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ARTICLE INFO ABSTRACT

Keywords: Matching plays an important role in the logical allocation of resources across a wide range of industries.
Assignment The benefits of matching have been increasingly recognized in manufacturing industries. In particular,
Matching problem

capacity sharing has received much attention recently. In this paper, we consider the problem of dynamically
matching demand-capacity types of manufacturing resources. We formulate the multi-period, many-to-many
manufacturing resource-matching problem as a sequential decision process. The formulated manufacturing
resource-matching problem involves large state and action spaces, and it is not practical to accurately model
the joint distribution of various types of demands. To address the curse of dimensionality and the difficulty
of explicitly modeling the transition dynamics, we use a model-free deep reinforcement learning approach to
find optimal matching policies. Moreover, to tackle the issue of infeasible actions and slow convergence due
to initial biased estimates caused by the maximum operator in Q-learning, we introduce two penalties to the
traditional Q-learning algorithm: a domain knowledge-based penalty based on a prior policy and an infeasibility
penalty that conforms to the demand-supply constraints. We establish theoretical results on the convergence
of our domain knowledge-informed Q-learning providing performance guarantee for small-size problems. For
large-size problems, we further inject our modified approach into the deep deterministic policy gradient
(DDPG) algorithm, which we refer to as domain knowledge-informed DDPG (DKDDPG). In our computational
study, including small- and large-scale experiments, DKDDPG consistently outperformed traditional DDPG and
other RL algorithms, yielding higher rewards and demonstrating greater efficiency in time and episodes.

Manufacturing
Markov decision process
Deep reinforcement learning

1. Introduction example, a new semiconductor fab costs one to four billion dollars to
build, and the price for a single machine may be as high as four to
Matching plays an important role in the logical allocation of re- five million dollars with a high obsolescence rate (Renna & Argoneto,

sources across a wide range of industries such as transportation, col-
lege admissions (Roth & Sotomayor, 1989), organ allocation (Roth,
Sonmez, & Unver, 2004), and online dating. In the transportation
sector, matching is the core issue in ride-sharing and its many variants
(e.g., carpooling, P2P (peer-to-peer) ride-sharing). Ride-sharing has
successfully promoted sustainable transportation, reduced car utiliza-
tion, increased vehicle occupancy, and public transit among other
benefits (Mitropoulos, Kortsari, & Ayfantopoulou, 2021). Matching also

2011; Wu, Hsiung, & Hsu, 2005). In recent years, manufactured prod-
ucts have had a short product life cycle and high demand volatility,
making the capacity investment not only expensive but also risky.
Capacity sharing provides a viable solution to address the capacity limit
facing small manufacturers and helps alleviate the cost burdens large
manufacturers carry. Further accelerating the growth of the capacity
sharing market is the recent paradigm shift in the manufacturing sector

plays a critical role in organ allocation with the most common example to digital and cloud manufacturing (Liu, Wang, & Wang, 2018) that
being kidney allocation, where donors and patients are matched based allows users to request services ranging from product design, manufac-
on their compatibility which depends on factors such as organ quality turing, testing, management and all other stages of a product life-cycle
and patient condition. through the cloud. This provides the critical technical infrastructure for
The benefits of matching have been increasingly recognized in crowd-sourcing and matching between customers and manufacturers.
manufacturing industries. In particular, capacity sharing has received A few recent works have studied how to optimize matching in
much attention recently. Capacity investment is expensive across man- manufacturing. Yang, Chen, and Kumara (2021) study a two-sided

ufacturing sectors (e.g., semiconductors, and consumer electronics). For
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additive-manufacturing (AM) market for one period and design a bi-
partite matching framework to match customers with manufacturers.
Pahwa, Dur, and Starly (2020) consider the bipartite matching problem
in manufacturing-as-a-service marketplaces in a dynamic environment
and propose approximate stable matching algorithms to optimize the
revenue for the marketplace platform. While there have been some
recent advances in this field, matching problems in manufacturing
industries are still largely under-explored.

To meet the increasing need for resource sharing in manufacturing,
we consider a dynamic manufacturing resource matching problem in a
finite-time horizon. Although sharing some general characteristics with
common matching problems such as heterogeneous supply-demand
types and similar reward structures, resource matching in manufactur-
ing is distinctively different in several key aspects. First, the matching
of the types needs to be optimized over a finite horizon. That is, at each
decision period, there are demands for manufacturing capacities that
need to be fulfilled, and this matching process evolves through time.
Dynamic matching needs to be differentiated from the instantaneous
matching commonly seen in ride-sharing. Second, resource matching
typically involves many-to-many matching, since a single order can be
fulfilled by multiple manufacturers based on factors such as capacity
and distance. Similarly, a single manufacturer can serve multiple cus-
tomers depending on the type of orders or demand types. Third, the
matching framework typically consists of large state and action spaces.
State and action space sizes grow exponentially as the number of firms
and demand-supply types increases, while many-to-many matching
further expands the action space. Lastly, the matching of resources
is constrained by manufacturers’ capacities. A manufacturer can only
share the capacity that is available and a customer is not incentivized
to take more than the amount demanded. While feasibility is also an
important consideration in an organ allocation problem, a feasibility
constraint makes solving a dynamic, many-to-many matching problem
significantly more difficult.

In this paper, we explicitly consider the aforementioned character-
istics pertaining to resource matching in manufacturing and formulate
the problem as a sequential decision process. Specifically, we consider
a two-sided matching with random demands and fixed capacities over
a finite-time horizon. The matching is many-to-many constrained by
the demand and supply quantities. Demands for capacities are allowed
to be backlogged. Each matching is associated with a reward and
the objective is to maximize the expected total rewards. A challeng-
ing modeling element here concerns the transition dynamics of the
matching system of interest. It is difficult to accurately model the
joint distribution of all types of demands, which inevitably calls for
a model-free method. Therefore, we resolve to reinforcement learning
(RL) which does not require the knowledge of a probabilistic model for
system transitions. Our work represents an initial attempt to solve a
complex, dynamic manufacturing resource-matching problem via RL.

