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Abstract

The incorporation of hard data in geostatistical modeling is crucial for enhancing the accuracy of interpolating
or stochastically estimating subsurface spatial features. The hard data at specified points in the model
domain serve as a guide in optimizing the unknown parameters to follow the patterns of the hard data.
Recently, a novel approach to solving hydrogeologic/reservoir modeling problems has emerged by using deep
generative models, specifically generative adversarial networks (GANSs), to generate realistic and diverse
images of channelized aquifers. This subsequently can be coupled with inverse models to solve parameter
estimation problems. This study focused on using an improved GAN, called a progressive growing generative
adversarial network (PGGAN), conditioned with hard data to perform parameter estimation of complex facies
models by coupling an ensemble smoother with multiple data assimilation (ES-MDA). First, the PGGAN
was trained to an image with 128 x 128 resolution. The trained PGGAN was used to generate hydraulic
conductivity fields when fed an ensemble of latent variables and hard data. The ES-MDA then was used to
update the latent variable with the help of hydraulic head data obtained from the groundwater model. The
approach was tested on synthetic hydraulic conductivity data. Results show that this approach was able to
perform efficient estimation of an unknown facies model domain. Additionally, the proposed method was
applied to a different test case of a facies model exhibiting different statistical characteristics. The results
were satisfactory, demonstrating that the method is not constrained to the particular hydraulic conductivity

fields introduced in the generator’s training.
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1. Introduction

The spatial distribution of rock properties within an aquifer/reservoir medium significantly influences the
movement and transfer of fluids. Early research relied on a limited amount of data for defining the static
properties of subsurface reservoirs or aquifers, like facies types, facies proportions, and facies orientations.
Similarly, it also aimed at simulating dynamic data, such as the hydraulic head of an aquifer. Consequently,
various geostatistical approaches were developed for creating geological models. Early stages of geomodeling
used two-point statistics (i.e., mean and covariance) to capture the statistical properties of the data distri-
bution (Cressie, 1990). Two-point statistics are limited in their ability to depict the variables following a
Gaussian distribution, a presumption that does not always align with the complex nature of hydrological
systems (Dupont et al., 2018). In addition, two-point statistics do not capture higher-order moments or
non-linear relationships between variables, which can be important in hydrologic modeling. Multiple-point
statistics (MPS) have been proposed to model the spatial patterns of variables at a larger scale in order to
overcome the limitations of two-point statistics (Caers and Zhang, 2004). By conditioning the simulation on
a set of training images or patterns, MPS can capture higher-order moments and non-linear relationships be-
tween variables (Mahmud and Baker, 2014). While the application of MPS in hydrological modeling has been
explored in numerous papers, addressing the computational complexities associated with high-dimensional
space remains an ongoing research area (e.g., Tahmasebi, 2018; Zuo et al., 2022).

Deep learning is creating a revolution in science and related industries. Deep learning is a mathematical
model that automatically learns a new parametric representation of the data that are fed to them and, in
some cases, enables inverse mapping from the learned representation to the original data space (Goodfellow
and Courville, 2016). Generative adversarial networks (GANs), developed by Goodfellow et al. (2014),
are a type of deep learning model that has gained popularity in recent years because of their ability to
generate high-quality images and videos that are often indistinguishable from real-world samples. GANs
have numerous applications, including art, fashion, gaming, and virtual reality, and are quickly becoming
an indispensable tool in computer vision and machine learning research, where they currently are used
widely in hydrogeology and petroleum engineering for aquifer/reservoir modeling for parameterization of
geological facies (Laloy et al., 2018; Bao et al., 2022). For example, Dubrule and Blunt (2017) employed
a GAN to create 3D images of porous media, while Laloy et al. (2017) utilized a variational autoencoder
(VAE) to develop a low-dimensional parameterization of binary facies models with latent variable for inverse
modeling with Markov Chain Monte Carlo method. In a subsequent study, Laloy et al. (2018), the same

researchers expanded on their initial work by incorporating spatial GANs. Canchumuni et al. (2017) applied
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an autoencoder to represent binary facies values using continuous variables for history matching with an
ensemble smoother. In a later publication, Canchumuni et al. (2018) broadened this parameterization using
deep belief networks (DBN). Chan and Elsheikh (2017) employed a Wasserstein GAN to generate binary
channelized facies realizations.

The application of GANs in the field of hydrogeology has become a promising approach. GANs are
employed to produce hydrogeologic facies models, which are subsequently incorporated into groundwater
modeling systems and in previous studies, they are linked with inverse models for performing parameter
estimations (Mosser et al., 2018; Laloy et al., 2018). GANSs can be used to generate facies models that
closely mimic the statistical properties of real-world subsurface data. One of the major advantages of GANs
in hydrogeology is that they have been utilized to generate hydrogeologic facies models and have further been
incorporated into groundwater models for estimation of hydraulic properties and prediction of groundwater
flow. GANs can also be used to generate data for scenarios in which data are limited or unavailable. This can
be useful in areas where there are difficulties in accessing monitoring wells or other data sources. Although
GANSs have shown successes in generating realistic hydrogeologic facies models, recent work by Bao et al.
(2020) revealed limitations when reconstructing channel structures of a reference hydraulic conductivity by
using a conventional GAN, conditioned to hydraulic head data and coupled with an ensemble smoother
with multiple data assimilation. Their results showed that the method was able to reconstruct the channels
of the reference hydraulic conductivity that was generated by the GANs but the method was not able to
properly reconstruct the hydraulic conductivity field when the reference hydraulic conductivity was randomly
obtained from the training image, even as the observed hydraulic head data was increased. In real-world
applications, the GAN cannot generate its own reference data points to perform data assimilation. It will
be given some limited measured data (e.g., facies type, hydraulic heads, etc.) of a particular area of interest
that has not been learned by the GAN, to estimate the parameters of the entire area.

