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Abstract—Function approximation has experienced significant
success in the field of reinforcement learning (RL). Despite
a handful of progress on developing theory for nonstationary
RL with function approximation under structural assumptions,
existing work for nonstationary RL with general function
approximation is still limited. In this work, we investigate two
different approaches for nonstationary RL with general function
approximation: confidence-set based algorithm and UCB-type
algorithm. For the first approach, we introduce a new complexity
measure called dynamic Bellman Eluder (DBE) for nonstationary
MDPs, and then propose a confidence-set based algorithm SW-
OPEA based on the complexity metric. SW-OPEA features the
sliding window mechanism and a novel confidence set design for
nonstationary MDPs. For the second approach, we propose a
UCB-type algorithm LSVI-Nonstationary following the popular
least-square-value-iteration (LSVI) framework, and mitigate the
computational efficiency challenge of the confidence-set based
approach. LSVI-Nonstationary features the restart mechanism
and a new design of the bonus term to handle nonstationarity.
The two proposed algorithms outperform the existing algorithms
for nonstationary linear and tabular MDPs in the small variation
budget setting. To the best of our knowledge, the two approaches
are the first confidence-set based algorithm and UCB-type
algorithm in the context of nonstationary MDPs.

Index Terms—Nonstationary MDPs, general function approx-
imation, Eluder dimension, LSVI.
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I. INTRODUCTION

EINFORCEMENT learning (RL) focuses on the problem
Rof maximizing the cumulative reward through interac-
tions with an unknown environment. RL has witnessed a great
success in practical applications, including robotics [2], [3],
games [4], [5], [6], [7], and autonomous driving [8]. The
unknown environment in RL is commonly modeled as a
Markov decision process (MDP), where the set of states S
describes all possible status of the environment. At a state s €
S, an agent takes an action a from an action set 4 to interact
with the environment, after which the environment transits to
the next state s’ € S drawn from some unknown transition
distributions, and then the agent receives an immediate reward.
The interaction between the agent and the environment takes
place episodically, where each episode consists of H steps.
The notion called regret has been typically employed to
measure the performance of RL algorithms, which measures
how much worse an agent performs following its current
policy comparison to the optimal policy in hindsight. The goal
of the agent is to strategically interact with the environment to
balance the exploration and exploitation tradeoff to minimize
the regret.

Most existing RL studies adopt a static MDP model, in
which both the reward and the transition kernel are time-
invariant across episodes. However, stationary environment
is insufficient to model enormous sequential decision prob-
lems such as online advertisement auctions [9], [10], traffic
management [11], health care operations [12], and inventory
control [13]. In contrast, nonstationary RL takes variations
in rewards and transitions into consideration and is able to
characterize larger classes of problems of interest [14]. In
general, it is impossible to design algorithms that achieve
sublinear regret for MDPs with drastically changing rewards
and transitions in the worst case [15]. Therefore, one funda-
mental issue in the theoretical study of nonstationary RL is to
investigate the maximum nonstationarity an agent can tolerate
to adapt to the nonstationary dynamics of an MDP in order to
achieve sublinear regret.

Without additional assumptions on the structure of the
MDP, there is a line of extensive studies on nonstationary
tabular MDPs [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28]. However, the performance
of nonstationary tabular MDPs suffers from large state and
action spaces, which limits its applicability in scenarios with
exponentially large or continuous state spaces. Therefore,
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function approximation has become a prominent tool to cope
with this challenge. Several works have developed RL algo-
rithms for nonstationary MDPs under structural assumptions,
such as state-action set forming a metric space [29], linear
MDPs [30], [31], linear mixture MDPs [32]. Although the
developed algorithms are much more efficient than the algo-
rithms designed for tabular setting, these algorithms require
strong structural assumptions on the function approximation
(such as a well-designed feature extractor in linear MDPs),
which severely restricts the range of situations where these
approaches can be employed. This naturally leads to the
following open question:

Can we design an algorithm that achieves a “desired”
regret performance' for nonstationary MDPs under general
function approximation?

In this paper, we give an affirmative answer to the above
question by investigating two different approaches and address
the following challenges: First, we need to identify an appro-
priate complexity metric for nonstationary MDPs that covers
many existing problems of interest. Second, We need to design
an algorithm that can handle nonstationarity without additional
structural assumptions on transition kernels and rewards.
Third, it is non-trivial to establish a dynamic regret bound
of the proposed algorithm that potentially improves those for
nonstationary tabular and linear MDPs. The contributions of
our work is summarized based on two different approaches as
follows.

Confidence-set based algorithm. We propose a new
complexity metric named the Dynamic Bellman Eluder
(DBE) dimension for nonstationary MDPs, which general-
izes the Bellman Eluder (BE) dimension designed for static
MDPs [33], and subsumes a broad class of RL problems
including low BE dimension problems in static RL and
nonstationary tabular and linear MDPs in nonstationary RL.
We then design a new confidence-set based algorithm SW-
OPEA for nonstationary MDPs, by greedily selecting the
candidate value function in the confidence region. Our design
novelty lies in the construction of the confidence region, which
features the sliding window mechanism, and incorporates local
variation budget in order to accurately capture the distribution
mismatch between the current episode and all episodes in the
sliding window. Such a design ensures the optimal state-action
value function in current episode to lie within the confidence
region, and hence the optimism principle remains valid.

We theoretically characterize the dynamic regret of SW-
OPEA. To demonstrate the advantage of SW-OPEA, we
compare our regret bound of SW-OPEA to that of previously
proposed UCB-type algorithms [30] for nonstationary linear
and tabular MDPs. The comparison shows that our confidence-
set based algorithm performs better in terms of the linear
feature dimension d and the horizon H, where the dependency
on H also matches with the minimax lower bound given
in [30], while performs slightly worse in the average variation
budget. Therefore, the comparison suggests that our algorithm

IThe performance of the algorithm relies on the variation budget of rewards
and transitions. Mildly changed rewards and transitions results in a sublinear
regret while drastically changed rewards and transitions leads to linear regret.

outperforms their algorithm in the small variation scenario.
Our analysis features a few new developments. (a) We develop
a distribution shift lemma to handle transition kernel variations
over time. (b) We come up with new auxiliary random
variables to form appropriate martingale differences and obtain
the concentration results. (c) We use an auxiliary MDP to
help bound the difference of two expectations under different
underlying models.

UCB-type algorithm. To mitigate the computational inef-
ficiency of the confidence-set based algorithm, we propose
a UCB-type algorithm LSVI-Nonstationary for nonstationary
MDPs with general function approximation, which adopts
LSVI with upper confidence bound to handle the exploration
and exploitation tradeoff. In order to handle nonstationarity,
our algorithm features the restart mechanism, and incorporat-
ing the local variation budget in the design of the bonus term to
ensure the optimism of the learned state-action value function.

We use the Eluder dimension to measure the complexity
of the state-value function class F for nonstationary MDPs.
We then theoretically characterize the dynamic regret of the
proposed UCB-type algorithm, which depends on the Eluder
dimension of function class F. Our newly proposed UCB-
type algorithm matches with the performance of SW-OPEA in
terms of horizon H, average variation budget in transitions Lp
and average variation budget in rewards L,, while performing
slightly worse in the number of states and actions |S I,NI.AI
under tabular MDPs and the same in the linear feature d in
linear MDPs. Our result suggests the benefit of UCB-type
algorithm over confidence-set based algorithm.

Our main technical development for this approach lies in the
single step optimization error for the least-square optimization
in our UCB-type algorithm. We do not take the distribution
drift in transitions and rewards into consideration, which
may lead to non-trivial estimation error. In our analysis, we
explicitly capture a non-trivial term due to the nonstationarity
of the environment. We show that by compensating such a
term involving local variation budget into the standard term
due to concentration, the difference between the least-square
predictor and the one-step backup estimate r’}j —i—Pﬁ V;’f 4 is still
bounded.

A. Related Work

Static Regret of Nonstationary MDPs: Static regret in
nonstationary MDPs have been considered extensively in the
past [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25]. Static regret has also been studied for nonstationary
MDPs with function approximation. In particular, [31] char-
acterizes the static regret for the weighted least squares value
iteration method. Reference [34] studies the nonstationary
RL setting with general function approximation, where the
static regret is captured through a more general notion called
decision-estimation coefficient (DEC).

Dynamic Regret of Nonstationary MDPs: Many studies
in the past have been focused on the metric of dynamic
regret, which quantifies the performance difference between
the learning policy and the optimal policy at each step. For
nonstationary tabular MDPs, value-based approaches have
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been proposed in [26], [28], where they respectively propose
a sliding window strategy and a restart mechanism to han-
dle nonstationarity. Further, [27] adopted a different method
based on policy optimization. For nonstationary MDPs with
function approximation, [30] and [32] focus on linear func-
tion approximation and linear-mixture function approximation,
respectively, and [29] consider a kernel-based approach for
nonstationary MDPs when state-action set forms a metric
space. Further, [35] propose a unified approach to nonstation-
ary MDPs that relies on an oracle algorithm with optimal
regret for stationary MDPs to develop a useful algorithm for
nonstationary MDPs.

