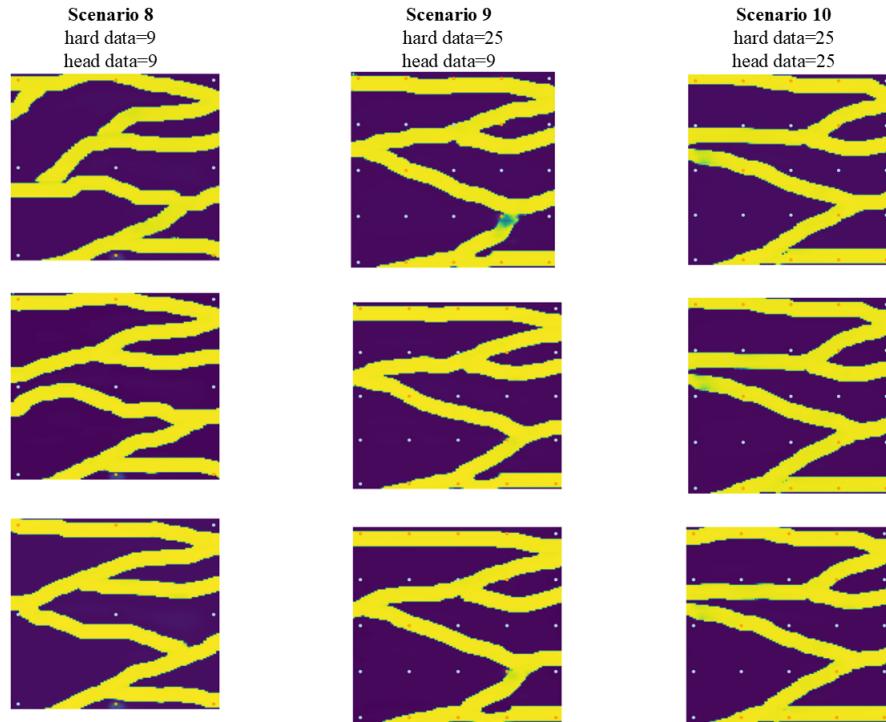


Figure 14: Realizations for PGGAN conditioned to both head data and hard data.

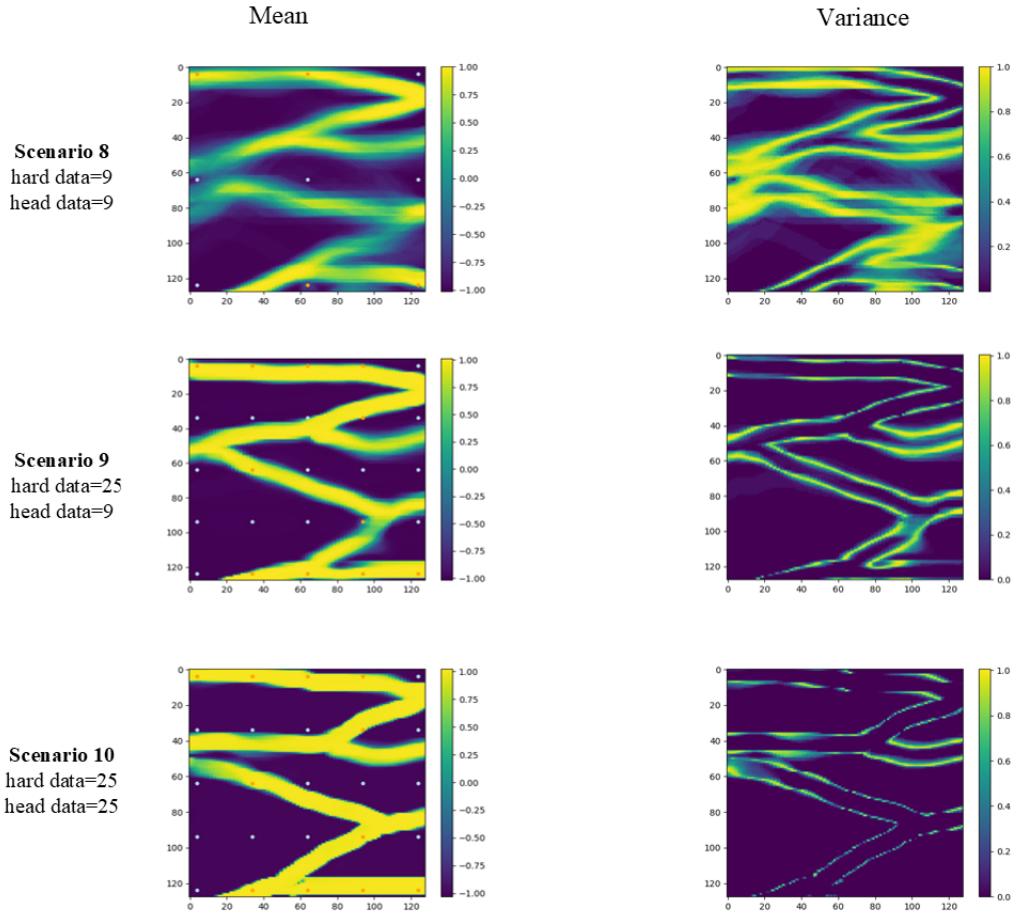


Figure 15: The mean and variance of hydraulic conductivity fields for case 3.

