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Abstract

The incorporation of hard data in geostatistical modeling is crucial for enhancing the accuracy of interpolating

or stochastically estimating subsurface spatial features. The hard data at specified points in the model

domain serve as a guide in optimizing the unknown parameters to follow the patterns of the hard data.

Recently, a novel approach to solving hydrogeologic/reservoir modeling problems has emerged by using deep

generative models, specifically generative adversarial networks (GANs), to generate realistic and diverse

images of channelized aquifers. This subsequently can be coupled with inverse models to solve parameter

estimation problems. This study focused on using an improved GAN, called a progressive growing generative

adversarial network (PGGAN), conditioned with hard data to perform parameter estimation of complex facies

models by coupling an ensemble smoother with multiple data assimilation (ES-MDA). First, the PGGAN

was trained to an image with 128 × 128 resolution. The trained PGGAN was used to generate hydraulic

conductivity fields when fed an ensemble of latent variables and hard data. The ES-MDA then was used to

update the latent variable with the help of hydraulic head data obtained from the groundwater model. The

approach was tested on synthetic hydraulic conductivity data. Results show that this approach was able to

perform efficient estimation of an unknown facies model domain. Additionally, the proposed method was

applied to a different test case of a facies model exhibiting different statistical characteristics. The results

were satisfactory, demonstrating that the method is not constrained to the particular hydraulic conductivity

fields introduced in the generator’s training.

Keywords: Generative adversarial networks, Ensemble smoother, Facies modeling, Deep learning.

∗Corresponding author
Email address: Liangping.Li@sdsmt.edu (Liangping Li)

Preprint submitted to Advances in Water Resources March 20, 2024



Contents1

1 Introduction 32

2 Methodology 73

2.1 Forward Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.2 Progressive Growing of GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.3 Training of PGGAN conditioned to hard data . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.4 Ensemble Smoother with Multiple Data Assimilation . . . . . . . . . . . . . . . . . . . . . . . 107

3 Synthetic Examples 138

3.1 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

3.1.1 Case 1: Conditioning PGGAN on hard data only . . . . . . . . . . . . . . . . . . . . 1410

3.1.2 Case 2: Coupling PGGAN and ES-MDA conditioned to only hydraulic head data . . 1411

3.1.3 Case 3: Coupling PGGAN and ES-MDA conditioned to hard data and head data . . 1412

3.1.4 Methods of Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1513

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1714

3.2.1 Analysis of PGGAN conditioned to hard data . . . . . . . . . . . . . . . . . . . . . . . 1715

3.2.2 Influence of head conditioning data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1816

3.2.3 Random image as reference field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1817

4 Reference field outside the training data 1918

5 Conclusion 2019

2



1. Introduction20

The spatial distribution of rock properties within an aquifer/reservoir medium significantly influences the21

movement and transfer of fluids. Early research relied on a limited amount of data for defining the static22

properties of subsurface reservoirs or aquifers, like facies types, facies proportions, and facies orientations.23

Similarly, it also aimed at simulating dynamic data, such as the hydraulic head of an aquifer. Consequently,24

various geostatistical approaches were developed for creating geological models. Early stages of geomodeling25

used two-point statistics (i.e., mean and covariance) to capture the statistical properties of the data distri-26

bution (Cressie, 1990). Two-point statistics are limited in their ability to depict the variables following a27

Gaussian distribution, a presumption that does not always align with the complex nature of hydrological28

systems (Dupont et al., 2018). In addition, two-point statistics do not capture higher-order moments or29

non-linear relationships between variables, which can be important in hydrologic modeling. Multiple-point30

statistics (MPS) have been proposed to model the spatial patterns of variables at a larger scale in order to31

overcome the limitations of two-point statistics (Caers and Zhang, 2004). By conditioning the simulation on32

a set of training images or patterns, MPS can capture higher-order moments and non-linear relationships be-33

tween variables (Mahmud and Baker, 2014). While the application of MPS in hydrological modeling has been34

explored in numerous papers, addressing the computational complexities associated with high-dimensional35

space remains an ongoing research area (e.g., Tahmasebi, 2018; Zuo et al., 2022).36

Deep learning is creating a revolution in science and related industries. Deep learning is a mathematical37

model that automatically learns a new parametric representation of the data that are fed to them and, in38

some cases, enables inverse mapping from the learned representation to the original data space (Goodfellow39

and Courville, 2016). Generative adversarial networks (GANs), developed by Goodfellow et al. (2014),40

are a type of deep learning model that has gained popularity in recent years because of their ability to41

generate high-quality images and videos that are often indistinguishable from real-world samples. GANs42

have numerous applications, including art, fashion, gaming, and virtual reality, and are quickly becoming43

an indispensable tool in computer vision and machine learning research, where they currently are used44

widely in hydrogeology and petroleum engineering for aquifer/reservoir modeling for parameterization of45

geological facies (Laloy et al., 2018; Bao et al., 2022). For example, Dubrule and Blunt (2017) employed46

a GAN to create 3D images of porous media, while Laloy et al. (2017) utilized a variational autoencoder47

(VAE) to develop a low-dimensional parameterization of binary facies models with latent variable for inverse48

modeling with Markov Chain Monte Carlo method. In a subsequent study, Laloy et al. (2018), the same49

researchers expanded on their initial work by incorporating spatial GANs. Canchumuni et al. (2017) applied50
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an autoencoder to represent binary facies values using continuous variables for history matching with an51

ensemble smoother. In a later publication, Canchumuni et al. (2018) broadened this parameterization using52

deep belief networks (DBN). Chan and Elsheikh (2017) employed a Wasserstein GAN to generate binary53

channelized facies realizations.54

The application of GANs in the field of hydrogeology has become a promising approach. GANs are55

employed to produce hydrogeologic facies models, which are subsequently incorporated into groundwater56

modeling systems and in previous studies, they are linked with inverse models for performing parameter57

estimations (Mosser et al., 2018; Laloy et al., 2018). GANs can be used to generate facies models that58

closely mimic the statistical properties of real-world subsurface data. One of the major advantages of GANs59

in hydrogeology is that they have been utilized to generate hydrogeologic facies models and have further been60

incorporated into groundwater models for estimation of hydraulic properties and prediction of groundwater61

flow. GANs can also be used to generate data for scenarios in which data are limited or unavailable. This can62

be useful in areas where there are difficulties in accessing monitoring wells or other data sources. Although63

