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Toward General Function Approximation in

Nonstationary Reinforcement Learning
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Abstract—Function approximation has experienced significant
success in the field of reinforcement learning (RL). Despite
a handful of progress on developing theory for nonstationary
RL with function approximation under structural assumptions,
existing work for nonstationary RL with general function
approximation is still limited. In this work, we investigate two
different approaches for nonstationary RL with general function
approximation: confidence-set based algorithm and UCB-type
algorithm. For the first approach, we introduce a new complexity
measure called dynamic Bellman Eluder (DBE) for nonstationary
MDPs, and then propose a confidence-set based algorithm SW-
OPEA based on the complexity metric. SW-OPEA features the
sliding window mechanism and a novel confidence set design for
nonstationary MDPs. For the second approach, we propose a
UCB-type algorithm LSVI-Nonstationary following the popular
least-square-value-iteration (LSVI) framework, and mitigate the
computational efficiency challenge of the confidence-set based
approach. LSVI-Nonstationary features the restart mechanism
and a new design of the bonus term to handle nonstationarity.
The two proposed algorithms outperform the existing algorithms
for nonstationary linear and tabular MDPs in the small variation
budget setting. To the best of our knowledge, the two approaches
are the first confidence-set based algorithm and UCB-type
algorithm in the context of nonstationary MDPs.

Index Terms—Nonstationary MDPs, general function approx-
imation, Eluder dimension, LSVI.
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I. INTRODUCTION

R
EINFORCEMENT learning (RL) focuses on the problem

of maximizing the cumulative reward through interac-

tions with an unknown environment. RL has witnessed a great

success in practical applications, including robotics [2], [3],

games [4], [5], [6], [7], and autonomous driving [8]. The

unknown environment in RL is commonly modeled as a

Markov decision process (MDP), where the set of states S

describes all possible status of the environment. At a state s ∈
S , an agent takes an action a from an action set A to interact

with the environment, after which the environment transits to

the next state s′ ∈ S drawn from some unknown transition

distributions, and then the agent receives an immediate reward.

The interaction between the agent and the environment takes

place episodically, where each episode consists of H steps.

The notion called regret has been typically employed to

measure the performance of RL algorithms, which measures

how much worse an agent performs following its current

policy comparison to the optimal policy in hindsight. The goal

of the agent is to strategically interact with the environment to

balance the exploration and exploitation tradeoff to minimize

the regret.

Most existing RL studies adopt a static MDP model, in

which both the reward and the transition kernel are time-

invariant across episodes. However, stationary environment

is insufficient to model enormous sequential decision prob-

lems such as online advertisement auctions [9], [10], traffic

management [11], health care operations [12], and inventory

control [13]. In contrast, nonstationary RL takes variations

in rewards and transitions into consideration and is able to

characterize larger classes of problems of interest [14]. In

general, it is impossible to design algorithms that achieve

sublinear regret for MDPs with drastically changing rewards

and transitions in the worst case [15]. Therefore, one funda-

mental issue in the theoretical study of nonstationary RL is to

investigate the maximum nonstationarity an agent can tolerate

to adapt to the nonstationary dynamics of an MDP in order to

achieve sublinear regret.

Without additional assumptions on the structure of the

MDP, there is a line of extensive studies on nonstationary

tabular MDPs [15], [16], [17], [18], [19], [20], [21], [22],

[23], [24], [25], [26], [27], [28]. However, the performance

of nonstationary tabular MDPs suffers from large state and

action spaces, which limits its applicability in scenarios with

exponentially large or continuous state spaces. Therefore,

2641-8770 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 28,2024 at 19:28:12 UTC from IEEE Xplore.  Restrictions apply. 



FENG et al.: TOWARD GENERAL FUNCTION APPROXIMATION IN NONSTATIONARY RL 191

function approximation has become a prominent tool to cope

with this challenge. Several works have developed RL algo-

rithms for nonstationary MDPs under structural assumptions,

such as state-action set forming a metric space [29], linear

MDPs [30], [31], linear mixture MDPs [32]. Although the

developed algorithms are much more efficient than the algo-

rithms designed for tabular setting, these algorithms require

strong structural assumptions on the function approximation

(such as a well-designed feature extractor in linear MDPs),

which severely restricts the range of situations where these

approaches can be employed. This naturally leads to the

following open question:

Can we design an algorithm that achieves a “desired”

regret performance1 for nonstationary MDPs under general

function approximation?

In this paper, we give an affirmative answer to the above

question by investigating two different approaches and address

the following challenges: First, we need to identify an appro-

priate complexity metric for nonstationary MDPs that covers

many existing problems of interest. Second, We need to design

an algorithm that can handle nonstationarity without additional

structural assumptions on transition kernels and rewards.

Third, it is non-trivial to establish a dynamic regret bound

of the proposed algorithm that potentially improves those for

nonstationary tabular and linear MDPs. The contributions of

our work is summarized based on two different approaches as

follows.

Confidence-set based algorithm. We propose a new

complexity metric named the Dynamic Bellman Eluder

(DBE) dimension for nonstationary MDPs, which general-

izes the Bellman Eluder (BE) dimension designed for static

MDPs [33], and subsumes a broad class of RL problems

including low BE dimension problems in static RL and

nonstationary tabular and linear MDPs in nonstationary RL.

We then design a new confidence-set based algorithm SW-

OPEA for nonstationary MDPs, by greedily selecting the

candidate value function in the confidence region. Our design

novelty lies in the construction of the confidence region, which

features the sliding window mechanism, and incorporates local

variation budget in order to accurately capture the distribution

mismatch between the current episode and all episodes in the

sliding window. Such a design ensures the optimal state-action

value function in current episode to lie within the confidence

region, and hence the optimism principle remains valid.

We theoretically characterize the dynamic regret of SW-

OPEA. To demonstrate the advantage of SW-OPEA, we

compare our regret bound of SW-OPEA to that of previously

proposed UCB-type algorithms [30] for nonstationary linear

and tabular MDPs. The comparison shows that our confidence-

set based algorithm performs better in terms of the linear

feature dimension d̃ and the horizon H, where the dependency

on H also matches with the minimax lower bound given

in [30], while performs slightly worse in the average variation

budget. Therefore, the comparison suggests that our algorithm

1The performance of the algorithm relies on the variation budget of rewards
and transitions. Mildly changed rewards and transitions results in a sublinear
regret while drastically changed rewards and transitions leads to linear regret.

outperforms their algorithm in the small variation scenario.

Our analysis features a few new developments. (a) We develop

a distribution shift lemma to handle transition kernel variations

over time. (b) We come up with new auxiliary random

variables to form appropriate martingale differences and obtain

the concentration results. (c) We use an auxiliary MDP to

help bound the difference of two expectations under different

underlying models.

UCB-type algorithm. To mitigate the computational inef-

ficiency of the confidence-set based algorithm, we propose

a UCB-type algorithm LSVI-Nonstationary for nonstationary

MDPs with general function approximation, which adopts

LSVI with upper confidence bound to handle the exploration

and exploitation tradeoff. In order to handle nonstationarity,

our algorithm features the restart mechanism, and incorporat-

ing the local variation budget in the design of the bonus term to

ensure the optimism of the learned state-action value function.

We use the Eluder dimension to measure the complexity

of the state-value function class F for nonstationary MDPs.

We then theoretically characterize the dynamic regret of the

proposed UCB-type algorithm, which depends on the Eluder

dimension of function class F . Our newly proposed UCB-

type algorithm matches with the performance of SW-OPEA in

terms of horizon H, average variation budget in transitions LP

and average variation budget in rewards Lr, while performing

slightly worse in the number of states and actions |S|, |A|
under tabular MDPs and the same in the linear feature d̃ in

linear MDPs. Our result suggests the benefit of UCB-type

algorithm over confidence-set based algorithm.

Our main technical development for this approach lies in the

single step optimization error for the least-square optimization

in our UCB-type algorithm. We do not take the distribution

drift in transitions and rewards into consideration, which

may lead to non-trivial estimation error. In our analysis, we

explicitly capture a non-trivial term due to the nonstationarity

of the environment. We show that by compensating such a

term involving local variation budget into the standard term

due to concentration, the difference between the least-square

predictor and the one-step backup estimate rk
h +Pk

hVk
h+1 is still

bounded.

A. Related Work

Static Regret of Nonstationary MDPs: Static regret in

nonstationary MDPs have been considered extensively in the

past [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],

[25]. Static regret has also been studied for nonstationary

MDPs with function approximation. In particular, [31] char-

acterizes the static regret for the weighted least squares value

iteration method. Reference [34] studies the nonstationary

RL setting with general function approximation, where the

static regret is captured through a more general notion called

decision-estimation coefficient (DEC).

Dynamic Regret of Nonstationary MDPs: Many studies

in the past have been focused on the metric of dynamic

regret, which quantifies the performance difference between

the learning policy and the optimal policy at each step. For

nonstationary tabular MDPs, value-based approaches have
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been proposed in [26], [28], where they respectively propose

a sliding window strategy and a restart mechanism to han-

dle nonstationarity. Further, [27] adopted a different method

based on policy optimization. For nonstationary MDPs with

function approximation, [30] and [32] focus on linear func-

tion approximation and linear-mixture function approximation,

respectively, and [29] consider a kernel-based approach for

nonstationary MDPs when state-action set forms a metric

space. Further, [35] propose a unified approach to nonstation-

ary MDPs that relies on an oracle algorithm with optimal

regret for stationary MDPs to develop a useful algorithm for

nonstationary MDPs.

Static MDPs with General Function Approximation:

MDPs with general function approximation have been well

studied in the static setting, where the transition kernel and

reward function do not change over time. References [36]

and [37] first introduce the notion of Eluder dimension to

characterize the complexity of the function class, and study

the performance based on such a metric. Later on, the

notion Eluder dimension has been extended to Bellman Eluder

dimension [33], and other notions have also been proposed,

including Admissible Bellman Characterization (ABC) [38]

and decision-estimation coefficient (DEC) [39]. Another line

of research is based on low-rank conditions, including Bellman

rank [40], [41], witness rank [42], and bilinear class [43].

Closest to our work here are the studies by [33] and [44]. For

the confidence-set based algorithm, we generalize the Bellman

Eluder dimension [33] for static MDPs to dynamic Eluder

dimension for nonstationary MDPs, while for the UCB-type

algorithm, we extend the study of UCB-type of approach

in static MDPs [44] to nonstationary MDPs. Both of our

approaches feature new elements in algorithm design and

analysis tailored to nonstationary MDPs.

B. Relationship Between Trustworthy RL and Nonstationary

RL

The goal of trustworthy reinforcement learning is to design

algorithms competent in solving challenging real-world prob-

lems, including robustly handling perturbations, satisfying

safety constraint, and generalizing to unseen environments.