The exploration of utilizing deep learning for conditioning hard data, such as facies, has garnered sig-
nificant attention in research. In Chan and Elsheikh (2018), they integrated an inference network with a
pre-trained GAN to generate facies realizations that are conditioned on facies observations, or hard data.
Similarly, Dupont et al. (2018) tackled the challenge of conditioning facies to hard data, employing a se-
mantic inpainting approach with GAN. Liu et al. (2018) took a different route by utilizing the fast neural
style transfer algorithm as a generalization of O-PCA for generating conditional facies realizations using
randomized maximum likelihood. Ruffino et al. (2020) delved into the effectiveness of conditioning GANs

with limited pixel values. Their framework introduced an explicit cost term to the GAN objective function,
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enforcing pixel-wise conditioning. Zhang et al. (2019) adopted a different strategy, utilizing a pre-trained
GAN and adjusting weights, along with a ”context loss” defined using distance transformation to measure
the mismatch between GAN-generated samples and conditioning data. Canchumuni et al. (2019) explored
the use of prior realizations from Convolutional Variational Autoencoder and ES-MDA to condition hard
data, testing parameterization in synthetic history-matching problems involving channelized facies. Ab-
dellatif et al. (2022) proposed SPADE-GAN, a conditional Generative Adversarial Network (GAN) model,
designed specifically for generating missing facies proportions based on a dataset of geological images. This
model was later employed by Fossum et al. (2023) for performing history matching of reservoir simulation
using ensemble-based history-matching methods.

The majority of the proposed methods focus on conditioning facies models to hard data by first train-
ing GANs or VAEs on facies model realizations. The pre-trained generator is then combined with various
approaches like semantic inpainting or geostatistical algorithms. However, Ruffino et al. (2020) took a
different approach by directly conditioning hard data to the GAN, allowing the network to learn to gener-
ate realizations constrained to the hard data during training through adjustments in the GAN network’s
weights. Traditional GAN architectures, also known as conventional GANs, generate synthetic images using
a single generator and discriminator pair. However, traditional GANs have been criticized for producing
low-resolution images that lack detail and are unstable during training (Karras et al., 2018; Song et al.,
2021). Progressive Growing GANs (PGGANSs) developed by Karras et al. (2018) have recently emerged as
a promising alternative to traditional GANs for image synthesis. PGGAN is a technique for training GANs
in a more stable and efficient manner. The basic idea is to begin training the GAN on a low-resolution
image and gradually increase the image resolution as training progresses. This enables the GAN to learn
the image’s basic shapes and colors first, and then gradually refine its output to capture more detail and
complexity. In a PGGAN, the generator and discriminator initially train on low-resolution images, and layers
are progressively added to both networks as the resolution increases. This ensures stability in the training
process without disrupting existing layers. One notable advantage of PGGAN is its flexibility to add layers
at each resolution, allowing for the incorporation of hard data at different resolution levels. This way, the
PGGAN model can learn to generate realizations that honor the specified hard data. Song et al. (2021)
effectively incorporated hard data, specifically well facies data, into the Progressive Growing of Generative
Adversarial Networks (PGGAN). The generated realizations demonstrated a successful alignment with the
provided hard data, indicating a well-conditioned outcome.

The ensemble Smoother (ES) by Evensen (2018) is a data assimilation method that is used in hydrology
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and other fields to estimate the state of a system based on observations and a numerical model. The basic idea
of ensemble smoother is to use a set of model runs, called an ensemble, to generate a probability distribution
of possible states of the system, and then update this distribution based on observations in order to obtain
a more accurate estimate of the true state of the system. The ES algorithm works by first generating an
ensemble of model runs, where each run represents a possible state of the system. The ensemble runs are used
to generate a probability distribution of possible states of the system, which represents the uncertainty in
the model predictions. Next, the observations are incorporated into the ensemble using a Bayesian update,
which adjusts the probability distribution to better match the observed data. The ES algorithm can be
used to directly estimate the state of a system at any given point in time. Like other variants of Kalman
Filter, the parameters and states have to follow multi-Gaussian distributions for optimal solutions (Evensen,
2018). The accuracy of the estimates depends on the quality of the observations and the model, as well
as the size of the ensemble and its degree of representation. In ES, the entire set of model realizations is
combined in a single integration to produce a prediction. Subsequently, the ensemble of uncertain parameters
is updated using the “Kalman Filter” equations Stordal et al. (2011), assimilating all data simultaneously.
ES demonstrates superior performance in the context of linear dynamical models but shows limitations when
applied to nonlinear dynamical models, especially in the context of complex aquifers. The intricate nonlinear
interactions within these aquifers can contribute to deviations from gaussian behavior in the observed data..
After the introduction of ES for history matching by Skjervheim et al. (2011), two iterative variations of
the smoother formulation emerged. The Iterative Ensemble Smoother Algorithm (TES) was proposed by
Chen and Oliver (2012), while Emerick and Reynolds (2013) developed the Multiple-Data Assimilation ES
(ES-MDA). The iterative nature of these variants addresses some challenges associated with nonlinearity,
leading to improved outcomes compared to those achieved with ES alone. Evensen (2018), evaluated two
iterative ensemble smoothers for solving inverse problems. The results indicated that ES-MDA performs
better as the number of Multiple Data Assimilation (MDA) steps increases. However, achieving convergence
with ES-MDA may necessitate a considerable number of MDA steps. On the other hand, Iterative Ensemble
Smoother (IES) may require fewer iterations for convergence, but its implementation is separate and may
encounter convergence challenges if poorly chosen step length values are used.

In a previous study conducted by Song et al. (2023) which employed four latent vector search approaches
including IES, a hybrid model combining a conditioned PGGAN and a Convolutional Neural Network (CNN)-
based surrogate was employed for reservoir inverse modeling. The aim was to estimate the properties of

reservoir facies models. The CNN-based surrogate served as a forward simulator within the inverse model-
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ing framework. The research approach involved training facies models with channel directions constrained
within 425 degrees of deviation from the north direction. This constraint was implemented to alleviate the
training burden on the surrogate. Hydrogeological facies models are often characterized by high heterogene-
ity, with properties varying across space and in different directions. Additionally, these models frequently
feature complex channels with intricate relationships, posing a computational challenge for the surrogate to
effectively learn them. Previous studies by Bao et al. (2020) utilized ES-MDA coupled with GAN;, resulting
in improved minimization of observed and predicted data. However, only hydraulic head data are considered
in their studies.