Static MDPs with General Function Approximation:
MDPs with general function approximation have been well
studied in the static setting, where the transition kernel and
reward function do not change over time. References [36]
and [37] first introduce the notion of Eluder dimension to
characterize the complexity of the function class, and study
the performance based on such a metric. Later on, the
notion Eluder dimension has been extended to Bellman Eluder
dimension [33], and other notions have also been proposed,
including Admissible Bellman Characterization (ABC) [38]
and decision-estimation coefficient (DEC) [39]. Another line
of research is based on low-rank conditions, including Bellman
rank [40], [41], witness rank [42], and bilinear class [43].
Closest to our work here are the studies by [33] and [44]. For
the confidence-set based algorithm, we generalize the Bellman
Eluder dimension [33] for static MDPs to dynamic Eluder
dimension for nonstationary MDPs, while for the UCB-type
algorithm, we extend the study of UCB-type of approach
in static MDPs [44] to nonstationary MDPs. Both of our
approaches feature new elements in algorithm design and
analysis tailored to nonstationary MDPs.

B. Relationship Between Trustworthy RL and Nonstationary
RL

The goal of trustworthy reinforcement learning is to design
algorithms competent in solving challenging real-world prob-
lems, including robustly handling perturbations, satisfying
safety constraint, and generalizing to unseen environments.
Nonstationary RL studied in this work is closely related to
those three aspects. First, nonstationarity naturally occurs in
robust MDPs. In classical robust RL setting, we aim to find
a policy that maximizes the worst-case performance against
uncertainty variable U, where uncertainty U could be either
state s, action a, reward r, or transition P. When environment
discrepancies are considered, i.e., uncertain variable follows
U = (P, r), and they satisfy the variation budget constraint,
our algorithms provide candidate policies for robust MDPs
with performance guarantee. Second, nonstationary MDPs
can be viewed as a special case of safe RL problems. The
nonstationarity, characterized by the variation budgets, serves
as the constraint on the total variations of rewards and
transitions, and our algorithms provide safe policies (satisfying
variation budget constraints) with good performances. Third,
nonstationary MDPs can help understand generalization in RL.
Consider the scenario where testing environments are drawn
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from time-variant nonstationary distributions, and the agents
are expected to learn how to leverage past experience and
identify new environment. The nonstationary RL could serve
as a general framework to study such a problem, and help
understand generalization in RL.

Notation: For a set S, A(S) represents a collection of
distributions over S. For a positive integer N, we use [N] to
denote the set of positive integers {1, 2, ..., N}. For positive
integers m, n, define {'}L"W] =@ if m > n. Let f,h be a
function of n, f(n) = O(h(n)) is equivalently to that there
exists positive k such that f(n) = O(h(n) logk(h(n))). Given
a dataset D = {(x;, a;, q,-)}lg C S x A xR, for a function
f:8x A R, define [[fllp = (X2 (Fxi, ai) — ). For a
set of state-action pairs Z C S x A, for a function f : S x A,
define |f]lz = (Z(x,a)ez(f(x,‘, ai))z)%. For a set of functions
F C{f:Sx A R}, we define the width function of the
state-action pair as w(F; x, a) = supf’f/e]_—(f — M, a).

II. PRELIMINARIES
A. Nonstationary MDPs

Our setting can be formulated as a nonstationary finite-
horizon episodic Markov decision process, captured by a tuple
(S, A,H,K,P,r,x;). Here, S is the state space, A is the
action space, H is the length of each episode, K is the total
number of episodes, P = {Pﬁ}(k,h)e[K]X[H_l] where Pﬁ 1S x
A = A(S) is the transition kernel at step % in the k-th episode,
r = {rkYwmeikixim) where £ © S x A+ [0, 1] is the mean
reward function at step & in the k-th episode, and xj is the
fixed initial state.

The agent interacts with the nonstationary MDP sequen-
tially. At the beginning of k-th episode, the agent chooses
a policy 7% = {n;’f}he[m where n,’l‘ S > A(A). At step
h, the agent observes the state xﬁ, takes an action following
aﬁ ~ n;f(~|x];l), obtains a reward 7’h‘ (we also use 'J;; if there
is no ambiguity) with mean r’Z (x];l, a]z), and the MDP evolves
into the next state xﬁ e P’Z (x’;l, a’;). The process ends after
receiving the last reward r%,. We define the state and state-
action value functions of policy m = {m}re[#) recursively via
the following equation

O (s X, @) = rh(x, a) + (P,'i Z,’H;(*,k))(x, a),

V;J,T;(*’k)(x) = (QZ;(*J()(X, s 7T;;(’|x)).A, VH+1;(*,/<) =0,

where (x, k) represents the true model in the k-th episode, Pﬁ is
the operator defined as (]P”,;f) (x,a) =E[f(xX)|x' ~ Pﬁ |x, a)]
for any function f : S — R. Here (-, :) 4 denotes the inner
product over action space A and the subscript A is omitted
when appropriate.

The learning objective is to find the optimal policy via
interactions with the environment to minimize the dynamic
regret

K
D — Regret(K) := Z(Vfik}){) -
k=1
which quantifies the performance difference between the
learning policy and the benchmark policy {n(*’k)}ke[lq where
70 = arg max, Vﬁ(*’k)(xl).

k
ﬁ(*,k))(xl),
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B. Function Approximation

Consider a function class F = Fj x F, X ... X Fpy, where
FnC{f:Sx A [0,H— h+ 1]} is the candidate function
class to approximate QZ;(Z‘:](). For convenience, we set fy+1 =
0, and therefore Fy 1 = {f(s,a) =0 : (s,a) € S x A}.

Assumption 1 (Realizability): QZ; k) € JF, for all (k, h) €
[K] x [H].

Realizability assumption requires that the optimal state-
action value function in each episode is contained in
the function class J with no approximation error, i.e.,
(QT;(*’k), - Q}k{;(*’k)) e F for k € [K].

Given functions f = (f1, />, ...,fuy) where f; € (S x A
[0, H — h + 1]), define

(T ) v @) = rhx. @) + (Pl ) . @,

(P];,fh+l>(xv a) = Ex"vPﬁ(-\x,a) [?gﬁchﬂ (x/’ a/):| ’

where 7;{‘ is the Bellman operator at step 2 in episode k.
Note that the optimal state-action value function satisfies
O @@ = (TfQr 1. ) @ for all valid x,a,h.
Moreover, we define 7;11‘]-"h+1 = {’Thkth i+l € Fia}

Assumption 2 (Completeness): 7;lk.7:h+1 C Fp for all
(k, h) € [K] x [H].

For the completeness assumption, we require that after
applying the Bellman operator ’7;{‘ of any episode k to a
function fj4; in the function class Fp41 at step h + 1, the
resulting function lies in the function class JF}, at previous step
h.

C. Complexity Measures

In this section, we introduce two complexity measures for
a class of functions. One is Eluder dimension and the other
one is distributional Eluder dimension.

The definition of Eluder dimension was first proposed
in [44], and is based on the e-independence of points, as
illustrated in the following definition.

Definition 1 (Eluder Dimension): Let ¢ > 0 and Z =
{(xi, ai)}l’.‘:l C S x A be a sequence of state-action pairs.

o A state-action pair (x,a) € S x A is e-dependent on Z
with respect to F if any £, f' € F satisfying” |[f — '] ; <
€ also satisfies |f(x, a) — f'(x, a)| < €.

e An (x,a) is e-independent on Z with respect to F if
(x, @) is not e-dependent on Z.

o The Eluder dimension dimg(F,¢) of a function class
F is the length of the longest sequence of elements in
S x A such that, for some €’ > ¢, every element is €'-
independent of its predecessors.

It has been shown in [36] that dimg(F,€) < |S||A| for
tabular MDPs, and dimg(F, €) < 5(2) for linear MDPs where
d is the feature dimension.>

We extend the notion of e-independence of points to e-
independence of distributions, and obtain the definition of
distributional Eluder dimension [33].

2H-H z is formally defined in Section I Notation.

3The proofs for the nonstationary setting are essentially the same as the
proof for the stationary setting therein, and we do not differentiate the two
settings.

Definition 2 (Distributional Eluder Dimension): Let € > (0
and {v;}l; € A(S x A) be a sequence of probability
distributions.

e A distribution © € A(S x A) is e-dependent on
{vi,..., vy} with respect to F if any f € F satisfying
2By f)? < € also satisfies |E,f| < e.

e A u is e-independent on {vy, ..., v,} with respect to F
if w is not e-dependent on {vy, ..., v,}.

o The distributional Eluder dimension dimg(F, IT, €) of a
function class F and distribution class IT is the length
of the longest sequence of elements in IT such that, for
some € > e, every element is €’-independent of its
predecessors.

III. CONFIDENCE-SET BASED ALGORITHM

To the best of our knowledge, the proposed SW-OPEA
is the first confidence-set based algorithm in the context
of nonstationary MDPs. At high level, confidence-set based
algorithm consists of three key steps: optimistic planning, data
collection and confidence set updating. Compared to static
MDPs, we adopt sliding window mechanism and incorporate
local variation budgets in transitions and rewards to com-
pensate for the distribution mismatch between the current
episode and all episodes in the sliding window to handle
nonstationarity. Despite of the new technical developments for
the analysis, our algorithm for nonstationary MDPs remains
concise and simple.

