
European Journal of Operational Research 318 (2024) 408–423

A
0

a

b

S
s
(
s
t
b
p
b
o
a

m
m
u

h
R

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Discrete optimization

Dynamic resourcematching inmanufacturing using deep reinforcement
learning
Saunak Kumar Panda a, Yisha Xiang a,∗, Ruiqi Liu b

Department of Industrial Engineering, University of Houston, Houston, TX 77004, USA
Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA

A R T I C L E I N F O

Keywords:
Assignment
Matching problem
Manufacturing
Markov decision process
Deep reinforcement learning

A B S T R A C T

Matching plays an important role in the logical allocation of resources across a wide range of industries.
The benefits of matching have been increasingly recognized in manufacturing industries. In particular,
capacity sharing has received much attention recently. In this paper, we consider the problem of dynamically
matching demand-capacity types of manufacturing resources. We formulate the multi-period, many-to-many
manufacturing resource-matching problem as a sequential decision process. The formulated manufacturing
resource-matching problem involves large state and action spaces, and it is not practical to accurately model
the joint distribution of various types of demands. To address the curse of dimensionality and the difficulty
of explicitly modeling the transition dynamics, we use a model-free deep reinforcement learning approach to
find optimal matching policies. Moreover, to tackle the issue of infeasible actions and slow convergence due
to initial biased estimates caused by the maximum operator in Q-learning, we introduce two penalties to the
traditional Q-learning algorithm: a domain knowledge-based penalty based on a prior policy and an infeasibility
penalty that conforms to the demand–supply constraints. We establish theoretical results on the convergence
of our domain knowledge-informed Q-learning providing performance guarantee for small-size problems. For
large-size problems, we further inject our modified approach into the deep deterministic policy gradient
(DDPG) algorithm, which we refer to as domain knowledge-informed DDPG (DKDDPG). In our computational
study, including small- and large-scale experiments, DKDDPG consistently outperformed traditional DDPG and
other RL algorithms, yielding higher rewards and demonstrating greater efficiency in time and episodes.
1. Introduction

Matching plays an important role in the logical allocation of re-
sources across a wide range of industries such as transportation, col-
lege admissions (Roth & Sotomayor, 1989), organ allocation (Roth,
önmez, & Ünver, 2004), and online dating. In the transportation
ector, matching is the core issue in ride-sharing and its many variants
e.g., carpooling, P2P (peer-to-peer) ride-sharing). Ride-sharing has
uccessfully promoted sustainable transportation, reduced car utiliza-
ion, increased vehicle occupancy, and public transit among other
enefits (Mitropoulos, Kortsari, & Ayfantopoulou, 2021). Matching also
lays a critical role in organ allocation with the most common example
eing kidney allocation, where donors and patients are matched based
n their compatibility which depends on factors such as organ quality
nd patient condition.
The benefits of matching have been increasingly recognized in
anufacturing industries. In particular, capacity sharing has received
uch attention recently. Capacity investment is expensive across man-
facturing sectors (e.g., semiconductors, and consumer electronics). For

∗ Corresponding author.
E-mail addresses: spanda@uh.edu (S.K. Panda), yxiang4@uh.edu (Y. Xiang), ruiqliu@ttu.edu (R. Liu).

example, a new semiconductor fab costs one to four billion dollars to
build, and the price for a single machine may be as high as four to
five million dollars with a high obsolescence rate (Renna & Argoneto,
2011; Wu, Hsiung, & Hsu, 2005). In recent years, manufactured prod-
ucts have had a short product life cycle and high demand volatility,
making the capacity investment not only expensive but also risky.
Capacity sharing provides a viable solution to address the capacity limit
facing small manufacturers and helps alleviate the cost burdens large
manufacturers carry. Further accelerating the growth of the capacity
sharing market is the recent paradigm shift in the manufacturing sector
to digital and cloud manufacturing (Liu, Wang, & Wang, 2018) that
allows users to request services ranging from product design, manufac-
turing, testing, management and all other stages of a product life-cycle
through the cloud. This provides the critical technical infrastructure for
crowd-sourcing and matching between customers and manufacturers.

A few recent works have studied how to optimize matching in
manufacturing. Yang, Chen, and Kumara (2021) study a two-sided
vailable online 15 May 2024
377-2217/© 2024 Elsevier B.V. All rights are reserved, including those for text and

ttps://doi.org/10.1016/j.ejor.2024.05.027
eceived 13 February 2023; Accepted 14 May 2024
data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/eor
https://www.elsevier.com/locate/eor
mailto:spanda@uh.edu
mailto:yxiang4@uh.edu
mailto:ruiqliu@ttu.edu
https://doi.org/10.1016/j.ejor.2024.05.027
https://doi.org/10.1016/j.ejor.2024.05.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2024.05.027&domain=pdf

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.

s
g
a
R
c
i
E
C
g
s
W
i
i

t
l
i
m
p
A
l
𝐻
r
t
p
t
t
w
a
g
t
p
G
i
e
o
t
d
a

F
s
a
T
f
o
S
s
t
w
s
a
a
d
e

l
i
e
m
d
f
Q
f
w
a
s

w
a
d
m
f
p
p
d
p

additive-manufacturing (AM) market for one period and design a bi-
partite matching framework to match customers with manufacturers.
Pahwa, Dur, and Starly (2020) consider the bipartite matching problem
in manufacturing-as-a-service marketplaces in a dynamic environment
and propose approximate stable matching algorithms to optimize the
revenue for the marketplace platform. While there have been some
recent advances in this field, matching problems in manufacturing
industries are still largely under-explored.

To meet the increasing need for resource sharing in manufacturing,
we consider a dynamic manufacturing resource matching problem in a
finite-time horizon. Although sharing some general characteristics with
common matching problems such as heterogeneous supply–demand
types and similar reward structures, resource matching in manufactur-
ing is distinctively different in several key aspects. First, the matching
of the types needs to be optimized over a finite horizon. That is, at each
decision period, there are demands for manufacturing capacities that
need to be fulfilled, and this matching process evolves through time.
Dynamic matching needs to be differentiated from the instantaneous
matching commonly seen in ride-sharing. Second, resource matching
typically involves many-to-many matching, since a single order can be
fulfilled by multiple manufacturers based on factors such as capacity
and distance. Similarly, a single manufacturer can serve multiple cus-
tomers depending on the type of orders or demand types. Third, the
matching framework typically consists of large state and action spaces.
State and action space sizes grow exponentially as the number of firms
and demand–supply types increases, while many-to-many matching
further expands the action space. Lastly, the matching of resources
is constrained by manufacturers’ capacities. A manufacturer can only
share the capacity that is available and a customer is not incentivized
to take more than the amount demanded. While feasibility is also an
important consideration in an organ allocation problem, a feasibility
constraint makes solving a dynamic, many-to-many matching problem
significantly more difficult.

In this paper, we explicitly consider the aforementioned character-
istics pertaining to resource matching in manufacturing and formulate
the problem as a sequential decision process. Specifically, we consider
a two-sided matching with random demands and fixed capacities over
a finite-time horizon. The matching is many-to-many constrained by
the demand and supply quantities. Demands for capacities are allowed
to be backlogged. Each matching is associated with a reward and
the objective is to maximize the expected total rewards. A challeng-
ing modeling element here concerns the transition dynamics of the
matching system of interest. It is difficult to accurately model the
joint distribution of all types of demands, which inevitably calls for
a model-free method. Therefore, we resolve to reinforcement learning
(RL) which does not require the knowledge of a probabilistic model for
system transitions. Our work represents an initial attempt to solve a
complex, dynamic manufacturing resource-matching problem via RL.

Our problem is distinguished by its inclusion of high-dimensional
states and actions, with the action space expanding significantly as the
state space increases. This challenge is further compounded by demand
uncertainty over the planning horizon. Specifically, for a matching
problem with 𝑚 demand types and 𝑛 supply types, with 𝑁𝑠 being the
upply limit and𝑁𝑑 being the truncated demand limit, our state space is
iven by  ⊆ R𝑁𝑚

𝑑 ×𝑚 with cardinality || = 𝑁𝑚
𝑑 , and the corresponding

ction space is given by  ⊂ R𝑁𝑛2
𝑠 × 𝑚 × 𝑛 with cardinality || ∈

𝑁𝑛2
𝑠 . This issue renders the problem practically intractable by any

onventional exact methods or advanced MDP algorithms, especially
n applications of our interest such as inventory control (Dulac-Arnold,
vans, van Hasselt, Sunehag, Lillicrap, Hunt, Mann, Weber, Degris, &
oppin, 2016; Vanvuchelen & Boute, 2022). The authors illustrate the
ravity of the issue using a basic joint replenishment problem, wherein
imultaneous replenishment decisions are made for multiple items.
ith only binary decisions (e.g., order/no order) available for each
tem, the total number of actions reaches up to a billion in scenarios
409

nvolving up to 40 items. w
While model-free RL eliminates the need for explicit modeling of
ransition dynamics, conventional tabular model-free methods like Q-
earning, while simple and exhibiting excellent learning ability, prove
nefficient in solving complex problems in large state–action environ-
ents since many of the state–actions might not have been experienced
reviously (Jang, Kim, Harerimana, & Kim, 2019). Moreover, Jin,
llen-Zhu, Bubeck, and Jordan (2018) have mathematically shown Q-
earning to have a runtime of (𝑇) and a space of (𝐻), where
and 𝑇 are number of steps per episode and total number of steps

espectively. Furthermore, traditional Q-learning employing a greedy
arget policy often encounters biased estimates early in the learning
rocess, affecting solution quality and convergence speed. To address
hese issues, we introduce a penalty to the Q-learning update equation
o penalize actions deviating from a given prior policy. Additionally,
e introduce an infeasibility penalty to tackle encountering infeasible
ctions. The convergence of our modified Q-learning method with a
eneral penalty function is theoretically guaranteed, with two varia-
ions in the update rule based on the behavior of the regularization
arameter, 𝛽. We augment the traditional Deep Deterministic Policy
radient (DDPG) framework by integrating the modified update rule
nto its architecture, embedding it within the critic loss function to
fficiently handle large state and action spaces. This adaptation allows
ur proposed DKDDPG to explore the solution space adeptly and iden-
ify optimal policies efficiently within the dynamic matching problem
omain, improving the convergence rate while providing reasonably
ccurate solutions.
Our approach differs from existing methods in two significant ways.

irstly, the inclusion of a regularizer term, informed by problem-
pecific prior policies, is expected to enhance Q-learning performance,
ddressing the issues of biased initial estimates and slow convergence.
his regularizer also enables the utilization of high-quality solutions
rom one-period matching problem solvers, guiding the agent towards
ptimal policies more effectively and eliminating pathological policies.
econdly, while our modified Q-learning algorithm shows promise in
mall-scale scenarios, scaling to large-scale matching scenarios necessi-
ates adapting the modified update rule to appropriate deep neural net-
orks. Training traditional deep RL methods such as DQN proves infea-
ible for many industrial applications that contain large action spaces
s shown by Vanvuchelen and Boute (2022). Consequently, we tailor
n existing deep RL method, DDPG, by integrating the modified up-
ate rule into the critic network’s loss function, ensuring performance
nhancement.
The main contribution of this paper is three-fold: First, we formu-

ate the multi-period, many-to-many manufacturing resource match-
ng problem as a sequential decision process. This is among the first
fforts in providing a multi-period decision framework for resource
atching in manufacturing. Second, we prove the convergence of
omain knowledge-informed Q-learning algorithm, providing a per-
ormance guarantee for small-size problems that can be solved by
-learning and theoretical guidance for designing efficient algorithms
or large-size problems. Lastly, we develop our DKDDPG algorithm
hich utilizes the domain knowledge-informed Q-learning algorithm,
nd conduct a computational study to show that it obtains accurate
olutions efficiently.
The remainder of the paper is organized as follows. In Section 2,

e review relevant literature in the context of matching problems
nd discuss methods in the RL literature. In Section 3, we design the
ynamic resource matching in manufacturing as a sequential decision-
aking problem using the conventional Markov decision process (MDP)
ramework. In Section 4, we introduce Q-learning with a penalty and
rovide theoretical results and proof for its convergence. Section 5
rovides details about DDPG and its enhanced version DKDDPG and
iscusses its implementation for our matching problem. In Section 6, we
resent computational results comparing the performance of DKDDPG

ith contemporary RL algorithms in the context of our problem.

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.

2
o
l

v
p
i
t
i
a
p
m

a
a
a
c
i
s
o
m
i
b
t
a
w
b
t
f
a

d
w
K
p
d
k
p
i
v
m
e
m
p
I
d
w
d
f
p
t

k
d
c
w
f
s
r
t
s
p
a
A
i
a
i
i
a
d

2

s
a
t
U
r
o
(
e
d

s
s
d
f
d
e
m
T
o
w
a
t
d
o
a
i
i
o

a
l
t
n
L
c
m
c
d
a

2. Literature review

In this section, we review two relevant literature streams: matching
and reinforcement learning.