Building on the previous work from Bao et al. (2020) and Song et al. (2023), the current study integrates
the conditioned PGGAN with ES-MDA and utilizes MODFLOW as the forward simulator to integrate facies
data as well as hydraulic head data into groundwater modeling. To the best of our knowledge, this is the
first study to integrate both hard data and soft data (e.g., head data) into hydrogeological modeling by
coupling deep learning and data assimilation algorithms. In order to evaluate the influence of conditioned
data (both hard and soft data) on hydrogeological inversions, a sensitivity analysis was also conducted.
This involved running various scenarios with an incremental increase in conditioned data. Specifically, the
study investigates the ability of the coupled conditioned PGGAN and ES-MDA to generate realistic facies
data, capturing intricate geological structures, and enhancing the accuracy of hydrogeologic simulations.
Furthermore, we assessed the influence of priors sourced from the training image, as opposed to using a

generated image from the trained model, aiming for greater realism in the field.

2. Methodology

2.1. Forward Modeling

The single phase groundwater flow equation can be expressed as follows (Fetter, 2018):

0 Oh 0 oh

0 oh oh
a_ Kmxi Kyy—— a_ Kzzi
896( 8x>+8y( yyay)+6z( 0z

)W =85 (1)

where K, Ky, and K, is the hydraulic conductivity tensors in 3D; h is the hydraulic head; W represents

Yo
sources and sinks; S, is the specific storage; x, y, and z represent the coordinates; and ¢ is time. The equation
is solved using the finite-difference method in which the aquifer is divided into a number of cells and the

head is calculated at each node (Harbaugh et al., 2000).
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2.2. Progressive Growing of GANs

The framework of how the generator of the PGGAN was trained is illustrated in Figure 1. The inputs
consisted of a 128 x 1 latent vector, sampled from a uniform distribution (z ~ U(—1,1)), and hard data
(observed data). The hard data were obtained by choosing specific points from the training images. These
points represented known well facies at the specified locations. For the purpose of this study, the training
images consisted of two facies types. The latent vector first went through a transposed convolution with 4
X 4 kernel size. The result is a 4 x 4 latent size. The conditioned hard data then were downsampled from
the original 128 x 128 resolution to various resolutions to match the image sizes of the resolutions at each
stage. For resolution 4, a downsampled 4 x 4 resolution of hard data was concatenated to the output 4 x 4
latent space produced by the transposed convolution. The result then went through two layers of convolution
before it was upsampled to 8 x 8 resolution. The output went through the same steps to produce 16 x
16, 32 x 32, 64 x 64, and 128 x 128 resolutions. The final 128 x 128 resolution went through one more
convolution with a 1 x 1 kernel size to produce a 128 x 128 image. At each resolution stage, the hard
data were introduced in order for the generator to learn to create realistic images with the conditioned data
provided.

The discriminator took in both the images generated by the generator as well as a batch of real images
to determine, with probability, categories that were real or fake images. Figure 1 shows the architecture of
the discriminator and how it worked inversely to how the generator worked. For the 4 x 4 resolution, the
images first went through a convolutional layer with a kernel size of 3 and padding of 1, followed by a second
convolution with a kernel size of 1. For this study, this process was termed the final block of convolutions in
the discriminator. The discriminator also had a general block that contained two convolutional layers with
kernel size of 3 and a downsample layer that downsampled the image by a scale factor of 2. This general
block was implemented on the subsequent image resolutions during training before we applied the final block.
For example, the 8 x 8 image resolution passed through the general block, and afterward, the output passed
through the final block. The 16 x 16 image resolution went through the general block two times. The 32
x 32 image resolution passed through the general block three times. In turn, the 64 x 64 image resolution
passed through the general block four times, and the 128 x 128 passed through the general block five times.
An additional input channel was added to the first convolutional layer of the final block. The purpose of this
addition is to calculate the standard deviation of the batch of images that went through the discriminator.

This enforced the generator to create output of varied images.
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2.8. Training of PGGAN conditioned to hard data

Thirty thousand images with size 128 x 128 were randomly cropped from the original training image
(TI) (Zahner et al., 2015) for training (Figure 2). The generator was trained with a batch size of 32 and each
resolution was trained for 42 epochs. Only one GPU was used and the total time for completing training was
66 hours. The Adam optimizer was used to train both the generator and discriminator. The Adam optimizer
was used with §; = 0 and B2 = 0.99. The generator and the discriminator both used a learning rate of
0.03. The hard data conditioned to the generator were formatted as a two-dimensional array containing the
locations of the wells and the type of facies known at those locations. For this study, the array elements
could have one of three possible values: “1” denoted high conductivity facies, “-1” denoted low conductivity
facies, and “0” denoted areas where the facies type was unknown. The generator and discriminator were
trained to compete with each other with the aim of improving the performance of the generator to generate
images that would convince the discriminator to think they were real images. The discriminator also was
been trained to give a low score to the images coming from the generator. This was done by adjusting
the parameters of both the generator and discriminator at each iteration. In the case of conditioning hard
data, the aim of training the PGGAN conditioned to hard data was to train the generator to create realistic
images that honored the conditioned hard data. Therefore, during optimization, an additional loss function
was introduced called “context loss”, which was added to the generated loss to account for losses caused
when the generator created images conditioned to hard data. The context loss used for this work was the
L2 norm distance between the real image and the fake image measured at well facies locations similar to
the implementation from Song et al. (2021). Figure 3 shows the architecture of how the hard data was

conditioned with PGGAN. Below is the loss function used by the generator:
L(G) = —Ez ~ p, [D(G(2))] + In ((US(G(z)) — xref) © I|,) . (2)

Also, the loss function of the discriminator was similar to the loss function used by (Gulrajani et al.,

2017) for WGAN-GP, as given below:
L(D) = Ez ~ p. [D(G(2))] — Ex ~ p; [D(2)] + AE& ~ pi | ([VaD(#)], — 1)°] . (3)

The original loss term was:

—E.p. [D(G(2))] = Ez ~ p [D(2)] (4)
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The gradient penalty term was:

NEi ~ pi [(IVsD(@)], — 1)°] (5)

The discriminator’s original loss term was in charge of adjusting the discriminator so that it calculated
a small score for images generated by the generator and a large score for images taken from the training
set. The gradient penalty term of the discriminator was in charge of ensuring that the discriminator did not
change too much, causing instability in the PGGAN training process. The term, A from the gradient penalty
expression determined the weight of the penalty. In this work, it was set to A = 10 which was proposed by
Gulrajani et al. (2017) to work across a variety of architectures used.