A. Dynamic Eluder Dimension

In this section, we first review the Bellman Eluder (BE)
dimension for static MDPs, and propose a new complexity
metric Dynamic Eluder (DBE) dimension for nonstationary
MDPs. Both BE dimension and DBE dimension are based
on the distributional Eluder dimension (see Definition 2).
However, compared to Bellman Eluder dimension, the new
Dynamic Eluder Dimension nicely captures the nonstationarity
of the problem.

The definition of Bellman Eluder dimension was first
introduced in [33] for static MDPs.

Definition 3 (Bellman Eluder dimension (BE)): Let (I —
TF = 1{fn — Tufn+1 : f € F, k € [K]} be the set of Bellman
residuals in all episodes induced by F at step A, and I1 =
{Ip}nera be a collection of H probability measure families
over S x.A. The e-Bellman Eluder dimension of F with respect
to IT is defined as

dimgg(F, I, €) := max dimpg((I — Tp)F, I, €).
helH]

For nonstationary MDPs, the Bellman operators 7;, varies
over episodes, and hence we introduce our new complexity
measure called dynamic Bellman Eluder dimension for non-
stationary MDPs.

Definition 4 (Dynamic (Bellman) Eluder (DBE) dimension):
Let (I — T)F = {fs — TXfns1 : f € F,k € [K]} be the set
of Bellman residuals in all episodes induced by F at step h,
and IT = {I1j}nemy be a collection of H probability measure
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Algorithm 1 GOLF (Sketch)

1: Input: Dy, ..., Dy <« @, BY « F.

2: for episode k from 1 to K do

3. Choose r* = Ty, where fk =
argmaxfelgk_lfl(xl, 7w (x1)).

4:  Collect a trajectory (x1,ai,rq, ..
by following 7*.

5: Augment Dy, = Dy, U {(xp, an, rn, xnt1)}, Yh € [H].

6:  Update B = {(f e F Lo, fnfor1) =
infeeg, Lp, (8. fht1) + B, Yh € [H]}, where
LD, En 1) = X (s.aursyeD, Eny af) — 7
—MaXgeA Shtl (x;H—l ) a/))

7: end for

~’xH9aH’rH’-xH+l)

families over S x A. The dynamic Bellman Eluder dimension
of F with respect to IT is defined as

dimpgg (F, I1, €) = }{2?}-)1(] dimDE((I — 771)]:, Iy, 6).

We focus on the following choice of distribution family
DA = {DA,h}he[H] where DA,h = {3(5,5,) :s€8,ae .A}, ie.,
the collections of probability measures that put measure 1 on
as single state-action pair.

The DBE dimension is the distributional Eluder dimension
on the function class (I — 7T;)F in all episodes, maximizing
over step h € [H], which can be viewed as an extension
of BE dimension to nonstationary MDPs. The main differ-
ence between DBE dimension and BE dimension is that the
Bellman operator ’7;11‘ is time-varying, and we include all the
Bellman residues induced by 7;[‘ for k € [K] in the function
class. In general, the DBE dimension could be substantially
larger than the BE dimension due the fact that the class of
functions can be significantly larger. However, we can show
that, if the variations in both transitions and rewards are
relatively small compared to a universal gap, then the DBE
dimension equals to the BE dimension with respect to one
MDP instance of the nonstationary MDP [1]. Moreover, the
DBE dimension of nonstationary linear MDPs scales linearly
with the linear feature dimension O(d) [1].

B. Algorithm SW-OPEA

In this section, we propose our confidence-set based
algorithm SW-OPEA for nonstationary MDPs with general
function approximation.

Overview of GOLF [33]: We first give a brief introduction
of GOLF in Algorithm 1 for static MDPs with general function
approximation. There are three key components: Optimistic
planning (line 3), data collection (line 4), and updating
confidence set B* (line 6). The key step is to construct the
confidence set Bk, and GOLF maintains a local regression
constraint using collected data Dy, at this step Lp, (i, fht1) <
infeeg, Lp, (g, fur1) + B, where B is a confidence parameter,
and Lp, is the squared loss proxy to the squared Bellman error
at step h. It was shown that the regret of GOLF is 5(H VdK),
where d = dimgg(F, Da, 1/ \/f) is the BE dimension.

Algorithm 2 Sliding Window Optimistic Exploration and
Approximation (SW-OPEA)
1: Input: Dy,..., Dy <« g, BY <« F, local variation
budgets Ap(k, h), AR (k, h).
2: for episode k from 1 to K do

3:  Choose 7t = Ty, where fk =
arg maxec g1 f1(x1, 77 (x1)).
4. Collect a trajectory (x'f, a]f, r’l‘, ... ,x’l‘{, a'}i, * ’x];1+1)

by following 7*.
. Augment D, =D, U {(X];v a’;l,x’;lﬂ)}, Vh € [H].
6: Update B* = {f € F : Lp,(fufiy)) =
infyeq, L1, (g fur1) + B +2H2 A (k. h) +2H ARk, ),
Vh € [H]}, where Lp, (&, {pe1) is defined in (1).
7: end for

At a high level, SW-OPEA differentiates from the GOLF
algorithm [33] for static MDPs with general function approx-
imation in its novel designs to handle the nonstationarity
of transition kernels and rewards. Specifically, SW-OPEA
features the sliding window mechanism and incorporates local
variation budget in order to accurately capture the distribution
mismatch between the current episode and all episodes in
the sliding window. Such a design ensures the optimal state-
action value function in the current episode to lie within the
confidence region, and hence the optimism principle remains
valid.

The pseudocode of SW-OPEA is presented in Algorithm 2.
SW-OPEA initializes the dataset {Dj}nc) to be empty sets,
and confidence set B° to be F. Then, in each episode, SW-
OPEA performs the following two steps:

Optimistic planning step (Line 3) greedily selects the most
optimistic state-action value function f* from the confidence
set B! constructed in the last episode, and chooses the
corresponding greedy policy 7 associated with f*.

Sliding window squared Bellman error is defined as

k

LD, Gns Sht1) = Z (“Eh(x;l»“Z)_rZ

t=1v(k—w)
2
2 /
— max X, 1,0 (1
a,EAChH( bl )) (D

Note that in episode k, we use bandit reward ”Z in the
construction of the sliding window squared Bellman error,
and Lp, tends to be small as long as the transition kernel
difference between episode k and ¢ is small. Furthermore,
based on the “forgetting principle” [45], we adopt the sliding
window in the squared loss (1), where the data used to
estimate the squared loss at episode k relies on the latest w + 1
observations (when iteration number is sufficiently large)
during episode 1V (k—w) to k instead of all prior observations.
The rationale is that under nonstationarity setting, the historical
observations far in the past are obsolete, and they are not as
informative for the evaluation of the squared loss.

Confidence set updating step (Line 4-6) first executes
policy 7% and collects data for the current episode, and then
updates the confidence set based on the new data.
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The key novel ingredient of SW-OPEA lies in the construc-
tion of the confidence set B¥. For each h € [H], SW-OPEA
maintains a local regression constraint using the collected
data Dy,

Lp, (fns frt1) < giengf Lp, (& fn+1) + B
h
+2H? Ay (k, h) + 2HAR (k, ),

where § is a confidence parameter, and Ay, AY are the local
variation budgets defined by

>

Ak, h) = sup | (Ph—Py)Clv o)
1=1v (k—w) ¥€S.aeA 1
k
Agkm =Y s |(f-r)wal O

(=1 (k—w) XES.a€A

Since the transition kernel varies across episodes, we
include an additional term of the local variation budget
Ap(k,h) and A¥(k,h) in the definition of Bi. Intuitively,
the local variation budget Ay (k, h) and A} (k, h) captures the
cumulative transition kernel and reward differences between
current episode and all previous episode in the sliding window.
Therefore, by compensating a term involving Ayp(k, h) and
AR (k, h) in the confidence set By, we ensure that the optimal
state-action value function in the k-th episode QZ; k) still lies

in the confidence set B* with high probability.

C. Theoretical Guarantees

In this section, we provide our main theoretical result for
SW-OPEA, and defer the proof sketch that highlights our novel
developments in the analysis to Appendix A.

We first state the following generalized completeness
assumption [33], [46], [47]. Let G = G| X --- X Gy be an
auxiliary function class provided to the learner where G, C
(Sx A [0,H—h+1]).

Assumption 3 (Generalized Completeness): 7;11‘}"“1 C Gy
for all (k, h) € [K] x [H].

If we choose G = F, then Assumption 3 is equivalent
to the standard completeness assumption (see Assumption 2).
Without loss of generality, we assume F C G, which implies
G=FUg.

Moreover, to quantify the nonstationarity, we define the
variation in rewards of adjacent episodes and the variation in
transition kernels of adjacent episodes as

Ar(K) = ZZ swp (ki -A N wal, @
k=1 h—] X€S.acA
K H
— k k—1
Ar) =2 er;l,lfeAH (Ph =) )

k=1 h=1

where we define P?l = P}l and r?l = r}l for all h € [H].

The dynamic regret of our algorithm SW-OPEA is charac-
terized in the following theorem.