2.1. Matching problem

Matching problems can be categorized into three classes: one-to-
one, one-to-many, and many-to-many. One-to-one has mostly been
studied in the context of ride-sharing (Tafreshian, Masoud, & Yin,
2020), stable marriage (Knuth, 1996), kidney allocation (Roth et al.,
004), car-pooling (e.g., Uber) and home-sharing (e.g., Airbnb). The
ne-to-one problem is typically modeled as a bipartite matching prob-
em where the bipartite graph 𝐺 = (,, 𝐸) consists of two disjoint
sets of nodes: one corresponding to the set of riders () and one to
the set of drivers (). Many polynomial-time exact or heuristic meth-
ods have been developed for the bipartite matching problem (Riesen,
Fankhauser, & Bunke, 2007). Tafreshian et al. (2020) review a large
ariety of exact and approximation algorithms for this problem with
olynomial worst-case running time bounds such as greedy algorithm,
terative algorithm based on augmenting path and a scaling algorithm
o name a few. Karp, Vazirani, and Vazirani (1990) propose the Rank-
ng algorithm, a simple randomized online algorithm that achieves
competitive ratio. Antoniadis, Gouleakis, Kleer, and Kolev (2020)
ropose using machine learning predictions to solve the online bipartite
atching and improve its performance guarantee.
Many-to-one matching problems are those where multiple matches

re possible for a single node. They are commonly seen in college
dmissions problem designed by Gale and Shapley (1962), which is
generalization of the marriage problem. Baïou and Balinski (2000)
haracterize the stable admissions polytope using a system of linear
nequalities. Sethuraman, Teo, and Qian (2006) associate a geometric
tructure to the system of inequalities and provide a simple visual proof
f the integrality of the Baïou–Balinski formulation. The many-to-many
atching model introduced by Roth (1984, 1985) is another general-
zation of the marriage model where multiple nodes on both sides of a
ipartite graph can be matched. The matching of demand and supply
ypes is a form of many-to-many matching. Many single-period demand
nd supply matching problems are modeled as a single-commodity net-
ork flow problem (SCNF) and a number of heuristic algorithms have
een developed to solve the formulated SCNF problem. For example,
o solve the single-commodity, uncapacitated, fixed-charge network
low problem, Ortega and Wolsey (2003) develop a branch-and-cut
lgorithm that determines the right cut set for generating inequalities.
Existing literature on matching problems, while abundant, is mostly

efined in a single-period deterministic problem setting. Only a few
orks have considered dynamic matching in a finite horizon setting.
urino (2014) and Bloch and Houy (2009) devise a dynamic allocation
roblem of on-campus student housing. In their models, agents have
eterministic arrivals and departures. Ünver (2010) studies dynamic
idney exchange with inter-temporal random arrivals of patient–donor
airs with the objective of maximizing the number of matched compat-
ble pairs. They consider a general dynamic problem from the point of
iew of a central authority (e.g., a hospital) whose objective is to mini-
ize the long-run total discounted waiting cost. They separately derive
fficient dynamic matching mechanisms that conduct two-way and
ulti-way exchanges, involving the matching of two infeasible donor–
atient pairs and multiple infeasible donor–patient pairs respectively.
n the context of demand–supply matching, Hu and Zhou (2022) model
ynamic matching of demand–supply types as a finite-horizon problem
ith a stochastic dynamic program where the optimal expected total
iscounted surplus is maximized for each demand–supply type. They
ormulate the problem in an MDP framework, explore the structural
roperties of the optimal policy, and propose heuristic policies to solve
410

he dynamic matching problem. s
Few of the aforementioned works have holistically considered the
ey characteristics of matching in manufacturing (e.g., many-to-many,
ynamic matching, feasibility constraint), and are therefore not appli-
able to manufacturing resource matching. On the other hand, limited
orks that consider matching in manufacturing often make simpli-
ied assumptions and are mostly limited to bipartite frameworks and
ingle-period optimization problems. Yang et al. (2021) consider a
esource allocation problem between customers and additive manufac-
uring (AM) manufacturers. They assume that each order demands a
ingle-unit resource and formulate the allocation problem as an integer
rogram. They consider one-to-one matching and the stable matching
lgorithm is leveraged to optimize matches between customers and
M providers. Pahwa et al. (2020) propose approximate stable match-
ng solutions using mechanism design and mathematical programming
pproaches to solve a bipartite matching problem in manufacturing
n a dynamic environment. The matching considered in this system
s many-to-one between the orders and suppliers. Analytical models
nd efficient algorithms are a critical necessity for solving large-scale
ynamic resource matching in manufacturing.

.2. Reinforcement learning

RL (Sutton & Barto, 2018) has proven efficient in solving complex
equential decision problems (e.g., telecommunications, robot control,
nd game playing among others (Li, 2017)). RL is concerned with op-
imizing an agent’s choice of action to maximize a cumulative reward.
nlike model-based methods such as dynamic programming, which
equire an exact transition probability model that is often hard to
btain in practice, model-free RL methods (e.g., Temporal difference
TD(0)) learning methods, Q-learning) aim to learn the optimal policy
ither online or offline without knowing the underlying transition
ynamics.
Despite the fact that Q-learning is guaranteed to find the optimal

olution, the runtime increases exponentially as the state and action
paces grow since Q-learning is a tabular method. Mnih et al. (2015)
evelop an approach to train a deep Q-network (DQN), an action-value
unction approximated by a convolutional neural network on the high-
imensional visual inputs of a variety of Atari games. As part of their
nhancements to the original Q-learning algorithm, two key enhance-
ents are made: experience replay buffer and target network freezing.
he former is designed to reduce the instability associated with training
n highly correlated sequential data. By using a target network whose
eights are periodically derived from the main network, the latter
ddresses the instability caused by chasing a moving target. Since
hen, DQN has gained wide popularity for solving problems with high-
imensional sensory inputs and actions and excels at a diverse array
f challenging tasks. Al-Abbasi, Ghosh, and Aggarwal (2019) develop
DQN model to learn optimal dispatch policies for ride-sharing by

nteracting with the environment. Gao, Gao, Hu, Jiang, and Su (2020)
mplement DQN for portfolio management in the stock market and
bserve that DQN outperforms ten other traditional strategies.
While DQN works well for high-dimensional states with a small

ction space, it suffers from run-time and memory issues for prob-
ems involving very large action space since it increases the size of
he output layer. Alternatively, obtaining a single action array as the
etwork output ensures higher efficiency in finding the optimal action.
illicrap et al. (2015) adapt the idea underlying the success of DQN to
omplex, high-dimensional action spaces and propose an actor–critic
odel-free algorithm based on the deterministic policy gradient that
an operate over continuous action spaces. This algorithm named deep
eterministic policy gradient (DDPG) uses the same learning algorithm
nd network architecture as DQN. It is able to robustly solve many

imulated physics tasks involving large state and action spaces.

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.

c
h
e
c

d
a
T
a
s

2.2.1. RL for combinatorial optimization
Numerous advancements have occurred in solution techniques for

combinatorial problems sharing similarities. Machine learning (ML)
and reinforcement learning (RL) have been widely employed in ad-
dressing a variety of common combinatorial problems, including but
not limited to the traveling salesman problem (TSP), vehicle routing
problem, maximum cut, and minimum vertex cover problem. Ben-
gio, Lodi, and Prouvost (2020) survey methods in ML and operations
research to solve combinatorial problems in general. They review ad-
vancements such as imitation learning and experience learning using
graph neural networks in the context of combinatorial optimization
(CO). Wang and Tang (2021) discuss various recent deep RL methods
implemented for common CO problems like capacitated vehicle rout-
ing problem (CVRP) and summarize the different deep RL methods
categorically based on value and policy, such as DQN, DDPG, and
other actor–critic methods. They also compare numerous neural net-
work architectures such as pointer networks, transformers, and LSTMs
implemented in conjunction with listed RL algorithms to solve common
CO problems.

Delarue, Anderson, and Tjandraatmadja (2020) devise an RL frame-
work tailored for value-based deep RL methods featuring a combina-
torial action space. They formulate a CVRP as a sequential decision
problem and frame the selection of actions as a mixed-integer optimiza-
tion problem. Dai, Khalil, Zhang, Dilkina, and Song (2018) propose a
ombination of RL algorithms with graph embedding to learn greedy
euristics for solving widely known CO problems such as the Trav-
ling Salesman Problem (TSP), Maximum cut, and Minimum Vertex
over. Barrett, Clements, Foerster, and Lvovsky (2020) introduce the
ECO-DQN approach, designed to iteratively enhance solutions for the
Maximum Cut problem by learning exploration strategies during test-
ing. Their method’s adaptability is highlighted by its capability to
initiate from any state, demonstrating its flexibility in integration with
various search heuristics. Bello, Pham, Le, Norouzi, and Bengio (2017)
evelop a neural combinatorial optimization algorithm that combines
ctor–critic methods with recurrent neural networks to solve TSP.
hey further discuss the possibilities of extending to other problems
nd emphasize the designing of feasibility for the problems. A similar
olution approach was designed by Nazari, Oroojlooy, Snyder, and
Takáč (2018), where they replaced a pointer network and added an
attention mechanism to their RNN to expand to VRP as well. Kool,
van Hoof, and Welling (2019) also implement an attention mechanism
along with the REINFORCE methods to learn strong heuristics and solve
a wide range of practical problems.

While the aforementioned works provide a thorough literature re-
view of reinforcement learning (RL) applied to combinatorial opti-
mization, our problem stands out due to its distinctive characteristics.
With numerous suppliers and customers involved, our problem encom-
passes multi-dimensional states and actions, with both the action and
state spaces expanding exponentially as the number of suppliers and
customers grows. This challenge is further compounded by demand
uncertainty over the planning horizon. While some cited works tackle
infeasibilities, our method adopts a unique approach by proportionally
penalizing such solutions and integrating an additional general convex
penalty function into the Q-learning update rule, utilizing problem-
specific knowledge based on the work by Fox, Pakman, and Tishby
(2015). They propose a penalty-based Q-learning algorithm to penalize
biased estimates due to the minimum (or maximum) operator in Q-
learning. The authors use a prior policy-based penalty function to
penalize deterministic policies at the beginning of learning. They show
that their method reduces the bias of the value-function estimation,
leading to faster convergence to the optimal value and the optimal
policy. In this context, we introduce and theoretically validate a regu-
larized Q-learning update rule based on Bertsekas and Tsitsiklis (1996)
and Singh, Jaakkola, Littman, and Szepesvári (2000). Furthermore, we
extend this methodology to address large-scale problems using deep
neural networks, demonstrating near-optimal solutions and enhanced
411

overall performance.
3. Problem setting

We consider a multi-period manufacturing resource matching prob-
lem. Let  = 1, 2,… , 𝑇 denote the decision epochs. Let  = 1, 2,… , 𝑚
represent the set of demand types for manufacturing resources and
 = 1, 2,… , 𝑛 represent the set of capacity supply type. The sets  and
 are disjoint. The arc (𝑖, 𝑗) represents the matching between demand
type 𝑖 (𝑖 ∈ ) and supply type 𝑗 (𝑗 ∈ ). We denote the complete set
of arcs by  = {(𝑖, 𝑗)|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}. As an example, different
types of manufacturing processes such as 3D printing, extrusion, CNC
machining, etc. can be considered as types of demand or capacity. Note
that capacity and supply are used interchangeably in this paper.

The system state is denoted by the outstanding demand vector
𝐱 = (𝑥1,… , 𝑥𝑚) ∈ R𝑚

+. The capacity vector is denoted by 𝐜 =
(𝑐1,… , 𝑐𝑛) ∈ R𝑛

+, where 𝑥𝑖 and 𝑐𝑗 are the quantity of type 𝑖 demand
and type 𝑗 capacity available to be matched respectively in time 𝑡. We
assume that demands arrive randomly at each decision epoch. We also
assume that the capacities are fixed in the planning horizon because the
capacity of manufacturing resources typically does not change for some
time. At the beginning of period 𝑡, our state comprises of outstanding
(backlogged) demand units of various types, 𝐱. We assume that each
demand will take the capacity for one period. We further assume an
exogenous correlation between the distribution of demand between one
period and the next, that is, they are determined outside the model and
imposed on the model. Our model does not account for endogenous
correlations between a matching decision in a period and the demand
distribution in a future period.