Our problem is distinguished by its inclusion of high-dimensional
states and actions, with the action space expanding significantly as the
state space increases. This challenge is further compounded by demand
uncertainty over the planning horizon. Specifically, for a matching
problem with m demand types and » supply types, with N being the
supply limit and N, being the truncated demand limit, our state space is
given by S € R™¢ xm with cardinality |S| = N /', and the corresponding
action space is given by A C RN»?Z X m x n with cardinality |A| €
RNfz. This issue renders the problem practically intractable by any
conventional exact methods or advanced MDP algorithms, especially
in applications of our interest such as inventory control (Dulac-Arnold,
Evans, van Hasselt, Sunehag, Lillicrap, Hunt, Mann, Weber, Degris, &
Coppin, 2016; Vanvuchelen & Boute, 2022). The authors illustrate the
gravity of the issue using a basic joint replenishment problem, wherein
simultaneous replenishment decisions are made for multiple items.
With only binary decisions (e.g., order/no order) available for each
item, the total number of actions reaches up to a billion in scenarios
involving up to 40 items.
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While model-free RL eliminates the need for explicit modeling of
transition dynamics, conventional tabular model-free methods like Q-
learning, while simple and exhibiting excellent learning ability, prove
inefficient in solving complex problems in large state-action environ-
ments since many of the state-actions might not have been experienced
previously (Jang, Kim, Harerimana, & Kim, 2019). Moreover, Jin,
Allen-Zhu, Bubeck, and Jordan (2018) have mathematically shown Q-
learning to have a runtime of O(T) and a space of O(SAH), where
H and T are number of steps per episode and total number of steps
respectively. Furthermore, traditional Q-learning employing a greedy
target policy often encounters biased estimates early in the learning
process, affecting solution quality and convergence speed. To address
these issues, we introduce a penalty to the Q-learning update equation
to penalize actions deviating from a given prior policy. Additionally,
we introduce an infeasibility penalty to tackle encountering infeasible
actions. The convergence of our modified Q-learning method with a
general penalty function is theoretically guaranteed, with two varia-
tions in the update rule based on the behavior of the regularization
parameter, f. We augment the traditional Deep Deterministic Policy
Gradient (DDPG) framework by integrating the modified update rule
into its architecture, embedding it within the critic loss function to
efficiently handle large state and action spaces. This adaptation allows
our proposed DKDDPG to explore the solution space adeptly and iden-
tify optimal policies efficiently within the dynamic matching problem
domain, improving the convergence rate while providing reasonably
accurate solutions.

Our approach differs from existing methods in two significant ways.
Firstly, the inclusion of a regularizer term, informed by problem-
specific prior policies, is expected to enhance Q-learning performance,
addressing the issues of biased initial estimates and slow convergence.
This regularizer also enables the utilization of high-quality solutions
from one-period matching problem solvers, guiding the agent towards
optimal policies more effectively and eliminating pathological policies.
Secondly, while our modified Q-learning algorithm shows promise in
small-scale scenarios, scaling to large-scale matching scenarios necessi-
tates adapting the modified update rule to appropriate deep neural net-
works. Training traditional deep RL methods such as DQN proves infea-
sible for many industrial applications that contain large action spaces
as shown by Vanvuchelen and Boute (2022). Consequently, we tailor
an existing deep RL method, DDPG, by integrating the modified up-
date rule into the critic network’s loss function, ensuring performance
enhancement.

The main contribution of this paper is three-fold: First, we formu-
late the multi-period, many-to-many manufacturing resource match-
ing problem as a sequential decision process. This is among the first
efforts in providing a multi-period decision framework for resource
matching in manufacturing. Second, we prove the convergence of
domain knowledge-informed Q-learning algorithm, providing a per-
formance guarantee for small-size problems that can be solved by
Q-learning and theoretical guidance for designing efficient algorithms
for large-size problems. Lastly, we develop our DKDDPG algorithm
which utilizes the domain knowledge-informed Q-learning algorithm,
and conduct a computational study to show that it obtains accurate
solutions efficiently.

The remainder of the paper is organized as follows. In Section 2,
we review relevant literature in the context of matching problems
and discuss methods in the RL literature. In Section 3, we design the
dynamic resource matching in manufacturing as a sequential decision-
making problem using the conventional Markov decision process (MDP)
framework. In Section 4, we introduce Q-learning with a penalty and
provide theoretical results and proof for its convergence. Section 5
provides details about DDPG and its enhanced version DKDDPG and
discusses its implementation for our matching problem. In Section 6, we
present computational results comparing the performance of DKDDPG
with contemporary RL algorithms in the context of our problem.
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2. Literature review

In this section, we review two relevant literature streams: matching
and reinforcement learning.

2.1. Matching problem

Matching problems can be categorized into three classes: one-to-
one, one-to-many, and many-to-many. One-to-one has mostly been
studied in the context of ride-sharing (Tafreshian, Masoud, & Yin,
2020), stable marriage (Knuth, 1996), kidney allocation (Roth et al.,
2004), car-pooling (e.g., Uber) and home-sharing (e.g., Airbnb). The
one-to-one problem is typically modeled as a bipartite matching prob-
lem where the bipartite graph G = (R, D, E) consists of two disjoint
sets of nodes: one corresponding to the set of riders (R) and one to
the set of drivers (D). Many polynomial-time exact or heuristic meth-
ods have been developed for the bipartite matching problem (Riesen,
Fankhauser, & Bunke, 2007). Tafreshian et al. (2020) review a large
variety of exact and approximation algorithms for this problem with
polynomial worst-case running time bounds such as greedy algorithm,
iterative algorithm based on augmenting path and a scaling algorithm
to name a few. Karp, Vazirani, and Vazirani (1990) propose the Rank-
ing algorithm, a simple randomized online algorithm that achieves
a competitive ratio. Antoniadis, Gouleakis, Kleer, and Kolev (2020)
propose using machine learning predictions to solve the online bipartite
matching and improve its performance guarantee.

Many-to-one matching problems are those where multiple matches
are possible for a single node. They are commonly seen in college
admissions problem designed by Gale and Shapley (1962), which is
a generalization of the marriage problem. Baiou and Balinski (2000)
characterize the stable admissions polytope using a system of linear
inequalities. Sethuraman, Teo, and Qian (2006) associate a geometric
structure to the system of inequalities and provide a simple visual proof
of the integrality of the Baiou-Balinski formulation. The many-to-many
matching model introduced by Roth (1984, 1985) is another general-
ization of the marriage model where multiple nodes on both sides of a
bipartite graph can be matched. The matching of demand and supply
types is a form of many-to-many matching. Many single-period demand
and supply matching problems are modeled as a single-commodity net-
work flow problem (SCNF) and a number of heuristic algorithms have
been developed to solve the formulated SCNF problem. For example,
to solve the single-commodity, uncapacitated, fixed-charge network
flow problem, Ortega and Wolsey (2003) develop a branch-and-cut
algorithm that determines the right cut set for generating inequalities.

Existing literature on matching problems, while abundant, is mostly
defined in a single-period deterministic problem setting. Only a few
works have considered dynamic matching in a finite horizon setting.
Kurino (2014) and Bloch and Houy (2009) devise a dynamic allocation
problem of on-campus student housing. In their models, agents have
deterministic arrivals and departures. Unver (2010) studies dynamic
kidney exchange with inter-temporal random arrivals of patient-donor
pairs with the objective of maximizing the number of matched compat-
ible pairs. They consider a general dynamic problem from the point of
view of a central authority (e.g., a hospital) whose objective is to mini-
mize the long-run total discounted waiting cost. They separately derive
efficient dynamic matching mechanisms that conduct two-way and
multi-way exchanges, involving the matching of two infeasible donor—
patient pairs and multiple infeasible donor—patient pairs respectively.
In the context of demand-supply matching, Hu and Zhou (2022) model
dynamic matching of demand-supply types as a finite-horizon problem
with a stochastic dynamic program where the optimal expected total
discounted surplus is maximized for each demand-supply type. They
formulate the problem in an MDP framework, explore the structural
properties of the optimal policy, and propose heuristic policies to solve
the dynamic matching problem.
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Few of the aforementioned works have holistically considered the
key characteristics of matching in manufacturing (e.g., many-to-many,
dynamic matching, feasibility constraint), and are therefore not appli-
cable to manufacturing resource matching. On the other hand, limited
works that consider matching in manufacturing often make simpli-
fied assumptions and are mostly limited to bipartite frameworks and
single-period optimization problems. Yang et al. (2021) consider a
resource allocation problem between customers and additive manufac-
turing (AM) manufacturers. They assume that each order demands a
single-unit resource and formulate the allocation problem as an integer
program. They consider one-to-one matching and the stable matching
algorithm is leveraged to optimize matches between customers and
AM providers. Pahwa et al. (2020) propose approximate stable match-
ing solutions using mechanism design and mathematical programming
approaches to solve a bipartite matching problem in manufacturing
in a dynamic environment. The matching considered in this system
is many-to-one between the orders and suppliers. Analytical models
and efficient algorithms are a critical necessity for solving large-scale
dynamic resource matching in manufacturing.