Once the training was completed, the generator was able to generate a variety of images within seconds.
In the case of conditioning with hard data, the generator was able to create images that conditioned the

hard data at their specified locations.

2.4. Ensemble Smoother with Multiple Data Assimilation
The methodology for the ensemble smoother with multiple data assimilation consisted of the following
steps:

Step 1: Ensemble Generation

kll k12 e kln
k21 k22 e k2n
K = (6)
_kml km2 e kmn_

The matrix (K) represents the hydraulic conductivity parameters from the ensemble of prior hydraulic
conductivity parameters that was integrated into the forward model. The subscript m is the myy, hydraulic
conductivity parameter in the vertical direction and n is the ny, hydraulic conductivity parameter in the

horizontal direction. The forward model can be represented as the following:

d = F(K) (7)

where d is a vector containing the number of simulated data points, such as the hydraulic head in this study;
F(.) is the forward operator, in this case, MODFLOW-2000.

Step 2: Data Assimilation

10
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Multiple data assimilation techniques were applied to the ensemble to incorporate observations into the
forecast. We used the ES-MDA method proposed by Emerick and Reynolds (2013) to improve the accuracy
of the forecast. The ES-MDA method is a data assimilation technique that updates the ensemble members
using a smoother, and which the same measured data can be assimilated multiple times to reach a better
result as compared to ES which only assimilates data ones. The following mathematical implementation of
ES-MDA is based on (Emerick and Reynolds, 2013).

Define forecast ensemble and observation operator:

hiy hyp -+ hyy,
hy;  hoy -+ hoy,
d= (8)
_hml hm2 e thr_

where H is the ensemble of forecasted hydraulic head data at specified well locations simulated with the
forward model, m denotes the myy, forecasted hydraulic head data for each prior model parameters in the

ensemble, and N, denotes the number of ensembles.

h;

hy
Hobs = . (9)

hp,

where H,s is the observation or the measured head data.

Compute the forecast ensemble mean and covariance matrix:

- 1
d= Nr—lzdj 1o
j=1
1 N,
CDD = N1 Zl(d] d)(d; —d) (11)
j:

where d is the forecast ensemble mean, Cpp is the forecast ensemble covariance matrix, IV, is the number

11
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of ensemble members, and d; is the j;;, member (vector) of the forecast ensemble. data
Perturb the observation data:

Repeat the observation data, N, times to form a matrix:

hobsll hobsQl o hobsNTl
hobsl? hobs22 o hobsNTQ
Hobs = . . . (12)
_hobslm hobs2m e hobsNrm_
dye = Hops + V OéiUl/2 (13)
Ng

where «; is the inflation coefficient of the ith iteration (> = 1), U is a dot product of the observation

1
i=1 oy
error covariance Cp and random noise, Cp is rescaled with Cholesky decomposition,N, is the number of
iterations, d,. is the perturbed observation data

Compute the forecast anomalies:

A=d,—d (14)

where A is the forecast ensemble anomaly.
Compute the cross-covariance between the forecast ensemble anomalies and the ensemble of latent vector
anomalies:

N,
Cp = g (3~ B)d; - " (15)

where Czp is the cross-covariance matrix between the variance of the ensemble of latent vectors and the
variance of the ensemble of forecast data, z; is the j;, latent vector in the ensemble, Z is the mean latent
vector.

Update the ensemble members for the i, iteration:

2" = 2"+ Cyp(Chp + iCp) ™' (A) (16)

In the equation where we need to invert the matrix C = (C%, + o;Cp), we face potential issues like

12
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singularity and instability due to small singular values. To tackle this, the observation error covariance
Cp, was rescaled with the Cholesky decomposition resulting in Cp = C,lj/ 2(0113/ 2)T as implemented in
Emerick (2012), and Truncated Singular Value Decomposition (TSVD) was applied to find the pseudo-
inverse, resulting in a matrix C = Up A VIO A, is a diagonal matrix with the N, largest singular values.
Determining N,, involves considering the ratio of the sum of these largest singular values to the total sum
(N7). This ratio must be less than or equal to a given energy threshold E which is 0.99 in this work. In
simpler terms, we want to retain enough significant singular values to capture at least E proportion of the

total energy. The pseudoinverse CT is obtained through V,, A} U where A is the pseudo-inverse of A,

This whole process ensures stability and accuracy in handling the inversion of C'.

3. Synthetic Examples

To evaluate our proposed approach, we initially acquired the reference facies model randomly, as depicted
in Figures 4 and 5. The hard data were then generated based on this reference model, illustrated in four
scenarios in Figure 4. Combining the hard data with an ensemble of 100 latent vectors, each of size (128 x 1),
we fed them into the trained generator, resulting in facies models of size (128 x 128 x 1). These generated
facies models were further translated into hydrogeological properties, specifically hydraulic conductivity in
this study. The hydraulic conductivity fields, derived from the generated facies models, acted as prior model
parameters. These parameters were integrated into the forward model to simulate dynamic data, namely
hydraulic head. Simultaneously, the reference facies models were also transformed into hydraulic conductivity
fields and integrated into the forward simulator to simulate hydraulic heads, serving as our observed hydraulic
head data. Hydraulic heads from specified well locations, along with latent vectors and observed hydraulic
head data, were assimilated into the ES-MDA algorithm. Through multiple data assimilation steps, the
ES-MDA algorithm updated the latent vectors. When these updated latent vectors, along with the hard
data, were reintegrated into the trained PGGAN, they produced facies models that closely matched the
initial reference facies model.

The groundwater flow model produced from MODFLOW was used as a forward model. An image
randomly extracted from the training image as well as an image generated by PGGAN were used as the
reference hydraulic conductivity. All areas marked as “1” represent high hydraulic conductivities and areas
marked as “-1”7 are areas representing low hydraulic conductivities. The confined aquifer had a size of 128 m
x 128 m x 1 m, which was discretized into 128 rows by 128 columns by 1 layer Figure 6. The northern and

southern boundaries were taken to be no-flow boundaries. The western side was a constant head boundary

13
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3.1. Cases
3.1.1. Case 1: Conditioning PGGAN on hard data only

In this case, we compared the output of the PGGAN to the reference data when conditioned on only
hard data. Figure 4 shows the scenarios considered. This comprised four scenarios in which we increased
progressively the number of well facies data to examine the incremental impact on the output when compared
to the reference image. Scenario 1 included 9 wells of facies data; Scenario 2 had 25 wells of facies data;
Scenario 3 had 49 wells of facies data; and Scenario 4 had 81 wells of facies data. It was expected that the

output realization after each increase should be closer to the reference image than in the previous scenario.