Nonstationary RL studied in this work is closely related to

those three aspects. First, nonstationarity naturally occurs in

robust MDPs. In classical robust RL setting, we aim to find

a policy that maximizes the worst-case performance against

uncertainty variable U, where uncertainty U could be either

state s, action a, reward r, or transition P. When environment

discrepancies are considered, i.e., uncertain variable follows

U = (P, r), and they satisfy the variation budget constraint,

our algorithms provide candidate policies for robust MDPs

with performance guarantee. Second, nonstationary MDPs

can be viewed as a special case of safe RL problems. The

nonstationarity, characterized by the variation budgets, serves

as the constraint on the total variations of rewards and

transitions, and our algorithms provide safe policies (satisfying

variation budget constraints) with good performances. Third,

nonstationary MDPs can help understand generalization in RL.

Consider the scenario where testing environments are drawn

from time-variant nonstationary distributions, and the agents

are expected to learn how to leverage past experience and

identify new environment. The nonstationary RL could serve

as a general framework to study such a problem, and help

understand generalization in RL.

Notation: For a set S , �(S) represents a collection of

distributions over S . For a positive integer N, we use [N] to

denote the set of positive integers {1, 2, . . . , N}. For positive

integers m, n, define {·}[m:n] = ∅ if m > n. Let f , h be a

function of n, f (n) = Õ(h(n)) is equivalently to that there

exists positive k such that f (n) = O(h(n) logk(h(n))). Given

a dataset D = {(xi, ai, qi)}|D|
i=1 ⊆ S × A × R, for a function

f : S×A �→ R, define ‖f ‖D = (
∑|D|

i=1(f (xi, ai)−qi)
2)

1
2 . For a

set of state-action pairs Z ⊆ S ×A, for a function f : S ×A,

define ‖f ‖Z = (
∑

(x,a)∈Z (f (xi, ai))
2)

1
2 . For a set of functions

F ⊆ {f : S × A �→ R}, we define the width function of the

state-action pair as w(F; x, a) = supf ,f ′∈F (f − f ′)(x, a).

II. PRELIMINARIES

A. Nonstationary MDPs

Our setting can be formulated as a nonstationary finite-

horizon episodic Markov decision process, captured by a tuple

(S,A, H, K, P, r, x1). Here, S is the state space, A is the

action space, H is the length of each episode, K is the total

number of episodes, P = {Pk
h}(k,h)∈[K]×[H−1] where Pk

h : S ×
A �→ 	(S) is the transition kernel at step h in the k-th episode,

r = {rk
h}(k,h)∈[K]×[H] where rk

h : S × A �→ [0, 1] is the mean

reward function at step h in the k-th episode, and x1 is the

fixed initial state.

The agent interacts with the nonstationary MDP sequen-

tially. At the beginning of k-th episode, the agent chooses

a policy πk = {πk
h }h∈[H] where πk

h : S �→ 	(A). At step

h, the agent observes the state xk
h, takes an action following

ak
h ∼ πk

h (·|xk
h), obtains a reward r̃k

h (we also use rk
h if there

is no ambiguity) with mean rk
h(x

k
h, ak

h), and the MDP evolves

into the next state xk
h+1 ∼ Pk

h(x
k
h, ak

h). The process ends after

receiving the last reward rk
H . We define the state and state-

action value functions of policy π = {πh}h∈[H] recursively via

the following equation

Qπ
h;(∗,k)(x, a) = rk

h(x, a) +
(

Pk
hVπ

h+1;(∗,k)

)
(x, a),

Vπ
h;(∗,k)(x) = 〈Qπ

h;(∗,k)(x, ·), πk
h (·|x)〉A, VH+1;(∗,k) = 0,

where (∗, k) represents the true model in the k-th episode, Pk
h is

the operator defined as (Pk
hf )(x, a) := E[f (x′)|x′ ∼ Pk

h(x
′|x, a)]

for any function f : S �→ R. Here 〈·, ·〉A denotes the inner

product over action space A and the subscript A is omitted

when appropriate.

The learning objective is to find the optimal policy via

interactions with the environment to minimize the dynamic

regret

D − Regret(K) :=
K∑

k=1

(
Vπ (∗,k)

1;(∗,k) − Vπk

1;(∗,k)

)
(x1),

which quantifies the performance difference between the

learning policy and the benchmark policy {π (∗,k)}k∈[K] where

π (∗,k) = arg maxπ Vπ
1;(∗,k)

(x1).
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B. Function Approximation

Consider a function class F = F1 ×F2 × . . . ×FH , where

Fh ⊆ {f : S ×A �→ [0, H − h + 1]} is the candidate function

class to approximate Q
π(∗,k)

h;(∗,k)
. For convenience, we set fH+1 =

0, and therefore FH+1 = {f (s, a) = 0 : (s, a) ∈ S × A}.
Assumption 1 (Realizability): Q∗

h;(∗,k)
∈ Fh for all (k, h) ∈

[K] × [H].

Realizability assumption requires that the optimal state-

action value function in each episode is contained in

the function class F with no approximation error, i.e.,

(Q∗
1;(∗,k)

, . . . , Q∗
H;(∗,k)

) ∈ F for k ∈ [K].

Given functions f = (f1, f2, . . . , fH) where fh ∈ (S × A �→
[0, H − h + 1]), define(

T k
h fh+1

)
(x, a) := rk

h(x, a) +
(

Pk
hfh+1

)
(x, a),

(
Pk

hfh+1

)
(x, a) = Ex′∼Pk

h(·|x,a)

[
max
a′∈A

fh+1

(
x′, a′)

]
,

where T k
h is the Bellman operator at step h in episode k.

Note that the optimal state-action value function satisfies

Q∗
h;(∗,k)

(x, a) = (T k
h Q∗

h+1;(∗,k)
)(x, a) for all valid x, a, h.

Moreover, we define T k
h Fh+1 = {T k

h fh+1 : fh+1 ∈ Fh+1}.
Assumption 2 (Completeness): T k

h Fh+1 ⊆ Fh for all

(k, h) ∈ [K] × [H].

For the completeness assumption, we require that after

applying the Bellman operator T k
h of any episode k to a

function fh+1 in the function class Fh+1 at step h + 1, the

resulting function lies in the function class Fh at previous step

h.

C. Complexity Measures

In this section, we introduce two complexity measures for

a class of functions. One is Eluder dimension and the other

one is distributional Eluder dimension.

The definition of Eluder dimension was first proposed

in [44], and is based on the ε-independence of points, as

illustrated in the following definition.

Definition 1 (Eluder Dimension): Let ε ≥ 0 and Z =
{(xi, ai)}n

i=1 ⊆ S × A be a sequence of state-action pairs.

• A state-action pair (x, a) ∈ S × A is ε-dependent on Z

with respect to F if any f , f ′ ∈ F satisfying2
∥∥f − f ′∥∥

Z
≤

ε also satisfies |f (x, a) − f ′(x, a)| ≤ ε.

• An (x, a) is ε-independent on Z with respect to F if

(x, a) is not ε-dependent on Z .

• The Eluder dimension dimE(F , ε) of a function class

F is the length of the longest sequence of elements in

S × A such that, for some ε′ ≥ ε, every element is ε′-
independent of its predecessors.

It has been shown in [36] that dimE(F , ε) ≤ |S||A| for

tabular MDPs, and dimE(F , ε) ≤ Õ(̃d) for linear MDPs where

d̃ is the feature dimension.3

We extend the notion of ε-independence of points to ε-

independence of distributions, and obtain the definition of

distributional Eluder dimension [33].

2‖·‖Z is formally defined in Section I Notation.
3The proofs for the nonstationary setting are essentially the same as the

proof for the stationary setting therein, and we do not differentiate the two
settings.

Definition 2 (Distributional Eluder Dimension): Let ε ≥ 0

and {νi}n
i=1 ⊆ �(S × A) be a sequence of probability

distributions.

• A distribution μ ∈ �(S × A) is ε-dependent on

{ν1, . . . , νn} with respect to F if any f ∈ F satisfying√∑
i(Eνi f )

2 ≤ ε also satisfies |Eμf | ≤ ε.

• A μ is ε-independent on {ν1, . . . , νn} with respect to F

if μ is not ε-dependent on {ν1, . . . , νn}.
• The distributional Eluder dimension dimE(F ,�, ε) of a

function class F and distribution class � is the length

of the longest sequence of elements in � such that, for

some ε′ ≥ ε, every element is ε′-independent of its

predecessors.

III. CONFIDENCE-SET BASED ALGORITHM

To the best of our knowledge, the proposed SW-OPEA

is the first confidence-set based algorithm in the context

of nonstationary MDPs. At high level, confidence-set based

algorithm consists of three key steps: optimistic planning, data

collection and confidence set updating. Compared to static

MDPs, we adopt sliding window mechanism and incorporate

local variation budgets in transitions and rewards to com-

pensate for the distribution mismatch between the current

episode and all episodes in the sliding window to handle

nonstationarity. Despite of the new technical developments for

the analysis, our algorithm for nonstationary MDPs remains

concise and simple.

A. Dynamic Eluder Dimension

In this section, we first review the Bellman Eluder (BE)

dimension for static MDPs, and propose a new complexity

metric Dynamic Eluder (DBE) dimension for nonstationary

MDPs. Both BE dimension and DBE dimension are based

on the distributional Eluder dimension (see Definition 2).

However, compared to Bellman Eluder dimension, the new

Dynamic Eluder Dimension nicely captures the nonstationarity

of the problem.

The definition of Bellman Eluder dimension was first

introduced in [33] for static MDPs.

Definition 3 (Bellman Eluder dimension (BE)): Let (I −
Th)F := {fh − Thfh+1 : f ∈ F , k ∈ [K]} be the set of Bellman

residuals in all episodes induced by F at step h, and � =
{�h}h∈[H] be a collection of H probability measure families

over S×A. The ε-Bellman Eluder dimension of F with respect

to � is defined as

dimBE(F ,�, ε) := max
h∈[H]

dimDE((I − Th)F ,�h, ε).

For nonstationary MDPs, the Bellman operators Th varies

over episodes, and hence we introduce our new complexity

measure called dynamic Bellman Eluder dimension for non-

stationary MDPs.

Definition 4 (Dynamic (Bellman) Eluder (DBE) dimension):

Let (I − T̄h)F := {fh − T k
h fh+1 : f ∈ F , k ∈ [K]} be the set

of Bellman residuals in all episodes induced by F at step h,

and � = {�h}h∈[H] be a collection of H probability measure
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Algorithm 1 GOLF (Sketch)

1: Input: D1, . . . ,DH ← ∅, B0 ← F .

2: for episode k from 1 to K do

3: Choose πk = πf k , where f k =
arg maxf ∈Bk−1 f1(x1, πf (x1)).

4: Collect a trajectory (x1, a1, r1, . . . , xH, aH, rH, xH+1)

by following πk.

5: Augment Dh = Dh ∪ {(xh, ah, rh, xh+1)}, ∀h ∈ [H].

6: Update Bk = {f ∈ F : LDh
(fh, fh+1) ≤

infg∈Gh
LDh

(g, fh+1) + β, ∀h ∈ [H]}, where

LDh
(ξh, ζh+1) =

∑
(s,a,r,s′)∈Dh

(
ξh(x

t
h, at

h) − r

− maxa′∈A ζh+1(x
t
h+1, a′)

)2
7: end for

families over S ×A. The dynamic Bellman Eluder dimension

of F with respect to � is defined as

dimDBE(F ,�, ε) := max
h∈[H]

dimDE

((
I − T̄h

)
F ,�h, ε

)
.