2.2. Reinforcement learning

RL (Sutton & Barto, 2018) has proven efficient in solving complex
sequential decision problems (e.g., telecommunications, robot control,
and game playing among others (Li, 2017)). RL is concerned with op-
timizing an agent’s choice of action to maximize a cumulative reward.
Unlike model-based methods such as dynamic programming, which
require an exact transition probability model that is often hard to
obtain in practice, model-free RL methods (e.g., Temporal difference
(TD(0)) learning methods, Q-learning) aim to learn the optimal policy
either online or offline without knowing the underlying transition
dynamics.

Despite the fact that Q-learning is guaranteed to find the optimal
solution, the runtime increases exponentially as the state and action
spaces grow since Q-learning is a tabular method. Mnih et al. (2015)
develop an approach to train a deep Q-network (DQN), an action-value
function approximated by a convolutional neural network on the high-
dimensional visual inputs of a variety of Atari games. As part of their
enhancements to the original Q-learning algorithm, two key enhance-
ments are made: experience replay buffer and target network freezing.
The former is designed to reduce the instability associated with training
on highly correlated sequential data. By using a target network whose
weights are periodically derived from the main network, the latter
addresses the instability caused by chasing a moving target. Since
then, DON has gained wide popularity for solving problems with high-
dimensional sensory inputs and actions and excels at a diverse array
of challenging tasks. Al-Abbasi, Ghosh, and Aggarwal (2019) develop
a DQN model to learn optimal dispatch policies for ride-sharing by
interacting with the environment. Gao, Gao, Hu, Jiang, and Su (2020)
implement DQN for portfolio management in the stock market and
observe that DQN outperforms ten other traditional strategies.

While DQN works well for high-dimensional states with a small
action space, it suffers from run-time and memory issues for prob-
lems involving very large action space since it increases the size of
the output layer. Alternatively, obtaining a single action array as the
network output ensures higher efficiency in finding the optimal action.
Lillicrap et al. (2015) adapt the idea underlying the success of DQN to
complex, high-dimensional action spaces and propose an actor—critic
model-free algorithm based on the deterministic policy gradient that
can operate over continuous action spaces. This algorithm named deep
deterministic policy gradient (DDPG) uses the same learning algorithm
and network architecture as DQN. It is able to robustly solve many
simulated physics tasks involving large state and action spaces.
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2.2.1. RL for combinatorial optimization

Numerous advancements have occurred in solution techniques for
combinatorial problems sharing similarities. Machine learning (ML)
and reinforcement learning (RL) have been widely employed in ad-
dressing a variety of common combinatorial problems, including but
not limited to the traveling salesman problem (TSP), vehicle routing
problem, maximum cut, and minimum vertex cover problem. Ben-
gio, Lodi, and Prouvost (2020) survey methods in ML and operations
research to solve combinatorial problems in general. They review ad-
vancements such as imitation learning and experience learning using
graph neural networks in the context of combinatorial optimization
(CO). Wang and Tang (2021) discuss various recent deep RL methods
implemented for common CO problems like capacitated vehicle rout-
ing problem (CVRP) and summarize the different deep RL methods
categorically based on value and policy, such as DQN, DDPG, and
other actor—critic methods. They also compare numerous neural net-
work architectures such as pointer networks, transformers, and LSTMs
implemented in conjunction with listed RL algorithms to solve common
CO problems.

Delarue, Anderson, and Tjandraatmadja (2020) devise an RL frame-
work tailored for value-based deep RL methods featuring a combina-
torial action space. They formulate a CVRP as a sequential decision
problem and frame the selection of actions as a mixed-integer optimiza-
tion problem. Dai, Khalil, Zhang, Dilkina, and Song (2018) propose a
combination of RL algorithms with graph embedding to learn greedy
heuristics for solving widely known CO problems such as the Trav-
eling Salesman Problem (TSP), Maximum cut, and Minimum Vertex
cover. Barrett, Clements, Foerster, and Lvovsky (2020) introduce the
ECO-DQN approach, designed to iteratively enhance solutions for the
Maximum Cut problem by learning exploration strategies during test-
ing. Their method’s adaptability is highlighted by its capability to
initiate from any state, demonstrating its flexibility in integration with
various search heuristics. Bello, Pham, Le, Norouzi, and Bengio (2017)
develop a neural combinatorial optimization algorithm that combines
actor—critic methods with recurrent neural networks to solve TSP.
They further discuss the possibilities of extending to other problems
and emphasize the designing of feasibility for the problems. A similar
solution approach was designed by Nazari, Oroojlooy, Snyder, and
Takac (2018), where they replaced a pointer network and added an
attention mechanism to their RNN to expand to VRP as well. Kool,
van Hoof, and Welling (2019) also implement an attention mechanism
along with the REINFORCE methods to learn strong heuristics and solve
a wide range of practical problems.

While the aforementioned works provide a thorough literature re-
view of reinforcement learning (RL) applied to combinatorial opti-
mization, our problem stands out due to its distinctive characteristics.
With numerous suppliers and customers involved, our problem encom-
passes multi-dimensional states and actions, with both the action and
state spaces expanding exponentially as the number of suppliers and
customers grows. This challenge is further compounded by demand
uncertainty over the planning horizon. While some cited works tackle
infeasibilities, our method adopts a unique approach by proportionally
penalizing such solutions and integrating an additional general convex
penalty function into the Q-learning update rule, utilizing problem-
specific knowledge based on the work by Fox, Pakman, and Tishby
(2015). They propose a penalty-based Q-learning algorithm to penalize
biased estimates due to the minimum (or maximum) operator in Q-
learning. The authors use a prior policy-based penalty function to
penalize deterministic policies at the beginning of learning. They show
that their method reduces the bias of the value-function estimation,
leading to faster convergence to the optimal value and the optimal
policy. In this context, we introduce and theoretically validate a regu-
larized Q-learning update rule based on Bertsekas and Tsitsiklis (1996)
and Singh, Jaakkola, Littman, and Szepesvari (2000). Furthermore, we
extend this methodology to address large-scale problems using deep
neural networks, demonstrating near-optimal solutions and enhanced
overall performance.
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3. Problem setting

We consider a multi-period manufacturing resource matching prob-
lem. Let 7 = 1,2,...,T denote the decision epochs. Let D = 1,2,...,m
represent the set of demand types for manufacturing resources and
S =1,2,...,n represent the set of capacity supply type. The sets D and
S are disjoint. The arc (i, j) represents the matching between demand
type i (i € D) and supply type j (j € S). We denote the complete set
of arcs by A = {(i,j)|1 <i < m,1 < j < n}. As an example, different
types of manufacturing processes such as 3D printing, extrusion, CNC
machining, etc. can be considered as types of demand or capacity. Note
that capacity and supply are used interchangeably in this paper.