3.1.2. Case 2: Coupling PGGAN and ES-MDA conditioned to only hydraulic head data

Algorithm 1 described the steps used for this case. The image generated by the PGGAN Figure 5 was
used as the reference image in this case for the forward modeling in MODFLOW. The reference image was
converted to hydraulic conductivity data, which passed through the forward model to produce hydraulic
head data at specified well locations, which then were used as reference head data. The reference head data
aided in optimizing the ensemble of latent vectors with the help of the ensemble smoother algorithm, in order
to generate images that were close to the reference image. Figure 5 shows well locations, where we want to
generate hydraulic heads. Two scenarios were considered, 9 well locations (Scenario 6) and 25 well locations
(Scenario 7) equally distributed in the domain. We first generated the reference hydraulic head at these well
locations. We generated our random ensemble of the initial latent vector from a uniform distribution. The
latent vector, with the help of PGGAN was used to generate the ensemble of hydraulic conductivity fields.
These hydraulic conductivity fields were used to simulate the hydraulic heads with the help of the forward
model generated by MODFLOW. The ES-MDA was used to optimize the latent vector with the help of the
simulated hydraulic head and the reference hydraulic head. The process went through six iterations until

the latent vector has been optimized and is able to generate images close to the reference image.

3.1.8. Case 3: Coupling PGGAN and ES-MDA conditioned to hard data and head data
Algorithm 1 describes the steps used in this case. We obtained our hard data from the reference image

shown in Figure 7. In case 3, we examine how the number of hard data and head data points affect the
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Table 1: Scenarios studies.

Case Scenario Ensemble size Obs Wells Well facies

1 100 0 9
1 2 100 0 25
3 100 0 49
4 100 0 81
) 100 0 0
2 6 100 9 0
7 100 25 0
8 100 9 9
3 9 100 9 25
10 100 25 25
4 11 100 25 25
12 100 49 49

parameter estimation. This was characterized by different scenarios. Scenario 8 looked at the case of 9
observation wells and 9 well facies locations, Scenario 9 included 9 observation wells and 25 well facies
locations. Scenario 10 looked at 25 observation wells and 25 well facies locations. We first generated
the reference hydraulic head at these well locations. The random ensemble of the initial latent vector
was generated from a uniform distribution. In this case, the generator of the PGGAN will take both the
latent vector and the hard data as inputs to generate the ensemble of hydraulic conductivity fields that were
conditioned on hard data from the reference image. These hydraulic conductivity fields were used to simulate
the hydraulic heads with help of the forward model generated by MODFLOW. During optimization, the
hard data remained fixed and only the latent vector was optimized with the help of the simulated hydraulic
head and the reference hydraulic head. The aim was to show that in real-world applications when provided
with some sort of data of a particular hydrogeologic or reservoir domain (for example, hydraulic head and
facies at well locations), this method will be able to estimate with a high degree of certainty the hydraulic

head of the entire geological area under study.

3.1.4. Methods of Evaluation

Two metrics were used to evaluate the results. The first evaluation was by visually analyzing the indi-
vidually generated images from cases 1 to 3 to see how closely they match their various reference images.
The mean and variance of each scenario were computed to inspect the closeness of the reference images and
the images generated after parameter estimation and to determine how the ensemble of hydraulic conduc-
tivity parameters varied from each other. The second evaluation was by plotting the root mean square error
(RMSE) and spread of the generated hydraulic conductivities of the scenarios. These metrics have been used

in other studies (Chen and Zhang, 2006; Bao et al., 2020). RMSE measured the bias between the reference

15



355

356

357

358

359

hydraulic conductivity and the estimated hydraulic conductivity of each scenario which helped determine
the accuracy of the estimation. The spread measured the uncertainty of ensemble realizations. Below are

the equations for the RMSE and the spread:

N

1
— - P 2
RMSE = A ;Zl(KJ Kief) (17)
1 O
Spread = , | — Var(K; 18
p N ;:1 (K;) (18)

where N}, is the number of parameters, K; is the mean of the estimated parameters, K¢ is the reference

parameters, and Var(K;) is the variance at each point.
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Algorithm 1: Coupling PGGAN with ES-MDA

Set: N,, = Number of iterations
Set: d,ps = Observation data (hydraulic head)
Set: N, = The number of ensemble
begin
Generate the conditioning hard data from the reference hydraulic conductivity, cond_array
Sample initial z from the uniform distribution z ~ U(—1,1)
fori=1,2,---, Njer do
;= 9 Niter—i
for j =1,2,--- ,N, do
Generate ensemble of hydraulic conductivity field with the trained generator:
if cond_array then
L K; = G(zé, cond_array)
else
| K= G)
| Run forward modeling using the generated K; to obtain the hydraulic head d;-
Perturb the observation data: dfw’j =dyps + \/OTiUl/Q

Compute the mean of the ensembled hydraulic conductivity z°
Compute the mean of the ensembled hydraulic head d’

Calculate: C%p = ﬁ Zj.vz"l(zj —7)(d; —d)7, the cross-covariance matrix
Caleulate: Ci,, = 5 S0 (d; — d)(d; — d)7,
the auto covariance of _the predicted head data
| Update: zt =2' + C, 5 (Chp + aiCD)_l(Aé)

L end

3.2. Results

3.2.1. Analysis of PGGAN conditioned to hard data

Figure 8 shows individual realizations for four scenarios obtained from the trained generator that was
conditioned to hard data only. The channels from the individual realizations clearly show similarities to the
channels in the reference image. From the hard data conditioned to the PGGAN, it can be seen that the
generator considered the positions of the hard data and therefore generated realizations that honored the
conditioned hard data. All conditioning points in all of Scenarios 1 to 4 show that their resulting realizations
honor the hard data. It appears that as the hard data points increased from 9 to 81 the realizations more
closely matched the reference image. Pictorially, it also appears that as the hard data increased, the variance
was reduced, Figure 9. The variance of Scenario 4 (81 hard data points) was the lowest among the four
scenarios. The variance was greatest for Scenario 1 (9 hard data). The diversity of the realizations for
scenarios 1 to 4 also clearly illustrates that implementation of the mini-batch standard deviation worked in

aiding the generator to produce diverse image realizations. It also appears from Figure 8 that the hard data
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were well conditioned on the generated images.