Theorem 1: Under Assumption 1 and Assumption 3, there
exists an absolute constant ¢ such that for any § € (0, 1],
K € N, if we choose 8 = cH? log%‘g‘ in SW-OPEA, then

with probability at least 1 — §, for all k € [K], when k >
min{w 4+ 1, dimppg(F, Da x, ~/1/w)}, D — Regret(k) equals

2
—k, /dlog[KH|G|/S]

H
Ar(k) + HAp(k) + OIH/w +
3/2

/d sup A%(t, h) +
telk] F \/_

where d = d1mDBE(]-', IDA,hy \/l/_w)

Note that the last term depends on the sliding window size
w, and we can further optimize w if an upper bound of the
local variation budget A¥(¢, h) and Ag(z, h) is given. Below
we give an example for optimizing sliding window size w.

Before we proceed, we first define the average variation
budget L as

d sup AR(t, h)l,
te[k]

k—1 g ;
YA supeo (P = Py ) Gl

Lp = max , (6
P he[H], 1<k k—t ©
1
it supea (34— ) ol
L, = max (7N
he[H], 1<k k—t

Clearly, we have Lp, L, < 1 and A} (k, h) < Lpw?, Al (k, h) <
Lw?. Lp, L, can be viewed as the greatest average variation
of transition kernels and rewards across adjacent episodes over
any period of episodes maximized over step & € [H]. Then
the following corollary characterizes the dynamic regret by
optimizing the window size w based on Lp and L,.
Corollary 1: Under the conditions of Theorem 1 and |G| >
10, with probability at least 1 — §, the following argument

holds: if /Lp + % > L(/loglg] —

[——F————— ”10%@11, the dynamic regret is upper-bounded by
HKd

1 —
Hﬁ)’ select w =

~ 1
O(H>K3d# (log |G + H?KLjd? (log |G
1
FHAIKLYd? (log |G))* +AR+HAP); (8)

otherwise, select w = K and the dynamic regret
is upper-bounded by 5(H2K%d% (log |g|)%), where d =
dimpgg (F, Dan, /1/W).

We remark that |G| appearing in the log term can be replaced
by its e-covering number Ng(e) to handle the classes with
infinite cardinality. In both Theorem 1 and Corollary 2, we do
not omit log |G| in O since for many function classes, log |G|
(or log Ng (€)) can contribute to a polynomial factor. For
example, for d dimensional linear function class, log Ng(e) =
(’)(d) where d is the linear feature dimension.

Our first term in (8) corresponds to the regret of the static
MDP while the remaining term arises due to the nonstationar-
ity. As a result, when transitions and rewards remain the same
over time, our result reduces to (5(H2K%d% (log |g|)%), which
matches with the static regret of GOLF in 3314

Advantage of SW-OPEA: To understand the advantage of
SW-OPEA over existing algorithms for nonstationary MDPs,
we take nonstationary linear MDPs as an example. When

4The additional H here is due to the definition of rp € [0, 1], whereas [33]
assumes y_, rp < 1.
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specializing to nonstatlonary linear and tabular MDPs our

result becomes O(Hz T2d + HTd4L4 + Hi Td4L ) where
T = HK, d is the feature dimension for linear MDPs and d
equals |S||.A| for tabular MDPs, and L, is the average variation
budget in rewards. For nonstationary linear MDPs, the result
in [30] is not comparable to ours due to the different definitions
of the variation budget of transition kernels. To make a fair
comparison, we convert their bound on the dynamlc regret
to be that for tabular MDPs, which gives C’)(H 3T2d2 +

H3 d2 TL133 + H3 d3 TL; ). The first term corresponds to the
regret of static linear MDPs and our result has better depen-
dency on the feature dimension d. For the second term due to
the nonstationarity of transition kernels, our bound 1~s better
in terms of the horizon H and feature dimension d while
worse in terms of the average variation budget of transitions
Lp (note that Lp < 1).° Similarly for the last term caused
by the nonstationary of rewards, our result performs better in
terms of the horizon H and feature dimension d while worse
in terms of the average variation budget of rewards L, (note
that L, < 1).

It is also interesting to compare our result with the mirlt—
imax dynamic regret lower bound Q(H 1734 + H %TE%ZE,)
developed in [30] for linear MDPs with nonstationary tran-
sitions. For such a case, our result becomes (5(H 2 T%E +

1

HTE%LIZ,). The first term is the regret under stationary MDPs
and the second term arises due to the nonstationarity of
transitions. We can see that our first term corresponding to
static MDPs matches with the lower bound both in terms of 7
and d, whereas the upper bound in [30] matches with the lower
bound only in 7. For the nonstationarity term, our dependency
on H and d is closer to the lower bound than that in [30],
whereas our dependency on the variation budget is close but
does not match with the lower bound.

IV. UCB-TYPE ALGORITHM

In this section, we investigate a new UCB-type algorithm
LSVI-Nonstationary. Our proposed algorithm falls into the
popular LSVI framework, which uses LSVI with upper con-
fidence bound to handle exploration and exploitation tradeoff.
While designing the bonus term is simple in static tabular and
linear MDPs, it becomes difficult in nonstationary MDPs with
general function approximation. Our algorithm features the
restart mechanism and incorporate the local variation budget
in the design of the bonus term to handle nonstationarity.
Moreover, it alleviates the computational inefficiency in the
confidence-set based approach to select the optimistic state-
action value functions in each step altogether.

We begin with the bounded complexity assumption [44] on
the function class F and the state-action pairs S x A.

Assumption 4: For any ¢ > 0, the following statements
hold:

o There exists an e-cover C(F,e) C F with size

IC(F,&)] < N(F,e¢), such that for any f € F, there
exists f' € C(F, &) with |[f —f'|  <e

5Strictly speaking, their average variation budget Lp is not comparable to
Lp, and the argument holds approximately.
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Algorithm 3 F-LSVI (Sketch)
1: Input: failure probability § € (0, 1), number of episodes
K.
2: for episode k=1,2,...,

K do

3 Receive initial state s’l‘ ~ W.

4 05.,(.) < 0and Vi, () < 0.

s ZF={(x, ab)Yeertk—1)-

6 forh=H, H—1,...,1do

7 Df = {(xf, dfl,?f, + V;fH (e ) eell k11

8 ff < argmineg, ufn%ﬁ.

9: b',i <~ bonus(]—"h,ff,

10: Ok(, ) < min{f{(, )+ b" ), H} and V() =
maXge A Qﬁ(~, a).

1: mR() < argmaxge 4 05 (-, a).

12:  end for

132 forh=1,2,...,Hdo

14: Take action a];l <« ﬁ}f(xﬁ) and observe xﬁ g~

ko |k ok * kook Kk

Py (-lxy, a) and 7 ~ rp(x,, ap).

15:  end for

16: end for

o There exists an e-cover C(S x A, &) with size C(S x
A, &) < N(S x A, ¢), such that for any (x,a) € S x A,
there exists (x', a’) € C(S x A, &) with supre r |f (x, @) —
f(&, )] <e.

This assumption essentially requires both the function class
and the state-action pairs have bounded covering numbers. It
is acceptable for the covers to have exponential size since
the regret bound scales logarithmically on both A/(F,-) and
NS x A, ). For the tabular case when S, A are finite,
log NV (F, &) = O(|S||A|) and log N (S x A, &) = log(|S]|A|).
For the linear MDPs with feature dimension d, logN(F,¢) =
O(d) and log N'(S x A, &) = log(d).

A. Algorithm LSVI-Nonstationary

In this section, we describe our proposed UCB-type
algorithm LSVI-Nonstationary for nonstationary MDPs with
general function approximation.

Overview of F-LSVI [44]: We begin with UCB-type
algorithm F-LSVI in Algorithm 3 for static MDPs® with
general function approximation. At the beginning of each
episode k, we set Q1]§1+1 = 0, and calculate Q';i, Qll‘{_l, ce Q]f
iteratively (line 8-10). Then, the greedy policy with respect
to Qﬁ to collect data for the k-th episode. The procedure is
repeated until all K episodes are finished. The key ingredient
is the design of the bonus term bﬁ in line 9 based on sensitivity
sampling to tightly characterize the estimation error, so that the
optimistic Q function estimated (line 10) always upper bounds
the optimal action-value function. The regret of F-LSVI was
shown to be O(@H3K) in tabular MDPs where d =S|l Al
and O(Vd*H3K) in linear MDPs where d is the feature
dimension.

0The algorithm presented here is slightly different from its original
version [44] in using function class F} instead of F for estimating value
function at step h.
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Algorithm 4 LSVI-Nonstationary
1: Input: failure probability § € (0, 1), number of episodes
K and epoch size W.

2forj=1,2,....[K7 do

3 T ((—DW+1.

4:  for episode k = t, min{r + W, K} do

5 Receive initial state 51 ~ W.

6: QH+1( )<—0andVH+1()<—0

7 Z}]f = {(Xh, ah)}fe [t:k—1]-

8 forh=H,H-—1,...,1do

9: ,Dz = {(Xh, afl’7f, ‘l‘ h+1(xh+]))}£e [t.k—1]-

10: f;]; <« argmmfe]—'hllf”Dk

11: b < bonus(Fy, ¥, 8, J) (Algorithm 6).

12: Qh( D) < mm{f]g, )—|—b’,§(~, -), H} and V,’l‘(~) =
maxge 4 04 (-, ).

13: n;f(-) < arg maXge A Q’;l(~, a).