GANs have shown successes in generating realistic hydrogeologic facies models, recent work by Bao et al.64

(2020) revealed limitations when reconstructing channel structures of a reference hydraulic conductivity by65

using a conventional GAN, conditioned to hydraulic head data and coupled with an ensemble smoother66

with multiple data assimilation. Their results showed that the method was able to reconstruct the channels67

of the reference hydraulic conductivity that was generated by the GANs but the method was not able to68

properly reconstruct the hydraulic conductivity field when the reference hydraulic conductivity was randomly69

obtained from the training image, even as the observed hydraulic head data was increased. In real-world70

applications, the GAN cannot generate its own reference data points to perform data assimilation. It will71

be given some limited measured data (e.g., facies type, hydraulic heads, etc.) of a particular area of interest72

that has not been learned by the GAN, to estimate the parameters of the entire area.73

The exploration of utilizing deep learning for conditioning hard data, such as facies, has garnered sig-74

nificant attention in research. In Chan and Elsheikh (2018), they integrated an inference network with a75

pre-trained GAN to generate facies realizations that are conditioned on facies observations, or hard data.76

Similarly, Dupont et al. (2018) tackled the challenge of conditioning facies to hard data, employing a se-77

mantic inpainting approach with GAN. Liu et al. (2018) took a different route by utilizing the fast neural78

style transfer algorithm as a generalization of O-PCA for generating conditional facies realizations using79

randomized maximum likelihood. Ruffino et al. (2020) delved into the effectiveness of conditioning GANs80

with limited pixel values. Their framework introduced an explicit cost term to the GAN objective function,81
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enforcing pixel-wise conditioning. Zhang et al. (2019) adopted a different strategy, utilizing a pre-trained82

GAN and adjusting weights, along with a ”context loss” defined using distance transformation to measure83

the mismatch between GAN-generated samples and conditioning data. Canchumuni et al. (2019) explored84

the use of prior realizations from Convolutional Variational Autoencoder and ES-MDA to condition hard85

data, testing parameterization in synthetic history-matching problems involving channelized facies. Ab-86

dellatif et al. (2022) proposed SPADE-GAN, a conditional Generative Adversarial Network (GAN) model,87

designed specifically for generating missing facies proportions based on a dataset of geological images. This88

model was later employed by Fossum et al. (2023) for performing history matching of reservoir simulation89

using ensemble-based history-matching methods.90

The majority of the proposed methods focus on conditioning facies models to hard data by first train-91

ing GANs or VAEs on facies model realizations. The pre-trained generator is then combined with various92

approaches like semantic inpainting or geostatistical algorithms. However, Ruffino et al. (2020) took a93

different approach by directly conditioning hard data to the GAN, allowing the network to learn to gener-94

ate realizations constrained to the hard data during training through adjustments in the GAN network’s95

weights. Traditional GAN architectures, also known as conventional GANs, generate synthetic images using96

a single generator and discriminator pair. However, traditional GANs have been criticized for producing97

low-resolution images that lack detail and are unstable during training (Karras et al., 2018; Song et al.,98

2021). Progressive Growing GANs (PGGANs) developed by Karras et al. (2018) have recently emerged as99

a promising alternative to traditional GANs for image synthesis. PGGAN is a technique for training GANs100

in a more stable and efficient manner. The basic idea is to begin training the GAN on a low-resolution101

image and gradually increase the image resolution as training progresses. This enables the GAN to learn102

the image’s basic shapes and colors first, and then gradually refine its output to capture more detail and103

complexity. In a PGGAN, the generator and discriminator initially train on low-resolution images, and layers104

are progressively added to both networks as the resolution increases. This ensures stability in the training105

process without disrupting existing layers. One notable advantage of PGGAN is its flexibility to add layers106

at each resolution, allowing for the incorporation of hard data at different resolution levels. This way, the107

PGGAN model can learn to generate realizations that honor the specified hard data. Song et al. (2021)108

effectively incorporated hard data, specifically well facies data, into the Progressive Growing of Generative109

Adversarial Networks (PGGAN). The generated realizations demonstrated a successful alignment with the110

provided hard data, indicating a well-conditioned outcome.111

The ensemble Smoother (ES) by Evensen (2018) is a data assimilation method that is used in hydrology112
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and other fields to estimate the state of a system based on observations and a numerical model. The basic idea113

of ensemble smoother is to use a set of model runs, called an ensemble, to generate a probability distribution114

of possible states of the system, and then update this distribution based on observations in order to obtain115

a more accurate estimate of the true state of the system. The ES algorithm works by first generating an116

ensemble of model runs, where each run represents a possible state of the system. The ensemble runs are used117

to generate a probability distribution of possible states of the system, which represents the uncertainty in118

the model predictions. Next, the observations are incorporated into the ensemble using a Bayesian update,119

which adjusts the probability distribution to better match the observed data. The ES algorithm can be120

used to directly estimate the state of a system at any given point in time. Like other variants of Kalman121

Filter, the parameters and states have to follow multi-Gaussian distributions for optimal solutions (Evensen,122

2018). The accuracy of the estimates depends on the quality of the observations and the model, as well123

as the size of the ensemble and its degree of representation. In ES, the entire set of model realizations is124

combined in a single integration to produce a prediction. Subsequently, the ensemble of uncertain parameters125

is updated using the “Kalman Filter” equations Stordal et al. (2011), assimilating all data simultaneously.126

ES demonstrates superior performance in the context of linear dynamical models but shows limitations when127

applied to nonlinear dynamical models, especially in the context of complex aquifers. The intricate nonlinear128

interactions within these aquifers can contribute to deviations from gaussian behavior in the observed data..129

After the introduction of ES for history matching by Skjervheim et al. (2011), two iterative variations of130

the smoother formulation emerged. The Iterative Ensemble Smoother Algorithm (IES) was proposed by131

Chen and Oliver (2012), while Emerick and Reynolds (2013) developed the Multiple-Data Assimilation ES132