3.2.2. Influence of head conditioning data

We performed a sensitivity analysis of how an increase in hydraulic head data will influence the estimation
of the ensembled hydraulic conductivities with respect to the reference hydraulic conductivity. For this
analysis, the reference hydraulic conductivity was created by the generator of the PGGAN after it was
trained. It was not randomly cut from the training image. Bao et al. (2020) have indicated that obtaining
reference hydraulic conductivity data from the generator of the PGGAN to be used for parameter estimation
will result in realizations close to the reference hydraulic conductivity after parameter estimation. Figures
10 and 11 show realizations, mean, and variance of hydraulic conductivities over 100 ensemble members for 9
and 25 observation wells, respectively, as well as a scenario with no observation data. The realizations show
that, when the number of wells increased from 9 in Scenario 6 to 25 in Scenario 7 in case 2, the estimated
hydraulic conductivities were improved and were close to the reference hydraulic conductivity. Statistically,
when there were more measured data, the estimated parameters tended to approach the true parameter.
The mean map of Scenario 7 with 25 wells was closer to the reference map than Scenario 6 with 9 wells. The
variance map of Scenario 6 shows greater variance than in Scenario 7. The variance of Scenario 7, which is
close to zero, indicates a near convergence of the ensembled hydraulic conductivities after optimization.

The simulated heads from Figure 12 were obtained from the forward modeling for each scenario. Three
heads from each scenario were selected at the same positions to compare how close the simulated heads
from the ensembled hydraulic conductivities were to the reference heads. The simulated hydraulic heads of
Scenario 7 were closer to the reference hydraulic heads, which also indicates that conditioning with more head
data aids in reaching convergence of the calibrated parameters and the reference parameters. The results of
the RMSE and the Spread are shown in figure 13. Both the RMSE and the Spread show a downward trend,

which means that the error and uncertainty significantly reduce when the head data is increased.

3.2.3. Random image as reference field

We looked at the case of extracting a random image from the training image that was not used for
the training of the PGGAN, which is reasonable for real-world applications, in which the generator of the
PGGAN will have little (scanty measured data) or no clue of the area under study. Therefore, testing the
generator based on a new reference hydraulic conductivity field should be a useful way to test the PGGAN.
However, (Bao et al., 2020) experimented on a conventional GAN conditioned to only hydraulic head data

to estimate the hydraulic conductivity field, given the hydraulic conductivity field randomly cut from the
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reference image. Their results showed that the estimated hydraulic conductivity fields get closer to the
reference hydraulic conductivity as the data points for hydraulic head increase but they still do not fully
mimic the channels in the reference image.

In certain cases, some sort of measured data (hard data) can be acquired that will help in parameter
estimations and reduce uncertainties. Figures 14 and 15 show realizations, mean, and variance of three
scenarios analyzed when both hard data and hydraulic head data were conditioned, to estimate the hydraulic
conductivity with respect to the reference hydraulic conductivity field randomly cut from the training image.
Based on the three scenarios, it is clear that as both the hydraulic head data and the hard data increased, the
estimated hydraulic conductivity fields were closer to the reference hydraulic conductivity. Scenario 10 (25
head data and 25 hard data) was the closest to the reference image, followed by Scenario 9 (9 head data and
25 hard data), and then Scenario 8 (9 head data and 9 hard data). This demonstrates that the estimation
error and uncertainty are reduced as the number of conditioned data is increased. In all scenarios, the hard
data were well conditioned, which affirms that they play a major role in estimating hydraulic conductivity
fields that are close to the reference hydraulic conductivity. Another observation is that realizations from
scenarios 9 and 10 were close which is evident from the head data plot in Figure 16. This is because the
number of hard data points conditioned to the PGGAN was the same for both scenarios; therefore, when
more hard data were conditioned to the PGGAN it was able to generate data that were closer to the true
data of the particular model domain.

Figure 17 shows the RMSE and Spread. The uncertainty and the errors were reduced when the con-
ditioned data were increased. It also indicates that the RMSE and the spread of scenarios 9 and 10 were

closer, which is a result of the increased hard data.

4. Reference field outside the training data

The effictiveness of the proposed technique was further evaluated using different reference hydraulic
conductivity fields from Strebelle (2002), which is not part of the training data used for the PGGAN.
In contrast to the reference fields in cases 1, 2, and 3, which are oriented in a north-east to south-west
direction, this reference field used in case 4 exhibit a north-south direction for the channels. The parameter
estimation process involved 25 hard data points and hydraulic heads from 25 observation wells for scenario
11, and 49 hard data points and hydraulic heads from 49 observation wells for scenario 12. The results
from generated realizations (Figure 18) illustrate that the approach produced hydraulic conductivity fields

that closely resemble the reference data field. As the number of conditioned data increased, the realizations
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more closely matched the reference field. The results obtained from parameter estimation suggest that the
method is capable of handling a variety of hydraulic conductivity fields with different statistical properties,

extending beyond the specific hydraulic conductivity fields introduced during the training of the generator.

5. Conclusion

First, the PGGAN was trained by introducing hard data at each resolution stage,
with the aim that the generator of the PGGAN would generate facies model realizations that honored the
hard data. After training, the generator was coupled with ES-MDA to perform parameter estimation, given
a reference image either generated by the PGGAN or randomly cut from the training image. An ensemble
of random uniform distribution was generated, and together with the hard data obtained at point locations
from the reference image, the generator generated an ensemble of realizations, which in this work were hy-
draulic conductivity parameters. The parameters went through a forward model to produce hydraulic heads
at specified observation wells. The ES-MDA method was applied to optimize the parameters of the latent
space with the help of both the observed and modeled hydraulic head data. The results demonstrate that
using PGGAN conditioned to hard data and coupled to ES-MDA can reconstruct a channelized aquifer of
an unknown model domain when some measured data from the unknown aquifer domain are obtained. This
also can reduce the uncertainty of hydraulic head predictions. Synthetic examples were used to test the
method. A PGGAN that was not conditioned to hard data was trained in order to test its efficiency in
generating images that mimic the channels of a reference image generated by the trained PGGAN when
coupled with ES-MDA and conditioned to only head data. The results show that the PGGAN was efficient
in reconstructing the channels of the reference image when conditioned with head data. Results also show
that, as the head data are increased, the image more closely resembles the reference image.