We consider two widely used reward structures — the horizontal
reward model (Ashlagi & Shi, 2016) and the vertical reward model
(Sutton, 1986). Horizontal matching is preference-based and the re-
ward is dependent on the matching of the demand–supply type pair.
The unit matching reward, 𝑟𝑖𝑗 is based on the distance between the
demand type 𝑖 and capacity type 𝑗, that is, 𝛿𝑖𝑗 . We consider a linear
structure reward given by 𝑟𝑖𝑗 = 𝑅 − 𝛿𝑖𝑗 , where 𝑅 is the fixed prize for
matching. For example, suppose there are two demand types (𝑖 = 1, 2)
and two capacity types (𝑗 = 1, 2). Let 𝑖 = 𝑗 = 1 represent the extrusion
process and 𝑖 = 𝑗 = 2 denote the 3D printing process. Demand type 1
will form a higher rewarding pair with capacity type 1 since they have
the same preference, and a lower rewarding pair with capacity type
2. We can extend the same understanding to applications with more
than two demand–supply types. Consider manufacturing demand and
supply types listed in terms of material (product) upgrading as shown
in Fig. 1. In this case, matches can be made based on the distance
between the demand–supply types, that is, the shorter the distance
and thus cost, the higher the reward for matching as we explained
previously. On the other hand, vertical matching is quality-based and
the reward is dependent on the quality of each demand and capacity
type. Vertical matching in manufacturing could be based on aspects
such as shop certifications, finishing process, experience, and inspection
capabilities which involve differences in terms of quality. For example,
the demand–supply types can be lined up from the best demand and
supply types to the worst, in terms of quality, and have a reward value
associated with each type. Vertical matching a pair would generate a
cumulative reward based on the reward of the demand type and the
supply type as described above. For simplicity, we consider a linearly
additive function. Let 𝑟𝑖𝑗 = 𝑓 (𝑎𝑖, 𝑏𝑗) = 𝑓𝑑 (𝑎𝑖)+𝑓𝑠(𝑏𝑗), where 𝑎𝑖 represents
the quality of demand type 𝑖 and 𝑏𝑗 represents the quality of supply type
𝑗, such that 𝑓𝑑 and 𝑓𝑠 are increasing in 𝑎𝑖 and 𝑏𝑗 respectively.

At each decision period, a decision maker needs to determine the
matching quantities for each supply–demand type, 𝐐 = (𝑞𝑖𝑗) ∈ R𝑚x𝑛

+ ,
where 𝑞𝑖𝑗 denotes the quantity of the 𝑖th demand matched with the 𝑗th
supply type. The reward associated with each arc (𝑖, 𝑗) is modeled based
on the horizontal or vertical heterogeneity model. The reward values
can be written in a matrix form as 𝐑 = (𝑟𝑖𝑗) ∈ R𝑚x𝑛. The total matching
reward is given by 𝐑◦𝐐 =

∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑟𝑖𝑗𝑞𝑖𝑗 , where ‘‘◦’’ is the sum of
elements of the entry-wise product of two matrices.

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.

c
m
n

𝑥

t
c
a

T

𝑝

t
i
T
d

𝑉

w
t
t
t

p
b
m
p
c
c
t
o
i
a
f
d
𝑟

v
m

S

T
m
s
m
a
t
(
s

3

Fig. 1. Material (product) upgrade application of Horizontal differentiation.

3.1. MDP framework

In this section, we first formulate our problem as a standard MDP.
Let 𝑝𝑖 be the probability distribution of demand type 𝑖. The total
demand of type 𝑖 in the next period is the sum of the outstanding
demand at the current period 𝑥𝑖 and the demand that occurred in the
urrent period 𝑑𝑖. Subtracting the amount of type 𝑖 demand filled by
atching 𝑞𝑖 =

∑

𝑗 𝑞𝑖𝑗 , we can obtain the outstanding demand in the
ext period denoted by 𝑥′𝑖 given by,

′
𝑖 = 𝑥𝑖 + 𝑑𝑖 − 𝑞𝑖. (1)

We have illustrated our dynamic resource matching problem in
he MDP framework in Fig. 2. Moreover, the matching quantity is
onstrained by the current state, that is, the demand vector, as well
s the capacity vector,
𝑛
∑

𝑗=1
𝑞𝑖𝑗 ≤ 𝑥𝑖, ∀𝑖 = 1,… , 𝑚 (2)

𝑚
∑

𝑖=1
𝑞𝑖𝑗 ≤ 𝑐𝑗 , ∀𝑗 = 1,… , 𝑛 (3)

he demand type transition probability 𝑝𝑡 is given as follows:

𝑡(𝑥′𝑖|𝑥𝑖, 𝑞𝑖) =

{

0 if 𝑥′𝑖 < (𝑥𝑖 − 𝑞𝑖)
𝑝𝑥′𝑖−(𝑥𝑖−𝑞𝑖) if 𝑥′𝑖 ≥ (𝑥𝑖 − 𝑞𝑖)

(4)

Our goal is to determine a matching policy 𝐐∗ = (𝑞∗𝑖𝑗) that maximizes
he expected total discounted reward. Let 𝐱 be the current state vector
n period 𝑡 and 𝑉𝑡(𝐱) be the optimal expected total discounted reward.
he Bellman equation that can be used to calculate the total expected
iscounted reward recursively is given below:

𝑡(𝐱) = max
𝐐

[𝐑◦𝐐 + 𝛾
∑

𝐱′
𝑝𝑡(𝐱′|𝐱,𝐐)𝑉𝑡+1(𝐱′)], (5)

here 𝛾 is the discount factor. The matching quantities cannot exceed
he demand or supply levels of the different types. At the end of
he horizon, all unmatched demand and supply leave the system and
herefore, the boundary condition is 𝑉𝑇+1(𝑥) = 0 for all 𝑥 ∈ R𝑚

+.
The literature on solving this type of matching for a single-period

roblem is abundant. The above matching problem, however, cannot
e solved as a single-period problem which we illustrate with a simple
anufacturing example. Consider a 3-period raw-materials matching
roblem with two demand types and two supply types. Let type 1 be
arbon steel and type 2 be stainless steel, that is, a customer who needs
arbon steel is demand type 1 and a supplier for the same is supply
ype 1. It applies similarly to the second demand–supply type. The
utstanding demand is 𝐱 = [𝑥1, 𝑥2] = [8, 7], and the available capacity
s 𝐲 = [𝑦1, 𝑦2] = [6, 5]. The possible demand quantities for both types
re (0, 1, 2, 3, 4, 5, 6, 7, 8) with probabilities (0.2, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0)
or type 1 and (0.2, 0, 0.2, 0.2, 0.2, 0, 0, 0, 0.2) for type 2 respectively. The
iscount factor, 𝛾 is 0.9 and the reward matrix 𝐑 is chosen such that
412

11 > 𝑟22 > 𝑟12 > 𝑟21 and is given by 𝐑 = [10 7 ; 5 8].
We used CPLEX to solve for the single-period solution and used
alue iteration as the dynamic programming solution. The matching
atrices for both solutions are specified below:

ingle-period problem: 𝐐𝐂𝐏𝐋𝐄𝐗 = [6 0 ; 0 5]

Three-period problem: 𝐐𝐌𝐃𝐏,𝑡1 = [4 0 ; 2 5],

𝐐𝐌𝐃𝐏,𝑡2 = [4 0 ; 2 5],

𝐐𝐌𝐃𝐏,𝑡3 = [6 0 ; 0 5]

hus, from the above two solutions, we see that the dynamic program-
ing approach accounts for the incoming demand to obtain an optimal
olution as compared to the single-period solution which greedily
atches the quantities in every period. Moreover, for an MDP to have
myopic optimum, it requires each transition probability to depend on
he action taken but not on the state from which the transition occurs
Sobel, 1981). Thus, optimal matching policies cannot be obtained by
olving a single-period problem.

.2. Domain knowledge-informed Q-learning

The standard MDP problem formulated in Eq. (5) requires explicit
modeling of the transition dynamics, which can be hard to obtain in
practice. Moreover, even if the dynamics are available, standard MDPs
suffer from the curse of dimensionality. Conventional value iteration or
policy iteration algorithms can thus, solve only small-size problems due
to computing limitations. On the other hand, model-free RL algorithms
use experiences (e.g., samples) to obtain the value estimate of a state
rather than building a model of the environment. The RL algorithms
can further leverage powerful function approximation methods to com-
pactly represent value functions, which enables it to deal with large,
high-dimensional state and action spaces. In this section, we enhance
the existing Q-learning algorithm based on the characteristics of the
problem of our interest. Specifically, we first introduce a function that
penalizes deviations of the learned policy from some prior policy. We
also remove the constraints by penalizing the violation of constraints
in the Q value function. The resulting value-penalty function is then
implemented in the update step of Q-learning.

The action-value function (Q-function) is a critical modeling ele-
ment in any RL algorithm. The Q-value for any state 𝑠 ∈ 𝑆 and 𝑎 = 𝜋(𝑠)
is given by,

𝑄𝜋 (𝑠, 𝑎) = E[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 +⋯ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎;𝜋] (6)

= 𝑟 + 𝛾E[𝑉 𝜋 (𝑠′)|𝑠, 𝑎], (7)

where 𝑠𝑡, 𝑎𝑡, and 𝑟𝑡 are the state, action, and the reward obtained in
time step 𝑡 respectively, 𝜋 is the policy, and 𝛾 is the discount factor.

Q-learning is a model-free, off-policy RL algorithm, where the Q-
value is randomly chosen initially for each state–action pair and is then
updated iteratively using the following rule

𝑄(𝑠𝑡, 𝑎𝑡) ⟵ (1−𝛼𝑡)𝑄(𝑠𝑡, 𝑎𝑡)+𝛼𝑡(𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎)), ∀𝑡 = 1, 2,… .,

(8)

where 𝛼𝑡 is the learning rate (or step-size).
As observed in Eq. (8), the Q-learning algorithm updates a state–

action pair by maximizing over all those actions possible in the next
state. This can lead to the agent learning biased estimates in the initial
stages of the algorithm and thus, much of the initial time would be
spent on unlearning the biased estimates. To tackle this issue, inspired
by the work by Fox et al. (2015), we incorporate a penalty on the
learned policy 𝜋(𝑎|𝑠) for 𝑎 ∈  and 𝑠 ∈  with respect to some prior
policy 𝜇(𝑎|𝑠). The penalty function is defined as,

𝑔𝜋 (𝑠, 𝑎) = ℎ(𝜋(𝑎|𝑠), 𝜇(𝑎|𝑠)) (9)

where ℎ(⋅, ⋅) is any convex function.

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.

T

𝑄

3

v
t
p
w

Fig. 2. Dynamic matching problem illustration.
p
q

3

p

i
t
p
l
e

We consider a general convex function as compared to the above-
referenced work where the authors specifically use KL-divergence for
the penalty function. Other common examples of divergence functions
include all types of norms. The penalty in Eq. (9) regularizes the learned
policy by penalizing deviations from the prior policy, which is added
to the value estimate of the next state. Recall, the value function 𝑉 𝜋 (𝑠)
for a given state 𝑠 with policy 𝜋 is given by,

𝑉 𝜋 (𝑠) =
∑

𝑡≥0
𝛾 𝑡E[𝑟𝑡|𝑠0 = 𝑠] (10)

Adding the penalty function to the discounted reward function in the
above equation we get,

𝐹 𝜋 (𝑠) =
∑

𝑡≥0
𝛾 𝑡E

[

1
𝛽
𝑔𝜋 (𝑠𝑡, 𝑎𝑡) + 𝑟𝑡|𝑠0 = 𝑠

]

(11)

We call the above function 𝐹 𝜋 as the value-penalty function. Here, 𝛽
is the regularization parameter that sets the weight of the penalty. It
controls the effect of the regularization in the update step.

The 𝑉 𝜋 (𝑠) in Eq. (7) can be replaced with the value-penalty function
𝐹 𝜋 (𝑠) defined above to give a new Q-function analogous to Eq. (7),

𝑄𝜋
𝐷𝐾 (𝑠, 𝑎) = 𝑟 + 𝛾E[𝐹 𝜋 (𝑠′)|𝑠, 𝑎], (12)

which we call the domain knowledge-informed Q-function. From the
above two definitions we obtain

𝐹 𝜋 (𝑠) =
∑

𝑎
𝜋(𝑎|𝑠)

[

1
𝛽
𝑔𝜋 (𝑠, 𝑎) +𝑄𝜋

𝐷𝐾 (𝑠, 𝑎)
]

(13)

he domain knowledge-informed Q-learning update equation is then
given by,

𝐷𝐾 (𝑠𝑡, 𝑎𝑡) ⟵ (1 − 𝛼𝑡)𝑄𝐷𝐾 (𝑠𝑡, 𝑎𝑡) + 𝛼𝑡(𝑟𝑡 + 𝛾 max
𝜋

𝐹 𝜋 (𝑠𝑡+1)). (14)

.2.1. Prior policy 𝜇
Choosing a prior policy is critical since it can either improve con-

ergence or hinder it accordingly. Hence, a prior policy that represents
he prior knowledge of the problem has to be carefully chosen. In our
roblem, we consider a single-period optimal policy as the prior policy,
hich is obtained by using a standard solver such as CPLEX. The prior
413
olicy helps eliminate pathological policies (e.g., actions that match no
uantities) that slow down the convergence.

.2.2. Regularization parameter 𝛽
The regularization parameter, 𝛽 controls divergence from the prior

olicy. It can either be fixed with respect to time i.e., 𝛽𝑡 = 𝛽, or
scheduled with time, where 𝛽𝑡 is a function of time. The penalty
function 𝑔𝜋 (𝑠, 𝑎) is modeled in a way that when the value of 𝛽 increases
to a large number, the optimal domain knowledge-informed Q-learning
estimate 𝑄∗

𝐷𝐾 and value-penalty estimate 𝐹 ∗ reduce to standard Q-
learning estimate 𝑄∗ and value function estimate 𝑉 ∗. Also, when 𝛽 is
nfinitesimal, the effect of the penalty on the value estimate follows
he prior policy 𝜇. Thus, in the initial stages of learning, the prior
olicy gives an advantage over the greedy Q-value estimate, and in the
ater stages of learning, the greedy Q-value estimate is a more precise
stimate of optimal Q-value, 𝑄∗. Therefore, scheduling 𝛽 with respect
to time would ensure smooth transitioning from 𝑄𝜇 to 𝑄𝜋 , thereby
balancing the benefits of both phases of learning.