We focus on the following choice of distribution family

D� = {D�,h}h∈[H] where D�,h = {δ(s,a) : s ∈ S, a ∈ A}, i.e.,

the collections of probability measures that put measure 1 on

as single state-action pair.

The DBE dimension is the distributional Eluder dimension

on the function class (I − T̄h)F in all episodes, maximizing

over step h ∈ [H], which can be viewed as an extension

of BE dimension to nonstationary MDPs. The main differ-

ence between DBE dimension and BE dimension is that the

Bellman operator T k
h is time-varying, and we include all the

Bellman residues induced by T k
h for k ∈ [K] in the function

class. In general, the DBE dimension could be substantially

larger than the BE dimension due the fact that the class of

functions can be significantly larger. However, we can show

that, if the variations in both transitions and rewards are

relatively small compared to a universal gap, then the DBE

dimension equals to the BE dimension with respect to one

MDP instance of the nonstationary MDP [1]. Moreover, the

DBE dimension of nonstationary linear MDPs scales linearly

with the linear feature dimension Õ(̃d) [1].

B. Algorithm SW-OPEA

In this section, we propose our confidence-set based

algorithm SW-OPEA for nonstationary MDPs with general

function approximation.

Overview of GOLF [33]: We first give a brief introduction

of GOLF in Algorithm 1 for static MDPs with general function

approximation. There are three key components: Optimistic

planning (line 3), data collection (line 4), and updating

confidence set Bk (line 6). The key step is to construct the

confidence set Bk, and GOLF maintains a local regression

constraint using collected data Dh at this step LDh
(fh, fh+1) ≤

infg∈Gh
LDh

(g, fh+1) + β, where β is a confidence parameter,

and LDh
is the squared loss proxy to the squared Bellman error

at step h. It was shown that the regret of GOLF is Õ(H
√

dK),

where d = dimBE(F ,D�, 1/
√

K) is the BE dimension.

Algorithm 2 Sliding Window Optimistic Exploration and

Approximation (SW-OPEA)

1: Input: D1, . . . ,DH ← ∅, B0 ← F , local variation

budgets �w
P(k, h), �w

R(k, h).

2: for episode k from 1 to K do

3: Choose πk = πf k , where f k =
arg maxf ∈Bk−1 f1(x1, πf (x1)).

4: Collect a trajectory (xk
1, ak

1, rk
1, . . . , xk

H, ak
H, rk

H, xk
H+1)

by following πk.

5: Augment Dh = Dh ∪ {(xk
h, ak

h, xk
h+1)}, ∀h ∈ [H].

6: Update Bk = {f ∈ F : LDh
(fh, fh+1) ≤

infg∈Gh
LDh

(g, fh+1)+β + 2H2�w
P(k, h)+ 2H�w

R(k, h),

∀h ∈ [H]}, where LDh
(ξh, ζh+1) is defined in (1).

7: end for

At a high level, SW-OPEA differentiates from the GOLF

algorithm [33] for static MDPs with general function approx-

imation in its novel designs to handle the nonstationarity

of transition kernels and rewards. Specifically, SW-OPEA

features the sliding window mechanism and incorporates local

variation budget in order to accurately capture the distribution

mismatch between the current episode and all episodes in

the sliding window. Such a design ensures the optimal state-

action value function in the current episode to lie within the

confidence region, and hence the optimism principle remains

valid.

The pseudocode of SW-OPEA is presented in Algorithm 2.

SW-OPEA initializes the dataset {Dh}h∈[H] to be empty sets,

and confidence set B0 to be F . Then, in each episode, SW-

OPEA performs the following two steps:

Optimistic planning step (Line 3) greedily selects the most

optimistic state-action value function f k from the confidence

set Bk−1 constructed in the last episode, and chooses the

corresponding greedy policy πk associated with f k.

Sliding window squared Bellman error is defined as

LDh
(ξh, ζh+1) =

k∑

t=1∨(k−w)

(
ξh

(
xt

h, at
h

)
− rt

h

− max
a′∈A

ζh+1

(
xt

h+1, a′)
)2

. (1)

Note that in episode k, we use bandit reward rt
h in the

construction of the sliding window squared Bellman error,

and LDh
tends to be small as long as the transition kernel

difference between episode k and t is small. Furthermore,

based on the “forgetting principle” [45], we adopt the sliding

window in the squared loss (1), where the data used to

estimate the squared loss at episode k relies on the latest w + 1

observations (when iteration number is sufficiently large)

during episode 1∨(k−w) to k instead of all prior observations.

The rationale is that under nonstationarity setting, the historical

observations far in the past are obsolete, and they are not as

informative for the evaluation of the squared loss.

Confidence set updating step (Line 4–6) first executes

policy πk and collects data for the current episode, and then

updates the confidence set based on the new data.
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The key novel ingredient of SW-OPEA lies in the construc-

tion of the confidence set Bk. For each h ∈ [H], SW-OPEA

maintains a local regression constraint using the collected

data Dh

LDh
(fh, fh+1) ≤ inf

g∈Gh

LDh
(g, fh+1) + β

+2H2�w
P(k, h) + 2H�w

R(k, h),

where β is a confidence parameter, and �w
P,�w

R are the local

variation budgets defined by

�w
P(k, h) =

k∑

t=1∨(k−w)

sup
x∈S,a∈A

∥∥∥
(

Pk
h − Pt

h

)
(·|x, a)

∥∥∥
1
. (2)

�w
R(k, h) =

k∑

t=1∨(k−w)

sup
x∈S,a∈A

|
(

rk
h − rt

h

)
(x, a)|. (3)

Since the transition kernel varies across episodes, we

include an additional term of the local variation budget

�w
P(k, h) and �w

R(k, h) in the definition of Bk. Intuitively,

the local variation budget �w
P(k, h) and �w

R(k, h) captures the

cumulative transition kernel and reward differences between

current episode and all previous episode in the sliding window.

Therefore, by compensating a term involving �w
P(k, h) and

�w
R(k, h) in the confidence set Bk, we ensure that the optimal

state-action value function in the k-th episode Q∗
h;(∗,k)

still lies

in the confidence set Bk with high probability.

C. Theoretical Guarantees

In this section, we provide our main theoretical result for

SW-OPEA, and defer the proof sketch that highlights our novel

developments in the analysis to Appendix A.

We first state the following generalized completeness

assumption [33], [46], [47]. Let G = G1 × · · · × GH be an

auxiliary function class provided to the learner where Gh ⊆
(S × A �→ [0, H − h + 1]).

Assumption 3 (Generalized Completeness): T k
h Fh+1 ⊆ Gh

for all (k, h) ∈ [K] × [H].

If we choose G = F , then Assumption 3 is equivalent

to the standard completeness assumption (see Assumption 2).

Without loss of generality, we assume F ⊆ G, which implies

G = F ∪ G.

Moreover, to quantify the nonstationarity, we define the

variation in rewards of adjacent episodes and the variation in

transition kernels of adjacent episodes as

�R(K) =
K∑

k=1

H∑

h=1

sup
x∈S,a∈A

|
(

rk
h − rk−1

h

)
(x, a)|, (4)

�P(K) =
K∑

k=1

H∑

h=1

sup
x∈S,a∈A

∥∥∥
(

Pk
h − Pk−1

h

)
(·|x, a)

∥∥∥
1
, (5)

where we define P0
h = P1

h and r0
h = r1

h for all h ∈ [H].

The dynamic regret of our algorithm SW-OPEA is charac-

terized in the following theorem.

Theorem 1: Under Assumption 1 and Assumption 3, there

exists an absolute constant c such that for any δ ∈ (0, 1],

K ∈ N, if we choose β = cH2 log
KH|G|

δ
in SW-OPEA, then

with probability at least 1 − δ, for all k ∈ [K], when k ≥
min{w + 1, dimDBE(F ,D�,h,

√
1/w)}, D − Regret(k) equals

�R(k) + H�P(k) + OlH
√

w + H2k√
w

√
d log

[
KH|G|/δ

]

+H2k√
w

√
d sup

t∈[k]

�w
P(t, h) + H3/2k√

w

√
d sup

t∈[k]

�w
R(t, h)l,

where d = dimDBE(F ,D�,h,
√

1/w).

Note that the last term depends on the sliding window size

w, and we can further optimize w if an upper bound of the

local variation budget �w
P(t, h) and �w

R(t, h) is given. Below

we give an example for optimizing sliding window size w.

Before we proceed, we first define the average variation

budget L as

LP = max
h∈[H],t<k

∑k−1
s=t supx,a ‖

(
Ps+1

h − Ps
h

)
(·|x, a)‖1

k − t
, (6)

Lr = max
h∈[H],t<k

∑k−1
s=t supx,a |

(
rs+1

h − rs
h

)
(x, a)|

k − t
. (7)

Clearly, we have LP, Lr ≤ 1 and �w
P(k, h) ≤ LPw2, �w

R(k, h) ≤
Lrw2. LP, Lr can be viewed as the greatest average variation

of transition kernels and rewards across adjacent episodes over

any period of episodes maximized over step h ∈ [H]. Then

the following corollary characterizes the dynamic regret by

optimizing the window size w based on LP and Lr.

Corollary 1: Under the conditions of Theorem 1 and |G| >

10, with probability at least 1 − δ, the following argument

holds: if
√

LP +
√

Lr√
H

> 1
K

(
√

log |G| − 1

H
√

d
), select w =

�
√

log |G|
√

LP+
√

Lr√
H

+ 1

HK
√

d

�, the dynamic regret is upper-bounded by

Õ
(

H
3
2 K

1
2 d

1
4 (log |G|) 1

4 + H2KL
1
4
P d

1
2 (log |G|) 1

4

+H
7
4 KL

1
4
r d

1
2 (log |G|) 1

4 + �R + H�P

)
; (8)

otherwise, select w = K and the dynamic regret

is upper-bounded by Õ(H2K
1
2 d

1
2 (log |G|) 1

2 ), where d =
dimDBE(F ,D�,h,

√
1/w).

We remark that |G| appearing in the log term can be replaced

by its ε-covering number NG(ε) to handle the classes with

infinite cardinality. In both Theorem 1 and Corollary 2, we do

not omit log |G| in Õ since for many function classes, log |G|
(or logNG(ε)) can contribute to a polynomial factor. For

example, for d̃ dimensional linear function class, logNG(ε) =
Õ(̃d) where d̃ is the linear feature dimension.