The system state is denoted by the outstanding demand vector

X = (xy,...,x,) € R7J. The capacity vector is denoted by ¢ =
(cy5-.- ,¢,) € RY, where x; and c; are the quantity of type i demand

and type j capacity available to be matched respectively in time 7. We
assume that demands arrive randomly at each decision epoch. We also
assume that the capacities are fixed in the planning horizon because the
capacity of manufacturing resources typically does not change for some
time. At the beginning of period ¢, our state comprises of outstanding
(backlogged) demand units of various types, x. We assume that each
demand will take the capacity for one period. We further assume an
exogenous correlation between the distribution of demand between one
period and the next, that is, they are determined outside the model and
imposed on the model. Our model does not account for endogenous
correlations between a matching decision in a period and the demand
distribution in a future period.

We consider two widely used reward structures — the horizontal
reward model (Ashlagi & Shi, 2016) and the vertical reward model
(Sutton, 1986). Horizontal matching is preference-based and the re-
ward is dependent on the matching of the demand-supply type pair.
The unit matching reward, r;; is based on the distance between the
demand type i and capacity type j, that is, §;;. We consider a linear
structure reward given by r;; = R - §;;, where R is the fixed prize for
matching. For example, suppose there are two demand types (i = 1,2)
and two capacity types (j = 1,2). Let i = j = 1 represent the extrusion
process and i = j = 2 denote the 3D printing process. Demand type 1
will form a higher rewarding pair with capacity type 1 since they have
the same preference, and a lower rewarding pair with capacity type
2. We can extend the same understanding to applications with more
than two demand-supply types. Consider manufacturing demand and
supply types listed in terms of material (product) upgrading as shown
in Fig. 1. In this case, matches can be made based on the distance
between the demand-supply types, that is, the shorter the distance
and thus cost, the higher the reward for matching as we explained
previously. On the other hand, vertical matching is quality-based and
the reward is dependent on the quality of each demand and capacity
type. Vertical matching in manufacturing could be based on aspects
such as shop certifications, finishing process, experience, and inspection
capabilities which involve differences in terms of quality. For example,
the demand-supply types can be lined up from the best demand and
supply types to the worst, in terms of quality, and have a reward value
associated with each type. Vertical matching a pair would generate a
cumulative reward based on the reward of the demand type and the
supply type as described above. For simplicity, we consider a linearly
additive function. Let r;; = f(a;, b;) = f4(a;)+f(b;), where a; represents
the quality of demand type i and b, represents the quality of supply type
Jj, such that f, and f, are increasing in ¢; and b; respectively.

At each decision period, a decision maker needs to determine the
matching quantities for each supply-demand type, Q = (g;;) € R},
where g;; denotes the quantity of the ith demand matched with the jth
supply type. The reward associated with each arc (i, j) is modeled based
on the horizontal or vertical heterogeneity model. The reward values
can be written in a matrix form as R = (r;;) € R™". The total matching
reward is given by RoQ = Y7 27:1 ri;4;;> where “o” is the sum of
elements of the entry-wise product of two matrices.
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Manufacturer (supply)
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Fig. 1. Material (product) upgrade application of Horizontal differentiation.

3.1. MDP framework

In this section, we first formulate our problem as a standard MDP.
Let p; be the probability distribution of demand type i. The total
demand of type i in the next period is the sum of the outstanding
demand at the current period x; and the demand that occurred in the
current period d;. Subtracting the amount of type i demand filled by
matching §; = Y, ¢;;, we can obtain the outstanding demand in the
next period denoted by x/ given by,

(€Y

We have illustrated our dynamic resource matching problem in
the MDP framework in Fig. 2. Moreover, the matching quantity is
constrained by the current state, that is, the demand vector, as well
as the capacity vector,

' _
x;=x;+d; —q;.

M:

q;; < X, Vi=1,...,m .
=1
m
Z%/SC, Vi=1,...,n @
i=1
The demand type transition probability p, is given as follows:
0 if X! < (x; —q,)
p,(x;|x’.’qi) = ] i i @
Pxi—(xi=g) if x; 2 (x; — q;)

Our goal is to determine a matching policy Q* O] that maximizes
the expected total discounted reward. Let x be the current state vector
in period ¢ and V,(x) be the optimal expected total discounted reward.
The Bellman equation that can be used to calculate the total expected
discounted reward recursively is given below:

Vi(x) = mSX[Rf’Q +v Z (X |x, Q¥ (XN, 5)
X,

where y is the discount factor. The matching quantities cannot exceed

the demand or supply levels of the different types. At the end of

the horizon, all unmatched demand and supply leave the system and

therefore, the boundary condition is V7, (x) = 0 for all x € R:.

The literature on solving this type of matching for a single-period
problem is abundant. The above matching problem, however, cannot
be solved as a single-period problem which we illustrate with a simple
manufacturing example. Consider a 3-period raw-materials matching
problem with two demand types and two supply types. Let type 1 be
carbon steel and type 2 be stainless steel, that is, a customer who needs
carbon steel is demand type 1 and a supplier for the same is supply
type 1. It applies similarly to the second demand-supply type. The
outstanding demand is x = [x;, x,] = [8,7], and the available capacity
is y = [y, 3] = [6,5]. The possible demand quantities for both types
are (0,1,2,3,4,5,6,7,8) with probabilities (0.2,0.2,0.2,0.2,0.2,0,0,0,0)
for type 1 and (0.2,0,0.2,0.2,0.2,0,0,0,0.2) for type 2 respectively. The
discount factor, y is 0.9 and the reward matrix R is chosen such that
Fi1 > Fpy >rp > 1y and is given by R=[10 7 ; 5 8]
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We used CPLEX to solve for the single-period solution and used
value iteration as the dynamic programming solution. The matching
matrices for both solutions are specified below:

Single-period problem: Qcprpx =[6 0 ; 0 5]
Three-period problem: QMDP,,] =4 0 ; 2 5]
Qmpps, =14 0 5 2 5],
Qwpp;, =[6 0 : 0 5]

Thus, from the above two solutions, we see that the dynamic program-
ming approach accounts for the incoming demand to obtain an optimal
solution as compared to the single-period solution which greedily
matches the quantities in every period. Moreover, for an MDP to have
a myopic optimum, it requires each transition probability to depend on
the action taken but not on the state from which the transition occurs
(Sobel, 1981). Thus, optimal matching policies cannot be obtained by
solving a single-period problem.