3.3. Infeasibility penalty

An infeasible action is one that violates the demand and capacity
constraints established in the earlier Section 3.1. This means that the
total quantity matched exceeds the respective demand and capacity
limits. Hence, it is critical to penalize these actions in order to produce
feasible matched quantities. We introduce an infeasibility penalty for
violation of each constraint. The penalty associated with violation
of the state (outstanding demand) is proportional to the sum of the
exceeded matched quantity over all the demand types given by,

𝑢(𝐱,𝐐) = 𝑘1

(𝑚
∑

𝑖
1𝑞𝑖>𝑥𝑖 (𝑞𝑖 − 𝑥𝑖)

)

(15)

where 𝑢(⋅, ⋅) is the demand penalty function whose arguments are
demand 𝐱 and action (matching quantity) 𝐐, 𝑞𝑖 =

∑𝑛
𝑗=1 𝑞(𝑖,𝑗), and 𝑘1

is the demand penalty proportional constant. Similarly, the penalty
associated with violation of the capacity is given by,

𝑣(𝐐) = 𝑘2

(𝑛
∑

1𝑞𝑗>𝑐𝑗 (𝑞𝑗 − 𝑐𝑗)
)

(16)

𝑗

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.

t
c

T
w
(

T
a

∑

T

a
o
Q
f
i
f
Q

4

e
I
i
t
𝛽
r
t
r
E

𝑄

W
i

T
a

∑

T

p
i
D

5
e

o
m
a
w
a
m

a
p
a

where 𝑣(⋅) is the supply penalty function whose argument is action
(matching quantity) 𝐐, 𝑞𝑗 =

∑𝑚
𝑖=1 𝑞(𝑖,𝑗), and 𝑘2 is the supply penalty

proportional constant. We obtain a revised reward formulation by
subtracting the penalty functions from the matching reward 𝑟𝑡 defined
in Section 3.1,

𝑟𝑡 = 𝐑◦𝐐 − 𝑢(𝐱,𝐐) − 𝑣(𝐐). (17)

In the following section, we give theoretical results to prove the
convergence of domain knowledge-informed Q-learning algorithm for
two cases: fixed 𝛽 and changing (increasing) 𝛽𝑡. Note, that the matching
reward 𝑟𝑡 in time 𝑡 encompasses the net reward after including the
infeasibility penalties.

4. Convergence of domain knowledge-informed Q-learning

By introducing a penalty based on a prior policy, we nudge the
algorithm away from learning biased estimates, thereby potentially
leading to faster convergence than Q-learning. We formalize this intu-
ition here and prove that the optimal Q-value obtained from the domain
knowledge-informed Q-learning algorithm converges to the optimal Q
value. We develop our proofs based on theoretical results provided by
Bertsekas and Tsitsiklis (1996) and Singh et al. (2000). Note, in both the
following sections, we denote domain knowledge-informed Q-function
as 𝑄 instead of 𝑄𝐷𝐾 for ease of notation.

4.1. Value-penalty function with fixed 𝛽

In this section, we consider a general algorithm based on pseudo-
contraction to help prove the convergence of our domain knowledge-
informed Q-learning algorithm with fixed weight parameter 𝛽.

We first introduce several expressions that are heavily used in
the analysis of the convergence behavior of the standard Q-learning
algorithm. Starting with some arbitrary estimate 𝑓0 ∈ R𝑛, we assume
that the 𝑖th component 𝑓 (𝑖) of 𝑓 is updated according to

𝑓𝑡+1(𝑖) =
(

1 − 𝛾𝑡(𝑖)
)

𝑓𝑡(𝑖) + 𝛾𝑡(𝑖)
(

(𝐻𝑓𝑡)(𝑖) + 𝜔𝑡(𝑖)
)

, 𝑡 = 0, 1,… , (18)

where states are denoted by 𝑖 = 1, 2,… , 𝑛, and 𝜔𝑡(𝑖) is a random noise
erm. We denote by 𝑡 the history of the algorithm until time 𝑡, which
an be defined as, 𝑡 = {𝑓0(𝑖),… , 𝑓𝑡(𝑖), 𝑤0(𝑖),… , 𝑤𝑡(𝑖),
𝛾0(𝑖),… , 𝛾𝑡(𝑖)}, for 𝑖 = {1, 2,… , 𝑛}, or may include some additional
information. We now introduce some assumptions to help prove the
following theorem.

Assumption 1 (Assumption 4.3, Prop. 4.4, Bertsekas et al.).

(a) The step-sizes 𝛾𝑡(𝑖) are nonnegative and satisfy
∞
∑

𝑡=0
𝛾𝑡(𝑖) = ∞,

∞
∑

𝑡=0
𝛾2𝑡 (𝑖) < ∞

(b) For every 𝑖 and 𝑡, we have E[𝜔𝑡(𝑖)|𝑡] = 0.
(c) Given any norm ‖ ⋅ ‖ on R𝑛, there exist constants 𝐴 and 𝐵 such

that

E[𝜔2
𝑡 (𝑖)|𝑡] ≤ 𝐴 + 𝐵‖𝑓𝑡‖

2, ∀𝑖, 𝑡.

(d) The mapping 𝐻 is a weighted maximum norm
pseudo-contraction.

Notice that, since 0 ≤ 𝛾𝑡(𝑖) < 1, Assumption 1(a) requires that all
state–action pairs be visited infinitely often. Parts (b) and (c) provide
assumptions on the noise term. Assumption 1(b) states that 𝜔𝑡(𝑖) has
zero conditional mean and part (c) provides an upper bound on the
conditional variance of the noise term. Part (d) implies that if there
exists some 𝑟∗ ∈ R𝑛, a positive vector 𝜉 = (𝜉(1),… , 𝜉(𝑛)) ∈ R𝑛, and a
constant 𝐿 ∈ [0, 1), then the function 𝐻 ∶ R𝑛 ↦ R𝑛 satisfies,

∗ ∗
414

‖𝐻𝑟 − 𝑟 ‖𝜉 ≤ 𝐿‖𝑟 − 𝑟 ‖𝜉 , ∀𝑟. m
Based on the above assumptions, the proof of convergence of the
sequence generated by iteration (18) has been given by Bertsekas and
sitsiklis (1996). We state the convergence result for the Q-function
ith penalties on deviations from a prior policy and infeasibilities
Eq. (14)) under a fixed 𝛽.

heorem 1. Let 𝑄𝑡 be the sequence generated by the iteration (14). We
ssume that the step-sizes 𝛼𝑡 are non-negative and satisfy
∞

𝑡=0
𝛼𝑡 = ∞,

∞
∑

𝑡=0
𝛼2𝑡 < ∞

hen 𝑄𝑡 converges to 𝑄∗ with probability 1.

Theorem 1 shows that Q-learning with penalties on deviation from
priory policy and infeasibilities still converges, in the limit, to the
ptimal Q-function, under the same mild conditions as traditional
-learning. We prove this convergence by verifying that the new Q-
unction in our problem setting also satisfies the conditions provided
n Assumption 1. Note that verifying these conditions is not straight-
orward and requires rigorous analysis of the properties of the new
-function. Detailed proof for Theorem 1 is provided in Appendix A.

.2. Value-penalty function with changing 𝛽𝑡

As explained in Section 3.2.2, scheduling 𝛽 with respect to time
nsures a smooth transition of the learning algorithm from 𝑄𝜇 to 𝑄𝜋 .
n this section, we prove the convergence of the domain knowledge-
nformed Q-learning for an increasing regularization parameter 𝛽𝑡. Note
hat the penalty-value function is now dependent on 𝛽𝑡 instead of
and is therefore denoted by 𝐹 𝜋

𝑡 . Moreover, the assumptions and
esults provided previously involve a time-independent mapping 𝐻 and
herefore, cannot be used to prove the convergence for an increasing
egularization parameter 𝛽𝑡. Based on this information, we provide
q. (14) as an iteration,

𝑡+1(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼𝑡)𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡(𝑟𝑡 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1)) (19)

e now provide the convergence result for the sequence generated by
teration (19).

heorem 2. Let 𝑄𝑡 be the sequence generated by the iteration (19). We
ssume that the step-sizes 𝛼𝑡 are non-negative and satisfy
∞

𝑡=0
𝛼𝑡 = ∞,

∞
∑

𝑡=0
𝛼2𝑡 < ∞

hen 𝑄𝑡 converges to 𝑄∗ with probability 1.

Theorem 2 shows that Q-learning with a scheduled regularization
arameter 𝛽𝑡 with penalties on deviation from a priory policy and
nfeasibilities still converges, in the limit, to the optimal Q-function.
etailed proof for Theorem 2 is provided in Appendix B.

. Domain knowledge-informed deep deterministic policy gradi-
nt (DKDDPG) algorithm

While Q-learning is a model-free approach, it suffers from the curse
f dimensionality as the classical approaches like dynamic program-
ing. To address this issue, Mnih et al. (2015) implement DQN to
pproximate Q-values in the Q-learning algorithm using neural net-
orks. In the case of dynamic manufacturing resource matching, the
ction space is high dimensional, which means DQN may suffer from
emory problems since the output layer is the size of the action space.
The DDPG algorithm employs an actor–critic network, which is
temporal difference (TD) version of the policy gradient. This ap-
roach is inspired by the recent success of DQN in training an RL
gent to learn the optimal action to maximize the total reward of

atching demand–supply for each state. The algorithm is simple to

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.

e
D
e
t
a
p
f
d

d
𝜋
n
n

l
t
c
s
o
m
c
g
t
t
a
a
a
b
a

p
s
s
a
a
s
o
f
a
o
D
R
h
i

p

u
i

𝑦

1

1

1
1

Fig. 3. Neural network architecture of DKDDPG.

implement and scale since it only needs an actor–critic network and
a learning algorithm such as Q-learning. Based on DDPG (Lillicrap
t al., 2015), we propose domain knowledge-informed DDPG (DKD-
PG) which utilizes the domain knowledge-informed Q-learning update
quation introduced in Section 3.2, as opposed to DDPG which employs
he traditional Q-learning update equation. Our proposed DKDDPG
lgorithm is presented in Algorithm 1. The details about action ex-
loration, DNN approximator, domain knowledge-informed Q-value
unction, scheduling of 𝛽, action transformation, and the algorithm are
iscussed below.
Action exploration: In every period, the RL agent matches the

emand and supply types, assigning the quantities according to policy
. For action exploration, we employ the 𝜖−greedy policy with expo-
ential 𝜖−scheduling. During exploration, we inject a normal random
oise into the action obtained from the actor network.
DNN: As discussed before, due to the curse of dimensionality, non-

inear functions, and neural network approximators can approximate
he Q-values in the Q-learning algorithm. Hence, we employ actor–
ritic networks based on the success of DQN (Mnih et al., 2015), which
olved the issues related to non-stationarity and correlations in the
bservations by proposing target networks and using experience replay
emory. We have implemented two DNNs: an actor network and a
ritic network. The actor network takes the state as the input and
ives an action array as the output. Since the DNN does not provide
he actions in a usable format for our problem setting, we perform
ransformations on the action array which we discuss in detail in the
ction transformation section. The critic network takes the state and
ction as input, and provides the optimal Q-values as output, and acts as
Q-function approximator. The DNNs are trained using random mini-
atches taken from the experience replay iteratively until all episodes
re complete.
We design the architectures of our DNNs similar to the ones im-

lemented by Lillicrap et al. (2015). Considering the state and action
paces, our actor DNN consists of 4 fully connected (FC) layers with
hape [𝑠𝑑𝑖𝑚, 50, 200, 100, 𝑎𝑑𝑖𝑚] where 𝑠𝑑𝑖𝑚 is the dimension of the state
rray and 𝑎𝑑𝑖𝑚 is the flattened-array dimension of the action matrix,
long with 3 ReLU activation layers in between and the output FC has
oftmax activation. We use softmax over tanh for the output layer to
btain a soft matching policy for each demand and supply type. The
inal layer weights of both the actor and critic were initialized from
uniform distribution [−0.003, 0.003]. This is to ensure the initial
utputs for the policy and value estimates were near zero. Our critic
NN consists of 3 FC layers with shape [𝑠𝑑𝑖𝑚, 50, 100, 200], along with 2
eLU activation layers in between and a linear activation output. We
ave provided a simple illustration of our neural network architecture
n Fig. 3.
Domain knowledge-informed Q-Value function: We have incor-

orated the target value of the domain knowledge-informed Q-learning
415
pdate equation to step 12 of Algorithm 1, where the target prediction
s given by,

𝑖 = 𝑟𝑖 + 𝛾𝐹 𝜋∗
𝑖 = 𝑟𝑖 + 𝛾

∑

𝑎
𝜋∗(𝑎|𝑠)

[

1
𝛽𝑖
𝑔𝜋

∗
(𝑠, 𝑎) +𝑄′𝜋∗ (𝑠𝑖+1, 𝜇(𝑠𝑖+1|𝜃𝜇)|𝜃𝑄

′
)
]

where 𝜋∗ = argmax𝜋 𝐹 𝜋
𝑖 and 𝑄′ is the target network with weights 𝜃𝑄′ .