Our first term in (8) corresponds to the regret of the static

MDP while the remaining term arises due to the nonstationar-

ity. As a result, when transitions and rewards remain the same

over time, our result reduces to Õ(H2K
1
2 d

1
2 (log |G|) 1

2 ), which

matches with the static regret of GOLF in [33].4

Advantage of SW-OPEA: To understand the advantage of

SW-OPEA over existing algorithms for nonstationary MDPs,

we take nonstationary linear MDPs as an example. When

4The additional H here is due to the definition of rh ∈ [0, 1], whereas [33]
assumes

∑
h rh ≤ 1.
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specializing to nonstationary linear and tabular MDPs, our

result becomes Õ(H
3
2 T

1
2 d̃ + HTd̃

3
4 L

1
4
P + H

3
4 Td̃

3
4 L

1
4
r ) where

T = HK, d̃ is the feature dimension for linear MDPs and d̃

equals |S||A| for tabular MDPs, and Lr is the average variation

budget in rewards. For nonstationary linear MDPs, the result

in [30] is not comparable to ours due to the different definitions

of the variation budget of transition kernels. To make a fair

comparison, we convert their bound on the dynamic regret

to be that for tabular MDPs, which gives Õ(H
3
2 T

1
2 d̃

3
2 +

H
4
3 d̃

3
2 TL̃

1
3
P + H

4
3 d̃

4
3 TL

1
3
r ). The first term corresponds to the

regret of static linear MDPs and our result has better depen-

dency on the feature dimension d̃. For the second term due to

the nonstationarity of transition kernels, our bound is better

in terms of the horizon H and feature dimension d̃ while

worse in terms of the average variation budget of transitions

LP (note that LP ≤ 1).5 Similarly for the last term caused

by the nonstationary of rewards, our result performs better in

terms of the horizon H and feature dimension d̃ while worse

in terms of the average variation budget of rewards Lr (note

that Lr ≤ 1).

It is also interesting to compare our result with the min-

imax dynamic regret lower bound �(H
1
2 T

1
2 d̃ + H

1
3 Td̃

2
3 L̃

1
3
P )

developed in [30] for linear MDPs with nonstationary tran-

sitions. For such a case, our result becomes Õ(H
3
2 T

1
2 d̃ +

HTd̃
3
4 L

1
4
P ). The first term is the regret under stationary MDPs

and the second term arises due to the nonstationarity of

transitions. We can see that our first term corresponding to

static MDPs matches with the lower bound both in terms of T

and d̃, whereas the upper bound in [30] matches with the lower

bound only in T . For the nonstationarity term, our dependency

on H and d̃ is closer to the lower bound than that in [30],

whereas our dependency on the variation budget is close but

does not match with the lower bound.

IV. UCB-TYPE ALGORITHM

In this section, we investigate a new UCB-type algorithm

LSVI-Nonstationary. Our proposed algorithm falls into the

popular LSVI framework, which uses LSVI with upper con-

fidence bound to handle exploration and exploitation tradeoff.

While designing the bonus term is simple in static tabular and

linear MDPs, it becomes difficult in nonstationary MDPs with

general function approximation. Our algorithm features the

restart mechanism and incorporate the local variation budget

in the design of the bonus term to handle nonstationarity.

Moreover, it alleviates the computational inefficiency in the

confidence-set based approach to select the optimistic state-

action value functions in each step altogether.

We begin with the bounded complexity assumption [44] on

the function class F and the state-action pairs S × A.

Assumption 4: For any ε > 0, the following statements

hold:

• There exists an ε-cover C(F , ε) ⊆ F with size

|C(F , ε)| ≤ N (F , ε), such that for any f ∈ F , there

exists f ′ ∈ C(F , ε) with
∥∥f − f ′∥∥

∞ ≤ ε;

5Strictly speaking, their average variation budget L̃P is not comparable to
LP, and the argument holds approximately.

Algorithm 3 F-LSVI (Sketch)

1: Input: failure probability δ ∈ (0, 1), number of episodes

K.

2: for episode k = 1, 2, . . . , K do

3: Receive initial state sk
1 ∼ μ.

4: Qk
H+1(·, ·) ← 0 and Vk

H+1(·) ← 0.

5: Zk
h = {(x


h, a

h)}
∈[1:k−1].

6: for h = H, H − 1, . . . , 1 do

7: Dk
h = {(x


h, a

h, r̃


h + Vk
h+1(x



h+1))}
∈[1,k−1].

8: f k
h ← arg minf ∈Fh

‖f ‖2

Dk
h

.

9: bk
h ← bonus(Fh, f k

h ,Zk
h , δ).

10: Qk
h(·, ·) ← min{f k

h (·, ·) + bk
h(·, ·), H} and Vk

h(·) =
maxa∈A Qk

h(·, a).

11: πk
h (·) ← arg maxa∈A Qk

h(·, a).

12: end for

13: for h = 1, 2, . . . , H do

14: Take action ak
h ← π̃k

h (xk
h) and observe xk

h+1 ∼
Pk

h(·|xk
h, ak

h) and r̃k
h ∼ rk

h(x
k
h, ak

h).

15: end for

16: end for

• There exists an ε-cover C(S × A, ε) with size C(S ×
A, ε) ≤ N (S × A, ε), such that for any (x, a) ∈ S × A,

there exists (x′, a′) ∈ C(S ×A, ε) with supf ∈F |f (x, a) −
f (x′, a′)| ≤ ε.

This assumption essentially requires both the function class

and the state-action pairs have bounded covering numbers. It

is acceptable for the covers to have exponential size since

the regret bound scales logarithmically on both N (F , ·) and

N (S × A, ·). For the tabular case when S,A are finite,

logN (F , ε) = Õ(|S||A|) and logN (S×A, ε) = log(|S||A|).
For the linear MDPs with feature dimension d̃, logN (F , ε) =
Õ(̃d) and logN (S × A, ε) = log(̃d).

A. Algorithm LSVI-Nonstationary

In this section, we describe our proposed UCB-type

algorithm LSVI-Nonstationary for nonstationary MDPs with

general function approximation.

Overview of F-LSVI [44]: We begin with UCB-type

algorithm F-LSVI in Algorithm 3 for static MDPs6 with

general function approximation. At the beginning of each

episode k, we set Qk
H+1 = 0, and calculate Qk

H, Qk
H−1, . . . , Qk

1

iteratively (line 8–10). Then, the greedy policy with respect

to Qk
h to collect data for the k-th episode. The procedure is

repeated until all K episodes are finished. The key ingredient

is the design of the bonus term bk
h in line 9 based on sensitivity

sampling to tightly characterize the estimation error, so that the

optimistic Q function estimated (line 10) always upper bounds

the optimal action-value function. The regret of F-LSVI was

shown to be Õ(
√

d̃3H3K) in tabular MDPs where d̃ = |S||A|,
and Õ(

√
d̃4H3K) in linear MDPs where d̃ is the feature

dimension.

6The algorithm presented here is slightly different from its original
version [44] in using function class Fh instead of F for estimating value
function at step h.
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Algorithm 4 LSVI-Nonstationary

1: Input: failure probability δ ∈ (0, 1), number of episodes

K and epoch size W.

2: for j = 1, 2, . . . , � K
W

� do

3: τ ← (j − 1)W + 1.

4: for episode k = τ, . . . , min{τ + W, K} do

5: Receive initial state sk
1 ∼ μ.

6: Qk
H+1(·, ·) ← 0 and Vk

H+1(·) ← 0.

7: Zk
h = {(x


h, a

h)}
∈[τ :k−1].

8: for h = H, H − 1, . . . , 1 do

9: Dk
h = {(x


h, a

h, r̃


h + Vk
h+1(x



h+1))}
∈[τ,k−1].

10: f k
h ← arg minf ∈Fh

‖f ‖2

Dk
h

.

11: bk
h ← bonus(Fh, f k

h ,Zk
h , δ, j) (Algorithm 6).

12: Qk
h(·, ·) ← min{f k

h (·, ·) + bk
h(·, ·), H} and Vk

h(·) =
maxa∈A Qk

h(·, a).

13: πk
h (·) ← arg maxa∈A Qk

h(·, a).

14: end for

15: for h = 1, 2, . . . , H do

16: Take action ak
h ← π̃k

h (xk
h) and observe xk

h+1 ∼
Pk

h(·|xk
h, ak

h) and r̃k
h ∼ rk

h(x
k
h, ak

h).

17: end for

18: end for

19: end for

From a high level point of view, our algorithm features

two key ingredients: least-square value iteration (LSVI) and

a restart mechanism. Our algorithm uses LSVI with upper

confidence bound to handle the exploration and exploitation

tradeoff, where we incorporate the local variation budget in the

design of bonus term to ensures the optimism of the learned

state-action value function. Moreover, we use the epoch restart

mechanism to adapt to the nonstationarity of the environment.

Those ingredients make our design significantly different from

the F-LSVI algorithm [44] for static MDPs.

The pseudocode of LSVI-Nonstationary is presented in

Algorithm 4. Our algorithm runs in epochs with length W.

Within each episode, we follow these steps: Firstly, we

estimate the state-action value function through a least-square

problem using historical data from the current epoch. Next,

we create an upper confidence bound for the state-action

value function and select the policy that maximizes this

upper confidence bound. A new trajectory is then collected

by following the greedy policy. Finally, we periodically

restart the algorithm to handle the nonstationarity of the

environment.

Least-square value iteration: At the beginning of each

episode k, we maintain a replay buffer of existing sam-

ples {x

h, a


h, r

h}
∈[τ :k−1], where τ is the first episode of the

epoch containing episode k. Let Qk
H+1 = 0, and we set

Qk
H, Qk

H−1, . . . , Qk
1 iteratively as follows (line 10–12). For h =

H, H − 1, . . . , 1,

f k
h (·, ·) = arg min

f ∈Fh

k−1∑


=τ

(
f
(

x

h, a


h

)
− r


h − max
a

Qk
h+1

(
xτ

h+1, a
))2

,

Qk
h(·, ·) = min{f k

h (·, ·) + bk
h(·, ·), H},

where bk
h(·, ·) is the bonus function to be defined shortly.

After obtaining Qk
h(·, ·), we then use the greedy policy with

respect to Qk
h to collect data (line 13) for the kth episode. Note

that the least-square problem does not take into consideration

the distribution drift in transitions and rewards, which may

potentially result in significant estimation errors. However, our

analysis shows that these estimation errors can adapt to the

nonstationarity. Specifically, we incorporate such estimation

errors into the design of the bonus term to ensure the state-

action value estimate is an optimistic upper bound of the

optimal state-action value function.

Stable upper-confidence bonus function: With more col-

lected data, the least-square solution is expected to provide a

better approximation to the optimal state-action value function.

To encourage exploration, we add additional bonus function

bk
h(·, ·) to guarantee that with high probability, Qk

h+1(·, ·) is

an optimistic upper bound of the optimal state-action value

function. The design of bonus term bk
h has two features:

First, we leverage the importance sampling technique [44] to

prioritize important data in the replay buffer so that the bonus

function bk
h is stable even when the replay buffer has large

cardinality. Second, the distribution drift of the transitions and

the rewards is characterized in the design of bonus term bk
h

in order to obtain the optimistic upper bound of the optimal

state-action value function.

We define bonus function to be the width function bk
h(·, ·) =

w(Fk
h ; ·, ·), where Fk

h is defined as the confidence set so that

the estimation error of the one-step backup (rk
h +Pk

hVk
h+1)(·, ·)

lies within Fk
h with high probability. By the definition of width

function, bk
h(·, ·) provides an upper bound on the confidence

interval of the state-action value estimate, since the width

function maximizes the difference between all pairs of state-

action value functions within the confidence set. Specifically,

we define the confidence set as Fk
h = {f ∈ Fh :

∥∥f − f k
h

∥∥2

Zk
h

≤
β + H�k

h} where β is the confidence parameter properly

selected so that (rk
h +Pk

hVk
h+1)(·, ·) ∈ Fk

h with high probability,

Zk
h consists of the collected samples (line 5), and �k

h is the

local variation budget defined by �k
h =

k−1∑


=τ

sup
x,a

|
(

rk
h − r


h

)
(x, a)| + H

k−1∑


=τ

sup
x,a

∥∥∥
(

Pk
h − P


h

)
(·|x, a)

∥∥∥
1
.