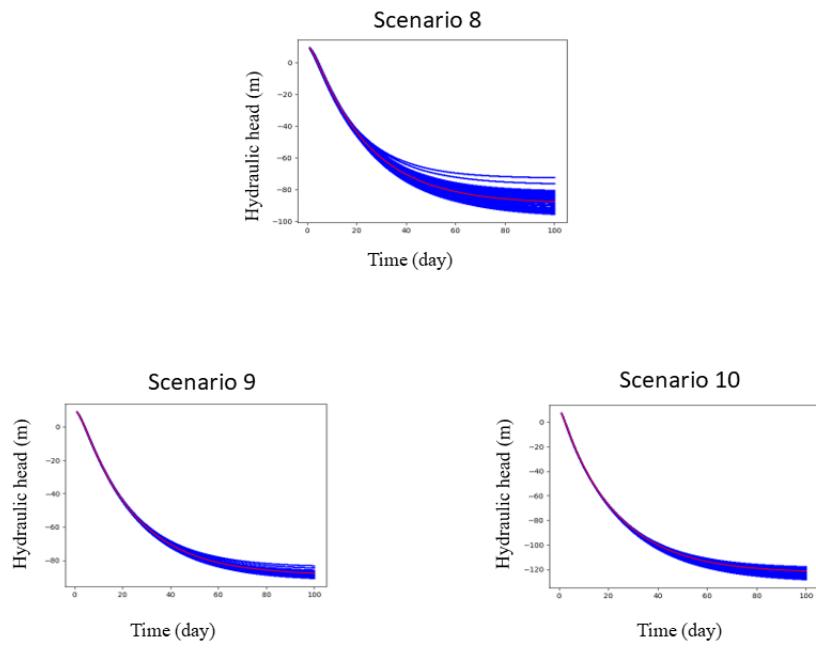


Figure 16: Hydraulic head of the middle observation wells for case 3.

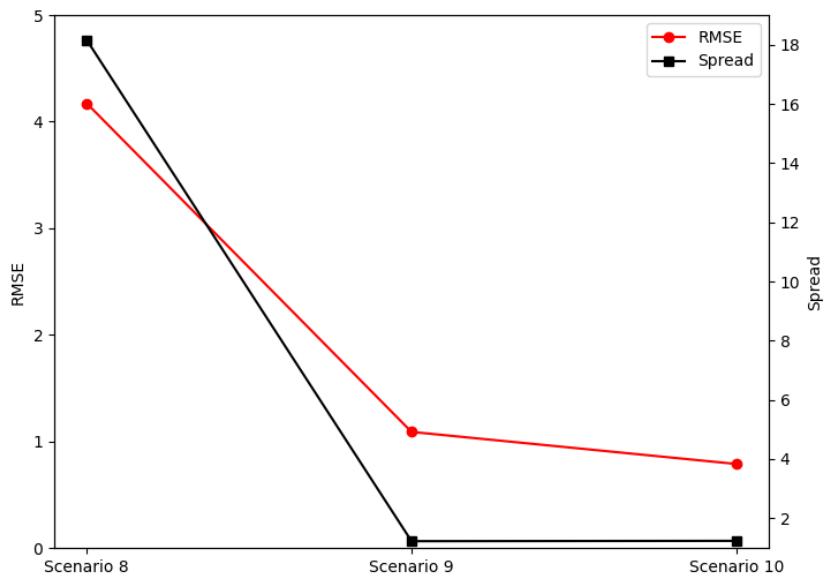


Figure 17: The RMSE and spread for case 3. The red line represents the RMSE between the reference and predicted hydraulic conductivity fields and the black line represents the spread of the predicted hydraulic conductivity fields.

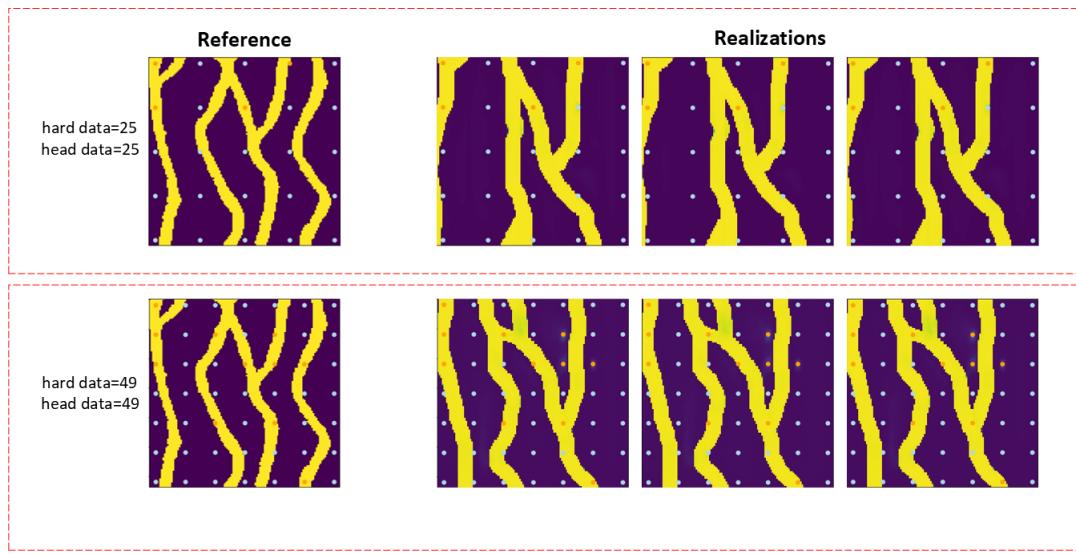


Figure 18: Realizations of hydraulic conductivity fields for case 4