Algorithm: Algorithm 1 finds weights 𝜃𝑄 of the critic DNN network
to minimize the Euclidean distance between Q-value 𝑄(𝑠, 𝑎; 𝜃𝑄) and
𝑦𝑖. Our approach uses policy gradient to optimize the weights 𝜃𝜇 of
the actor DNN network to maximize the Q-value obtained from the
critic. The target networks are updated by having them slowly track
the learned network as given in the update equation in Algorithm 1.
This significantly improves the stability of learning of the networks.
The action matrices in each training step of the algorithm are obtained
by 𝜖-greedy policy.

Scheduling of 𝛽: We schedule the relative weight parameter 𝛽
so that the algorithm penalizes the Q-function and prevents it from
choosing deterministic policies initially and then over the length of the
episodes, it reduces the penalty, thereby reducing the regularization of
the Q-function. We use a linear function to schedule 𝛽, i.e. 𝛽 = 𝑘𝑡, where
the hyperparameter 𝑘 is selected based on a random search from 10
random values followed by a comparison of the total episodic reward
over some initial number of episodes.

Algorithm 1 Domain knowledge-Informed DDPG

1: Input: Number of demand and supply types, number of time
periods 𝑇𝑚𝑎𝑥, total number of episodes, state space

2: Randomly initialize critic network 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 𝜇(𝑠|𝜃𝜇) with
weights 𝜃𝑄 and 𝜃𝜇

3: Initialize target network 𝑄′ and 𝜇′ with weights 𝜃𝑄′
← 𝜃𝑄 and

𝜃𝜇′ ← 𝜃𝜇

4: Initialize replay buffer 𝐸
5: for episode in total episodes do
6: Choose a state 𝑠 arbitrarily from state space
7: for 𝑡 = 1 ∶ 𝑇𝑚𝑎𝑥 do
8: Choose action 𝑎𝑡 from 𝑠𝑡 using 𝜖-greedy policy
9: Introduce random demand 𝑑 and take action 𝑎𝑡, observe
reward 𝑟𝑡, next state 𝑠𝑡+1

10: Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝐸
11: Sample a random mini-batch of 𝑁 transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1)

from 𝐸

12: Set 𝑦𝑖 = 𝑟𝑖 + 𝛾

(

∑

𝑎 𝜋
∗(𝑎|𝑠)

[

1
𝛽𝑖
𝑔𝜋∗ (𝑠, 𝑎) +

𝑄′𝜋∗ (𝑠𝑖+1, 𝜇(𝑠𝑖+1|𝜃𝜇)|𝜃𝑄
′
)
]

)

13: Update critic by minimizing the loss: 𝐿 = 1
𝑁

∑

𝑖(𝑦𝑖 −
𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄))2

4: Update the actor policy using the sampled policy gradient:

∇𝜃𝜇𝐽 ≈ 1
𝑁

∑

𝑖
∇𝑎𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄)|𝑠=𝑠𝑖 ,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠𝑖

5: Update the target networks:

𝜃𝑄
′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′

6: end for
7: end for

Action transformation and infeasibility penalty: When perform-
ing action exploitation in the 𝜖-greedy policy, we use a softmax activa-
tion function in the output layer which outputs a vector of probabilities.
We then scale the vector accordingly to obtain the quantities matched

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.

a

6

g
f
(
m
Q
m
c
a
t
u
l
n
p
f
f
o
p
t
p

l
l
f
t
s
F
t
s
d
w
l
t
w
a
D

Q
p
Q
v

D
a
a
i
a
s
t
s
d
a
i
t
i
t
2
D
a
t
Q
t
i
l
W
e
o
D
g
2
D
3

Fig. 4. Action transformation for a 2 × 2 matching example.

between the demand and capacity types. The action vector output
from the actor network needs to be normalized and then scaled by
performing a row-wise multiplication with the state vector 𝑠, to obtain a
scaled action matrix. Since the scaled action matrix could be infeasible
in terms of exceeding the total capacity quantity, we employ the
infeasibility penalty introduced in Section 3.3 into the reward calcu-
lation process. This encourages the network to output feasible actions.
We demonstrate the above process using a numerical example in our
problem setting. Consider a 2 × 2 matching problem in manufacturing
with an outstanding demand vector 𝑥 = (12, 8). Fig. 4 details the action
transformation process, where we transform the vector of probabilities
to a 2 × 2 square matrix. This matrix is then normalized over each
row signifying the probability of matching each capacity type to each
demand type. Finally, we perform a row-wise scalar multiplication of
the outstanding demand vector 𝑥 to the normalized probability matrix
nd round it to get the desired action matrix displayed in Fig. 4.

. Computational study

In this section, we investigate the performance of domain knowled
e-informed DDPG (DKDDPG) with benchmark methods: a solver for LP
orm of MDP (exact method), Domain Knowledge-informed Q-learning
DKQL), Deep Q-network (DQN), a Deterministic Policy Gradient (DPG)
ethod, and DDPG. We included the tabular version of our modified
-learning algorithm, DKQL to compare the difference in its perfor-
ance with its tabular counterpart. Along with the tabular algorithms’
omparison, we included two deep RL approaches, namely the DQN
nd the DPG since the two methods are different in their approach
o solving the problem. DQN is a value-based deep RL method that
ses a non-linear approximation of the Q-learning update rule as its
oss function, and DPG is a policy-based algorithm that learns the
ear-optimal policy using the principles of policy gradient theorem. To
rovide an exact solution approach, we have added the linear program
ormulation and used a solver to obtain the optimal value estimates
or small-size problems. Specifically, we first examine the performance
f the DKDDPG with that of all the mentioned baselines for small-size
roblems. For large-size problems that cannot be solved by most of
he other methods due to the curse of dimensionality, we compare the
erformance of the proposed DKDDPG with only the DDPG algorithm.
For all experiments, we consider discrete uniform demands. The

ower limits of the demand distributions are set to zero and the upper
imits are drawn from a uniform distribution, 𝑈 (0, 20). The fixed manu-
acturing capacities are also drawn from this uniform distribution. Since
he outstanding demand can go to infinity in theory, we truncate the
tate space by ignoring states that have little chance of being visited.
or simplicity of testing, we assume the number of demand types is
he same as that of capacity types (i.e., 𝑚 = 𝑛). For each problem
ize, we consider five problem instances that have different demand
istributions. In terms of performance metrics, for small-size problems,
e consider the average value function estimates (for LP) and average
earned Q-value estimates (for all others) over all states, convergence
ime and the number of episodes to converge. For large-size problems,
e compare the convergence time, the number of episodes to converge,
nd the average learned Q-value estimates over all states for both DKD-
416

PG and DDPG. Although conventionally, the average episodic reward a
is reported for comparison of algorithm performance, the learned Q-
value estimates showcase more stable results and consistent trends as
compared to the undiscounted cumulative reward values obtained in
an episode. Therefore, we report the learned Q-value estimates in our
experiments.

For the model-free RL methods, we train the agent for 3000 episodes
and truncate every episode after 500 timesteps. We perform a random
search for hyperparameter tuning for DDPG and DKDDPG and obtain
the following values for the hyperparameters. The replay memory 𝐸
is equal to one million most recent experiences, the batch size is 64,
the actor learning rate is 0.0001, the critic learning rate is 0.0005, and
the soft target update parameter, 𝜏 is 0.0005. We follow an 𝜖-greedy
policy for action exploration, where 𝜖 is annealed exponentially from
1 to 0.1 over the first 300 episodes for small-size cases and over the
first 1000 episodes for the large-size experiments and is fixed thereafter
respectively. The computing infrastructure used is an Intel Xeon with 4
cores and 8 logical processors. We consider the maximum run-time to
be 150000 s for all the algorithms.

6.1. Performance of DKDDPG in small size problems

We compare the performance of DKDDPG with benchmark algo-
rithms including value iteration, Q-learning, and standard DDPG. We
test the performance of the algorithms for 𝑚 = 2,3,4 and 5. We set the
-value stopping criterion to be 2%. Along with the metrics mentioned
reviously, we also record the percentage difference of the maximum
-value obtained by Q-learning, DDPG, and DKDDPG, with respect to
alue estimates obtained through Value Iteration.

From Table 1, we observe that actor–critic methods such as DPG,
DPG and DKDDPG converge in a much shorter time for all the cases
s compared to tabular methods such as Q-learning and DK Q-learning,
s well as value-based DRL such as DQN. As the size of the cases
ncreases, the time taken to converge by exact methods such as LP
nd tabular methods such as Q-learning and DK Q-learning increases
ignificantly since they suffer from the curse of dimensionality. For
he 4 × 4 and 5 × 5 cases, both LP and the tabular RL methods
uffer from memory issues and thus, fail to solve the problem in the
esignated maximum run times or episodes. Moreover, DQN while
ble to converge quite close to the true Q-values, suffers from similar
ssues for 4 × 4 and 5 × 5 cases due to the large action spaces. On
he contrary, DDPG is able to obtain the solutions for all the cases
n an average of 2507 s and 304 episodes, while DKDDPG is able
o solve the matching problem for all the cases taking an average of
300 s and 207 episodes. While DPG also converges at similar times to
DPG and DKDDPG, it obtains much worse values due to correlation
nd stability issues. Thus, DKDDPG converges approximately 8% faster
han DDPG and takes much fewer episodes to converge. Moreover,
-values generated by the DKDDPG algorithms converge very close
o the values of the LPs as can be seen from the error percentages,
mplying that by leveraging domain knowledge, the DKDDPG algorithm
eads to satisfactory policies while accelerating the converging process.
e have also illustrated the training process for two of the small-size
xperiments in Fig. 5 to highlight DKDDPG’s superior performance for
ur dynamic matching problem. Among all the methods, only DQN,
DPG, and DKDDPG closely approximate the true value. While DQN
enerally converges closest to the true value, it typically takes around
500 episodes to reach near-optimal results. In contrast, DDPG and
KDDPG achieve reasonably accurate solutions in an average of 200–
00 episodes, with DKDDPG slightly outpacing DDPG in convergence

nd yielding slightly better results for smaller cases.

EuropeanJournalofOperationalResearch318(2024)408–423

417

S.K.Panda
et
al.

Table 1
Algorithm Performance in Matching Problem for small size experiments.
Case Instance Linear Programming Q-learning DK Q-learning DPG DQN DDPG DKDDPG

(m x n) Convergence Average Convergence Average Convergence Average Convergence Average Convergence Average Convergence Average Convergence Average
time (s) value time (s) Q-values time (s) Q-values time (s) Q-values time (s) Q-values time (s) Q-values time (s) Q-values

estimates / / / / / / / / / / / /
episodes % episodes % episodes % episodes % episodes % episodes %

difference difference difference difference difference difference

2 x 2

1 27662 987.4 1304/2986 917.5/7.1 1333/2767 924.4/6.4 1684/1266 971.5/1.6 84431/2526 969.4/1.8 1195/145 948.2/3.9 1568/138 959.0/2.8
2 12988 700.3 2046/2888 659.8/5.8 2057/2794 663.7/5.2 1055/802 450.1/35.7 39287/2355 695.4/0.7 1279/146 687.1/1.9 1725/145 679.0/3.0
3 22956 798.6 1189/2967 746.8/6.5 1184/2737 751.2/5.9 1569/1189 699.8/12.4 50311/2968 796.9/0.2 1178/148 763.3/4.4 1513/133 749.8/6.1
4 23478 890.4 1281/2742 830.1/6.7 1268/2689 832.2/6.5 2063/1546 583.7/34.4 93936/2816 896.8/0.7 1089/142 865.9/2.7 1555/142 863.7/2.9
5 19650 701.3 2040/2966 663.1/5.4 2046/2876 664.7/5.2 942/718 556.4/20.6 26437/2669 700.2/0.1 1172/155 673.2/4.0 1568/146 680.9/2.9

3 x 3

1 27403 504.3 23413/2925 453.7/10.1 24362/2904 459.2/8.9 2552/1918 353.7/29.9 132051/2887 498.3/1.2 1160/150 478.2/5.2 1590/145 480.3/4.7
2 10784 492.5 12792/2796 450.7/8.5 12932/2642 454.6/7.7 2151/961 481.0/2.3 93833/2031 473.8/3.8 1252/158 476.9/3.2 1723/154 464.8/5.6
3 16883 502.3 22119/2874 451.4/10.1 23216/2824 455.3/9.3 1284/956 349.5/30.4 127107/2720 500.9/0.3 1215/156 474.9/5.4 1621/147 469.5/6.5
4 55706 651.2 26229/3000 596.5/8.4 26732/3000 611.2/6.2 790/587 526.3/19.2 137214/3000 646.1/0.8 1896/242 616.0/5.4 1725/154 600.6/7.8
5 13462 491.6 12053/2986 449.3/8.6 12765/2733 448.2/8.8 3203/2426 483.0/1.7 94707/2049 475.3/3.3 1678/152 480.4/2.3 2293/291 474.0/3.6

4 x 4

1 4219/2726 657.2/- 2692/333 1475.1/- 2629/233 1506.0/-
2 2037/1388 397.1/- 3016/378 767.7/- 2459/219 856.2/-
3 NA NA NA 3964/2647 606.7/- NA 1683/214 1249.0/- 1689/151 1275.3/-
4 1698/1186 260.8/- 2787/315 772.4/- 2605/227 1085.8/-
5 3245/2138 171.5/- 2386/273 835.1/- 2486/202 839.5/-

5x5

1 2796/1964 767.8/- 2269/259 1941.2/- 3588/301 2048.7/-
2 2254/978 844.5/- 8784/1035 1105.4/- 3533/311 1133.0/-
3 NA NA NA 2526/1565 422.4/- NA 5739/708 393.3/- 3311/298 1633.2/-
4 2667/1822 705.9/- 4753/600 1362.2/- 4545/403 1384.5/-
5 977/662 806.8/- 2914/366 932.6/- 2292/205 1056.7/-

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.