Note that the complexity of a bonus function could be high

as it is defined by the dataset Zk
h whose size can be as large

as W. We adopt importance sampling technique in [44] to

reduce the size of the dataset. Moreover, the data samples in

Zk
h are collected from nonstationary environment, we include

an additional term of local variation budget �k
h in the definition

of Fk
h . Intuitively, the local variation budget �k

h captures the

discrepancy between current episode k and previous episodes

in the current epoch. By incorporating a term involving �k
h in

the design of Fk
h , we ensure the true action-value function of

the kth episode lies within the confidence set Fk
h with high

probability. The formal definition of bonus term bk
h and the

selection of β is deferred to Appendix B.

Restart mechanism: We use epoch restart mechanism

to handle the nonstationary environment. Specifically, we
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restart every W episodes as illustrated in the outer loop of

Algorithm 4 (line 4), and the estimate of the state-action value

function are calculated only by the samples collected in the

current epoch, independent of all previous epochs. Note that

while in general the epoch length W can vary for different

epochs, we consider a fixed length and the corresponding

dynamic regret upper bound in this work.

Compared to the confidence-set based algorithm SW-OPEA,

which relies on an computational inefficient oracle to select

the optimistic state-action value function within the confidence

set. Instead, our algorithm is based on the popular UCB-based

approach, which simplified the algorithm design and can be

potentially implemented computationally efficiently [44].

B. Theoretical Guarantees

In this section, we provide the theoretical guarantee for

Algorithm 4, and defer proofs to Appendix C.

For clarity, assume K/W is an integer throughout this

section. The variation budget of an epoch w ∈ [1:K/W] is

defined as

�
(w)
h =

wW∑


=w(W−1)+1

sup
x,a

|
(

rk
h − r


h

)
(x, a)|

+ H

wW∑


=w(W−1)+1

sup
x,a

∥∥∥
(

Pk
h − P


h

)
(·|x, a)

∥∥∥
1
.

The dynamic regret of LSVI-Nonstationary is characterized

in the following theorem.

Theorem 2 (Dynamic Regret of LSVI-Nonstationary):

Under Assumption 1, Assumption 2 and Assumption 4, with

probability at least 1 − δ, LSVI-Nonstationary achieves a

dynamic regret bound of D − Regret(K) =

Õ

⎛
¿4H2Kdm

W
+ KH2

√
W

√
ι +

√
dmHW

H∑

h=1

K/W∑

w=1

√
�

(w)
h

À
⎠

where dm = suph dimE(Fh, 1/W) and

ι ≤ c sup
h

log3(T/δ) dim2
E

(
Fh, δ/16W2

)

ln(N (Fh, δ/576W)/δ) ln

(
N (S × A,

1

16
√

W/δ
)W/δ

)
.

for some absolute constant c > 0.

Note that the last term depends on the length of the

restart epoch W, and the dynamic regret upper bound can be

further optimized by setting appropriate W. We adopt the same

definition of the average variation budget in transitions LP and

rewards Lr defined in (6) and (7).

The following corollary characterize the dynamic regret

by optimizing the restart epoch length W based on the

average variation budget L for both nonstationary tabular and

nonstationary linear MDPs.

Corollary 2: Consider the same condition as in Theorem 2.

For tabular MDPs with d̃ = |S||A|, let Fh be the entire

function space of S × A �→ [0, H − h + 1] for h ∈ [H].

Since S,A are finite, for ε > 0, we have dimE(Fh, ε) ≤ d̃,

log(N (F , ε)) = Õ(̃d), and log(N (S × A, ε)) = O(log(̃d)),

and the dynamic regret is bounded by

Õ

(
H

3
2 T

1
2 d̃

3
2 + HTd̃L

1
4
P + H

3
4 Td̃L

1
4
r

)
.

For linear MDPs with feature dimension d̃, dimE(Fh, ε) ≤
Õ(̃d), log(N (F , ε)) = Õ(̃d), and log(N (S × A, ε)) = Õ(̃d),

and the dynamic regret is bounded by

Õ

(
H

3
2 T

1
2 d̃

3
2 + HTd̃

5
4 L

1
4
P + H

3
4 Td̃

5
4 L

1
4
r

)
.

Compare to SW-OPEA: Under nonstationary MDPs with

general function approximation, we compare the dynamic

regret upper bound of our UCB-type algorithm to the dynamic

regret bound of the confidence-set based algorithm SW-OPEA.

For both nonstationary tabular and linear MDPs, SW-OPEA

gives Õ(H
3
2 T

1
2 d̃ + HTd̃

3
4 L

1
4
P + H

3
4 Td̃

3
4 L

1
4
r ), where d̃ equals

|S||A| for tabular MDPs and equals the feature dimension for

linear MDPs. We see that the dynamic regret bound of UCB-

type algorithm matches that of confidence-set based algorithm

in horizon H as well as average variation budgets LP and Lr

while perform slightly worse in terms of d̃. Similarly to the

static MDPs [44], a more refined analysis specialized to the

tabular and linear setting can potentially improve the dynamic

regret bound. We would like to point out that our algorithm and

analysis handles the nonstationary MDPs with general function

approximation, which is much harder than and contains the

nonstationary tabular and linear MDPs.

V. CONCLUSION

In this paper, we investigate two approaches for the

nonstationary MDPs with general function approximation:

confidence-set based algorithm and UCB-type algorithm.

Based on the notion of dynamic Eluder dimension, the

confidence-set based algorithm SW-OPEA incorporates the

sliding window mechanism, and a novel design for the con-

fidence set. The dynamic regret of SW-OPEA is shown to

outperform the existing algorithms in nonstationary linear and

tabular MDPs in the small variation budget regime. To alleviate

the computational inefficiency challenge for the oracle used

to select the optimistic state-action value function within

an confidence set in the confidence-set based algorithm, we

further propose a different UCB-type algorithm, which follows

the popular LSVI framework. To handle nonstationarity, the

UCB-type algorithm LSVI-Nonstationary features the restart

mechanism, and the novel design of the bonus term to

ensure the optimism of the learned state-action value function.

LSVI-Nonstationary performs no worse than the confidence-

set based algorithm SW-OPEA, while considerably simplifies

the algorithm design. Our future directions include study-

ing the unknown variation budget scenario and establishing

lower bound for nonstationary MDPs with general function

approximation.

APPENDIX A

We provide a sketch of the proof of Theorem 1, and the

details of the proof of Theorem 1 and the proof of Corollary 1
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can be found in [1]. The preliminary step is to decompose the

dynamic regret of SW-OPEA into three terms as follows:

D − Regret(k) ≤ H

+
k∑

t=1

H∑

h=1

E
(xh,ah)∼(π t,(∗,t−1))

[(
rt−1

h − rt
h

)
(xh, ah)

]

︸ ︷︷ ︸
(I)

+
k∑

t=1

H∑

h=1

[
E

(xh,ah)∼(π t,(∗,t−1))
− E

(xh,ah)∼(π t,(∗,t))

][
rt

h(xh, ah)
]

︸ ︷︷ ︸
(II)

+
k∑

t=1

(
Vπ (∗,t−1)

1;(∗,t−1) − Vπ t

1;(∗,t−1)

)
(x1)

︸ ︷︷ ︸
(III)

. (9)

Term (I) can be bounded by �R(k) by the definition of the

variation budget of rewards (4). In the sequel, we aim to bound

(II) in step II and bound (III) in the remaining steps.

Step I: We introduce a novel auxiliary MDP to help

bound term (II). For a fixed tuple (k, h) ∈ [K] × [H],

we design an episodic MDP (S,A, H, Pk, r̃, x1) with reward

r̃h′ = rk
h(x, a)1{h′ = h} and the corresponding state value

function of policy {πh′}h′∈[H] is defined as Ṽπ
h′;,(∗,k)

. Then, by

[1, Lemma C.1], we have

(II) ≤
[
Ṽπk

1;(∗,k−1) − Ṽπk

1;(∗,k)

]
(x1)

≤
h−1∑

i=1

sup
x,a

∥∥∥
(

Pk
h − Pk−1

h

)
(·|x, a)

∥∥∥
1
.

Replacing k by t, and summing over t ∈ [k], h ∈ [H] gives

(II) ≤
k∑

t=1

H∑

h=1

sup
x,a

h−1∑

i=1

∥∥∥
(

Pt−1
i − Pt

i

)
(·|x, a)

∥∥∥
1

≤
H∑

h=1

(
k∑

t=1

H∑

i=1

sup
x,a

∥∥∥
(

Pt−1
i − Pt

i

)
(·|x, a)

∥∥∥
1

)
≤ H�P(k).

Step II: This step together with the next step establishes

important properties to bound term (III) in step IV.

First, we develop the following crucial probability distri-

bution shift lemma, which will handle the transition kernel

variation in nonstationary MDPs.

Lemma 1 [1, Lemma D.2]: Suppose P and Q are two

probability distributions of a random variable x, then
∣∣∣∣∣

(
E

x∼P
f (x) + Eg1(y) − C

)2

−
(

E
x∼Q

f (x) + Eg2(y) − C

)2
∣∣∣∣∣

≤ (2fm + 2gm + 2|C|)fmTV(P, Q),

where fm = supx |f (x)|, gm = maxi=1,2 supy gi(y).

Next, we show that Q∗
(∗,k), the optimal state-action value

function at step h, lies in the confidence set Bk for all k ∈
[K] with high probability. The argument is proved by the

martingale concentration and the confidence set we design.

Technically, we define

#k,h

(
xt

h, at
h

)
= rk

h

(
xt

h, at
h

)
+ E

x′∼Pt
h(·|xt

h,at
h)

max
a′∈A

Qh+1;(∗,k)

(
x′, a′),

to form an appropriate martingale difference, which is similar

to the h-th step Bellman update of the state-action value

function in episode k except that the expectation is taken with

respect to Pt
h instead of Pk

h. By Lemma 1, the cumulative

mismatch during the sliding window between #k,h(x
t
h, at

h) and

the h-step Bellman update of state-action value function in

episode k is captured by the local path length �w
P(k, h) and

�w
R(k, h). Finally, by the design of confidence set Bk, we can

show that Q∗
(∗,k) ∈ Bk.