(ES–MDA). The iterative nature of these variants addresses some challenges associated with nonlinearity,133

leading to improved outcomes compared to those achieved with ES alone. Evensen (2018), evaluated two134

iterative ensemble smoothers for solving inverse problems. The results indicated that ES–MDA performs135

better as the number of Multiple Data Assimilation (MDA) steps increases. However, achieving convergence136

with ES–MDA may necessitate a considerable number of MDA steps. On the other hand, Iterative Ensemble137

Smoother (IES) may require fewer iterations for convergence, but its implementation is separate and may138

encounter convergence challenges if poorly chosen step length values are used.139

In a previous study conducted by Song et al. (2023) which employed four latent vector search approaches140

including IES, a hybrid model combining a conditioned PGGAN and a Convolutional Neural Network (CNN)-141

based surrogate was employed for reservoir inverse modeling. The aim was to estimate the properties of142

reservoir facies models. The CNN-based surrogate served as a forward simulator within the inverse model-143
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ing framework. The research approach involved training facies models with channel directions constrained144

within ±25 degrees of deviation from the north direction. This constraint was implemented to alleviate the145

training burden on the surrogate. Hydrogeological facies models are often characterized by high heterogene-146

ity, with properties varying across space and in different directions. Additionally, these models frequently147

feature complex channels with intricate relationships, posing a computational challenge for the surrogate to148

effectively learn them. Previous studies by Bao et al. (2020) utilized ES-MDA coupled with GAN, resulting149

in improved minimization of observed and predicted data. However, only hydraulic head data are considered150

in their studies.151

Building on the previous work from Bao et al. (2020) and Song et al. (2023), the current study integrates152

the conditioned PGGAN with ES-MDA and utilizes MODFLOW as the forward simulator to integrate facies153

data as well as hydraulic head data into groundwater modeling. To the best of our knowledge, this is the154

first study to integrate both hard data and soft data (e.g., head data) into hydrogeological modeling by155

coupling deep learning and data assimilation algorithms. In order to evaluate the influence of conditioned156

data (both hard and soft data) on hydrogeological inversions, a sensitivity analysis was also conducted.157

This involved running various scenarios with an incremental increase in conditioned data. Specifically, the158

study investigates the ability of the coupled conditioned PGGAN and ES-MDA to generate realistic facies159

data, capturing intricate geological structures, and enhancing the accuracy of hydrogeologic simulations.160

Furthermore, we assessed the influence of priors sourced from the training image, as opposed to using a161

generated image from the trained model, aiming for greater realism in the field.162

2. Methodology163

2.1. Forward Modeling164

The single phase groundwater flow equation can be expressed as follows (Fetter, 2018):165

∂

∂x
(Kxx

∂h

∂x
) +

∂

∂y
(Kyy

∂h

∂y
) +

∂

∂z
(Kzz

∂h

∂z
) +W = Ss

∂h

∂t
(1)

where Kxx, Kyy, and Kzz is the hydraulic conductivity tensors in 3D; h is the hydraulic head; W represents166

sources and sinks; Ss is the specific storage; x, y, and z represent the coordinates; and t is time. The equation167

is solved using the finite-difference method in which the aquifer is divided into a number of cells and the168

head is calculated at each node (Harbaugh et al., 2000).169
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2.2. Progressive Growing of GANs170

The framework of how the generator of the PGGAN was trained is illustrated in Figure 1. The inputs171

consisted of a 128 × 1 latent vector, sampled from a uniform distribution (z ∼ U(−1, 1)), and hard data172

(observed data). The hard data were obtained by choosing specific points from the training images. These173

points represented known well facies at the specified locations. For the purpose of this study, the training174

images consisted of two facies types. The latent vector first went through a transposed convolution with 4175

× 4 kernel size. The result is a 4 × 4 latent size. The conditioned hard data then were downsampled from176

the original 128 × 128 resolution to various resolutions to match the image sizes of the resolutions at each177

stage. For resolution 4, a downsampled 4 × 4 resolution of hard data was concatenated to the output 4 × 4178

latent space produced by the transposed convolution. The result then went through two layers of convolution179

before it was upsampled to 8 × 8 resolution. The output went through the same steps to produce 16 ×180

16, 32 × 32, 64 × 64, and 128 × 128 resolutions. The final 128 × 128 resolution went through one more181

convolution with a 1 × 1 kernel size to produce a 128 × 128 image. At each resolution stage, the hard182

data were introduced in order for the generator to learn to create realistic images with the conditioned data183

provided.184

The discriminator took in both the images generated by the generator as well as a batch of real images185

to determine, with probability, categories that were real or fake images. Figure 1 shows the architecture of186

the discriminator and how it worked inversely to how the generator worked. For the 4 × 4 resolution, the187

images first went through a convolutional layer with a kernel size of 3 and padding of 1, followed by a second188

convolution with a kernel size of 1. For this study, this process was termed the final block of convolutions in189

the discriminator. The discriminator also had a general block that contained two convolutional layers with190

kernel size of 3 and a downsample layer that downsampled the image by a scale factor of 2. This general191

block was implemented on the subsequent image resolutions during training before we applied the final block.192

For example, the 8 × 8 image resolution passed through the general block, and afterward, the output passed193

through the final block. The 16 × 16 image resolution went through the general block two times. The 32194

× 32 image resolution passed through the general block three times. In turn, the 64 × 64 image resolution195

passed through the general block four times, and the 128 × 128 passed through the general block five times.196

An additional input channel was added to the first convolutional layer of the final block. The purpose of this197

addition is to calculate the standard deviation of the batch of images that went through the discriminator.198

This enforced the generator to create output of varied images.199
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2.3. Training of PGGAN conditioned to hard data200

Thirty thousand images with size 128 × 128 were randomly cropped from the original training image201

(TI) (Zahner et al., 2015) for training (Figure 2). The generator was trained with a batch size of 32 and each202

resolution was trained for 42 epochs. Only one GPU was used and the total time for completing training was203

66 hours. The Adam optimizer was used to train both the generator and discriminator. The Adam optimizer204

was used with β1 = 0 and β2 = 0.99. The generator and the discriminator both used a learning rate of205