6

t
w
t
p
p
m
r

6

b
u
p
t
m
l
t
f
c

D
D
l
i
m
t
s
c
T
t
v

Fig. 5. Comparison of different RL approaches for small-size experiments.
Fig. 6. Comparison of different RL approaches for large-size experiments.
Q
t
D
v
a
e
e
a
d
f
f
p
Q
w

6

a
o
t
d
1

t
t
r
c

.2. Performance of DKDDPG in high-dimensional problems

Next, we compare the performance of the DKDDPG algorithm with
he DDPG algorithm for high dimensional state spaces. Specifically,
e consider 𝑚 = 10, 15, 20, 25, and 30. We break this section into
wo parts: First, we perform the training and report the in-sample
erformance of DKDDPG and DDPG. Second, we check out-of-sample
erformance by evaluating the trained models of both algorithms on the
anufacturing resource matching problem and report the cumulative
eward of both models over 500 timesteps.

.2.1. In-sample performance of DKDDPG
For the training phase, we set the Q-value stopping criterion to

e 3%. We chose the L-2 norm as the penalty function 𝑔𝜋 (⋅, ⋅). We
se the single-period optimal policy discussed in Section 3.2.1 as the
rior policy 𝜇(𝑎|𝑠). Since we consider a linearly scheduled 𝛽𝑡 and run
he program for ten random values of 𝜅, we record the performance
etrics for DKDDPG with the 𝜅 value that obtains the highest average
earned Q-values after convergence or program completion. Along with
he metrics mentioned before, we also calculate the percentage change
or the Q-values, convergence time, and the number of episodes to
onverge for DKDDPG over DDPG.
From Table 2, we observe that the domain knowledge-informed

DPG achieves convergence approximately 30% faster in time than
DPG in all the cases. Moreover, DKDDPG takes approximately 36%
esser number of episodes to solve the matching problem. It is also
nteresting to note that as the size of the cases increases, the improve-
ent in convergence time and episodes also increases, as observed from
he average increment values in time and episode from Table 2. This
uggests that for larger problems with a high number of demand and
apacity types, DKDDPG is much more efficient as compared to DDPG.
his validates our hypothesis of adding a prior policy-based penalty
o the Q-learning update rule. Upon observing the average learned Q-
418

alues, DKDDPG is able to obtain approximately 345% higher average
-values as compared to the standard DDPG for all the cases. We note
hat in some cases, while the DDPG is able to converge sooner than
KDDPG in time, it does so locally and achieves much lower reward
alues. The accelerated convergence in both time and episode count,
long with the increased discounted rewards, indicate that DKDDPG
ffectively leverages the prior policy-based penalty to mitigate biased
stimates and expedite learning. This results in quicker convergence
nd consistently higher Q-values across all scenarios compared to stan-
ard DDPG. Furthermore, in Fig. 6, we illustrate the training process
or two large-scale experiments, highlighting DKDDPG’s superior per-
ormance over DDPG in our dynamic matching problem. In both cases
resented, DKDDPG consistently achieves significantly higher average
-values compared to DDPG, which tends to converge to lower values
ithin our 3000 episode limit.

.2.2. Out-of-sample performance of DKDDPG
For the evaluation phase, we test our trained models of DKDDPG

nd DDPG over a single run of the resource matching problem. We run
ur trained model while simulating the demand distribution over 500
imesteps. Here, we run the models over five instances with different
emand distributions for all the demand-capacity cases, that is, 𝑚 =
0, 15, 20, 25, and 30. These instances are separately generated and are
thus, different from the ones generated in the training phase. We record
the cumulative reward obtained by both the trained models as well
as the percentage change of the cumulative reward of DKDDPG over
DDPG.

From Table 3, we observe that the trained model of DKDDPG is able
o obtain higher cumulative reward over 500 timesteps as compared to
he DDPG model. Specifically, the DKDDPG model achieves an average
eward increment of 103% over DDPG amongst the 5 supply–demand
ases.

EuropeanJournalofOperationalResearch318(2024)408–423

419

S.K.Panda
et
al.

Table 2
DKDDPG vs DDPG comparison for large size experiments during training.
Case Instance DDPG DKDDPG

(𝑚 × 𝑛) Average Time-to- Episodes-to- Average Reward Time-to- Time Episodes-to- Episodes
Q-values convergence convergence Q-values Increment/Decrement convergence Increment/Decrement convergence Increment/Decrement

(s) (%) (s) (%) (%)

10 × 10

1 556.2 25132 2871 2674.3 380.8 18512 −26.3 1858 −35.3
2 510.8 12311 1201 2506.7 390.7 14751 19.8 1099 −8.5
3 411.5 29712 2156 3072.2 646.6 14414 −51.5 1057 −50.9
4 681.3 12142 1147 3184.5 367.4 11556 −4.8 841 −26.7
5 582.3 26055 1983 3521.4 504.7 26679 2.4 1668 −15.9

Average 548.4 21070 1872 2991.8 458.0 17182 −12.1 1305 −27.5

15 × 15

1 886.6 53512 2227 5189.2 485.3 52043 −2.7 1848 −17.0
2 823.9 45079 2513 6233.4 656.6 35171 −21.9 1678 −33.2
3 782.3 16687 1761 6424.5 721.2 4367 −73.8 312 −82.3
4 4765.2 32375 1931 6625.1 39.0 31229 −3.5 1575 −18.4
5 976.5 36994 1771 5243.3 436.9 37934 2.5 1605 −9.4

Average 1646.9 36929 2041 5943.1 467.8 32149 −19.8 1404 −32.1

20 × 20

1 22996.4 8862 598 55113.2 139.6 6026 −32.0 329 −44.9
2 9702.2 10958 647 15259.6 57.3 6424 −41.4 352 −45.6
3 4932.1 9083 612 8912.2 80.7 8525 −6.2 469 −23.4
4 911.7 53167 1546 7189.3 688.5 50091 −5.8 1416 −8.4
5 5488.1 17405 918 11016.5 100.7 10789 −38.0 542 −40.9

Average 8806.1 19895 864 19498.2 213.4 16371 −24.7 622 −32.6

25 × 25

1 13276.5 53347 634 19693.2 48.3 38001 −28.7 544 −14.2
2 4475.4 51572 631 13952.6 211.7 11799 −77.1 276 −56.3
3 1356.3 58195 655 9635.9 610.4 10509 −81.9 258 −60.6
4 12324.7 52751 624 15097.2 22.5 9794 −81.4 232 −62.8
5 9546.1 16227 355 10828.3 13.4 23543 45.1 415 16.9

Average 8195.8 46418 580 13841.4 181.3 18729 −44.8 345 −35.4

30 × 30

1 4727.5 55139 717 13024.1 175.5 16689 −69.7 332 −53.7
2 21046.2 55561 720 64567.3 206.8 19087 −65.6 362 −49.7
3 3285.4 48838 664 19604.1 496.7 13289 −72.8 283 −57.4
4 1751.4 58465 722 17785.2 915.5 58252 −0.36 692 −4.2
5 5286.5 39259 583 19145.3 262.2 21992 −44.0 396 −32.1

Average 7219.4 51452 681 26825.2 411.3 25862 −50.5 413 −39.4

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.
Table 3
DKDDPG vs DDPG comparison for large size experiments during evaluation.
Case Instance DDPG DKDDPG

(𝑚 × 𝑛) Cumulative Reward Cumulative Reward Reward
Increment/Decrement
(%)

10 × 10

1 57640 98790 71.3
2 17700 94229 432.3
3 20097 35020 74.2
4 16136 119297 639.3
5 65906 122830 86.4

Average 35 496 94033 260.7

15 × 15

1 27545 47625 72.9
2 37118 68237 83.8
3 28546 78356 174.5
4 13447 56321 318.8
5 53487 87612 63.8

Average 32 029 67630 142.8

20 × 20

1 28994 39554 36.4
2 36670 54933 49.8
3 30812 43090 39.9
4 47200 67478 42.9
5 41698 48933 17.3

Average 37 075 50798 37.3

25 × 25

1 379956 527663 38.9
2 843976 976238 15.7
3 538745 679832 26.2
4 306357 475368 55.2
5 481672 538135 11.7

Average 510141 639447 29.5

30 × 30

1 685083 831725 21.4
2 721876 904137 25.2
3 377772 542611 43.6
4 432175 852467 97.3
5 483467 655734 35.6

Average 540075 747335 44.6
o
i
d
r

A

d

A

7. Conclusion & future work

In this paper, we considered the problem of dynamically matching
the demand-capacity types of resources in manufacturing. We formu-
lated the problem as an MDP where the outstanding demand at the
end of a period is considered the state and the quantity of demand and
capacity matched is the action matrix. To tackle the issue of biased esti-
mates and infeasible actions, we introduced prior policy-based penalty
and infeasibility penalty respectively into the traditional Q-learning
algorithm. We considered two cases of the regularization parameter
𝛽: constant and scheduling, and further theoretically proved the con-
vergence of our domain knowledge-informed Q-learning algorithm for
both 𝛽 cases. To avoid the curse of dimensionality, we proposed the
DKDDPG algorithm which utilizes our modified Q-learning update rule.
We investigated the performance of our DKDDPG algorithm with some
benchmark RL algorithms for both small and large-size experiments and
were able to demonstrate improvement in performance and efficiency
over those algorithms.

In this paper, we considered a dynamic resource-matching problem
in manufacturing for a matching firm with centralized control. It is
worth considering a decentralized, cooperative problem with multiple
agents having only local information. While our problem considers a
single-period lead time, it will be interesting to model a system with a
multi-period lead time to accommodate for delays in production due to
numerous reasons. We have not considered any matching costs in our
system; including a supply-based cost in our reward framework could
aid in minimizing the number of suppliers to fulfill a given demand
type. We provided theoretical results for domain knowledge-informed
Q-learning which establishes a performance guarantee for small-size
problems. Future work will consider deriving convergence results for
algorithms with function approximations.
420
CRediT authorship contribution statement

Saunak Kumar Panda: Conceptualization, Methodology, Writing –
riginal draft, Writing – review & editing. Yisha Xiang: Conceptual-
zation, Formal analysis, Investigation, Methodology, Writing – original
raft, Writing – review & editing. Ruiqi Liu: Methodology, Writing –
eview & editing.

cknowledgment

This work is supported in part by the U.S. National Science Foun-
ation under award 2305486.

ppendix A. Proof of Theorem 1

We shall first state the result by Bertsekas and Tsitsiklis (1996)
provided as Lemma 1 below.

Lemma 1. Let 𝑓𝑡 be the sequence generated by the iteration (15). Given
the conditions in Assumption 1 are satisfied, then 𝑓𝑡 converges to 𝑓 ∗ with
probability 1.

Notice that at the optimal policy, the optimal domain knowledge-
informed Q-function satisfies

𝑄∗(𝑠, 𝑎) = 𝑟 + 𝛾 max
𝜋

[𝐹 𝜋 (𝑠′)|𝑠, 𝑎]

≡ 𝐁∗[𝑄∗](𝑠,𝑎)

The contraction property of operator 𝐁∗ defined above can be

proven similarly as done by Fox et al. (2015).

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.

v

E

T

Theorem 1. Let 𝑄𝑡 be the sequence generated by the iteration (14). We
assume that the step-sizes 𝛼𝑡 are non-negative and satisfy
∞
∑

𝑡=0
𝛼𝑡 = ∞,

∞
∑

𝑡=0
𝛼2𝑡 < ∞

Then 𝑄𝑡 converges to 𝑄∗ with probability 1.

Proof. We can see that the 1st assumption above is the same as condi-
tion (a) stated in Assumption 1. Since 𝐁∗ is a contraction mapping,
𝐁∗ is automatically a pseudo-contraction, satisfying condition (d) of
Assumption 1.