Given Q∗
(∗,k) ∈ Bk for all k ∈ [K], the optimistic planning

step (Line 3) guarantees that V∗
1;(∗,k−1)

(x1) ≤ supa f k
1 (x1, a)

for every episode k ∈ [K]. Combining the optimism and the

generalized policy loss decomposition [1, Lemma C.8], we

have

(III) ≤
k∑

t=1

(
max
a∈A

f t
1(x1, a) − Vπ t

1;(∗,t−1)(x1)

)

≤
H∑

h=1

k∑

t=1

E
(xh,ah)∼(π t,(∗,t−1))

[(
f t
h − T

t−1
h f t

h+1

)
(xh, ah)

]
. (10)

Step III: We will show the sharpness of our confidence

set Bk. Under the construction of Bk, f k selected from Bk−1

is guaranteed to have small loss LDh
(f k

h , f h+1
h ). Note that the

data used in episode k are collected by executing π i for one

episode for all i ∈ [1∨(k−w), k], by the concentration and the

completeness assumption. We can show in [1, Lemma D.4]

that with high probability, for all (k, h) ∈ [K] × [H],

k−1∑

t=1∨(k−w−1)

[
f k
h

(
xt

h, at
h

)
− rt

h − E

x′∼Pk−1
h (xt

h,a
t
h)

max
a′∈A

f k
h+1

(
x′, a′)]2

≤ 6H2�w
P(k − 1, h) + 6H�w

R(k − 1, h) + O(β). (11)

Technically, we define the following helpful random variable

#
f

k,h

(
xt

h, at
h

)
= rk

h

(
xt

h, at
h

)
+ E

x′∼Pt
h(xt

h,a
t
h)

max
a′∈A

fh+1

(
x′, a′)

to form an appropriate martingale and obtain the martingale

concentration result. Then, applying our probability distribu-

tion shift lemma (Lemma 1), the definition of Bk and the

completeness assumption gives (11).

Step IV: We establish the relationship between (10)

and (11). Specifically, we aim to upper bound (10) given (11)

holds. Note that their forms are similar except that the latter is

the squared Bellman error, and the data (st, at) is taken under

policy π i for i ∈ [1 ∨ (k − w) : k − 1]. It turns out that the

DBE dimension plays an important role in connecting these

two terms, as summarized in the following lemma.

Lemma 2 [1, Lemma 5.5]: Given a function class �

defined on X with |φ(x)| ≤ C for all (g, x) ∈ � × X ,

and a family of probability measures � over X . Suppose

{φk}k∈[K] ⊆ � and {μk}k∈[K] ⊆ � satisfy that for all k ∈ [K],∑k−1
t=1∨(k−w−1)(Ex∼μt [φk(x)])

2 ≤ β. Then for all k ∈ [K] and

ω > 0,
∑k

t=1∨(k−w) |Ex∼μt [φt(x)]| is upper bounded by

O
(√

dimDE(�,�, θ)β[k ∧ (w + 1)]

+ min{w + 1, k, dimDE(�,�, θ)}C + [k ∧ (w + 1)]θ
)
.
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Based on the DBE dimension and Lemma 2, we are ready

to bound (III) via term (10). By choosing � to be the function

class of Bellman residuals, and μk to be the distribution under

policy πk, term (III) is upper bounded by

H∑

h=1

k∑

t=1

E
(xh,ah)∼(π t,(∗,t−1))

[(
f t
h − T t−1

h f t
h+1

)
(xh, ah)

]

≤ O
(

H
√

w + H2k√
w

√
dimDBE

(
F ,D�,

√
1/K

)
log

KH|F |
δ

+ Hk√
w

√
dimDBE

(
F ,D�,

√
1/K

) H∑

h=1

√
sup

k∈[K]

�w
P(k, h)

)
.

Combining all the steps, the dynamic regret of our algo-

rithm SW-OPEA is

D − Regret(k) ≤ �R(k) + H�P(k) + O
(

H
√

w

H2k√
w

√
d log

[
KH|G|/δ

]
+ H2k√

w

√
d sup

t∈[k]

�w
P(t, h)

)

where we suppress the first term H in (9) since it is dominated

by the fourth term herein.

APPENDIX B

THE STABLE BONUS FUNCTION VIA

IMPORTANCE SAMPLING

The framework of subsampling a given dataset in RL was

first established by [44], which builds upon the sensitivity

sampling technique [48], [49], [50]. For sake of completeness,

we provide the formal definition of sensitivity and important

results to be used in our analysis, and the proofs are omitted

as they are similar to those in [44].

We begin with the definition of sensitivity function.

Definition 5 [44]: For a given set of state-action pairs Z ⊆
S × A and a function class F , for each z ∈ Z , define the

λ-sensitivity of (s, a) with respect to Z and F as

sensitivityZ,F ,λ(x, a) = sup
f ,f ′∈F ,‖f −f ′‖2

Z
≥λ

(
f (x, a) − f ′(x, a)

)2

‖f − f ′‖2
Z

.

λ-sensitivity measures the importance of data points in

Z which contributes the most to
∥∥f − f ′∥∥2

Z
for f , f ′ ∈

F whenever
∥∥f − f ′∥∥2

Z
≥ λ. The algorithm to subsample

the dataset is provided in Algorithm 5, where the sampling

probability for each state-action pair is proportional to the

sensitivity.

The next lemma shows the relations between the subsam-

pled dataset and the original dataset.

Lemma 3 [44, Proposition 1]: With probability at least

1 − δ, the size of Z ′ returned by Algorithm 6 satisfies |Z ′| ≤
4|Z|/δ, the number of distinct elements in Z is at most

1728 dimE(F , λ/|Z|) log
(
(H + 1)2|Z|/λ

)
ln(|Z|)

ln
(

4N (F , ε/72 ·
√

λδ/|Z|)/δ
)
/ε2,

and for any f , f ′ ∈ F ,

(1 − ε)
∥∥f − f ′∥∥2

Z
− 2λ ≤

∥∥f − f ′∥∥2

Z ′

Algorithm 5 Sensitivity-Sampling(F ,Z, λ, ε, δ)

1: Input: function class F , reference function f̄ ∈ F , set

of state-action pairs Z ⊆ S × A, and failure probability

δ ∈ (0, 1).

2: Initialize Z ′ ← ∅.

3: For each z ∈ Z , let pz to be the smallest real number such

that 1/pz is an integer and

pz ≥ min{1,sensitivityZ,F ,λ(z)·
72 ln

(
4N (F , ε/72 ·

√
λδ/|Z|/δ)

)
/ε2}.

4: For each z ∈ Z , independently add 1/pz copies of z into

Z ′ with probability pz.

5: return Z ′.

Algorithm 6 Bonus(F , f̄ ,Z, δ, j)

1: Input: function class F , set of state-action pairs Z ⊆ S×
A, accuracy parameters λ, ε > 0 and failure probability

δ ∈ (0, 1).

2: Z ′ ← Sensitivity-sampling(F ,Z, δ/(16W), 1/2, δ).

3: Z ′ ← ∅ if |Z ′| ≥ 4T/δ or the number of distinct elements

in Z ′ exceeds

6912 dimE

(
F , δ/(16W2)

)
log
(

64H2W2/δ
)

ln W ln T

· ln(N (F , δ/576W)/δ)

4: Let f̂ ∈ C(F , 1/(8
√

4W/δ)) be such that

∥∥∥f̄ − f̂

∥∥∥
∞

≤
1/(8

√
4W/δ).

5: Ẑ ← ∅.

6: for z ∈ Z ′ do

7: Let ẑ ∈ C(S × A, 1/(8
√

4W/δ)) be such that

supf ,f ′∈F |f (z) − f ′(z)| ≤ 1/(8
√

4W/δ).

8: Ẑ ← Ẑ ∪ {ẑ}.
9: end for

10: return ŵ(·, ·): = w(F̂; ·, ·), where F̂ = {f ∈
F :

∥∥∥f − f̂

∥∥∥
2

Ẑ
≤ 3β(F , δ) + 2} where

β(F , δ) =c′
(
H
√

log(T/δ)+logN (Fh, 1/W)+log |Wh|

+
√

H�
(j)

h

)2

for some absolute constant c′ > 0.

≤ (1 + ε)
∥∥f − f ′∥∥2

Z
+ 8|Z|λ/δ.

Equipped with the subsampling procedure, we are able to

formally define the stable bonus function in Algorithm 6. In

line 10, the variation budget �
(w)
h is defined as

�
(w)
h =

wW∑


=w(W−1)+1

sup
x,a

|
(

rk
h − r


h

)
(x, a)|

+H

wW∑


=w(W−1)+1

sup
x,a

∥∥∥
(

Pk
h − P


h

)
(·|x, a)

∥∥∥
1
.
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At a high level, we first subsample the given dataset Z , and

define the confidence set based on the newly subsampled

dataset and the reference function. Note that the subsampled

dataset will be discarded if its size is too large, which is

guaranteed to happen with low probability.

Based on Lemma 3, we have the following lemma, which

is adapted from [44, Proposition 2] for nonstationary MDPs

with restart epoch W.

Lemma 4: For Algorithm 6, suppose |Z| ≤ W, the follow-

ing statements hold:

• With probability at least 1 − δ/(16T),

w
(
F; x, a

)
≤ ŵ(x, a) ≤ w

(
F; x, a

)
,

where F = {f ∈ F :
∥∥f − f

∥∥2

Z
≤ β(F , δ)}, and F =

{f ∈ F :
∥∥f − f

∥∥2

Z
≤ 9β(F , δ) + 12}.

• ŵ(·, ·) ≤ W for a function set W with

log |W| ≤ 6912 dimE

(
F, δ/(16W2)

)
log
(

16(H + 1)2W2/δ
)

· ln W ln(64TN (F, δ/(576W)/δ)

· log
(
N

(
S × A, 1/(8

√
4W/δ · 4W/δ)

))

+ log
(
N

(
S × A, 1/(8

√
4W/δ)

))

≤ C dimE

(
F, δ/(16W2)

)
· log

(
H2W2/δ

)
· ln W

· ln T ln(N (F, δ/576W)/δ)

· log(N
(
S × A, 1/(8

√
4W/δ) · 4W/δ

)

for some absolute constant C > 0 when T is sufficiently

large.

APPENDIX C

PROOF OF THEOREM 2

Step I: We analyze the complexity of the stable bonus

function. The framework of subsampling a given dataset in RL

was first established by [44]. We adapt the analysis therein to

our setting for a given epoch of length W. The main result is

presented in Lemma 4.

Step II: This step shows that the state-action value function

estimate Qk
h(·, ·) in Algorithm 4 is an optimistic upper bound

for the optimal state-action value function. Our new develop-

ment lies in developing the single step optimization error for

nonstationary MDPs, and the construction of the confidence

set.

We first establish the single step optimization error bound

in the following lemma.

Lemma 5 (Single Step Optimization Error): Consider fixed

(k, h) ∈ [K] × [H]. Denote τ as the first episode of an epoch

containing episode k. Let

Zk
h =

{(
x


h, a

h

)}

∈[τ :k−1]

as defined in Line 7 of Algorithm 4. For any V : S �→ [0, H−
h], define

Dk
V;h =

{(
x


h, a

h, r̃


h + V(x

h+1)

)}

∈[τ,k−1]

and

f̂V;h = arg min
f ∈F

‖f ‖2

Dk
V;h

.