14: end for

15: for h=1,2,...,H do

16: Take action aﬁ <« nh (xk) and observe xﬁ "
Pk |xk ah) and 7 rh rk(xk ah)

17: end for

18:  end for

19: end for

From a high level point of view, our algorithm features
two key ingredients: least-square value iteration (LSVI) and
a restart mechanism. Our algorithm uses LSVI with upper
confidence bound to handle the exploration and exploitation
tradeoff, where we incorporate the local variation budget in the
design of bonus term to ensures the optimism of the learned
state-action value function. Moreover, we use the epoch restart
mechanism to adapt to the nonstationarity of the environment.
Those ingredients make our design significantly different from
the F-LSVI algorithm [44] for static MDPs.

The pseudocode of LSVI-Nonstationary is presented in
Algorithm 4. Our algorithm runs in epochs with length W.
Within each episode, we follow these steps: Firstly, we
estimate the state-action value function through a least-square
problem using historical data from the current epoch. Next,
we create an upper confidence bound for the state-action
value function and select the policy that maximizes this
upper confidence bound. A new trajectory is then collected
by following the greedy policy. Finally, we periodically
restart the algorithm to handle the nonstationarity of the
environment.

Least-square value iteration: At the beginning of each
episode k, we maintain a replay buffer of existing sam-
ples {xfl, afl, rﬁ}ge[r;k_l], where 1 is the first episode of the
epoch containing episode k. Let Q’fq 41 = 0, and we set
0%, 0% |, ..., O iteratively as follows (line 10~12). For i =
H,H—-1,...,1,

2
max Q) (¥ “)) :

fh ) = arg min Z( (xh, ah) — rfl —

05, SELACON: |}

)= mm{fh

where bﬁ(-, -) is the bonus function to be defined shortly.
After obtaining Q’;l(~, -), we then use the greedy policy with
respect to Q’;l to collect data (line 13) for the kth episode. Note
that the least-square problem does not take into consideration
the distribution drift in transitions and rewards, which may
potentially result in significant estimation errors. However, our
analysis shows that these estimation errors can adapt to the
nonstationarity. Specifically, we incorporate such estimation
errors into the design of the bonus term to ensure the state-
action value estimate is an optimistic upper bound of the
optimal state-action value function.

Stable upper-confidence bonus function: With more col-
lected data, the least-square solution is expected to provide a
better approximation to the optimal state-action value function.
To encourage exploration, we add additional bonus function
bE(-,-) to guarantee that with high probability, Q’;l 4G s
an optimistic upper bound of the optimal state-action value
function. The design of bonus term b],‘l has two features:
First, we leverage the importance sampling technique [44] to
prioritize important data in the replay buffer so that the bonus
function bﬁ is stable even when the replay buffer has large
cardinality. Second, the distribution drift of the transitions and
the rewards is characterized in the design of bonus term b’,‘l
in order to obtain the optimistic upper bound of the optimal
state-action value function.

We define bonus function to be the width function b’;l(-, D=
w(fk; -, -), where }';’f is defined as the confidence set so that
the estimation error of the one-step backup (rz +Pk f +1)( 4
lies within ]-"{l‘ with high probability. By the definition of width
function, b’;l(-, -) provides an upper bound on the confidence
interval of the state-action value estimate, since the width
function maximizes the difference between all pairs of state-
action value functions within the confidence set. Specifically,

we define the confidence set as ]:}Ii ={feF: ”f —fff”zzk <
h

B+ HA]}‘!} where B is the confidence parameter properly
selected so that (rh+Pk 1) G 0) € F k with high probability,
Z" consists of the collected samples (l1ne 5), and Ah is the
local variation budget defined by AX =

k—1 k—1
Z sup |<r/;l — rﬁ) (x,a)| + HZ supH (Pl}‘l — Pfl)(.|x, a)
=t X,a =1 X,a 1

Note that the complexity of a bonus function could be high
as it is defined by the dataset Z;’f whose size can be as large
as W. We adopt importance sampling technique in [44] to
reduce the size of the dataset. Moreover, the data samples in
Z,'i are collected from nonstationary environment, we include
an additional term of local variation budget Aﬁ in the definition
of ]-';’f . Intuitively, the local variation budget Aﬁ captures the
discrepancy between current episode k and previous episodes
in the current epoch By incorporating a term involving A% p N
the design of .7-"h, we ensure the true action-value function of
the kth episode lies within the confidence set ]:;Ii with high
probability. The formal definition of bonus term b’,; and the
selection of B is deferred to Appendix B.

Restart mechanism: We use epoch restart mechanism
to handle the nonstationary environment. Specifically, we
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restart every W episodes as illustrated in the outer loop of
Algorithm 4 (line 4), and the estimate of the state-action value
function are calculated only by the samples collected in the
current epoch, independent of all previous epochs. Note that
while in general the epoch length W can vary for different
epochs, we consider a fixed length and the corresponding
dynamic regret upper bound in this work.

Compared to the confidence-set based algorithm SW-OPEA,
which relies on an computational inefficient oracle to select
the optimistic state-action value function within the confidence
set. Instead, our algorithm is based on the popular UCB-based
approach, which simplified the algorithm design and can be
potentially implemented computationally efficiently [44].

B. Theoretical Guarantees

In this section, we provide the theoretical guarantee for
Algorithm 4, and defer proofs to Appendix C.

For clarity, assume K/W 1is an integer throughout this
section. The variation budget of an epoch w € [1:K/W] is
defined as

wW

Z sup |<r’,§ — rﬁ) (x,a)]

t=w(W=1)+1 *¢

iw:

t=w(W—1)+1

w) _
A=

+H (Pk P@) Cx. a)H

The dynamic regret of LSVI-Nonstationary is characterized
in the following theorem.

Theorem 2 (Dynamic Regret of LSVI-Nonstationary):
Under Assumption 1, Assumption 2 and Assumption 4, with
probability at least 1 — §, LSVI-Nonstationary achieves a
dynamic regret bound of D — Regret(K) =

H K/W

4H?Kd,, K W)
— \f+\/d HWZZ,/A
h=1 w=1
where d,, = sup;, dimg(Fj, 1/W) and

L < csuplog®(T/5) dimg(fh, 8/16W2)
h

1
In(N (Fp, §/576W)/8) ln<N(S x A, 16JW_M)W/6>'
for some absolute constant ¢ > 0.

Note that the last term depends on the length of the
restart epoch W, and the dynamic regret upper bound can be
further optimized by setting appropriate W. We adopt the same
definition of the average variation budget in transitions Lp and
rewards L, defined in (6) and (7).

The following corollary characterize the dynamic regret
by optimizing the restart epoch length W based on the
average variation budget L for both nonstationary tabular and
nonstationary linear MDPs.

Corollary 2: Consider the same condition as in Theorem 2.
For tabular MDPs with d = |S]|A|, let F; be the entire
function space of S x A +— [0,H — h + 1] for h € [H].
Since S, A are finite, for ¢ > 0, we have dimg(Fy, &) < Z,
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log(N'(F, &)) = O(d), and log(N'(S x A, &)) = O(log(d)),
and the dynamic regret is bounded by

~ 3_1~3 ~ 1 3 ~ 1
0(H2T2d2 + HTdL}, +H4TdL;‘).

For linear MDPs with feature dimension d dimg (Fp, 8) <
0(d), log(N'(F, €)) = O(d), and log(N'(S x A, £)) = O(d),
and the dynamic regret is bounded by

~3 ~s 1 3, ~5 1
0<H2T d: +HTd4LI‘§~|—H4Td4L;‘>.

Compare to SW-OPEA: Under nonstationary MDPs with
general function approximation, we compare the dynamic
regret upper bound of our UCB-type algorithm to the dynamic
regret bound of the confidence-set based algorithm SW-OPEA.
For both nonstationary tabullar and 1inear1 MDPs, SW-OPEA
gives O(H2T2d + HTE%Lf, + HiTdALY), where d equals
|S]]A| for tabular MDPs and equals the feature dimension for
linear MDPs. We see that the dynamic regret bound of UCB-
type algorithm matches that of confidence-set based algorithm
in horizon H as well as average variation budgets Lp and L,
while perform slightly worse in terms of d. Similarly to the
static MDPs [44], a more refined analysis specialized to the
tabular and linear setting can potentially improve the dynamic
regret bound. We would like to point out that our algorithm and
analysis handles the nonstationary MDPs with general function
approximation, which is much harder than and contains the
nonstationary tabular and linear MDPs.

V. CONCLUSION

In this paper, we investigate two approaches for the
nonstationary MDPs with general function approximation:
confidence-set based algorithm and UCB-type algorithm.
Based on the notion of dynamic Eluder dimension, the
confidence-set based algorithm SW-OPEA incorporates the
sliding window mechanism, and a novel design for the con-
fidence set. The dynamic regret of SW-OPEA is shown to
outperform the existing algorithms in nonstationary linear and
tabular MDPs in the small variation budget regime. To alleviate
the computational inefficiency challenge for the oracle used
to select the optimistic state-action value function within
an confidence set in the confidence-set based algorithm, we
further propose a different UCB-type algorithm, which follows
the popular LSVI framework. To handle nonstationarity, the
UCB-type algorithm LSVI-Nonstationary features the restart
mechanism, and the novel design of the bonus term to
ensure the optimism of the learned state-action value function.
LSVI-Nonstationary performs no worse than the confidence-
set based algorithm SW-OPEA, while considerably simplifies
the algorithm design. Our future directions include study-
ing the unknown variation budget scenario and establishing
lower bound for nonstationary MDPs with general function
approximation.