0.03. The hard data conditioned to the generator were formatted as a two-dimensional array containing the206

locations of the wells and the type of facies known at those locations. For this study, the array elements207

could have one of three possible values: “1” denoted high conductivity facies, “-1” denoted low conductivity208

facies, and “0” denoted areas where the facies type was unknown. The generator and discriminator were209

trained to compete with each other with the aim of improving the performance of the generator to generate210

images that would convince the discriminator to think they were real images. The discriminator also was211

been trained to give a low score to the images coming from the generator. This was done by adjusting212

the parameters of both the generator and discriminator at each iteration. In the case of conditioning hard213

data, the aim of training the PGGAN conditioned to hard data was to train the generator to create realistic214

images that honored the conditioned hard data. Therefore, during optimization, an additional loss function215

was introduced called “context loss”, which was added to the generated loss to account for losses caused216

when the generator created images conditioned to hard data. The context loss used for this work was the217

L2 norm distance between the real image and the fake image measured at well facies locations similar to218

the implementation from Song et al. (2021). Figure 3 shows the architecture of how the hard data was219

conditioned with PGGAN. Below is the loss function used by the generator:220

L(G) = −Ez ∼ pz [D(G(z))] + ln (|(US(G(z))− xref)⊙ I|2) . (2)

Also, the loss function of the discriminator was similar to the loss function used by (Gulrajani et al.,221

2017) for WGAN-GP, as given below:222

L(D) = Ez ∼ pz [D(G(z))]− Ex ∼ px [D(x)] + λEx̂ ∼ px̂
[
(|∇x̂D(x̂)|2 − 1)

2
]
. (3)

The original loss term was:223

−Ez∼Pz [D(G(z))]− Ex ∼ px [D(x)] (4)
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The gradient penalty term was:224

λEx̂ ∼ px̂
[
(|∇x̂D(x̂)|2 − 1)

2
]
. (5)

The discriminator’s original loss term was in charge of adjusting the discriminator so that it calculated225

a small score for images generated by the generator and a large score for images taken from the training226

set. The gradient penalty term of the discriminator was in charge of ensuring that the discriminator did not227

change too much, causing instability in the PGGAN training process. The term, λ from the gradient penalty228

expression determined the weight of the penalty. In this work, it was set to λ = 10 which was proposed by229

Gulrajani et al. (2017) to work across a variety of architectures used.230

Once the training was completed, the generator was able to generate a variety of images within seconds.231

In the case of conditioning with hard data, the generator was able to create images that conditioned the232

hard data at their specified locations.233

2.4. Ensemble Smoother with Multiple Data Assimilation234

The methodology for the ensemble smoother with multiple data assimilation consisted of the following235

steps:236

Step 1: Ensemble Generation237

K =



k11 k12 · · · k1n

k21 k22 · · · k2n

...
...

. . .
...

km1 km2 · · · kmn


(6)

The matrix (K) represents the hydraulic conductivity parameters from the ensemble of prior hydraulic238

conductivity parameters that was integrated into the forward model. The subscript m is the mth hydraulic239

conductivity parameter in the vertical direction and n is the nth hydraulic conductivity parameter in the240

horizontal direction. The forward model can be represented as the following:241

d = F (K) (7)

where d is a vector containing the number of simulated data points, such as the hydraulic head in this study;242

F(.) is the forward operator, in this case, MODFLOW-2000.243

Step 2: Data Assimilation244
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Multiple data assimilation techniques were applied to the ensemble to incorporate observations into the245

forecast. We used the ES-MDA method proposed by Emerick and Reynolds (2013) to improve the accuracy246

of the forecast. The ES-MDA method is a data assimilation technique that updates the ensemble members247

using a smoother, and which the same measured data can be assimilated multiple times to reach a better248

result as compared to ES which only assimilates data ones. The following mathematical implementation of249

ES-MDA is based on (Emerick and Reynolds, 2013).250

Define forecast ensemble and observation operator:251

d =



h11 h12 · · · h1Nr

h21 h22 · · · h2Nr

...
...

. . .
...

hm1 hm2 · · · hmNr


(8)

where H is the ensemble of forecasted hydraulic head data at specified well locations simulated with the252

forward model, m denotes the mth forecasted hydraulic head data for each prior model parameters in the253

ensemble, and Nr denotes the number of ensembles.254

Hobs =



h1

h2

...

hm


(9)

where Hobs is the observation or the measured head data.255

Compute the forecast ensemble mean and covariance matrix:256

d̄ =
1

Nr − 1

Nr∑
j=1

dj (10)

CDD =
1

Nr − 1

Nr∑
j=1

(dj − d̄)(dj − d̄)T (11)

where d̄ is the forecast ensemble mean, CDD is the forecast ensemble covariance matrix, Nr is the number257
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of ensemble members, and dj is the jth member (vector) of the forecast ensemble. data258

Perturb the observation data:259

Repeat the observation data, Nr times to form a matrix:260

Hobs =



hobs11 hobs21 · · · hobsNr1

hobs12 hobs22 · · · hobsNr2

...
...

. . .
...

hobs1m hobs2m · · · hobsNrm


(12)

261

duc = Hobs +
√
αiU

1/2 (13)

where αi is the inflation coefficient of the ith iteration (
∑Na

i=1
1
αi

= 1), U is a dot product of the observation262

error covariance CD and random noise, CD is rescaled with Cholesky decomposition,Na is the number of263

iterations, duc is the perturbed observation data264

Compute the forecast anomalies:265

A = duc − d (14)

where A is the forecast ensemble anomaly.266

Compute the cross-covariance between the forecast ensemble anomalies and the ensemble of latent vector267

anomalies:268

CZD =
1

Nr − 1

Nr∑
j=1

(zj − z̄)(dj − d̄)T (15)

where CZD is the cross-covariance matrix between the variance of the ensemble of latent vectors and the269

variance of the ensemble of forecast data, zj is the jth latent vector in the ensemble, z̄ is the mean latent270

vector.271

Update the ensemble members for the ith iteration:272

zi+1 = zi +Ci
ZD(Ci

DD + αiCD)−1(Ai) (16)