For any h ∈ [H], V : S �→ [0, H − h] and δ ∈ (0, 1), there

is an event Ih,V,δ which holds with probability at least 1 − δ,

such that conditioned on Ih,V,δ , for any V ′ : S �→ [0, H − h]

with
∥∥V ′ − V

∥∥
∞ ≤ 1/W, we have

∥∥∥∥∥f̂V ′(·, ·) − rk
h(·, ·) −

∑

s′∈S
Pk

h

(
s′|·, ·

)
V ′(s′)

∥∥∥∥∥
Zk

h

≤ c
(

H ·
√

log(1/δ) + logN (Fh, 1/W) +
√

H�k

)

for some absolute constant c > 0, where

�k
h =

k−1∑


=τ

sup
x,a

|
(

rk
h − r


h

)
(x, a)| + H

k−1∑


=τ

sup
x,a

|
(

Pk
h − P


h

)
(x, a)|.

Proof: Consider a fixed V : S �→ [0, H−h]. For any f ∈ Fh,

consider
∑k−1


=τ ξ 

h (f ) where

ξ 

h (f ) = 2

(
f − rk

h − P
k
hV
)(

x

h, a


h

)
·

+
(

r

h

(
x


h, a

h

)(
P



hV
)(

x

h, a


h

)
− r̃


h − V
(

x

h+1

))
.

For any (
, h) ∈ [k − 1] × [H], define F


h as the filtration

induced by the sequence
{(

xt
h′ , at

h′
)
}(t,h′)∈[
−1]×[H] ∪ {

(
x


1, a

1

)
, . . . ,

(
x


h−1, a

h−1

)}
.

Then, E[ξ 

h (f )|F


h] = 0 and

|ξ 

h (f )| ≤ 2(H − h + 1)

∣∣∣
(

f − rk
h − P

k
hV
)(

x

h, a


h

)∣∣∣.

By Azuma-Hoeffding’s inequality, we have

P

[∣∣∣∣∣

k−1∑


=τ

ξ 

h (f )

∣∣∣∣∣ ≥ ε

]
≤ 2e

⎛
⎜¿− ε2

8(H−h+1)

∥∥∥f −rk
h
−P

k
h

V

∥∥∥
2

Z
k
h

À
⎟⎠

.

Let

ε =
(

8(H − h + 1)2 log

(
2N (Fh, 1/W)

δ

)∥∥∥f − rk
h − P

k
hV

∥∥∥
2

Zk
h

)1/2

≤ 4(H − h + 1)

∥∥∥f − rk
h − P

k
hV

∥∥∥
Zk

h

√
log(2/δ) + logN (Fh, 1/W).

Then, with probability at least 1 − δ, for all f ∈ C(Fh, 1/W),
∣∣∣∣∣

k−1∑


=τ

ξ 

h (f )

∣∣∣∣∣ ≤ 4(H − h + 1)

∥∥∥f − rk
h − P

k
hV

∥∥∥
Zk

h

·
√

log(2/δ) + logN (Fh, 1/W).

Define the above event to be Ih,V,δ , and we condition on this

event for the rest of the proof.

For all f ∈ Fh, there exists g ∈ C(Fh, 1/W), such that

‖f − g‖∞ ≤ 1/W, and we have
∣∣∣∣∣

k−1∑


=τ

ξ 

h (f )

∣∣∣∣∣ ≤
∣∣∣∣∣

k−1∑


=τ

ξ 

h (g)

∣∣∣∣∣+ 2(H − h + 1)

≤ 4(H − h + 1)

∥∥∥g − rk
h − P

k
hV

∥∥∥
Zk

h

·
√

log(2/δ) + logN (Fh, 1/W) + 2(H − h + 1)

≤ 4(H − h + 1)

(∥∥∥f − rk
h − P

k
hV

∥∥∥
Zk

h

+ 1

)
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·
√

log(2/δ) + logN (Fh, 1/W) + 2(H − h + 1).

Consider V ′ : S �→ [0, H − h] with
∥∥V ′ − V

∥∥ ≤ 1/W. We

have
∥∥∥rk

h + P
k
hV ′ − rk

h − P
k
hV

∥∥∥
∞

≤
∥∥V ′ − V

∥∥
∞ ≤ 1/W.

Note first that for any f , g ∈ F , we have

‖f ‖Dk
V′;h

− ‖g‖
Dk

V′;h
= ‖f − g‖

Zk
h

+2

k−1∑


=τ

(
f (x


h, a

h) − g(x


h, a

h)
)

·
(

g(x

h, a


h) − r̃

h − V ′(x


h+1)
)
.

Replacing g with rk
h + P

k
hV ′ gives

‖f ‖2

Dk
V′;h

−
∥∥∥rk

h + P
k
hV ′
∥∥∥

2

Dk
V′;h

=
∥∥∥f − rk

h − P
k
hV ′
∥∥∥

2

Zk
h

+2

k−1∑


=τ

(
f − rk

h − P
k
hV ′
)(

x

h, a


h

)

·
(

r

h(x



h, a


h) + (P

hV ′)(x


h, a

h) − r̃


h − V ′(x

h+1)

)
(I2)

+2

k−1∑


=τ

(
f − rk

h − P
k
hV ′
)(

x

h, a


h

)
· (rk

h(x


h, a


h)

+(Pk
hV ′)(x


h, a

h) − r


h(x


h, a


h) − (P

hV ′)(x


h, a

h)) (I3)

For the second term I2, we have

I2 ≥ 2

k−1∑


=τ

(
f − rk

h − P
k
hV
)(

x

h, a


h

)
(rk

h(x


h, a


h)

+ (Pk
hV)(x


h, a

h) − r̃


h − V(x

h+1)) − 4(H − h + 1)

=
k−1∑


=τ

ξ 

h (f ) − 4(H − h + 1)

≥ −4(H − h + 1)

(∥∥∥f − rk
h − P

k
hV ′
∥∥∥
Zk

h

+ 2

)

·
√

log(2/δ) + logN (Fh, 1/W) − 6(H − h + 1).

For the third term I3, we have

I3 ≥ −2(H − h + 1)

(
k−1∑


=τ

sup
x,a

∣∣∣
(

rk
h − r


h

)
(x, a)

∣∣∣

+H

k−1∑


=τ

sup
x,a

∣∣∣
(

Pk
h − P


h

)
(x, a)

∣∣∣
)

= −2(H − h + 1)�k
h.

Since f̂V;h = arg minf ∈F‖f ‖2

Dk
V;h

, we have

0 ≥
∥∥̂fV;h

∥∥2

D2
V′;h

−
∥∥∥rk

h + P
k
hV ′
∥∥∥

2

D2
V′;h

≥
∥∥∥̂fV;h − rk

h − P
k
hV ′
∥∥∥

2

Zk
h

− 4(H − h + 1)

(∥∥∥̂fV;h − rk
h − P

k
hV ′
∥∥∥
Zk

h

+ 2

)

·
√

log(2/δ) + logN (Fh, 1/W)

− 6(H − h + 1) − 2(H − h + 1)�k
h.

Solving the above inequality, we have
∥∥∥̂fV;h − rk

h − P
k
hV ′
∥∥∥
Zk

h

≤ c′
(

H ·
√

log(1/δ) + logN (Fh, 1/W) +
√

H�k
h

)

for some absolute constant c′ > 0.

Based on the single step optimization error of nonstationary

MDPs, we devise the confidence set Fk
h which contains both

the least square solution f k
h and the one-step backup rk

h +
Pk

hVk
h+1, as summarized in the following lemma.

Lemma 6 (Confidence Set): Define

Fk
h =

{
f ∈ Fh :

∥∥∥f − f k
h

∥∥∥
Zk

h

≤ β(Fh, δ)

}
,

where β(Fh, δ) = c′(H
√

log(T/δ) + logN (Fh, 1/W) + log |Wh|
+
√

H�W
h )2 for some absolute constant c′ > 0, and Wh

is given in Lemma 4 with F replaced by Fh. Then with

probability at least 1 − δ/8, for all k, h ∈ [K] × [H], we have

rk
h + P

k
hVk

h+1 ∈ Fk
h .

Proof: For all (k, h) ∈ [K] × [H] the bonus function

bk
h(·, ·) = w(Fh; ·, ·) ∈ W . Note that

Q = {min{f (·, ·) + w(·, ·), H} : w ∈ W, f ∈ C(Fh, 1/W)} ∪ {0}

is a (1/W)-cover of

Qk
h+1(·, ·) =

{
min{f k

h+1(·, ·) + bk
h+1, H}, h < H,

0, h = H.

In other words, there exists q ∈ Q such that
∥∥q − Qk

h+1

∥∥
∞ ≤

1/W, which implies

V = {max
a∈A

q(·, a) : q ∈ Q}

is a (1/W)-cover of Vk
h+1 with log |V| ≤ log |W| +

logN (Fh, 1/W) + 1. For each V ∈ V , let Ih,V,δ/(8|V |T)

be the event defined in Lemma 5. By Lemma 5, we have

P[ ∩V∈V Ih,V,δ/(8|V |T)] ≥ 1 − δ/(8T). We condition on

∩V∈VIh,V,δ/(8|V |T) in the rest of the proof.

Since f k
h is the solution of the optimization problem in Line

10 of Algorithm 1, i.e., f k
h = minf ∈F‖f ‖2

Dk
h

. Let V ∈ V such

that
∥∥V − Vk

h+1

∥∥
∞ ≤ 1/W. Thus, by Lemma 5, we have

∥∥∥f k
h − rk

h − Pk
hVk

h+1

∥∥∥
Zk

h

≤

c′
(

H ·
√

log(T/δ) + logN (Fh, 1/W) + log |Wh| +
√

H�k
h

)

for some absolute constant c′. Therefore, by a union bound,

for all (k, h) ∈ [K] × [H], we have rk
h + P

k
hVk

h+1 ∈ Fk
h with

probability at least 1 − δ/8.

Since the bonus term bk
h is defined to be the width of

confidence set Fk
h , we conclude that Qk

h(·, ·) defined by

min{H, (f k
h + bk

h(·, ·))} is an optimistic upper bound for (rk
h +

Pk
hVk

h+1)(·, ·).
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Lemma 7: With probability at least 1− δ/4, for all (k, h) ∈
[K] × [H], for all (x, a) ∈ S × A,

Q∗
h(x, a) ≤ Qk

h(x, a) ≤ rh(x, a) +
(

Pk
hVk

h+1

)
(x, a) + 2bk

h(x, a).

Proof: For each (k, h) × [K] × [H], define Fk
h = {f ∈

Fh :
∥∥f − f k

h

∥∥
Zk

h
≤ β(Fh, δ)}. By Lemma 6, the event that

for all (k, h) ∈ [K] × [H], rk
h + P

k
hVk

h+1 ∈ Fk
h holds with

probability at least 1− δ/8. Moreover, by Lemma 4, the event

bk
h(x, a) > w(Fk

h ; x, a) holds with probability at least 1 − δ/8.

We condition on those two events in the rest of the proof.

Note that

max
f ∈F k

h

|f (x, a) − f k
h (x, a)| ≤ w

(
Fk

h ; x, a
)

≤ bk
h(x, a).

Since rk
h + P

k
hVk

h+1 ∈ Fk
h , we have

∣∣∣rk
h(x, a) +

(
P

k
hVk

h+1

)
(x, a) − f k

h (x, a)

∣∣∣ ≤ bk
h(x, a).