APPENDIX A

We provide a sketch of the proof of Theorem 1, and the
details of the proof of Theorem 1 and the proof of Corollary 1
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can be found in [1]. The preliminary step is to decompose the
dynamic regret of SW-OPEA into three terms as follows:

D-— Regret(k) <H

: (T
sz ah)~<nf (ea—1L\ 7 ) G an)

t=1 h=1

@

M=

>

t=1

+

E 1y, (Xn, an)
[(xh ah)~<n' (.1—1) (xh,ah)~(n',(*,z>>}[" ]

>
Il

1

0

M~

(*,1—1) t
+ (V?(*z 1 V?;(*,z—1)>(x1)- )
=1

(1)

Term (I) can be bounded by Ag(k) by the definition of the
variation budget of rewards (4). In the sequel, we aim to bound
(II) in step II and bound (III) in the remaining steps.

Step I: We introduce a novel auxiliary MDP to help
bound term (II). For a fixed tuple (k,h) € [K] x [H],
we design an episodic MDP (S, A, H, P*, 7, x) with reward
Ty = r];l(x, a)1{l’ = h} and the corresponding state value
function of policy {m }uerp is defined as ‘N/”,;V(*’ K Then, by
[1, Lemma C.1], we have

~_k ~_k
(D = [Vﬁ<*,k—1> - Vﬁ(*,m](xl)

(P’,; —P’;—l)(-|x, a)Hl.

Replacing k by ¢, and summing over ¢ € [k], h € [H] gives

a < ZZSupZH (Pf ! —P’)( ko)

t=1 h=1
< Z(Z > sup| (P =Pl 1) < HAp (k).
h=1 \r=1 i=1 ©¢

Step II: This step together with the next step establishes
important properties to bound term (III) in step IV.

First, we develop the following crucial probability distri-
bution shift lemma, which will handle the transition kernel
variation in nonstationary MDPs.

Lemma 1 [I, Lemma D.2]: Suppose P and Q are two
probability distributions of a random variable x, then

2
()Epf(x) +Egi1(y) — C) - (X@J(x) +Eg(y) — C)
< 2fin +28m + 2ICNf TV (P, O),

where fi = sup, [f(¥)|, gm = maxi=12 sup, &i(y).
Next, we show that Qz‘* I the optimal state-action value

2

function at step &, lies in the confidence set B¥ for all k
[K] with high probability. The argument is proved by the
martingale concentration and the confidence set we design.
Technically, we define

r]h‘(xz, ay) + E max Qpp1: (.0 (¥, @),

#on(x,a) =
() o m

to form an appropriate martingale difference, which is similar
to the h-th step Bellman update of the state-action value
function in episode k except that the expectation is taken with
respect to P;z instead of Pl,‘l. By Lemma 1, the cumulative
mismatch during the sliding window between #; 1,(x},, a},) and
the h-step Bellman update of state-action value function in
episode k is captured by the local path length Ap(k, k) and
AR (k, h). Finally, by the design of confidence set Bk we can
show that Q’{*’k) e B,

Given Q’(“*’ o € B* for all k € [K], the optimistic planning
step (Line 3) guarantees that Vf; (*’k_l)(xl) < sup, flk(xl,a)
for every episode k € [K]. Combining the optimism and the
generalized policy loss decomposition [1, Lemma C.8], we
have

k

() < Z(rargf{ (x1.a) - vii’(*,,,n(xo)

t=1

ZZ(Xh ap)~ (71’ (%,1— 1))[(fh Tt 1fh+1)(xh’ah)] (10)

h=1 t=1

Step III: We will show the sharpness of our confidence
set B*. Under the construction of B, fk selected from B¥!
is guaranteed to have small loss Lp, (fh fh“) Note that the
data used in episode k are collected by executing 7' for one
episode for all i € [1V (k—w), k], by the concentration and the
completeness assumption. We can show in [1, Lemma D.4]
that with high probability, for all (k, h) € [K] x [H],

k—1
2
kxt,at I E max xa]
t=1v(kz—w_1)[fh( ! h) " X~PEL (L ,)aeAth( )

1, h) + O(B). an

Technically, we define the following helpful random variable

< 6H*AW(k — 1,h) + 6HAN (k —

max fj 41 (x a )

Hoall) = A )+ B oy

X NP’
to form an appropriate martingale and obtain the martingale
concentration result. Then, applying our probability distribu-
tion shift lemma (Lemma 1), the definition of B* and the
completeness assumption gives (11).

Step IV: We establish the relationship between (10)
and (11). Specifically, we aim to upper bound (10) given (11)
holds. Note that their forms are similar except that the latter is
the squared Bellman error, and the data (s;, a;) is taken under
policy 7 for i € [1 v (k —w) : k — 1]. Tt turns out that the
DBE dimension plays an important role in connecting these
two terms, as summarized in the following lemma.

Lemma 2 [I, Lemma 5.5]: Given a function class &
defined on X with |[¢(x)|] < C for all (g,x) € & x &,
and a family of probability measures IT over X’. Suppose
{Plkerx) S P and {ulrerx) € IT satisfy that for all k € [K],
S ety By, [96 ()2 < B. Then for all k € [K] and
w > 0, Zf:l\/(k—w) |Ex~p,[¢:(x)]] is upper bounded by

O(/dimDE(QD, I, 0) Bk A (w + D]

+min{w + 1, k, dimpg(®, T1, 0)}C + [k A (w + 1)]9).
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Based on the DBE dimension and Lemma 2, we are ready
to bound (III) via term (10). By choosing @ to be the function
class of Bellman residuals, and u; to be the distribution under
policy 7*, term (III) is upper bounded by

H &k
Z Z (xhsah)’v(]i];j’,(*,t—l)) [(fé N
H*k [
< (’)(Hﬁ—k —\/dlmDBE F, D, /1/7) log

\/dlmDBE F.Da,J1/K Z [ sup AB(k, h)
ke[K]

Combining all the steps, the dynamic regret of our algo-
rithm SW-OPEA is

D— Regret(k) < Ag(h) + HAp(k) + O(Hﬁ

7;1t71f/£+1)(xh7 ah)]

KH|F|
8

dlog[KH|G|/8] + d sup A%, h))

telk]

f f

where we suppress the first term H in (9) since it is dominated
by the fourth term herein.

APPENDIX B
THE STABLE BONUS FUNCTION VIA
IMPORTANCE SAMPLING

The framework of subsampling a given dataset in RL was
first established by [44], which builds upon the sensitivity
sampling technique [48], [49], [50]. For sake of completeness,
we provide the formal definition of sensitivity and important
results to be used in our analysis, and the proofs are omitted
as they are similar to those in [44].

We begin with the definition of sensitivity function.

Definition 5 [44]: For a given set of state-action pairs Z C
S x A and a function class F, for each z € Z, define the
A-sensitivity of (s, a) with respect to Z and F as

2
(fx,a) —f'(x, )
sup — .
reeFl-riz= =z
A-sensitivity measures the importance of data points in
Z which contributes the most to |f —f/||22 for f,f €

F whenever |f —f' HQZ > A. The algorithm to subsample
the dataset is provided in Algorithm 5, where the sampling
probability for each state-action pair is proportional to the
sensitivity.

The next lemma shows the relations between the subsam-
pled dataset and the original dataset.

Lemma 3 [44, Proposition 1]: With probability at least
1 — 4, the size of Z’ returned by Algorithm 6 satisfies |Z’| <
4|Z|/§, the number of distinct elements in Z is at most

sensitivity z r ; (x, a) =

1728 dimg(F, /| 2)) 1og((H+ 1)2|Z|/,\) In(|Z])
1n(4N (F, /72 - J38/IZ)) /5) /62,
and for any f,f' € F,
a-olf-rlz-22<lr-rI%
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Algorithm 5 Sensitivity-Sampling(F, Z, A, €, §)

1: Input: function class F, reference function f e F, set
of state-action pairs Z € S x A, and failure probability
5 €(0,1).

2: Initialize Z’ < &.

3: For each z € Z, let p, to be the smallest real number such
that 1/p, is an integer and

p; = min{1,sensitivity z  ; (2)-
721n(4/\/(f, /72 \/A8/|Z| /8)) /e%}

4: For each z € Z, independently add 1/p, copies of z into
Z' with probability p,.
5: return Z’.

Algorithm 6 Bonus(T. f, Z, 8, j)

1: Input: function class F, set of state-action pairs Z € S x
A, accuracy parameters A, e > 0 and failure probability
5€(0,1).

2: Z' <« Sensitivity-sampling(F, Z, §/(16W), 1/2, §).

3: Z' < @if |Z'| > 4T /8§ or the number of distinct elements
in 2’ exceeds

6912 dimg (]—‘, 8/(16W2)> 10g(64H2 W2 /a) InWinT
In(N'(F, 8/576W)/6)

4 Let f € C(F,1/8VAWTD) be such that [ —7| =

1/ BAW/S).
5: é <~ .
6: for z € Z' do
Let 2 € C(S x A, 1/(84/4W/5)) be such that

sup; pe 7 [f(2) —f' (@] < 1/(8/AW/3).