In the equation where we need to invert the matrix C = (Ci
DD + αiCD), we face potential issues like273
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singularity and instability due to small singular values. To tackle this, the observation error covariance274

CD, was rescaled with the Cholesky decomposition resulting in CD = C
1/2
D (C

1/2
D )T as implemented in275

Emerick (2012), and Truncated Singular Value Decomposition (TSVD) was applied to find the pseudo-276

inverse, resulting in a matrix Ĉ = Un ∧n V T
n . ∧n is a diagonal matrix with the Nn largest singular values.277

Determining Nn involves considering the ratio of the sum of these largest singular values to the total sum278

(NT ). This ratio must be less than or equal to a given energy threshold E which is 0.99 in this work. In279

simpler terms, we want to retain enough significant singular values to capture at least E proportion of the280

total energy. The pseudoinverse C+ is obtained through Vn ∧+
n UT

n , where ∧+
n is the pseudo-inverse of ∧n281

This whole process ensures stability and accuracy in handling the inversion of C.282

3. Synthetic Examples283

To evaluate our proposed approach, we initially acquired the reference facies model randomly, as depicted284

in Figures 4 and 5. The hard data were then generated based on this reference model, illustrated in four285

scenarios in Figure 4. Combining the hard data with an ensemble of 100 latent vectors, each of size (128×1),286

we fed them into the trained generator, resulting in facies models of size (128 × 128 × 1). These generated287

facies models were further translated into hydrogeological properties, specifically hydraulic conductivity in288

this study. The hydraulic conductivity fields, derived from the generated facies models, acted as prior model289

parameters. These parameters were integrated into the forward model to simulate dynamic data, namely290

hydraulic head. Simultaneously, the reference facies models were also transformed into hydraulic conductivity291

fields and integrated into the forward simulator to simulate hydraulic heads, serving as our observed hydraulic292

head data. Hydraulic heads from specified well locations, along with latent vectors and observed hydraulic293

head data, were assimilated into the ES-MDA algorithm. Through multiple data assimilation steps, the294

ES-MDA algorithm updated the latent vectors. When these updated latent vectors, along with the hard295

data, were reintegrated into the trained PGGAN, they produced facies models that closely matched the296

initial reference facies model.297

The groundwater flow model produced from MODFLOW was used as a forward model. An image298

randomly extracted from the training image as well as an image generated by PGGAN were used as the299

reference hydraulic conductivity. All areas marked as “1” represent high hydraulic conductivities and areas300

marked as “-1” are areas representing low hydraulic conductivities. The confined aquifer had a size of 128 m301

× 128 m × 1 m, which was discretized into 128 rows by 128 columns by 1 layer Figure 6. The northern and302

southern boundaries were taken to be no-flow boundaries. The western side was a constant head boundary303
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(h = 0m). The eastern side was given a constant flux of -12.9 m3/d. The initial hydraulic head was equal to304

the depth of the aquifer (10 m) over the simulated domain. The specific storage of the aquifer was assumed305

to be a constant value of 0.003 m−1. The porosity was set to 0.3 everywhere. MODFLOW-2000 (Harbaugh306

et al., 2000) was used to model groundwater flow for 100 days307

3.1. Cases308

3.1.1. Case 1: Conditioning PGGAN on hard data only309

In this case, we compared the output of the PGGAN to the reference data when conditioned on only310

hard data. Figure 4 shows the scenarios considered. This comprised four scenarios in which we increased311

progressively the number of well facies data to examine the incremental impact on the output when compared312

to the reference image. Scenario 1 included 9 wells of facies data; Scenario 2 had 25 wells of facies data;313

Scenario 3 had 49 wells of facies data; and Scenario 4 had 81 wells of facies data. It was expected that the314

output realization after each increase should be closer to the reference image than in the previous scenario.315

3.1.2. Case 2: Coupling PGGAN and ES-MDA conditioned to only hydraulic head data316

Algorithm 1 described the steps used for this case. The image generated by the PGGAN Figure 5 was317

used as the reference image in this case for the forward modeling in MODFLOW. The reference image was318

converted to hydraulic conductivity data, which passed through the forward model to produce hydraulic319

head data at specified well locations, which then were used as reference head data. The reference head data320

aided in optimizing the ensemble of latent vectors with the help of the ensemble smoother algorithm, in order321

to generate images that were close to the reference image. Figure 5 shows well locations, where we want to322

generate hydraulic heads. Two scenarios were considered, 9 well locations (Scenario 6) and 25 well locations323

(Scenario 7) equally distributed in the domain. We first generated the reference hydraulic head at these well324

locations. We generated our random ensemble of the initial latent vector from a uniform distribution. The325

latent vector, with the help of PGGAN was used to generate the ensemble of hydraulic conductivity fields.326

These hydraulic conductivity fields were used to simulate the hydraulic heads with the help of the forward327

model generated by MODFLOW. The ES-MDA was used to optimize the latent vector with the help of the328

simulated hydraulic head and the reference hydraulic head. The process went through six iterations until329

the latent vector has been optimized and is able to generate images close to the reference image.330

3.1.3. Case 3: Coupling PGGAN and ES-MDA conditioned to hard data and head data331

Algorithm 1 describes the steps used in this case. We obtained our hard data from the reference image332

shown in Figure 7. In case 3, we examine how the number of hard data and head data points affect the333
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Table 1: Scenarios studies.