We now verify the assumptions on the noise variable 𝜔𝑡. Using the
definition of 𝐁∗, we automatically get

E[𝜔𝑡(𝑟𝑡, 𝑠𝑡+1)|𝑡] = E
[

−𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡) + 𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
|

|

|

𝑡
]

= −𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡) + E
[

𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
|

|

|

𝑡
]

= 0

Hence, the condition (b) of Assumption 1 is satisfied. Now, we shall
erify condition (c).

[𝜔2
𝑡 (𝑟𝑡, 𝑠𝑡+1)|𝑡] = E

[

(

−𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡) + 𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
)2
|

|

|

𝑡

]

= E
[

(

−𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
)2 +

(

𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
)2

− 2𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
(

𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
)

|

|

|

𝑡

]

aking expectation for each term, we get

= E
[

(

−𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
)2
|

|

|

𝑡

]

+ E
[

(

𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
)2
|

|

|

𝑡

]

− 2E
[

(

𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
)(

𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
)

|

|

|

𝑡

]

=
(

−𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
)2 + E

[

(

𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
)2
|

|

|

𝑡

]

− 2E
[

(

𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
)

|

|

|

𝑡

]

E
[

(

𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
)

|

|

|

𝑡

]

=
(

𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
)2 + E

[

(

𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
)2
|

|

|

𝑡

]

− 2
(

𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
)(

𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
)

= E
[

(

𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
)2
|

|

|

𝑡

]

−
(

𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
)2

≤ 𝐴 + 𝐵‖‖
‖

𝑄𝑡
‖

‖

‖

2

where 𝐴 ≥ E
[

(

𝑟𝑡 + 𝛾E𝑝[𝐹 𝜋 (𝑠𝑡+1)|𝑠𝑡, 𝑎𝑡]
)2
|

|

|

𝑡

]

and 𝐵 = −1 are constants.
Since, all the conditions of Assumption 1 are satisfied, hence using
Lemma 1 we conclude that 𝑄𝑡 converges to 𝑄∗ with probability 1. □

Appendix B. Proof of Theorem 2

We use a result provided by Singh et al. (2000) denoted as Lemma 2
to help prove Theorem 2.

Lemma 2. Consider a stochastic process (𝛼𝑡, 𝛥𝑡,𝐻𝑡), 𝑡 ≥ 0, where
𝛼𝑡, 𝛥𝑡,𝐻𝑡 ∶ 𝑋 ⟶  satisfy the equations

𝛥𝑡+1(𝑥) = (1 − 𝛼𝑡(𝑥))𝛥𝑡(𝑥) + 𝛼𝑡(𝑥)𝐻𝑡(𝑥), 𝑥 ∈ 𝑋, 𝑡 = 0, 1, 2,…

Let 𝑃𝑡 be a sequence of increasing 𝜎−fields such that the 𝛼0 and 𝛥0 are
𝑃0−measurable and 𝛼𝑡, 𝛥𝑡 and 𝐻𝑡−1 are 𝑃𝑡−measurable, 𝑡 = 1, 2,… .
Assume that the following hold:

1. the set X is finite.
2. 0 ≤ 𝛼𝑡(𝑥) ≤ 1,

∑

𝑡 𝛼𝑡(𝑥) = ∞,
∑

𝑡 𝛼
2
𝑡 (𝑥) < ∞ w.p.1.

3. ‖𝐸{𝐻𝑡(⋅)|𝑃𝑡}‖𝑊 ≤ 𝜅‖𝛥𝑡‖𝑊 + 𝑐𝑡, where 𝜅 ∈ [0, 1) and 𝑐𝑡 converges
to zero w.p.1.

4. 𝑉 𝑎𝑟{𝐻𝑡(𝑋)|𝑃𝑡} ≤ 𝐾(1 + ‖𝛥𝑡‖𝑊)2, where 𝐾 is some constant.
421

Then, 𝛥𝑡 converges to zero with probability one(w.p.1).
Theorem 2. Let 𝑄𝑡 be the sequence generated by the iteration (19). We
assume that the step-sizes 𝛼𝑡 are non-negative and satisfy
∞
∑

𝑡=0
𝛼𝑡 = ∞,

∞
∑

𝑡=0
𝛼2𝑡 < ∞

Then 𝑄𝑡 converges to 𝑄∗ with probability 1.

Proof. Subtracting the optimal 𝑄∗ on both sides of Eq. (9), we get

𝛥𝑡+1(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼𝑡)𝛥𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡(𝑟𝑡 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1) −𝑄∗(𝑠𝑡, 𝑎𝑡))

where, 𝛥𝑡(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) − 𝑄∗(𝑠𝑡, 𝑎𝑡). We shall denote 𝐻𝑡(𝑠𝑡, 𝑎𝑡) =
𝑟𝑡 + 𝛾 max𝜋 𝐹 𝜋

𝑡 (𝑠𝑡+1) −𝑄∗(𝑠𝑡, 𝑎𝑡). Thus, rewriting it, we get

𝛥𝑡+1(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼𝑡)𝛥𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡𝐻𝑡(𝑠𝑡, 𝑎𝑡)

Notice that the optimal Q-function for a given 𝛽𝑡 satisfies

𝑄∗
𝑡(𝑠𝑡, 𝑎𝑡) = 𝑟 + 𝛾 max

𝜋
𝐹 𝜋
𝑡 (𝑠𝑡+1) (B.1)

= 𝑟 + 𝛾 max
𝜋

∑

𝑎𝑡+1

𝜋(𝑎𝑡+1|𝑠𝑡+1)
[

1
𝛽𝑡
𝑔𝜋 (𝑠𝑡+1, 𝑎𝑡+1) +𝑄𝜋

𝑡 (𝑠𝑡+1, 𝑎𝑡+1)
]

(B.2)

≡ 𝐁∗
𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡) (B.3)

Now, as the value of 𝛽𝑡 increases to a large number,
1
𝛽𝑡
𝑔𝜋 (𝑠𝑡+1, 𝑎𝑡+1) ⟶ 0. So, the optimal Q-function as 𝛽𝑡 ⟶ ∞ is given

by

𝑄∗(𝑠𝑡, 𝑎𝑡) = 𝑟 + 𝛾 max
𝜋

∑

𝑎′
𝜋(𝑎𝑡+1|𝑠𝑡+1)𝑄𝜋

𝑡 (𝑠𝑡+1, 𝑎𝑡+1) (B.4)

≡ 𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡) (B.5)

We verify all the assumptions in Lemma 2 to prove the convergence
of domain knowledge-inspired Q-learning with scheduled 𝛽𝑡. Assump-
tions 1 and 2 of Lemma 2 are trivially satisfied for our algorithm.
We need to check Assumptions 3 and 4 in Lemma 2. Let 𝑃𝑡 =
{𝑄0(𝑠, 𝑎),… , 𝑄𝑡(𝑠, 𝑎),𝐻0(𝑠, 𝑎),
… ,𝐻𝑡(𝑠, 𝑎)}, for 𝑠 ∈  , 𝑎 ∈ . Then,
‖

‖

‖

E{𝐻𝑡(𝑠𝑡, 𝑎𝑡)|𝑃𝑡}
‖

‖

‖𝑊
= ‖

‖

‖

E{𝑟 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1) −𝑄∗(𝑠𝑡, 𝑎𝑡)|𝑃𝑡}

‖

‖

‖𝑊

= ‖

‖

‖

E{𝑟 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1)|𝑃𝑡} − E{𝑄∗(𝑠𝑡, 𝑎𝑡)|𝑃𝑡}

‖

‖

‖𝑊

Using Equation (B.1) and (B.3)

= ‖

‖

‖

𝐁∗
𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡) −𝑄∗(𝑠𝑡, 𝑎𝑡)

‖

‖

‖𝑊

Adding and subtracting 𝑄∗
𝑡,

= ‖

‖

‖

𝐁∗
𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡) −𝑄∗

𝑡(𝑠𝑡, 𝑎𝑡) +𝑄∗
𝑡(𝑠𝑡, 𝑎𝑡) −𝑄∗(𝑠𝑡, 𝑎𝑡)

‖

‖

‖𝑊

≤ ‖

‖

‖

𝐁∗
𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡) −𝑄∗

𝑡(𝑠𝑡, 𝑎𝑡)
‖

‖

‖𝑊
+ ‖

‖

‖

𝑄∗
𝑡(𝑠𝑡, 𝑎𝑡) −𝑄∗(𝑠𝑡, 𝑎𝑡)

‖

‖

‖𝑊

Applying the definitions from Eq. (B.5) to the first term,

= ‖

‖

‖

𝐁∗
𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡) − 𝐁∗

𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
‖

‖

‖

𝑊 + ‖

‖

‖

𝑄∗
𝑡(𝑠𝑡, 𝑎𝑡) −𝑄∗(𝑠𝑡, 𝑎𝑡)

‖

‖

‖𝑊

= ‖

‖

‖

𝑄∗
𝑡(𝑠𝑡, 𝑎𝑡) −𝑄∗(𝑠𝑡, 𝑎𝑡)

‖

‖

‖𝑊

By definitions (B.3) and (B.5),

|𝑄∗
𝑡(𝑠𝑡, 𝑎𝑡) −𝑄∗(𝑠𝑡, 𝑎𝑡)| = |𝐁∗

𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡) − 𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)|

= |

|

|

𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1) − 𝛾 max

𝜋

∑

𝑎𝑡+1

𝜋(𝑎𝑡+1|𝑠𝑡+1)𝑄𝜋
𝑡 (𝑠𝑡+1, 𝑎𝑡+1)

|

|

|

≤ 𝛾 max
𝜋

|

|

|

𝐹 𝜋
𝑡 (𝑠𝑡+1) −

∑

𝑎𝑡+1

𝜋(𝑎𝑡+1|𝑠𝑡+1)𝑄𝜋
𝑡 (𝑠𝑡+1, 𝑎𝑡+1)

|

|

|

≤ 𝛾 max
𝜋

∑

𝑎𝑡+1

𝜋(𝑎𝑡+1|𝑠𝑡+1)
|

|

|

1
𝛽𝑡
𝑔𝜋 (𝑠𝑡+1, 𝑎𝑡+1) +𝑄𝜋

𝑡 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄𝜋
𝑡 (𝑠𝑡+1, 𝑎𝑡+1)

|

|

|

= 𝛾 max
𝜋

∑

𝑎𝑡+1

𝜋(𝑎𝑡+1|𝑠𝑡+1)
|

|

|

1
𝛽𝑡
𝑔𝜋 (𝑠𝑡+1, 𝑎𝑡+1)

|

|

|

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.

f

|

T
‖

‖

‖

T
‖

‖

‖

Assume 𝑔𝜋 (𝑠𝑡+1, 𝑎𝑡+1) is bounded by a constant 𝐶 for all 𝜋, 𝑠𝑡+1, 𝑎𝑡+1. It
ollows that

𝑄∗
𝑡(𝑠𝑡, 𝑎𝑡) −𝑄∗(𝑠𝑡, 𝑎𝑡)| ≤

𝛾
𝛽𝑡
𝐶

herefore, we have

𝛥∗
𝑡 (𝑠𝑡, 𝑎𝑡)

‖

‖

‖𝑊
= ‖

‖

‖

𝑄∗
𝑡(𝑠𝑡, 𝑎𝑡) −𝑄∗(𝑠𝑡, 𝑎𝑡)

‖

‖

‖𝑊

≤ 𝛾
𝛽𝑡
𝐶 ⟶ 0.

hus,

E{𝐻𝑡(𝑠𝑡, 𝑎𝑡)|𝑃𝑡}
‖

‖

‖𝑊
≤ 𝜅‖‖

‖

𝛥𝑡(𝑠𝑡, 𝑎𝑡)
‖

‖

‖𝑊
+ 𝑐𝑡

where 𝑐𝑡 = 𝛾‖‖
‖

− 𝛥∗
𝑡 (𝑠𝑡, 𝑎𝑡)

‖

‖

‖𝑊
+ ‖

‖

‖

𝛥∗
𝑡 (𝑠𝑡, 𝑎𝑡)

‖

‖

‖𝑊
which converges to zero

w.p.1 and 𝜅 = 0 in the 1st term. Thus, assumption 3 is verified. We
shall now verify assumption 4 in Lemma 2.