Z <« ZU3).

9: end for R A
10: return v?/(~,2-): = wF;.), where F = {f €
F Hf _f P < 3B(F, ) + 2} where

B(F, ) :c’(fl\/log(T/c?)—i—logN(]:h, 1/W)+log Wil
2
+ HA,Y))

for some absolute constant ¢’ > 0.

< +o)f 7% +8IZIr/5.

Equipped with the subsampling procedure, we are able to
formally define the stable bonus function in Algorithm 6. In
line 10, the variation budget A;lw) is defined as

wW

Z sup I(rj;i - rf,)(x, a)l
t=w(W—1)+1 *¢
wW

2

L=w(W—1)+1 *

w) _
A7 =

+H (Pk P‘)( X, a) H

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 28,2024 at 19:28:12 UTC from IEEE Xplore. Restrictions apply.



FENG et al.: TOWARD GENERAL FUNCTION APPROXIMATION IN NONSTATIONARY RL 201

At a high level, we first subsample the given dataset Z, and
define the confidence set based on the newly subsampled
dataset and the reference function. Note that the subsampled
dataset will be discarded if its size is too large, which is
guaranteed to happen with low probability.

Based on Lemma 3, we have the following lemma, which
is adapted from [44, Proposition 2] for nonstationary MDPs
with restart epoch W.

Lemma 4: For Algorithm 6, suppose |Z| < W, the follow-
ing statements hold:

« With probability at least 1 — §/(16T),

w(F; x,a) <wx, a) < w(F;x,a),

where F = {f € F : |[f—F|% < B(F.8)}, and F =

=12
FeF:|f—fls=9p(F.5 +12}.
e W(-,) < W for a function set YW with

log |W| < 6912dimE(]-", 8/(16W2)> 1og(16(H+ 1)2W2/8)
I W In(64TN (F, 8/(576W)/5)
-1og(N(8 x A, 1/8/4W/3 -4W/8)))
+ log(/\/ (S x A, 1 /(8\/4W/6))>
< CdimE(]-', 8/(16W2)) : log(H2W2/6) ‘W
InT In(N (F, 8/576W)/3)
Jog(N (3 % A, 1/(8y/4W/3) «4W/5)

for some absolute constant C > 0 when T is sufficiently
large.

APPENDIX C
PROOF OF THEOREM 2

Step I: We analyze the complexity of the stable bonus
function. The framework of subsampling a given dataset in RL
was first established by [44]. We adapt the analysis therein to
our setting for a given epoch of length W. The main result is
presented in Lemma 4.

Step II: This step shows that the state-action value function
estimate Q];l(~, -) in Algorithm 4 is an optimistic upper bound
for the optimal state-action value function. Our new develop-
ment lies in developing the single step optimization error for
nonstationary MDPs, and the construction of the confidence
set.

We first establish the single step optimization error bound
in the following lemma.

Lemma 5 (Single Step Optimization Error): Consider fixed
(k, h) € [K] x [H]. Denote t as the first episode of an epoch
containing episode k. Let

2 ={(sh <))
h W Zh) | perer—1

as defined in Line 7 of Algorithm 4. For any V : S — [0, H —
h], define

Dk, ={(x‘f,a‘3,7@+Vx‘Z )}
Vih he Qo T (%ht1) tele 1]

and

~ ) 5
V., = arg min||f| .
f gfe]-' lf Dl\c/;/1

For any h € [H], V: S +— [0,H — h] and § € (0, 1), there
is an event Zj v s which holds with probability at least 1 —§,

such that conditioned on Zy, y s, for any V' : S +— [0, H — h]
with || V' — V||oo < 1/W, we have
o) = rf oy = D Ph(s1 )V ()
s'eS g}lj

< c(H - V10g(1/8) + log N'(Fn, 1/W) + \/HAk)

for some absolute constant ¢ > 0, where
k—1

Ah = Zsup|(rh — rh)(x a)| +HkZ:sup|(Ph Ph)(x a)l.

X,d
=1

Proof: Consider a fixed V : S + [0, H—h]. For any f € Fp,
: k—1 <¢
consider » ,_. &, (f) where

&) =2(r -k~ V) (. af) -

—l—(rfl(xﬁ,ai)(Pf;V)(xﬁ,afl) rfl V(xf;_H)).

For any (¢,h) € [k — 1] x [H], define Ffl as the filtration
induced by the sequence
¢ ¢
(’%—h“h—l)}-

{(x;/, “Z/)}(t,h/)e[e—l]x[fl] U {(xf, a’f), e
Then, E[&h (f)|IF ]=0and

641 =20 —h+ D|(f = 7k = PEV) (xh. )|
By Azuma-Hoeffding’s inequality, we have
P|: > 8] < Ze(

e = (8(H—h+ 1)?log

k—1

PRAG)

{=t1

&2
g(H—h-%—l)”f_']/;_PII{lVH;;f

Let

p-ri-m

>1/2

i V10g(2/8) + log N (Fi,, 1/W).
h

(2/\/(]’11, 1/W)>

54(H—h+1)Hf—r§—P’,;

Then, with probability at least 1 — 8, for all f € C(Fp, 1/W),

Zé:h )

< 4(H—h+ I)Hf

-/10g(2/8) + log N (Fp, 1/W).

Define the above event to be Zj v s, and we condition on this
event for the rest of the proof.

For all f € Fj, there exists g € C(Fp, 1/W), such that
Ilf — g||oo < 1/W, and we have

k—1
Zéh(f)

Y & (@ +2H—h+1)
s4(H—h+1)Hg—r,’;—P’/i

=t

/10g(2/8) +1og N (Fp, 1/W) +2(H —h + 1)
g4(H—h+1)<Hf—r§— Z/:H)
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/10g(2/8) + 1og N (Fi, 1/W) +2(H — h + 1). -/10g(2/8) + log N (Fi,, 1/W)
k
Consider V' : S > [0,H — h] with |V — V| < I/W. We —O6H —h+ D —2(H—h+ DA,
have Solving the above inequality, we have
k k ~
kv phv =k -y <v-v], = uyw. =

h

Note first that for any f, g € F, we have
< c’(H -/log(1/8) + log N (Fp,, 1/W) + HAZ)

Flipy, =g, = I = gllz
' ' _ for some absolute constant ¢’ > 0. |
+2 Z(f(xfz ’ aﬁ ) — (xf, 7 aﬁ )) Based on the' single step optimizationkerrOf of nonstgtionary
MDPs, we devise the confidence set J; which contains both
TN e the least square solution f,f and the one-step backup r’ﬁ +
~(g(xh, ap) =1, =V (th)). Pk Vh+1, as summarized in the following lemma.

Replacing g with rk " IE’”‘ V' gives Lemma 6 (Confidence Set): Define

Fr= {fe]—'h ; Hf—f,ﬁ“zﬁ sﬁ(fh,a)},

E = l-A-mvl,
' where B(Fy.8) = ¢ (Hy/log(T/8) + log N'(Fy, 1/W) + log [Wj|
+2Z( A ) (xh,af,) +,/HA})? for some absolute constant ¢’ > 0, and W,
is given in Lemma 4 with F replaced by F;. Then with
'(rh(xh’ ah) + (IP’ V(e L, ah) _vV (th)) ()  Probability at least 1 — /8, for all k, 1 € [K] x [H], we have
A+ PV € Fp
+ZZ< PﬁV)(xh,ah) ' (rﬁ(xfl,afl) Proof: For all (k,h) € [K] x [H] the bonus function

bk(', ) = w(Fp; -, ) € W. Note that
= {min{f (-, ) + w(-, ), H} : w € W, f € C(F, 1/W)} U {0}
is a (1/W)-cover of

+<IP,,V/)(xh, ay) — i, ab) — PV, ah)) (1)

For the second term I, we have

L> 22( ka) (x5 af) A xh af) OF (o — Mty )+ 0f ) < H,
1t 0, h=H.
Wv 4H—h+1
k+l( )(xh’ ah) V(th)) ( +D In other words, there exists g € Q such that ||q — Q];H_l ||oo <
¢ 1/W, which implies
=Y &) —4H—h+1)
=1 Y = {maxgq(-,a) : g € Q}
acA
z —4(H —h+ D(Hf zk + 2) is a (1/W)-cover of V£+1 with log|V| < log|W| +
log N'(Fu, 1/W) + 1. For each V € V, let T, v s
-/10g(2/8) + log N (Fp, 1/W) — 6(H — h + 1). ' V.8/BIVIT)
\/og( /9) +log N 1/W) ( +1 be the event defined in Lemma 5. By Lemma 5, we have
For the third term I3, we have Pl Nvey Znys/svim] = 1 — 8/(8T). We condition on
1 NvevZIny,s/@vi) in the rest of the proof.
L>-2H—-h+1) (rﬁ _ rf,) (x, a)‘ Since fh]‘ i§ the sol}ltion ]:)f the .optimizatzion problem in Line
= xa 10 of Algorithm 1, i.e., f; = mlnfe}-|[f||Dk. Let V € V such
= ’ h
that HV — V}’fﬂ Hoo < 1/W. Thus, by Lemma 5, we have

[ (P];l - Pfl) (x, a)‘)

= —2(H — h+ 1)Ak.