Therefore,

Qk
h(x, a) ≤ f k

h (x, a) + bk
h(x, a)

≤ rk
h(x, a) +

(
P

k
hVk

h+1

)
(x, a) + 2bk

h(x, a).

Next we show Q∗
h(x, a) ≤ Qk

h(x, a) by induction on h, When

h = H + 1, the desired inequality clearly holds. Suppose

Q∗
h(·, ·) ≤ Qk

h+1(·, ·) for some h. Clearly, V∗
h+1(·) ≤ Vk

h+1(·).
Therefore, for all (s, a) ∈ S × A,

Q∗
h(x, a) = rk

h(x, a) +
(
P

k
hV∗

h+1

)
(x, a)

≤ min
{

H, rk
h(x, a) +

(
P

k
hVk

h+1

)
(x, a)

}

≤ min
{

H, f k
h (x, a) + bk

h(x, a)
}

= Qk
h(x, a).

Step III: We decompose the dynamic regret and further

bound it via Eluder dimension.

By standard regret decomposition for UCB-type algorithms,

the dynamic regret is upper bounded by the summa-

tion of the bonus function, as shown in the following

lemma.

Lemma 8: With probability at least 1 − δ/2,

D − Regret(K) ≤ 2

K∑

k=1

H∑

h=1

bk
h

(
xk

h, ak
h

)
+ 4H

√
KH log(8/δ).

Proof: Define ξ k
h = Pk

h(V
k
h+1 − V

πk

h+1)(x
k
h, ak

h) −
(Vk

h+1 − V
πk

h+1)(x
k
h+1) and F

k
h as the filtration induced by

{(xk′
h′ , ak′

h′)}(h′,k′)∈[H]×[k−1] ∪ {(xk
1, ak

1), . . . , (x
k
h, ak

h)}. Then

E

[
ξ k

h |Fk
h

]
= 0and|ξ k

h | ≤ 2H.

By Azuma-Hoeffding’e inequality, with probability at least 1−
δ/4,

H∑

k=1

H−1∑

h=1

ξ k
h ≤ 4H

√
KH log(8/δ).

We condition on the above event, and the event defined in

Lemma 7 which holds with probability 1 − δ/4. We have

D − Regret(K) =
K∑

k=1

(
V∗

1

(
xk

1

)
− V

πk

1

(
xk

1

))

≤
K∑

k=1

(
Vk

1

(
xk

1

)
− V

πk

1

(
xk

1

))

≤
K∑

k=1

(
rk

1

(
xk

1, ak
1

)
+
(

Pk
1Vk

2

)(
xk

1, ak
1

)
+ 2bk

1

(
xk

1, ak
1

)

−rk
1

(
xk

1, ak
1

)
−
(

Pk
1V

πk

2

)(
xk

1, ak
1

))

=
K∑

k=1

(
Pk

1

(
Vk

2 − V
πk

2

)(
xk

1, ak
1

)
+ 2bk

1

(
xk

1, ak
1

))

=
K∑

k=1

(
ξ k

1 +
(

Vk
2 − V

πk

2

)(
xk

2

)
+ 2bk

1

(
xk

1, ak
1

))

≤
K∑

k=1

H−1∑

h=1

ξ k
h + 2

K∑

k=1

H−1∑

h=1

bk
h

(
xk

h, ak
h

)

≤ 2

K∑

k=1

H−1∑

h=1

bk
h

(
xk

h, ak
h

)
+ 4H

√
KH log(8/δ).

To bound the summation of the bonus function, we use a

similar argument in [44] to show that the summation of bonus

term can be upper bounded by the Eluder dimension of the

function class Fh.

Lemma 9: With probability at least 1 − δ/4, for any ε > 0,

K∑

k=1

1
{

bk
h

(
xk

h, ak
h

)
> ε

}
≤
(

cβ(Fh, δ)

ε2
+ 1

)
dimE(Fh, ε),

for some absolute constant c > 0.

Proof: Let F
k

h = {f ∈ Fh :
∥∥f − f k

h

∥∥2

Zk
h

≤ 9β(Fh, δ) + 12}.
By Lemma 4, the event that for all (k, h) ∈ [K]×[H], bk

h(·, ·) ≤
w(F

k

h, ·, ·) holds with probability at least 1−δ/4. We condition

on such event in the rest of the proof.

Let L = {(xk
h′ , ak

h′) : h′ = h, bk
h(x

k
h, ak

h) > ε} with |L| = L.

We show that there exists (xk
h, ak

h) ∈ L such that (xk
h, ak

h) is ε-

dependent on at least L/ dimE(Fh, ε)−1 disjoint subsequences

in Zk
h ∩ L if K is sufficiently large. Consider the following

procedure: Let L1, . . . ,LL/ dimE(Fh,ε)−1 be L/ dimE(Fh, ε)−1

disjoint subsequences of L which are initially empty. Consider

(xk
h, ak

h) ∩ L for each k ∈ [K] sequentially. Find a j such

that (xk
h, ak

h) is ε-independent of Lj and then add (xk
h, ak

h)

into Lj. If such j does not exist, then the process terminates.

By the definition of ε-dependence, |Lj| ≤ dimE(Fh, ε) for

all j. Therefore, (xk
h, ak

h) must be ε-dependent on at least

�L/ dimE(Fh, ε)� disjoint sequences in Zk
h ∩ L.

Note that since (xk
h, ak

h) ∈ L, i.e., bk
h(x

k
h, ak

h) > ε, which

implies there exists f , f ′ ∈ Fh with
∥∥f − f k

h

∥∥2

Zk
h

≤ 9β(Fh, δ)+
12 and

∥∥f ′ − f k
h

∥∥2

Zk
h

≤ 9β(Fh, δ) + 12 such that
∥∥f − f ′∥∥

∞ >

ε. By triangle inequality,
∥∥f − f ′∥∥2

Zk
h

≤ 36β(Fh, δ) + 48.

Therefore

�L/ dimE(Fh, ε)�ε2 ≤
∥∥f − f ′∥∥2

Zk
h

≤ 36β(Fh, δ) + 48,
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which gives L ≤ (
36β(Fh,δ)

ε
+ 1) dimE(Fh, ε).

Lemma 10: With probability at least 1 − δ/4,

W∑

k=1

bk
h

(
xk

h, ak
h

)
≤ 4H dimE(Fh, 1/W)

+ c′√dimE(Fh, 1/W) · W · β(Fh, δ),

for some absolute constant c′.
Proof: Let w1 ≥ . . . ≥ wW be a permutation of

{bk
h(x

k
h, ak

h)}k∈[W]. By Lemma 9, for any wt ≥ 1/W, we have

t ≤
(

cβ(Fh, δ)

w2
t

+ 1

)
dimE(Fh, wt)

≤
(

cβ(Fh, δ)

w2
t

+ 1

)
dimE(Fh, 1/W),

which implies

wt ≤
(

t

dimE(Fh, 1/W)
− 1

)− 1
2

·
√

cβ(Fh, δ).

Moreover, we have wt ≤ 4H. Therefore

W∑

t=1

wt ≤ 4H · dimE(Fh, 1/W)

+
∑

dimE(Fh,1/W)≤t≤W

(
t

dimE(Fh, 1/W)
− 1

)− 1
2√

cβ(Fh, δ)

≤ 4H dimE(Fh, 1/W) + 2
√

c dimE(Fh, 1/W)Wβ(Fh, δ).

Proof of Theorem 2. Combining Lemma 8 and Lemma 10

and the value of β(Fh, δ), and summing over all epochs w ∈
�1, K/W�, we obtain the dynamic regret upper bound for our

proposed algorithm LSVI-Nonstationary

D − Regret(K) ≤
H∑

h=1

�K/W�∑

w=1

min{wW,K}∑

t=w(W−1)+1

bt
h

(
xt

h, at
h

)

≤ 4H2Kdm

W
+ Õ

⎛
¿KH2

√
W

√
ι +

√
dmHW

H∑

h=1

�K/W�∑

w=1

√
�

(w)
h

À
⎠,

where dm = suph dimE(Fh, 1/W), and we use
√

a + b ≤ √
a+√

b in the second inequality.

A. Proof of Corollary 2

Recall the definition of average variation budget LP and Lr.

By Theorem 2, we have

D − Regret(K)

= Õ

⎛
¿4H2Kdm

W
+ KH2

√
W

√
ι +

√
dmHW

H∑

h=1

K/W∑

w=1

√
�

(w)
h

À
⎠

≤ Õ

⎛
¿KH2

√
W

√
ι +

√
dmHW

H∑

h=1

K/W∑

w=1

√
LW2

À
⎠

= Õ

(
KH2ι

1
2 W− 1

2 + d
1
2
mKH

3
2

(
H

1
2 L

1
2
P + L

1
2
r

)
W

1
2

)
,

where dm = suph dimE(Fh, 1/W) and

ι ≤ c′ sup
h

log3(T/δ) dim2
E

(
Fh, δ/16W2

)
ln(N (Fh, δ/576W)/δ)

· ln

(
N (S × A,

1

16
√

W/δ
) · W/δ

)
.

If ι
1
2 H

1
2

d
1
2
m (

√
LP+

√
Lr√
H

)

≥ K, i.e.,
√

LP +
√

Lr√
H

≤
√

Hι

K
√

dm
, we select

W = K and we have

D − Regret(K) ≤ Õ
(

H2K
1
2 ι

1
2

)
.

If ι
1
2 H

1
2

d
1
2
m (

√
LP+

√
Lr√
H

)

< K, i.e.,
√

LP +
√

Lr√
H

>
√

Hι

K
√

dm
, select W =

� ι
1
2 H

1
2

d
1
2
m (

√
LP+

√
Lr√
H

)

� and we have

D − Regret(K) ≤ Õ

(
KH2ι

1
4 d

1
4
mL

1
4
P + KH

7
4 ι

1
4 d

1
4
mL

1
4
P

)
.

Consider tabular MDPs with d̃ = |S||A|. Let Fh be the

entire function space of S ×A �→ [0, H − h + 1] for h ∈ [H].

Since S,A are finite, for ε > 0, we have dimE(Fh, ε) ≤ d̃,

log(N (F , ε)) = Õ(̃d), and log(N (S×A, ε)) = O(log(̃d)), we

have ι = Õ(̃d3) and dm = Õ(̃d). Therefore, when
√

LP+
√

Lr√
H

>
√

Hd̃
K

, we have

D − Regret(K) ≤ Õ

(
KH2̃dL

1
4
P + KH

7
4 d̃L

1
4
P

)
.

For linear MDPs with feature dimension d̃, dimE(Fh, ε) ≤
Õ(̃d), log(N (F , ε)) = Õ(̃d), and log(N (S × A, ε)) = Õ(̃d),

we have ι = Õ(̃d4) and dm = Õ(̃d). Therefore, when
√

LP +
√

Lr√
H

>
√

Hd̃
3
2

K
, we have

D − Regret(K) ≤ Õ

(
KH2d̃

5
4 L

1
4
P + KH

7
4 d̃

5
4 L

1
4
P

)
.
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