3.2. Domain knowledge-informed Q-learning

The standard MDP problem formulated in Eq. (5) requires explicit
modeling of the transition dynamics, which can be hard to obtain in
practice. Moreover, even if the dynamics are available, standard MDPs
suffer from the curse of dimensionality. Conventional value iteration or
policy iteration algorithms can thus, solve only small-size problems due
to computing limitations. On the other hand, model-free RL algorithms
use experiences (e.g., samples) to obtain the value estimate of a state
rather than building a model of the environment. The RL algorithms
can further leverage powerful function approximation methods to com-
pactly represent value functions, which enables it to deal with large,
high-dimensional state and action spaces. In this section, we enhance
the existing Q-learning algorithm based on the characteristics of the
problem of our interest. Specifically, we first introduce a function that
penalizes deviations of the learned policy from some prior policy. We
also remove the constraints by penalizing the violation of constraints
in the Q value function. The resulting value-penalty function is then
implemented in the update step of Q-learning.

The action-value function (Q-function) is a critical modeling ele-
ment in any RL algorithm. The Q-value for any state s € .S and a = z(s)
is given by,

(6)
)

Q7 (5,a) = E[r, + yrop + 1 rn + - |8, = 5,04, = a; 7
=r+yE[V7(s s, al,
where s,,a,, and r, are the state, action, and the reward obtained in
time step ¢ respectively, x is the policy, and y is the discount factor.
Q-learning is a model-free, off-policy RL algorithm, where the Q-

value is randomly chosen initially for each state-action pair and is then
updated iteratively using the following rule

Vi=1,2,....,

®

Q(Srs ar) — (1 - (Xr)Q(S,, ar) + at(rrJrl + 14 méiX Q(St+1’ (l)),

where «, is the learning rate (or step-size).

As observed in Eq. (8), the Q-learning algorithm updates a state—
action pair by maximizing over all those actions possible in the next
state. This can lead to the agent learning biased estimates in the initial
stages of the algorithm and thus, much of the initial time would be
spent on unlearning the biased estimates. To tackle this issue, inspired
by the work by Fox et al. (2015), we incorporate a penalty on the
learned policy z(als) for a € A and s € S with respect to some prior

policy u(als). The penalty function is defined as,
g"(s,a) = h(x(als), u(als)) €)]

where A(-, ) is any convex function.
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Fig. 2. Dynamic matching problem illustration.

We consider a general convex function as compared to the above-
referenced work where the authors specifically use KL-divergence for
the penalty function. Other common examples of divergence functions
include all types of norms. The penalty in Eq. (9) regularizes the learned
policy by penalizing deviations from the prior policy, which is added
to the value estimate of the next state. Recall, the value function V7 (s)
for a given state s with policy = is given by,

V=(s) = ) v'ElrIsg = s]

>0

(10

Adding the penalty function to the discounted reward function in the
above equation we get,

Fr(s)= )\ /'E

>0

[%g”(s,,a,)+r,|s0=s [€RD)
We call the above function F” as the value-penalty function. Here, f
is the regularization parameter that sets the weight of the penalty. It
controls the effect of the regularization in the update step.

The V*(s) in Eq. (7) can be replaced with the value-penalty function
F7(s) defined above to give a new Q-function analogous to Eq. (7),

O (s.a) = r+ yE[F7(s)|s,al, 12)

which we call the domain knowledge-informed Q-function. From the
above two definitions we obtain

1
F"(s) = Zﬂ(als)[ﬁg”(s,a)+Q’lr)K(s,a) (13)
The domain knowledge-informed Q-learning update equation is then
given by,

Opx(spa) «— (1 —a)Opg(s;a) +a(r, +v m;;ix F*(5;41))- 14)
3.2.1. Prior policy u

Choosing a prior policy is critical since it can either improve con-
vergence or hinder it accordingly. Hence, a prior policy that represents
the prior knowledge of the problem has to be carefully chosen. In our
problem, we consider a single-period optimal policy as the prior policy,
which is obtained by using a standard solver such as CPLEX. The prior
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policy helps eliminate pathological policies (e.g., actions that match no
quantities) that slow down the convergence.

3.2.2. Regularization parameter f

The regularization parameter, # controls divergence from the prior
policy. It can either be fixed with respect to time i.e., g, = B, or
scheduled with time, where B, is a function of time. The penalty
function g”(s, a) is modeled in a way that when the value of # increases
to a large number, the optimal domain knowledge-informed Q-learning
estimate Q7 and value-penalty estimate F* reduce to standard Q-
learning estimate O* and value function estimate V*. Also, when f is
infinitesimal, the effect of the penalty on the value estimate follows
the prior policy u. Thus, in the initial stages of learning, the prior
policy gives an advantage over the greedy Q-value estimate, and in the
later stages of learning, the greedy Q-value estimate is a more precise
estimate of optimal Q-value, Q*. Therefore, scheduling f# with respect
to time would ensure smooth transitioning from Q* to QF, thereby
balancing the benefits of both phases of learning.

3.3. Infeasibility penalty

An infeasible action is one that violates the demand and capacity
constraints established in the earlier Section 3.1. This means that the
total quantity matched exceeds the respective demand and capacity
limits. Hence, it is critical to penalize these actions in order to produce
feasible matched quantities. We introduce an infeasibility penalty for
violation of each constraint. The penalty associated with violation
of the state (outstanding demand) is proportional to the sum of the
exceeded matched quantity over all the demand types given by,

u(x,Q) =k, <Z Tg>x, (@i = x/-)>

where u(-, ) is the demand penalty function whose arguments are
demand x and action (matching quantity) Q, g; = 2;; 1 4¢.j)» and ky
is the demand penalty proportional constant. Similarly, the penalty
associated with violation of the capacity is given by,

J

(15)

(16
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where v(-) is the supply penalty function whose argument is action
(matching quantity) Q, §; = X, ¢¢ ), and k, is the supply penalty
proportional constant. We obtain a revised reward formulation by
subtracting the penalty functions from the matching reward r, defined
in Section 3.1,

r; = RoQ — u(x, Q) — v(Q).

In the following section, we give theoretical results to prove the
convergence of domain knowledge-informed Q-learning algorithm for
two cases: fixed f# and changing (increasing) f,. Note, that the matching
reward r, in time ¢ encompasses the net reward after including the
infeasibility penalties.

a7

4. Convergence of domain knowledge-informed Q-learning

By introducing a penalty based on a prior policy, we nudge the
algorithm away from learning biased estimates, thereby potentially
leading to faster convergence than Q-learning. We formalize this intu-
ition here and prove that the optimal Q-value obtained from the domain
knowledge-informed Q-learning algorithm converges to the optimal Q
value. We develop our proofs based on theoretical results provided by
Bertsekas and Tsitsiklis (1996) and Singh et al. (2000). Note, in both the
following sections, we denote domain knowledge-informed Q-function
as Q instead of Qp for ease of notation.

4.1. Value-penalty function with fixed p

In this section, we consider a general algorithm based on pseudo-
contraction to help prove the convergence of our domain knowledge-
informed Q-learning algorithm with fixed weight parameter g.

We first introduce several expressions that are heavily used in
the analysis of the convergence behavior of the standard Q-learning
algorithm. Starting with some arbitrary estimate f, € R", we assume
that the ith component f(i) of f is updated according to

Frr1 () = (1= ,®) £,() + r,(D(H £)0) + 0,()), (18)

where states are denoted by i = 1,2,...,n, and w,(i) is a random noise
term. We denote by P, the history of the algorithm until time ¢, which
can be defined as, P, = { (i), ..., f,(iD), wy (@), ..., w, (i),

Yo, ....v,(D}, for i = {1,2,...,n}, or may include some additional
information. We now introduce some assumptions to help prove the
following theorem.

t=0,1,...,

Assumption 1 (Assumption 4.3, Prop. 4.4, Bertsekas et al.).