The results from PGGAN conditioned to hard data and coupled with ES-MDA show that when the well
facies data were increased, the generated image realizations were able to mimic the channel structures in
the reference image and reduce the uncertainty of the estimation. This is evident in the RMSE and spread,
calculated which displayed a significant reduction when the conditioned data were increased. Results also
show that having some sort of hard data during parameter estimation helps to reduce uncertainty.

Acknowledgements This work has been supported through a grant from the National Science Foun-

dation (OIA-1833069). The authors wish to thank three anonymous reviewers for their comments, which

20



w3 substantially helped to improve the final version of the manuscript.

21



464

465

466

467

468

469

470

471

472

473

474

475

476

478

479

480

481

482

483

484

485

486

488

489

490

References

Abdellatif, A., Elsheikh, A.H., Graham, G., Busby, D., Berthet, P., 2022. Generating unrepresented
proportions of geological facies using generative adversarial networks. Computers & Geosciences
162, 105085. URL: https://www.sciencedirect.com/science/article/pii/S0098300422000474,

doi:https://doi.org/10.1016/j.cageo.2022.105085.

Bao, J., Li, L., Davis, A., 2022. Variational autoencoder or generative adversarial networks? a comparison
of two deep learning methods for flow and transport data assimilation. Mathematical Geosciences 54,

1017-1042.

Bao, J., Li, L., Redoloza, F., 2020. Coupling ensemble smoother and deep learning with generative adversarial
networks to deal with non-gaissianity in flow and transport data assimilation. Journal of Hydrology 590,

125443.

Caers, J., Zhang, T., 2004. Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs

into multiple reservoir models. AAPG Mem 80, 383-394.

Canchumuni, S.A., Emerick, A.A., Pacheco, M.A., 2017. Integration of ensemble data assimilation and deep
learning for history matching facies models. In Proceedings of the Offshore Technology Conference, Rio

de Janeiro, Brazil, 24-26 October, number OTC28015-MS .

Canchumuni, S.A., Emerick, A.A., Pacheco, M.A., 2018. History matching channelized facies models using
ensemble smoother with a deep learning parameterization. In Proceedings of the 16th European Conference

on the Mathematics of Oil Recovery (ECMOR XVI), Barcelona, Spain, 3-6 September .

Canchumuni, S.W., Emerick, A.A.; Pacheco, M.A.C., 2019. Towards a robust parameterization for condition-
ing facies models using deep variational autoencoders and ensemble smoother. Computers & Geosciences
128, 87-102. URL: http://dx.doi.org/10.1016/j.cageo.2019.04.006, doi:10.1016/j.cageo.2019.

04.006.

Chan, S., Elsheikh, A .H., 2017. Parametrization and generation of geological models with generative adver-

sarial networks. URL: https://arxiv.org/abs/1708.01810.

Chan, S., Elsheikh, A.H., 2018. Parametric generation of conditional geological realizations using generative

neural networks. URL: https://arxiv.org/abs/1807.05207.

22



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

Chen, Y., Oliver, D.S., 2012. Ensemble randomized maximum likelihood method as an iterative ensemble

smoother. Mathematical Geosciences 44, 1-26.

Chen, Y., Zhang, D., 2006. Data assimilation for transient flow in geologic formations via ensemble kalman

filter. Advances in Water Resources 29, 1107-1122.
Cressie, N., 1990. The origins of kriging. Math Geol 22, 239-252.

Dubrule, L.M.O., Blunt, M.J., 2017. Reconstruction of three-dimensional porous media using generative

adversarial neural networks. doi:10.1103/PhysRevE.96.043309 96(043309), 1 — 6.

Dupont, E., Zhang, T., Tilke, P.and Liang, L., Bailey, W., 2018. Generating realistic geology conditioned
on physical measurements with generative adversarial networks. URL: https://arxiv.org/abs/1802.

03065.

Emerick, A., 2012. History Matching and Uncertainty Characterization: Using Ensemble-based Methods.
LAP LAMBERT Academic Publishing.

Emerick, A.A., Reynolds, A.C., 2013. Ensemble smoother with multiple data assimilation. Computers &

Geosciences 55, 3-15.

Evensen, G., 2018. Analysis of iterative ensemble smoothers for solving inverse problems. Computational

Geosciences 22, 8385-908.
Fetter, C.W., 2018. Applied hydrogeology. Waveland Press.

Fossum, K., Alyaev, S., Elsheikh, A., 2023. Ensemble history-matching workflow using interpretable spade-
gan geomodel 2023, 1-5. URL: https://www.earthdoc.org/content/papers/10.3997/2214-4609.

202335020, doi:https://doi.org/10.3997/2214-4609.202335020.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.,

2014. Generative adversarial nets, in: Advances in neural information processing systems, pp. 2672—-2680.
Goodfellow, Ian, Y.B., Courville, A., 2016. Deep learning http://www.deeplearningbook.org.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C., 2017. Improve training of wasserstein
gans. arXiv:1704.00028 .

23



516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G., 2000. Modflow-2000, the u. s. geological survey
modular ground-water model-user guide to modularization concepts and the ground-water flow process.

Open-file Report. U. S. Geological Survey , 134.

Karras, T., Aila, T., Laine, S., Lehtinen, J., 2018. Progressive growing of gans for improved quality, stability,
and variation. arXiv:1710.10196 .

Laloy, E., Hérault, R., Jacques, D., Linde, N., 2018. Training-image based geostatistical inversion using a

spatial generative adversarial neural network. Water Resources Research 54, 381-406.