𝑉 𝑎𝑟{𝐻𝑡(𝑠𝑡, 𝑎𝑡)|𝑃𝑡} = E{𝐻2
𝑡 (𝑠𝑡, 𝑎𝑡)|𝑃𝑡} − E{𝐻𝑡(𝑠𝑡, 𝑎𝑡)|𝑃𝑡}2

= E
{(

𝑟 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1) −𝑄∗(𝑠𝑡, 𝑎𝑡)

)2
|𝑃𝑡

}

− E
{

𝑟 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1) −𝑄∗(𝑠𝑡, 𝑎𝑡)|𝑃𝑡

}2

= E
{(

𝑟 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1)

)2 +
(

𝑄∗(𝑠𝑡, 𝑎𝑡)
)2

− 2
(

𝑟 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1)

)

𝑄∗(𝑠𝑡, 𝑎𝑡)|𝑃𝑡
}

− E
{

𝑟 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1) −𝑄∗(𝑠𝑡, 𝑎𝑡)|𝑃𝑡

}2

= E
{(

𝑟 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1)

)2
|𝑃𝑡

}

+ E
{(

𝑄∗(𝑠𝑡, 𝑎𝑡)
)2
|𝑃𝑡

}

− 2E
{(

𝑟 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1)

)

𝑄∗(𝑠𝑡, 𝑎𝑡)|𝑃𝑡
}

−
(

E
{(

𝑟 + 𝛾 max
𝜋

𝐹 𝜋
𝑡 (𝑠𝑡+1)

)

|𝑃𝑡
}

− E
{

𝑄∗(𝑠𝑡, 𝑎𝑡)|𝑃𝑡
})2

Applying the definitions (B.3) and (B.5),

=
(

𝐁∗
𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡)

)2 +
(

𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)
)2 − 2𝐁∗

𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡)𝐁
∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)

− 𝑎𝑙𝑙𝑜𝑢𝑟
(

𝐁∗
𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡) − 𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)

)2

Combining the first 3 terms above,

=
(

𝐁∗
𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡) − 𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)

)2 −
(

𝐁∗
𝑡 [𝑄𝑡](𝑠𝑡 ,𝑎𝑡) − 𝐁∗[𝑄𝑡](𝑠𝑡 ,𝑎𝑡)

)2

= 𝐾(1 + ‖𝛥𝑡‖𝑊)2

where 𝐾 = 0, hence making it zero variance. Thus, assumption 4 is
verified. Since all the assumptions are verified, 𝑄𝑡 ⟶ 𝑄∗ w.p.1 by
Lemma 2. □

References

Al-Abbasi, A. O., Ghosh, A., & Aggarwal, V. (2019). Deeppool: Distributed model-free
algorithm for ride-sharing using deep reinforcement learning. IEEE Transactions on
Intelligent Transportation Systems, 20(12), 4714–4727.

Antoniadis, A., Gouleakis, T., Kleer, P., & Kolev, P. (2020). Secretary and online
matching problems with machine learned advice. Advances in Neural Information
Processing Systems, 33, 7933–7944.

Ashlagi, I., & Shi, P. (2016). Optimal allocation without money: An engineering
approach. Management Science, 62(4), 1078–1097. http://dx.doi.org/10.1287/mnsc.
2015.2162.

Baïou, M., & Balinski, M. (2000). The stable admissions polytope. Mathematical
Programming, 87, 427–439. http://dx.doi.org/10.1007/s101070050004.

Barrett, T. D., Clements, W. R., Foerster, J. N., & Lvovsky, A. I. (2020). Exploratory
combinatorial optimization with reinforcement learning. arXiv:1909.04063.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2017). Neural combinatorial
optimization with reinforcement learning. arXiv:1611.09940.

Bengio, Y., Lodi, A., & Prouvost, A. (2020). Machine learning for combinatorial
optimization: a methodological tour d’horizon. arXiv:1811.06128.

Bertsekas, D., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Athena Scientific.
Bloch, F., & Houy, N. (2009). Optimal assignment of durable objects to successive

agents. Economic Theory, 51, http://dx.doi.org/10.1007/s00199-011-0616-8.
Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., & Song, L. (2018). Learning combinatorial

optimization algorithms over graphs. arXiv:1704.01665.
422
Delarue, A., Anderson, R., & Tjandraatmadja, C. (2020). Reinforcement learning with
combinatorial actions: An application to vehicle routing. arXiv:2010.12001.

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, J., et
al. (2016). Deep reinforcement learning in large discrete action spaces. arXiv:
1512.07679.

Fox, R., Pakman, A., & Tishby, N. (2015). Taming the noise in reinforcement learning
via soft updates. arXiv preprint arXiv:1512.08562.

Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage.
American Mathematical Monthly, 69(1), 9–15.

Gao, Z., Gao, Y., Hu, Y., Jiang, Z., & Su, J. (2020). Application of deep q-network in
portfolio management. In 2020 5th IEEE international conference on big data analytics
(pp. 268–275). IEEE.

Hu, M., & Zhou, Y. (2022). Dynamic type matching. Manufacturing & Service Operations
Management, 24(1), 125–142. http://dx.doi.org/10.1287/msom.2020.0952.

Jang, B., Kim, M., Harerimana, G., & Kim, J. W. (2019). Q-learning algorithms: A
comprehensive classification and applications. IEEE Access, 7, 133653–133667.
http://dx.doi.org/10.1109/ACCESS.2019.2941229.

Jin, C., Allen-Zhu, Z., Bubeck, S., & Jordan, M. I. (2018). Is Q-learning provably
efficient?. arXiv:1807.03765.

Karp, R. M., Vazirani, U. V., & Vazirani, V. V. (1990). An optimal algorithm for on-line
bipartite matching. In Proceedings of the twenty-second annual ACM symposium on
theory of computing (pp. 352–358). New York, NY, USA: Association for Computing
Machinery, http://dx.doi.org/10.1145/100216.100262.

Knuth, D. E. (1996). Stable marriage and its relation to other combinatorial problems:
An introduction to the mathematical analysis of algorithms.

Kool, W., van Hoof, H., & Welling, M. (2019). Attention, learn to solve routing
problems!. arXiv:1803.08475.

Kurino, M. (2014). House allocation with overlapping generations. American Economic
Journal: Microeconomics, 6(1), 258–289.

Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.
07274.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015).
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.
02971.

Liu, Y., Wang, L., & Wang, X. V. (2018). Cloud manufacturing: latest advancements
and future trends. Procedia Manufacturing, 25, 62–73.

Mitropoulos, L., Kortsari, A., & Ayfantopoulou, G. (2021). A systematic literature review
of ride-sharing platforms, user factors and barriers. European Transport Research
Review, 13, 1–22.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540), 529–533.

Nazari, M., Oroojlooy, A., Snyder, L. V., & Takáč, M. (2018). Reinforcement learning
for solving the vehicle routing problem. arXiv:1802.04240.

Ortega, F., & Wolsey, L. (2003). A branch-and-cut algorithm for the single-commodity,
uncapacitated, fixed-charge network flow problem. Networks, 41, http://dx.doi.org/
10.1002/net.10068.

Pahwa, D., Dur, U., & Starly, B. (2020). Mechanism design for stable matching with
contracts in a dynamic Manufacturing-as-a-Service (MaaS) marketplace. http://dx.
doi.org/10.48550/ARXIV.2010.12761, URL https://arxiv.org/abs/2010.12761.

Renna, P., & Argoneto, P. (2011). Capacity sharing in a network of independent
factories: A cooperative game theory approach. Robotics and Computer Integrated
Manufacturing, 27, 405–417. http://dx.doi.org/10.1016/j.rcim.2010.08.009.

Riesen, K., Fankhauser, S., & Bunke, H. (2007). Speeding up graph edit distance
computation with a bipartite heuristic. In Mining and learning with graphs.

Roth, A. E. (1984). Stability and polarization of interests in job matching. Econometrica,
47–57.

Roth, A. E. (1985). Conflict and coincidence of interest in job matching: Some new
results and open questions. Mathematics of Operations Research, 10(3), 379–389,
URL http://www.jstor.org/stable/3689635.

Roth, A. E., Sönmez, T., & Ünver, M. U. (2004). Kidney exchange. The Quarterly Journal
of Economics, 119(2), 457–488.

Roth, A. E., & Sotomayor, M. (1989). The college admissions problem revisited.
Econometrica, 559–570.

Sethuraman, J., Teo, C., & Qian, L. (2006). Many-to-one stable matching: Geometry
and fairness. Mathematics of Operations Research, 31, 581–596. http://dx.doi.org/
10.1287/moor.1060.0207.

Singh, S., Jaakkola, T., Littman, M., & Szepesvári, C. (2000). Convergence results
for single-step on-policy reinforcement-learning algorithms. Machine Learning, 38,
287–308. http://dx.doi.org/10.1023/A:1007678930559.

Sobel, M. J. (1981). Myopic solutions of Markov decision processes and stochastic
games. Operations Research, 29(5), 995–1009.

Sutton, J. (1986). Vertical product differentiation: Some basic themes. Ameri-
can Economic Review, 76(2), 393–398, URL https://ideas.repec.org/a/aea/aecrev/
v76y1986i2p393-98.html.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
Tafreshian, A., Masoud, N., & Yin, Y. (2020). Frontiers in service science: Ride matching

for peer-to-peer ride sharing: A review and future directions. Service Science, 12,
40–66. http://dx.doi.org/10.1287/serv.2020.0258.

http://refhub.elsevier.com/S0377-2217(24)00386-2/sb1
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb1
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb1
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb1
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb1
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb2
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb2
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb2
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb2
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb2
http://dx.doi.org/10.1287/mnsc.2015.2162
http://dx.doi.org/10.1287/mnsc.2015.2162
http://dx.doi.org/10.1287/mnsc.2015.2162
http://dx.doi.org/10.1007/s101070050004
http://arxiv.org/abs/1909.04063
http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1811.06128
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb8
http://dx.doi.org/10.1007/s00199-011-0616-8
http://arxiv.org/abs/1704.01665
http://arxiv.org/abs/2010.12001
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1512.08562
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb14
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb14
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb14
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb15
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb15
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb15
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb15
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb15
http://dx.doi.org/10.1287/msom.2020.0952
http://dx.doi.org/10.1109/ACCESS.2019.2941229
http://arxiv.org/abs/1807.03765
http://dx.doi.org/10.1145/100216.100262
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb20
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb20
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb20
http://arxiv.org/abs/1803.08475
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb22
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb22
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb22
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb25
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb25
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb25
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb26
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb26
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb26
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb26
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb26
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb27
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb27
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb27
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb27
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb27
http://arxiv.org/abs/1802.04240
http://dx.doi.org/10.1002/net.10068
http://dx.doi.org/10.1002/net.10068
http://dx.doi.org/10.1002/net.10068
http://dx.doi.org/10.48550/ARXIV.2010.12761
http://dx.doi.org/10.48550/ARXIV.2010.12761
http://dx.doi.org/10.48550/ARXIV.2010.12761
https://arxiv.org/abs/2010.12761
http://dx.doi.org/10.1016/j.rcim.2010.08.009
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb32
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb32
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb32
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb33
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb33
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb33
http://www.jstor.org/stable/3689635
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb35
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb35
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb35
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb36
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb36
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb36
http://dx.doi.org/10.1287/moor.1060.0207
http://dx.doi.org/10.1287/moor.1060.0207
http://dx.doi.org/10.1287/moor.1060.0207
http://dx.doi.org/10.1023/A:1007678930559
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb39
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb39
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb39
https://ideas.repec.org/a/aea/aecrev/v76y1986i2p393-98.html
https://ideas.repec.org/a/aea/aecrev/v76y1986i2p393-98.html
https://ideas.repec.org/a/aea/aecrev/v76y1986i2p393-98.html
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb41
http://dx.doi.org/10.1287/serv.2020.0258

European Journal of Operational Research 318 (2024) 408–423S.K. Panda et al.
Ünver, M. U. (2010). Dynamic kidney exchange. Review of Economic Studies, 77(1),
372–414.

Vanvuchelen, N., & Boute, R. N. (2022). The use of continuous action representations
to scale deep reinforcement learning: An application to inventory control. SSRN
Electronic Journal, http://dx.doi.org/10.2139/ssrn.4253600.

Wang, Q., & Tang, C. (2021). Deep reinforcement learning for transportation net-
work combinatorial optimization: A survey. Knowledge-Based Systems, 233, Article
107526.
423
Wu, M.-C., Hsiung, Y., & Hsu, H.-M. (2005). A tool planning approach considering
cycle time constraints and demand uncertainty. International Journal of Advanced
Manufacturing Technology, 26, 565–571.

Yang, H., Chen, R., & Kumara, S. (2021). Stable matching of customers and manu-
facturers for sharing economy of additive manufacturing. Journal of Manufacturing
Systems, 61, 1–12. http://dx.doi.org/10.1016/j.jmsy.2021.09.013.

http://refhub.elsevier.com/S0377-2217(24)00386-2/sb43
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb43
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb43
http://dx.doi.org/10.2139/ssrn.4253600
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb45
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb45
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb45
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb45
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb45
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb46
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb46
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb46
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb46
http://refhub.elsevier.com/S0377-2217(24)00386-2/sb46
http://dx.doi.org/10.1016/j.jmsy.2021.09.013

	Dynamic resource matching in manufacturing using deep reinforcement learning
	Introduction
	Literature Review
	Matching Problem
	Reinforcement learning
	RL for Combinatorial optimization

	Problem Setting
	MDP framework
	Domain knowledge-informed Q-learning
	Prior policy µ
	Regularization parameter β

	Infeasibility penalty

	Convergence of domain knowledge-informed Q-learning
	Value-penalty function with fixed β
	Value-penalty function with changing βt

	Domain knowledge-informed Deep Deterministic Policy gradient (DKDDPG) Algorithm
	Computational Study
	Performance of DKDDPG in Small size problems
	Performance of DKDDPG in High-dimensional problems
	In-sample performance of DKDDPG
	Out-of-sample performance of DKDDPG

	Conclusion & Future work
	CRediT authorship contribution statement
	Acknowledgment
	Appendix A. Proof of Theorem 1
	Appendix B. Proof of Theorem 2
	References