(a) The step-sizes y,(i) are nonnegative and satisfy
o8 5]
Yr=co, Y rH)<oo
=0 =0

(b) For every i and ¢, we have E[w,(i))|F,] = 0.

(c) Given any norm || - || on R”, there exist constants A and B such
that
El@*()|F 1< A+ BlIfII?, Vit

(d) The mapping H is a weighted maximum norm

pseudo-contraction.

Notice that, since 0 < y,(i) < 1, Assumption 1(a) requires that all
state—action pairs be visited infinitely often. Parts (b) and (c) provide
assumptions on the noise term. Assumption 1(b) states that w,(i) has
zero conditional mean and part (c) provides an upper bound on the
conditional variance of the noise term. Part (d) implies that if there
exists some r* € R", a positive vector & = (£(1),... ,&(n)) € R”, and a
constant L € [0, 1), then the function H : R" — R" satisfies,

|Hr—r*lle < Lllr = r*|lg, vr.
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Based on the above assumptions, the proof of convergence of the
sequence generated by iteration (18) has been given by Bertsekas and
Tsitsiklis (1996). We state the convergence result for the Q-function
with penalties on deviations from a prior policy and infeasibilities
(Eq. (14)) under a fixed g.

Theorem 1. Let Q, be the sequence generated by the iteration (14). We
assume that the step-sizes a, are non-negative and satisfy

z a; = 00, Z (Jtt2 < o0
=0 t=0
Then Q, converges to Q* with probability 1.

Theorem 1 shows that Q-learning with penalties on deviation from
a priory policy and infeasibilities still converges, in the limit, to the
optimal Q-function, under the same mild conditions as traditional
Q-learning. We prove this convergence by verifying that the new Q-
function in our problem setting also satisfies the conditions provided
in Assumption 1. Note that verifying these conditions is not straight-
forward and requires rigorous analysis of the properties of the new
Q-function. Detailed proof for Theorem 1 is provided in Appendix A.

4.2. Value-penalty function with changing p,

As explained in Section 3.2.2, scheduling p with respect to time
ensures a smooth transition of the learning algorithm from Q* to Q”.
In this section, we prove the convergence of the domain knowledge-
informed Q-learning for an increasing regularization parameter f,. Note
that the penalty-value function is now dependent on f, instead of
p and is therefore denoted by F”. Moreover, the assumptions and
results provided previously involve a time-independent mapping H and
therefore, cannot be used to prove the convergence for an increasing
regularization parameter f,. Based on this information, we provide
Eq. (14) as an iteration,

Q1+](Sy7 a[) = (1 - ay)Qx(Sta at) + at(rr + }’mi?x F,”(Sx+])) (19)

We now provide the convergence result for the sequence generated by
iteration (19).

Theorem 2. Let Q, be the sequence generated by the iteration (19). We
assume that the step-sizes a, are non-negative and satisfy

o 5

Z a = oo, Z atz <o

1=0 1=0

Then Q, converges to Q* with probability 1.

Theorem 2 shows that Q-learning with a scheduled regularization
parameter f§, with penalties on deviation from a priory policy and
infeasibilities still converges, in the limit, to the optimal Q-function.
Detailed proof for Theorem 2 is provided in Appendix B.

5. Domain knowledge-informed deep deterministic policy gradi-
ent (DKDDPG) algorithm

While Q-learning is a model-free approach, it suffers from the curse
of dimensionality as the classical approaches like dynamic program-
ming. To address this issue, Mnih et al. (2015) implement DQN to
approximate Q-values in the Q-learning algorithm using neural net-
works. In the case of dynamic manufacturing resource matching, the
action space is high dimensional, which means DQN may suffer from
memory problems since the output layer is the size of the action space.

The DDPG algorithm employs an actor—critic network, which is
a temporal difference (TD) version of the policy gradient. This ap-
proach is inspired by the recent success of DQN in training an RL
agent to learn the optimal action to maximize the total reward of
matching demand-supply for each state. The algorithm is simple to
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Fig. 3. Neural network architecture of DKDDPG.

implement and scale since it only needs an actor—critic network and
a learning algorithm such as Q-learning. Based on DDPG (Lillicrap
et al.,, 2015), we propose domain knowledge-informed DDPG (DKD-
DPG) which utilizes the domain knowledge-informed Q-learning update
equation introduced in Section 3.2, as opposed to DDPG which employs
the traditional Q-learning update equation. Our proposed DKDDPG
algorithm is presented in Algorithm 1. The details about action ex-
ploration, DNN approximator, domain knowledge-informed Q-value
function, scheduling of g, action transformation, and the algorithm are
discussed below.

Action exploration: In every period, the RL agent matches the
demand and supply types, assigning the quantities according to policy
7. For action exploration, we employ the ¢—greedy policy with expo-
nential e—scheduling. During exploration, we inject a normal random
noise into the action obtained from the actor network.

DNN: As discussed before, due to the curse of dimensionality, non-
linear functions, and neural network approximators can approximate
the Q-values in the Q-learning algorithm. Hence, we employ actor—
critic networks based on the success of DQN (Mnih et al., 2015), which
solved the issues related to non-stationarity and correlations in the
observations by proposing target networks and using experience replay
memory. We have implemented two DNNs: an actor network and a
critic network. The actor network takes the state as the input and
gives an action array as the output. Since the DNN does not provide
the actions in a usable format for our problem setting, we perform
transformations on the action array which we discuss in detail in the
action transformation section. The critic network takes the state and
action as input, and provides the optimal Q-values as output, and acts as
a Q-function approximator. The DNNs are trained using random mini-
batches taken from the experience replay iteratively until all episodes
are complete.

We design the architectures of our DNNs similar to the ones im-
plemented by Lillicrap et al. (2015). Considering the state and action
spaces, our actor DNN consists of 4 fully connected (FC) layers with
shape [sy;,,, 50,200,100, a,;, ] where s,,, is the dimension of the state
array and ag, is the flattened-array dimension of the action matrix,
along with 3 ReLU activation layers in between and the output FC has
softmax activation. We use softmax over tanh for the output layer to
obtain a soft matching policy for each demand and supply type. The
final layer weights of both the actor and critic were initialized from
a uniform distribution [—0.003, 0.003]. This is to ensure the initial
outputs for the policy and value estimates were near zero. Our critic
DNN consists of 3 FC layers with shape [s;,,, 50, 100, 200], along with 2
ReLU activation layers in between and a linear activation output. We
have provided a simple illustration of our neural network architecture
in Fig. 3.