Case Scenario Ensemble size Obs Wells Well facies
1 100 0 9

1 2 100 0 25
3 100 0 49
4 100 0 81
5 100 0 0

2 6 100 9 0
7 100 25 0
8 100 9 9

3 9 100 9 25
10 100 25 25

4 11 100 25 25
12 100 49 49

parameter estimation. This was characterized by different scenarios. Scenario 8 looked at the case of 9334

observation wells and 9 well facies locations, Scenario 9 included 9 observation wells and 25 well facies335

locations. Scenario 10 looked at 25 observation wells and 25 well facies locations. We first generated336

the reference hydraulic head at these well locations. The random ensemble of the initial latent vector337

was generated from a uniform distribution. In this case, the generator of the PGGAN will take both the338

latent vector and the hard data as inputs to generate the ensemble of hydraulic conductivity fields that were339

conditioned on hard data from the reference image. These hydraulic conductivity fields were used to simulate340

the hydraulic heads with help of the forward model generated by MODFLOW. During optimization, the341

hard data remained fixed and only the latent vector was optimized with the help of the simulated hydraulic342

head and the reference hydraulic head. The aim was to show that in real-world applications when provided343

with some sort of data of a particular hydrogeologic or reservoir domain (for example, hydraulic head and344

facies at well locations), this method will be able to estimate with a high degree of certainty the hydraulic345

head of the entire geological area under study.346

3.1.4. Methods of Evaluation347

Two metrics were used to evaluate the results. The first evaluation was by visually analyzing the indi-348

vidually generated images from cases 1 to 3 to see how closely they match their various reference images.349

The mean and variance of each scenario were computed to inspect the closeness of the reference images and350

the images generated after parameter estimation and to determine how the ensemble of hydraulic conduc-351

tivity parameters varied from each other. The second evaluation was by plotting the root mean square error352

(RMSE) and spread of the generated hydraulic conductivities of the scenarios. These metrics have been used353

in other studies (Chen and Zhang, 2006; Bao et al., 2020). RMSE measured the bias between the reference354
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hydraulic conductivity and the estimated hydraulic conductivity of each scenario which helped determine355

the accuracy of the estimation. The spread measured the uncertainty of ensemble realizations. Below are356

the equations for the RMSE and the spread:357

RMSE =

√√√√ 1

Nk

Nk∑
j=1

(Kj −Kref)2 (17)

Spread =

√√√√ 1

Nk

Nk∑
j=1

Var(Kj) (18)

where Nk is the number of parameters, Kj is the mean of the estimated parameters, Kref is the reference358

parameters, and V ar(Kj) is the variance at each point.359
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Algorithm 1: Coupling PGGAN with ES-MDA

Set: Nw = Number of iterations
Set: dobs = Observation data (hydraulic head)
Set: Nr = The number of ensemble
begin

Generate the conditioning hard data from the reference hydraulic conductivity, cond array
Sample initial z from the uniform distribution z ∼ U(−1, 1)
for i = 1, 2, · · · , Niter do

αi = 2Niter−i

for j = 1, 2, · · · , Nr do
Generate ensemble of hydraulic conductivity field with the trained generator:
if cond array then

Ki
j = G(zij , cond array)

else
Ki

j = G(zij)

Run forward modeling using the generated Ki
j to obtain the hydraulic head di

j

Perturb the observation data: di
uc,j = dobs +

√
αiU

1/2

Compute the mean of the ensembled hydraulic conductivity zi

Compute the mean of the ensembled hydraulic head di

Calculate: Ci
ZD = 1

Nr−1

∑Nr

j=1(zj − z̄)(dj − d̄)T, the cross-covariance matrix

Calculate: Ci
DD = 1

Nr−1

∑Nr

j=1(dj − d̄)(dj − d̄)T,

the auto covariance of the predicted head data
Update: zi+1 = zi +Ci

ZD(Ci
DD + αiCD)−1(Ai

j)

end

3.2. Results360

3.2.1. Analysis of PGGAN conditioned to hard data361

Figure 8 shows individual realizations for four scenarios obtained from the trained generator that was362

conditioned to hard data only. The channels from the individual realizations clearly show similarities to the363

channels in the reference image. From the hard data conditioned to the PGGAN, it can be seen that the364

generator considered the positions of the hard data and therefore generated realizations that honored the365

conditioned hard data. All conditioning points in all of Scenarios 1 to 4 show that their resulting realizations366

honor the hard data. It appears that as the hard data points increased from 9 to 81 the realizations more367

closely matched the reference image. Pictorially, it also appears that as the hard data increased, the variance368

was reduced, Figure 9. The variance of Scenario 4 (81 hard data points) was the lowest among the four369

scenarios. The variance was greatest for Scenario 1 (9 hard data). The diversity of the realizations for370

scenarios 1 to 4 also clearly illustrates that implementation of the mini-batch standard deviation worked in371

aiding the generator to produce diverse image realizations. It also appears from Figure 8 that the hard data372
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were well conditioned on the generated images.373

3.2.2. Influence of head conditioning data374

We performed a sensitivity analysis of how an increase in hydraulic head data will influence the estimation375

of the ensembled hydraulic conductivities with respect to the reference hydraulic conductivity. For this376

analysis, the reference hydraulic conductivity was created by the generator of the PGGAN after it was377

trained. It was not randomly cut from the training image. Bao et al. (2020) have indicated that obtaining378

reference hydraulic conductivity data from the generator of the PGGAN to be used for parameter estimation379

will result in realizations close to the reference hydraulic conductivity after parameter estimation. Figures380

10 and 11 show realizations, mean, and variance of hydraulic conductivities over 100 ensemble members for 9381

and 25 observation wells, respectively, as well as a scenario with no observation data. The realizations show382

that, when the number of wells increased from 9 in Scenario 6 to 25 in Scenario 7 in case 2, the estimated383

hydraulic conductivities were improved and were close to the reference hydraulic conductivity. Statistically,384

when there were more measured data, the estimated parameters tended to approach the true parameter.385

The mean map of Scenario 7 with 25 wells was closer to the reference map than Scenario 6 with 9 wells. The386

variance map of Scenario 6 shows greater variance than in Scenario 7. The variance of Scenario 7, which is387

close to zero, indicates a near convergence of the ensembled hydraulic conductivities after optimization.388

The simulated heads from Figure 12 were obtained from the forward modeling for each scenario. Three389

heads from each scenario were selected at the same positions to compare how close the simulated heads390

from the ensembled hydraulic conductivities were to the reference heads. The simulated hydraulic heads of391

Scenario 7 were closer to the reference hydraulic heads, which also indicates that conditioning with more head392

data aids in reaching convergence of the calibrated parameters and the reference parameters. The results of393

the RMSE and the Spread are shown in figure 13. Both the RMSE and the Spread show a downward trend,394

which means that the error and uncertainty significantly reduce when the head data is increased.395

3.2.3. Random image as reference field396

We looked at the case of extracting a random image from the training image that was not used for397

the training of the PGGAN, which is reasonable for real-world applications, in which the generator of the398