Laloy, E., H erault, R.and Jacques, D., Linde, N., 2017. Inversion using a new low-dimensional representation
of complex binary geological media based on a deep neural network. Advances in Water Resources 110,

387-405.

Liu, Y., Sun, W., Durlofsky, L.J., 2018. A deep-learning-based geological parameterization for history

matching complex models. arXiv:1807.02716.

Mahmud, K., G.M.J.C.P., Baker, A., 2014. Simulation of earth textures by conditional image quilting. Water

Resources Research 50, 3088-3107. Doi:10.1002/2013WR015069.

Mosser, L., Dubrule, O., Blunt, M.J., 2018. Conditioning of three-dimensional generative adversarial net-

works for pore and reservoir-scale models. arXiv:1802.05622 .

Ruffino, C., Hérault, R., Laloy, E., Gasso, G., 2020. Pixel-wise conditioned generative adversar-
ial networks for image synthesis and completion. Neurocomputing 416, 218-230. URL: https://
www.sciencedirect.com/science/article/pii/S0925231220305154, doi:https://doi.org/10.1016/

j.neucom.2019.11.116

Skjervheim, J.A., Evensen, G., et al., 2011. An ensemble smoother for assisted history matching, in: SPE

Reservoir Simulation Symposium, Society of Petroleum Engineers.

Song, S., Mukerji, T., Hou, J., 2021. Gansim: Conditional facies simulation using an improved progressive

growing of generative adversarial networks (gans). Mathematical Geosciences 53, 1413-1444.

Song, S., Zhang, D., Mukerji, T., Wang, N., 2023. Gansim-surrogate: An integrated framework for stochastic
conditional geomodelling. Journal of Hydrology 620, 129493. URL: https://www.sciencedirect.com/

science/article/pii/S0022169423004353, doichttps://doi.org/10.1016/j.jhydrol.2023.129493.

24



543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

Stordal, A.S., Karlsen, H.A., Neevdal, G., Skaug, H.J., Valles, B., 2011. Bridging the ensemble kalman filter
and particle filters: the adaptive gaussian mixture filter. Computational Geosciences 15, 1573-1499. URL:

https://doi.org/10.1007/s10596-010-9207-1.

Strebelle, S., 2002. Conditional simulation of complex geological structures using multiple-point statistics.
Mathematical Geology 34, 21. URL: https://doi.org/10.1023/A:1014009426274, doi:https://doi.

org/10.1023/A:1014009426274.

Tahmasebi, P., 2018. Multiple Point Statistics: A Review. Springer International Publishing, Cham. pp. 613—

643. URL: https://doi.org/10.1007/978-3-319-78999-6_30, doi:10.1007/978-3-319-78999-6_30.

Zahner, T., Lochbiihler, T., Mariethoz, G., Linde, N., 2015. Image synthesis with graph
cuts: a fast model proposal mechanism in probabilistic inversion.  Geophysical Journal Inter-
national 204, 1179-1190. URL: https://doi.org/10.1093/gji/ggv517, doi:10.1093/gji/ggvb17,

arXiv:https://academic.oup.com/gji/article-pdf/204/2/1179/1621207/ggv517.pdf.

Zhang, T.F., Tilke, P., Dupont, E., Zhu, L.C., Liang, L., Bailey, W., 2019. Generating geologically realistic
3d reservoir facies models using deep learning of sedimentary architecture with generative adversarial

networks. Petroleum Science 16, 541-549. URL: https://doi.org/10.1007/s12182-019-0328-4.

Zuo, C., Pan, Z., Yin, Z., Guo, C., 2022. A nearest neighbor multiple-point statistics method for fast
geological modeling. Computers & Geosciences 167, 105208. URL: https://www.sciencedirect.com/

science/article/pii/S0098300422001595, doi:https://doi.org/10.1016/j.cageo.2022.105208.

25



. . Fake image 128x128x1
Generator Fake image Fake image Fake image ———
T gxEx128 16x16x128 128x128x128
Latent Vector 4Ax4x128 Us %8, Us us 2xCV(3x
128 x 1 —laxa) o — . — > _acv(l i, J
2xCV(3x3) : 2xCV(3x3) : 2xCV(3x3) - 2xCV(3x3) * =
| | | N
128x128x128
128 x128 x1 ' ' '
—— 4x4x128 8x8x128 16x16x128 RDS128
»—=@R RDS4 s RDS8 RDS16 — > ...
Discriminator i e —> ﬁ —_—
|

DGB —mMp 2xDGB ———pp .. —P | 5¥DGB
DFB DFB DFB

—3
Real image l
DFB

S [ ] [ ] ]

128 x1 1 128 x1 x1 128 x1 =1

Figure 1: The architecture of the unconditional progressive growing of GAN. CT(4x4) represents transposed convolution with
a kernel size of 4. US represents the upsampling layer used to upscale the images from low resolution to high resolution. RDS4,
RDS8, RDS16, ..., RDS128 represents real images downsampled to (4x4),(8x8), (16x16), ..., (128x128) image sizes. DGB
represents the general block of the discriminator which has two convolutional layers with (3x3) kernel size and a downsampling
layer with a scale factor of 2. DFB is a final block of the discriminator (3x3), (4x4), (1x1) convolutional layers
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an upsampling layer and DS is a downsampling layer
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Figure 4: Well facies locations for case 1.
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Figure 7: Well facies locations and observation well locations for case 3.
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Figure 9: The mean and variance of hydraulic conductivity for case 1.
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Figure 10: Realizations for PGGAN conditioned to head data.
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Figure 11: The mean and variance of hydraulic conductivity for case 2.
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Figure 12: Hydraulic head for three observation well locations for case 2.
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Figure 13: The RMSE and spread for case 2. The red line represents the RMSE between the reference and predicted hydraulic
conductivity fields and the black line represents the spread of the predicted hydraulic conductivity fields.
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Figure 14: Realizations for PGGAN conditioned to both head data and hard data.
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Figure 15: The mean and variance of hydraulic conductivity fields for case 3.
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Figure 16: Hydraulic head of the middle observation wells for case 3.
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Figure 17: The RMSE and spread for case 3. The red line represents the RMSE between the reference and predicted hydraulic
conductivity fields and the black line represents the spread of the predicted hydraulic conductivity fields.
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Figure 18: Realizations of hydraulic conductivity fields for case 4
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