Domain knowledge-informed Q-Value function: We have incor-
porated the target value of the domain knowledge-informed Q-learning
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update equation to step 12 of Algorithm 1, where the target prediction
is given by,

* 1 * * ’
yi=r;+ J’Fi” =ri+vy Z 7[*(“|3) [Fg” (s,a)+ Q,” (S;+| 5 M(Si+l |9”)|0Q )
” i

where z* = argmax, F and Q' is the target network with weights 09’

Algorithm: Algorithm 1 finds weights 62 of the critic DNN network
to minimize the Euclidean distance between Q-value Q(s,a;09) and
y;. Our approach uses policy gradient to optimize the weights 6# of
the actor DNN network to maximize the Q-value obtained from the
critic. The target networks are updated by having them slowly track
the learned network as given in the update equation in Algorithm 1.
This significantly improves the stability of learning of the networks.
The action matrices in each training step of the algorithm are obtained
by e-greedy policy.

Scheduling of p: We schedule the relative weight parameter p
so that the algorithm penalizes the Q-function and prevents it from
choosing deterministic policies initially and then over the length of the
episodes, it reduces the penalty, thereby reducing the regularization of
the Q-function. We use a linear function to schedule g, i.e. § = kt, where
the hyperparameter k is selected based on a random search from 10
random values followed by a comparison of the total episodic reward
over some initial number of episodes.

Algorithm 1 Domain knowledge-Informed DDPG

1: Input: Number of demand and supply types, number of time
periods 7,,,,, total number of episodes, state space

2: Randomly initialize critic network Q(s, a|#?) and actor u(s|6*) with
weights #¢ and 6#

3: Initialize target network Q@' and y' with weights 62' <« 62 and
o' — gH

4: Initialize replay buffer E
5. for episode in total episodes do
6: Choose a state s arbitrarily from state space
7: fortr=1:T,, do
8: Choose action a, from s, using e-greedy policy
9: Introduce random demand d4 and take action a,, observe
reward r,, next state s,
10: Store transition (s;, a;, 1y, $;41) in E
11: Sample a random mini-batch of N transitions (s;,a;,7;,5,,1)
from E
12: Set = oo+ y( > fr*(aIS)[,%g”*(s,a) +
% /
Q'™ (1415 H(Siy1 16#)]62 )] )
13: Update critic by minimizing the loss: L = % > -
O(s;, q; |9Q))2
14: Update the actor policy using the sampled policy gradient:
1
Voud % 5 2, VaQGsi: 6109 o=y, amyis) Vou (169,
i
15: Update the target networks:
’ ’
02 « 762 + (1 - 1)0?
’ ’
0¥ — 6" + (1 —1)0"
16: end for
17: end for

Action transformation and infeasibility penalty: When perform-
ing action exploitation in the e-greedy policy, we use a softmax activa-
tion function in the output layer which outputs a vector of probabilities.
We then scale the vector accordingly to obtain the quantities matched
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Fig. 4. Action transformation for a 2 x 2 matching example.

between the demand and capacity types. The action vector output
from the actor network needs to be normalized and then scaled by
performing a row-wise multiplication with the state vector s, to obtain a
scaled action matrix. Since the scaled action matrix could be infeasible
in terms of exceeding the total capacity quantity, we employ the
infeasibility penalty introduced in Section 3.3 into the reward calcu-
lation process. This encourages the network to output feasible actions.
We demonstrate the above process using a numerical example in our
problem setting. Consider a 2 X 2 matching problem in manufacturing
with an outstanding demand vector x = (12, 8). Fig. 4 details the action
transformation process, where we transform the vector of probabilities
to a 2 X 2 square matrix. This matrix is then normalized over each
row signifying the probability of matching each capacity type to each
demand type. Finally, we perform a row-wise scalar multiplication of
the outstanding demand vector x to the normalized probability matrix
and round it to get the desired action matrix displayed in Fig. 4.

6. Computational study

In this section, we investigate the performance of domain knowled
ge-informed DDPG (DKDDPG) with benchmark methods: a solver for LP
form of MDP (exact method), Domain Knowledge-informed Q-learning
(DKQL), Deep Q-network (DQN), a Deterministic Policy Gradient (DPG)
method, and DDPG. We included the tabular version of our modified
Q-learning algorithm, DKQL to compare the difference in its perfor-
mance with its tabular counterpart. Along with the tabular algorithms’
comparison, we included two deep RL approaches, namely the DQN
and the DPG since the two methods are different in their approach
to solving the problem. DQN is a value-based deep RL method that
uses a non-linear approximation of the Q-learning update rule as its
loss function, and DPG is a policy-based algorithm that learns the
near-optimal policy using the principles of policy gradient theorem. To
provide an exact solution approach, we have added the linear program
formulation and used a solver to obtain the optimal value estimates
for small-size problems. Specifically, we first examine the performance
of the DKDDPG with that of all the mentioned baselines for small-size
problems. For large-size problems that cannot be solved by most of
the other methods due to the curse of dimensionality, we compare the
performance of the proposed DKDDPG with only the DDPG algorithm.

For all experiments, we consider discrete uniform demands. The
lower limits of the demand distributions are set to zero and the upper
limits are drawn from a uniform distribution, U (0, 20). The fixed manu-
facturing capacities are also drawn from this uniform distribution. Since
the outstanding demand can go to infinity in theory, we truncate the
state space by ignoring states that have little chance of being visited.
For simplicity of testing, we assume the number of demand types is
the same as that of capacity types (i.e., m n). For each problem
size, we consider five problem instances that have different demand
distributions. In terms of performance metrics, for small-size problems,
we consider the average value function estimates (for LP) and average
learned Q-value estimates (for all others) over all states, convergence
time and the number of episodes to converge. For large-size problems,
we compare the convergence time, the number of episodes to converge,
and the average learned Q-value estimates over all states for both DKD-
DPG and DDPG. Although conventionally, the average episodic reward
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is reported for comparison of algorithm performance, the learned Q-
value estimates showcase more stable results and consistent trends as
compared to the undiscounted cumulative reward values obtained in
an episode. Therefore, we report the learned Q-value estimates in our
experiments.

For the model-free RL methods, we train the agent for 3000 episodes
and truncate every episode after 500 timesteps. We perform a random
search for hyperparameter tuning for DDPG and DKDDPG and obtain
the following values for the hyperparameters. The replay memory E
is equal to one million most recent experiences, the batch size is 64,
the actor learning rate is 0.0001, the critic learning rate is 0.0005, and
the soft target update parameter, z is 0.0005. We follow an e-greedy
policy for action exploration, where ¢ is annealed exponentially from
1 to 0.1 over the first 300 episodes for small-size cases and over the
first 1000 episodes for the large-size experiments and is fixed thereafter
respectively. The computing infrastructure used is an Intel Xeon with 4
cores and 8 logical processors. We consider the maximum run-time to
be 150000 s for all the algorithms.

6.1. Performance of DKDDPG in small size problems

We compare the performance of DKDDPG with benchmark algo-
rithms including value iteration, Q-learning, and standard DDPG. We
test the performance of the algorithms for m = 2,3,4 and 5. We set the
Q-value stopping criterion to be 2%. Along with the metrics mentioned
previously, we also record the percentage difference of the maximum
Q-value obtained by Q-learning, DDPG, and DKDDPG, with respect to
value estimates obtained through Value Iteration.