PGGAN will have little (scanty measured data) or no clue of the area under study. Therefore, testing the399

generator based on a new reference hydraulic conductivity field should be a useful way to test the PGGAN.400

However, (Bao et al., 2020) experimented on a conventional GAN conditioned to only hydraulic head data401

to estimate the hydraulic conductivity field, given the hydraulic conductivity field randomly cut from the402
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reference image. Their results showed that the estimated hydraulic conductivity fields get closer to the403

reference hydraulic conductivity as the data points for hydraulic head increase but they still do not fully404

mimic the channels in the reference image.405

In certain cases, some sort of measured data (hard data) can be acquired that will help in parameter406

estimations and reduce uncertainties. Figures 14 and 15 show realizations, mean, and variance of three407

scenarios analyzed when both hard data and hydraulic head data were conditioned, to estimate the hydraulic408

conductivity with respect to the reference hydraulic conductivity field randomly cut from the training image.409

Based on the three scenarios, it is clear that as both the hydraulic head data and the hard data increased, the410

estimated hydraulic conductivity fields were closer to the reference hydraulic conductivity. Scenario 10 (25411

head data and 25 hard data) was the closest to the reference image, followed by Scenario 9 (9 head data and412

25 hard data), and then Scenario 8 (9 head data and 9 hard data). This demonstrates that the estimation413

error and uncertainty are reduced as the number of conditioned data is increased. In all scenarios, the hard414

data were well conditioned, which affirms that they play a major role in estimating hydraulic conductivity415

fields that are close to the reference hydraulic conductivity. Another observation is that realizations from416

scenarios 9 and 10 were close which is evident from the head data plot in Figure 16. This is because the417

number of hard data points conditioned to the PGGAN was the same for both scenarios; therefore, when418

more hard data were conditioned to the PGGAN it was able to generate data that were closer to the true419

data of the particular model domain.420

Figure 17 shows the RMSE and Spread. The uncertainty and the errors were reduced when the con-421

ditioned data were increased. It also indicates that the RMSE and the spread of scenarios 9 and 10 were422

closer, which is a result of the increased hard data.423

4. Reference field outside the training data424

The effictiveness of the proposed technique was further evaluated using different reference hydraulic425

conductivity fields from Strebelle (2002), which is not part of the training data used for the PGGAN.426

In contrast to the reference fields in cases 1, 2, and 3, which are oriented in a north-east to south-west427

direction, this reference field used in case 4 exhibit a north-south direction for the channels. The parameter428

estimation process involved 25 hard data points and hydraulic heads from 25 observation wells for scenario429

11, and 49 hard data points and hydraulic heads from 49 observation wells for scenario 12. The results430

from generated realizations (Figure 18) illustrate that the approach produced hydraulic conductivity fields431

that closely resemble the reference data field. As the number of conditioned data increased, the realizations432
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more closely matched the reference field. The results obtained from parameter estimation suggest that the433

method is capable of handling a variety of hydraulic conductivity fields with different statistical properties,434

extending beyond the specific hydraulic conductivity fields introduced during the training of the generator.435

5. Conclusion436

In this study, an approach to directly conditioning on hard data and head data when performing pa-437

rameter estimations in hydrogeologic modeling by leveraging the deep learning method, PGGAN and data438

assimilation was proposed. First, the PGGAN was trained by introducing hard data at each resolution stage,439

with the aim that the generator of the PGGAN would generate facies model realizations that honored the440

hard data. After training, the generator was coupled with ES-MDA to perform parameter estimation, given441

a reference image either generated by the PGGAN or randomly cut from the training image. An ensemble442

of random uniform distribution was generated, and together with the hard data obtained at point locations443

from the reference image, the generator generated an ensemble of realizations, which in this work were hy-444

draulic conductivity parameters. The parameters went through a forward model to produce hydraulic heads445

at specified observation wells. The ES-MDA method was applied to optimize the parameters of the latent446

space with the help of both the observed and modeled hydraulic head data. The results demonstrate that447

using PGGAN conditioned to hard data and coupled to ES-MDA can reconstruct a channelized aquifer of448

an unknown model domain when some measured data from the unknown aquifer domain are obtained. This449

also can reduce the uncertainty of hydraulic head predictions. Synthetic examples were used to test the450

method. A PGGAN that was not conditioned to hard data was trained in order to test its efficiency in451

generating images that mimic the channels of a reference image generated by the trained PGGAN when452

coupled with ES-MDA and conditioned to only head data. The results show that the PGGAN was efficient453

in reconstructing the channels of the reference image when conditioned with head data. Results also show454

that, as the head data are increased, the image more closely resembles the reference image.455

The results from PGGAN conditioned to hard data and coupled with ES-MDA show that when the well456

facies data were increased, the generated image realizations were able to mimic the channel structures in457

the reference image and reduce the uncertainty of the estimation. This is evident in the RMSE and spread,458

calculated which displayed a significant reduction when the conditioned data were increased. Results also459

show that having some sort of hard data during parameter estimation helps to reduce uncertainty.460

Acknowledgements This work has been supported through a grant from the National Science Foun-461

dation (OIA-1833069). The authors wish to thank three anonymous reviewers for their comments, which462

20



substantially helped to improve the final version of the manuscript.463

21



References464

Abdellatif, A., Elsheikh, A.H., Graham, G., Busby, D., Berthet, P., 2022. Generating unrepresented465

proportions of geological facies using generative adversarial networks. Computers & Geosciences466

162, 105085. URL: https://www.sciencedirect.com/science/article/pii/S0098300422000474,467

doi:https://doi.org/10.1016/j.cageo.2022.105085.468

Bao, J., Li, L., Davis, A., 2022. Variational autoencoder or generative adversarial networks? a comparison469

of two deep learning methods for flow and transport data assimilation. Mathematical Geosciences 54,470

1017–1042.471

Bao, J., Li, L., Redoloza, F., 2020. Coupling ensemble smoother and deep learning with generative adversarial472

networks to deal with non-gaissianity in flow and transport data assimilation. Journal of Hydrology 590,473