- PAvf ’ <
Hfh ] 5

_ c’(H - 10g(T/8) + log N'(Fy, 1/W) + log Wil + HAﬁ)
Since fy., = arg minfey:llfH%k , we have

for some absolute constant ¢’. Therefore, by a union bound,

— Ky 7k k
0> [Frals - Hrh +ka/ for all (k.)€ [K] x [H]. we have rj + PyVj, | € Fj with
Vi 20 probability at least 1 — §/8. [ |
ky Since the bonus term b];l is defined to be the width of
va;,—r n— PV Zk confidence set ]-'h, we conclude that Qh( -) defined by
e min{H, (fh + bk -))} is an optimistic upper bound for (rh
—a—h+ D [fea—rk V| +2 PAVE ().
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Lemma 7: With probability at least 1 — /4, for all (k, h) €
[K] x [H], for all (x,a) € S x A,

0j(x. @) = Of(x. @ = m(x, @ + (PEVEL, ) (@) + 26 (v, ).

Proof: For each (k,h) x [K] x [H], define ]-'}’f ={f e
i If —f| z¢ < B(Fi.8)). By Lemma 6, the event that
h

for all (k,h) € [K] x [H], rf + P{Vi, , € Ff holds with

probability at least 1 — §/8. Moreover, by Lemma 4, the event

bk (x, @) > w(FF; x, a) holds with probability at least 1 — 8/8.

We condition on those two events in the rest of the proof.
Note that

max |f(x, @) fh(x a)| < w(fh,x a) < bh(x a).
feFk

Since r’fl + IP”;V,’:H c }'}’l‘, we have
ke @) + (PEVEL ) o) = S @) < o),
Therefore,
0k (x, a) < ff(x,a) + by (x, a)
<rxa+ (PkV,IfH)(x a) + 2bk (x, a).

Next we show Qj (x, a) < Qﬁ (x, a) by induction on h, When
h = H + 1, the desired inequality clearly holds. Suppose
Q5 () < 05, () for some h. Clearly, Vit () < Vi, ().
Therefore, for all (s,a) € S x A,

01 (x.a) = rk(x.a) + (]P”,jV}’:H)(x, a)
min{H r’h‘(x a) + (P];lV}Il‘H)(x, a)}

mm{H FRGra) + b, a)} = 0 (x. a).

IA

IA

|

Step III: We decompose the dynamic regret and further
bound it via Eluder dimension.

By standard regret decomposition for UCB-type algorithms,
the dynamic regret is upper bounded by the summa-
tion of the bonus function, as shown in the following
lemma.

Lemma 8: With probability at least 1 — /2,

K H
D — Regret(K) <23 Y b} (xﬁj, a’,;) + 4H/KH10g(8/3).
k=1 h=1

Proof: Define Elf = Pk( Vi h+1 xk ah) -
(V;f 1 Vﬁl)(xﬁ Jrl) and ]F as the filtration 1nduced by

(. aho}<hakge[H]x[k_1]LJ{cxﬁ,a§>,...,cxz,az)}.'rhen
E[g,ﬁm’,;] = Oand|£X| < 2H.
By Azuma-Hoeffding’e inequality, with probability at least 1 —
8/4,
H H-1
IBILE
=1

h=1

4H/KH10g(8/9).

We condition on the above event, and the event defined in
Lemma 7 which holds with probability 1 — /4. We have

D — Regret(K) = i(Vf (ﬁ) - ka (xlf»

<> (M) - (4))

~
Il

(A () (4 ) ()
= 3 (et (v V) () + 2k (o))

o (e )

~
Il
-

To bound the summation of the bonus function, we use a
similar argument in [44] to show that the summation of bonus
term can be upper bounded by the Eluder dimension of the
function class Fj,. ]

Lemma 9: With probability at least 1 — §/4, for any ¢ > 0,

i) - of < (222

1) dimg(Fp, €),

for some absolute constant ¢ > 0.

Proof: Let Fyy = {f € Fi: |f = ff |2 < 9B(Fh ) + 12
By Lemma 4, the event that for all (k, h) € [K]x [H], b} (.,
W(T-‘k, -, ) holds with probability at least 1 —§/4. We condition
on such event in the rest of the proof.

Let £ = {(&,dk) : I/ = h,bf(xh, a}) > &} with |£] = L.
We show that there exists (x/h‘, aﬁ) € L such that (xﬁ, a’;l) is &-
dependent on at least L/ dimg (Fy,, €) — 1 disjoint subsequences
in Z]]; N L if K is sufficiently large. Consider the following
procedure: Let L1, ..., L1/ dimg(F;,e)—1 be L/ dimg(Fp, &) — 1
disjoint subsequences of £ which are initially empty. Consider
(xﬁ,a’fl) N L for each k € [K] sequentially. Find a j such
that (x’;l,aﬁ) is e-independent of £; and then add (x’g,aﬁ)
into £;. If such j does not exist, then the process terminates.
By the definition of e-dependence, |£;| < dimg(Fy,¢) for
all j. Therefore, (x';l,a];z) must be e-dependent on at least
L/ dimg(Fy, €)] disjoint sequences in Z}’f NnL.

Note that since (xﬁ,a’fl) e L, ie., bﬁ(xi,aﬁ) > g, which
implies there exists f, f’ € Fj, with ||f _f}]f”zzlk < 9B(Fn,8)+

12 and ' — £ 51 < 9B(Fi, &) + 12 such that |f =], >

e. By wiangle inequality, |[f —f'| % < 368(Fi, &) + 48.
Therefore "

)=

L/ dimg(Fi. £))e” < [ = | 2y < 368(Fi. ) + 48
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which gives L < (327 4 1) dimg(F, e). n
Lemma 10: With probability at least 1 — §/4,

w
Zb’,j( ah) < 4H dimg(Fy, 1/W)

+ ¢/ /dimg(Fp, 1/W) - W - B(Fi, 8),

for some absolute constant ¢’.
Proof: Let w; > > wy be a permutation of
{b’,‘l(xﬁ, a’,‘l)}ke[W]. By Lemma 9, for any w; > 1/W, we have

‘< <W_h5) 1) dimg (. wo)
Wt
< <—C’3(F§’S) + 1) dimg (Fp, 1/W),
Wi

which implies

v eB(Fn, ).

()
— \dimg(Fp, 1/W)

Moreover, we have w; < 4H. Therefore

w
> wi < 4H - dimg(Fy, 1/W)
=1
1
2

! -2
dimg(Fy, 1/W) -'1> cB(Fi. 6)
dimg (Fp, l/W)ftSW(dlmE(‘Fh’ /W)

< 4H dimg(Fp, 1/W) + 2/cdimg(Fp, 1L/W)WB(Fn, ).

|

Proof of Theorem 2. Combining Lemma 8 and Lemma 10

and the value of B(Fy, ), and summing over all epochs w €

[1, K/W1], we obtain the dynamic regret upper bound for our
proposed algorithm LSVI-Nonstationary

H [K/W] min{wW,K}
D — Regret(K) < Z Z Z
h=1 w=1 t=w(W-1)+1

H [K/W]

o it WY Y o).

h=1 w=1

b (xj» )

4H?Kd,,
<
- W

where d,, = sup, dimg(F),, 1/W), and we use v/a + b < Ja+
Vb in the second inequality.

A. Proof of Corollary 2

Recall the definition of average variation budget Lp and L,.
By Theorem 2, we have

D — Regret(K)
H K/W

NN 3D SN

w
h=1 w=1

Il
N

H K/W

< _‘/JF\/"mTWZZF

h=1 w=1

~ bl 1 oo, 1) N1
= O\ KH*12W™2 +d2iKH? H2L}2,—|—Lr2 w2 |,
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where d,, = sup;, dimg(Fj, 1/W) and

¢ < ¢ suplog®(7/8) dim% (J-'h, 8/16W2) In(N (Fp, 8/576W)/8)
h

n| V(S x A, 8
n< (S x 16\/7 w/ )
11
If — 12H2 > K, ie., V/Ip+ \/\/% < K‘\/F‘[’JL, we select
di (VIp+LE) "

W = K and we have
D — Regret(K) < 0(H2K7 7)

11
If JL < K, ie., s/Lp+ “/TL; K?, select W =
di (VIp+ )
11
[——2H2 1 and we have

T

di (VIp+ Y
~ 5 1 11 7 1 1 1

D — Regret(K) < O(KH t4dmLp +KH4L4d,‘,‘1L;4,>.

Consider tabular MDPs with d = |S||A|. Let F, be the
entire function space of S x A+ [0, H —h+1] for h € [H].
Since S, A are ﬁmte for ¢ > 0, we have dimg(Fy, g) < d
log(N'(F,¢)) = O(d) and log(N(Sx.A g)) = 0(10g(d)) we
have t = O(d%) and d,, = O(d). Therefore, when ~Lp+
JHd

z o, we have

D — Regret(K) < 0( szU + KHTAL 4)

For linear MDPs W1th feature dimension d dimg (Fp, s) <
0(d), log(V(F, 8)) = 0(d), and log(NV'(S x A, ¢)) = 0(@d),
we have ¢ = O(@*) and d,, = O(d). Therefore, when /Lp +
N7
VH K

, we have
~ 255 % 75 %
D — Regret(K) < O| KH*d3Lp + KH#d%Lp ).
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