125443.474

Caers, J., Zhang, T., 2004. Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs475

into multiple reservoir models. AAPG Mem 80, 383–394.476

Canchumuni, S.A., Emerick, A.A., Pacheco, M.A., 2017. Integration of ensemble data assimilation and deep477

learning for history matching facies models. In Proceedings of the Offshore Technology Conference, Rio478

de Janeiro, Brazil, 24–26 October, number OTC28015-MS .479

Canchumuni, S.A., Emerick, A.A., Pacheco, M.A., 2018. History matching channelized facies models using480

ensemble smoother with a deep learning parameterization. In Proceedings of the 16th European Conference481

on the Mathematics of Oil Recovery (ECMOR XVI), Barcelona, Spain, 3–6 September .482

Canchumuni, S.W., Emerick, A.A., Pacheco, M.A.C., 2019. Towards a robust parameterization for condition-483

ing facies models using deep variational autoencoders and ensemble smoother. Computers & Geosciences484

128, 87–102. URL: http://dx.doi.org/10.1016/j.cageo.2019.04.006, doi:10.1016/j.cageo.2019.485

04.006.486

Chan, S., Elsheikh, A.H., 2017. Parametrization and generation of geological models with generative adver-487

sarial networks. URL: https://arxiv.org/abs/1708.01810.488

Chan, S., Elsheikh, A.H., 2018. Parametric generation of conditional geological realizations using generative489

neural networks. URL: https://arxiv.org/abs/1807.05207.490

22



Chen, Y., Oliver, D.S., 2012. Ensemble randomized maximum likelihood method as an iterative ensemble491

smoother. Mathematical Geosciences 44, 1–26.492

Chen, Y., Zhang, D., 2006. Data assimilation for transient flow in geologic formations via ensemble kalman493

filter. Advances in Water Resources 29, 1107–1122.494

Cressie, N., 1990. The origins of kriging. Math Geol 22, 239–252.495

Dubrule, L.M.O., Blunt, M.J., 2017. Reconstruction of three-dimensional porous media using generative496

adversarial neural networks. doi:10.1103/PhysRevE.96.043309 96(043309), 1 – 6.497

Dupont, E., Zhang, T., Tilke, P.and Liang, L., Bailey, W., 2018. Generating realistic geology conditioned498

on physical measurements with generative adversarial networks. URL: https://arxiv.org/abs/1802.499

03065.500

Emerick, A., 2012. History Matching and Uncertainty Characterization: Using Ensemble-based Methods.501

LAP LAMBERT Academic Publishing.502

Emerick, A.A., Reynolds, A.C., 2013. Ensemble smoother with multiple data assimilation. Computers &503

Geosciences 55, 3–15.504

Evensen, G., 2018. Analysis of iterative ensemble smoothers for solving inverse problems. Computational505

Geosciences 22, 885–908.506

Fetter, C.W., 2018. Applied hydrogeology. Waveland Press.507

Fossum, K., Alyaev, S., Elsheikh, A., 2023. Ensemble history-matching workflow using interpretable spade-508

gan geomodel 2023, 1–5. URL: https://www.earthdoc.org/content/papers/10.3997/2214-4609.509

202335020, doi:https://doi.org/10.3997/2214-4609.202335020.510

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.,511

2014. Generative adversarial nets, in: Advances in neural information processing systems, pp. 2672–2680.512

Goodfellow, Ian, Y.B., Courville, A., 2016. Deep learning http://www.deeplearningbook.org.513

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C., 2017. Improve training of wasserstein514

gans. arXiv:1704.00028 .515

23



Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G., 2000. Modflow-2000, the u. s. geological survey516

modular ground-water model-user guide to modularization concepts and the ground-water flow process.517

Open-file Report. U. S. Geological Survey , 134.518

Karras, T., Aila, T., Laine, S., Lehtinen, J., 2018. Progressive growing of gans for improved quality, stability,519

and variation. arXiv:1710.10196 .520
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Figure 1: The architecture of the unconditional progressive growing of GAN. CT(4×4) represents transposed convolution with
a kernel size of 4. US represents the upsampling layer used to upscale the images from low resolution to high resolution. RDS4,
RDS8, RDS16, ..., RDS128 represents real images downsampled to (4×4),(8×8), (16×16), ..., (128×128) image sizes. DGB
represents the general block of the discriminator which has two convolutional layers with (3×3) kernel size and a downsampling
layer with a scale factor of 2. DFB is a final block of the discriminator (3×3), (4×4), (1×1) convolutional layers
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Figure 2: Training image (2500 × 2500).

Figure 3: The architecture of the generator conditioned to hard data. CT(4×4) is a transposed convolution with (4×4) kernel
sizes. CV(3×3) is a convolutional layer with (3×3) kernel size. CV(1×1) is a convolutional layer with (1×1) kernel size. US is
an upsampling layer and DS is a downsampling layer
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Figure 4: Well facies locations for case 1.
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Figure 5: Observation well locations for case 2.
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Figure 6: The reference hydraulic conductivities with boundary conditions. No-flow boundary on north and south, constant
head on the western boundary, and constant flux on the eastern boundary. The yellow areas represent the channels with high
hydraulic conductivity.

Figure 7: Well facies locations and observation well locations for case 3.
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Figure 8: Realizations for PGGAN conditioned on hard data (well facies data).

Figure 9: The mean and variance of hydraulic conductivity for case 1.
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Figure 10: Realizations for PGGAN conditioned to head data.
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Figure 11: The mean and variance of hydraulic conductivity for case 2.
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Figure 12: Hydraulic head for three observation well locations for case 2.
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Figure 13: The RMSE and spread for case 2. The red line represents the RMSE between the reference and predicted hydraulic
conductivity fields and the black line represents the spread of the predicted hydraulic conductivity fields.

Figure 14: Realizations for PGGAN conditioned to both head data and hard data.
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Figure 15: The mean and variance of hydraulic conductivity fields for case 3.
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Figure 16: Hydraulic head of the middle observation wells for case 3.

Figure 17: The RMSE and spread for case 3. The red line represents the RMSE between the reference and predicted hydraulic
conductivity fields and the black line represents the spread of the predicted hydraulic conductivity fields.
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Figure 18: Realizations of hydraulic conductivity fields for case 4
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