From Table 1, we observe that actor—critic methods such as DPG,
DDPG and DKDDPG converge in a much shorter time for all the cases
as compared to tabular methods such as Q-learning and DK Q-learning,
as well as value-based DRL such as DQN. As the size of the cases
increases, the time taken to converge by exact methods such as LP
and tabular methods such as Q-learning and DK Q-learning increases
significantly since they suffer from the curse of dimensionality. For
the 4 x 4 and 5 x 5 cases, both LP and the tabular RL methods
suffer from memory issues and thus, fail to solve the problem in the
designated maximum run times or episodes. Moreover, DQN while
able to converge quite close to the true Q-values, suffers from similar
issues for 4 x 4 and 5 x 5 cases due to the large action spaces. On
the contrary, DDPG is able to obtain the solutions for all the cases
in an average of 2507 s and 304 episodes, while DKDDPG is able
to solve the matching problem for all the cases taking an average of
2300 s and 207 episodes. While DPG also converges at similar times to
DDPG and DKDDPG, it obtains much worse values due to correlation
and stability issues. Thus, DKDDPG converges approximately 8% faster
than DDPG and takes much fewer episodes to converge. Moreover,
Q-values generated by the DKDDPG algorithms converge very close
to the values of the LPs as can be seen from the error percentages,
implying that by leveraging domain knowledge, the DKDDPG algorithm
leads to satisfactory policies while accelerating the converging process.
We have also illustrated the training process for two of the small-size
experiments in Fig. 5 to highlight DKDDPG’s superior performance for
our dynamic matching problem. Among all the methods, only DQN,
DDPG, and DKDDPG closely approximate the true value. While DQN
generally converges closest to the true value, it typically takes around
2500 episodes to reach near-optimal results. In contrast, DDPG and
DKDDPG achieve reasonably accurate solutions in an average of 200—
300 episodes, with DKDDPG slightly outpacing DDPG in convergence
and yielding slightly better results for smaller cases.
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Table 1

Algorithm Performance in Matching Problem for small size experiments.

Case Instance  Linear Programming Q-learning DK Q-learning DPG DQN DDPG DKDDPG
(m x n) Convergence  Average Convergence  Average Convergence  Average Convergence  Average Convergence Average Convergence  Average Convergence  Average
time (s) value time (s) Q-values time (s) Q-values time (s) Q-values time (s) Q-values time (s) Q-values time (s) Q-values
estimates  / / / / / / / / / / / /
episodes % episodes % episodes % episodes % episodes % episodes %
difference difference difference difference difference difference
1 27662 987.4 1304/2986 917.5/7.1 1333/2767 924.4/6.4  1684/1266 971.5/1.6 84431/2526 969.4/1.8  1195/145 948.2/3.9  1568/138 959.0/2.8
2 12988 700.3 2046,/2888 659.8/5.8 2057/2794 663.7/5.2  1055/802 450.1/35.7  39287/2355 695.4/0.7  1279/146 687.1/1.9  1725/145 679.0/3.0
2x2 3 22956 798.6 1189/2967 746.8/6.5 1184/2737 751.2/5.9  1569/1189 699.8/12.4  50311/2968 796.9/0.2  1178/148 763.3/4.4  1513/133 749.8/6.1
4 23478 890.4 1281/2742 830.1/6.7 1268/2689 832.2/6.5  2063/1546 583.7/34.4  93936/2816 896.8/0.7  1089/142 865.9/2.7  1555/142 863.7/2.9
5 19650 701.3 2040/2966 663.1/5.4 2046/2876 664.7/5.2 942/718 556.4/20.6 26437/2669 700.2/0.1 1172/155 673.2/4.0 1568/146 680.9/2.9
1 27403 504.3 23413/2925  453.7/10.1  24362/2904  459.2/8.9  2552/1918 353.7/29.9  132051/2887  498.3/1.2  1160/150 478.2/5.2  1590/145 480.3/4.7
2 10784 492.5 12792/2796  450.7/8.5 12932/2642  454.6/7.7  2151/961 481.0/2.3 93833/2031 473.8/3.8  1252/158 476.9/3.2  1723/154 464.8/5.6
3x3 3 16883 502.3 22119/2874  451.4/10.1  23216/2824  455.3/9.3  1284/956 349.5/30.4  127107/2720  500.9/0.3  1215/156 474.9/5.4  1621/147 469.5/6.5
4 55706 651.2 26229/3000  596.5/8.4 26732/3000  611.2/6.2  790/587 526.3/19.2  137214/3000 646.1/0.8  1896/242 616.0/5.4  1725/154 600.6/7.8
5 13462 491.6 12053/2986  449.3/8.6 12765/2733  448.2/8.8  3203/2426 483.0/1.7 94707/2049 475.3/3.3  1678/152 480.4/2.3  2293/291 474.0/3.6
1 4219/2726 657.2/- 2692/333 1475.1/- 2629/233 1506.0/-
2 2037/1388 397.1/- 3016/378 767.7/- 2459/219 856.2/-
4x4 3 NA NA NA 3964/2647 606.7/- NA 1683/214 1249.0/- 1689/151 1275.3/-
4 1698/1186 260.8/- 2787/315 772.4/- 2605/227 1085.8/-
5 3245/2138 171.5/- 2386/273 835.1/- 2486/202 839.5/-
1 2796/1964 767.8/- 2269/259 1941.2/- 3588/301 2048.7/-
2 2254/978 844.5/- 8784/1035 1105.4/- 3533/311 1133.0/-
5x5 3 NA NA NA 2526/1565 422.4/- NA 5739/708 393.3/- 3311/298 1633.2/-
4 2667,/1822 705.9/- 4753/600 1362.2/- 4545/403 1384.5/-
5 977/662 806.8/- 2914/366 932.6/- 2292/205 1056.7/-

‘o 39 Dpupg N'S
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Fig. 5. Comparison of different RL approaches for small-size experiments.
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Fig. 6. Comparison of different RL approaches for large-size experiments.

6.2. Performance of DKDDPG in high-dimensional problems

Next, we compare the performance of the DKDDPG algorithm with
the DDPG algorithm for high dimensional state spaces. Specifically,
we consider m = 10, 15, 20, 25, and 30. We break this section into
two parts: First, we perform the training and report the in-sample
performance of DKDDPG and DDPG. Second, we check out-of-sample
performance by evaluating the trained models of both algorithms on the
manufacturing resource matching problem and report the cumulative
reward of both models over 500 timesteps.

6.2.1. In-sample performance of DKDDPG

For the training phase, we set the Q-value stopping criterion to
be 3%. We chose the L-2 norm as the penalty function g”(-,-). We
use the single-period optimal policy discussed in Section 3.2.1 as the
prior policy u(als). Since we consider a linearly scheduled g, and run
the program for ten random values of k, we record the performance
metrics for DKDDPG with the « value that obtains the highest average
learned Q-values after convergence or program completion. Along with
the metrics mentioned before, we also calculate the percentage change
for the Q-values, convergence time, and the number of episodes to
converge for DKDDPG over DDPG.

From Table 2, we observe that the domain knowledge-informed
DDPG achieves convergence approximately 30% faster in time than
DDPG in all the cases. Moreover, DKDDPG takes approximately 36%
lesser number of episodes to solve the matching problem. It is also
interesting to note that as the size of the cases increases, the improve-
ment in convergence time and episodes also increases, as observed from
the average increment values in time and episode from Table 2. This
suggests that for larger problems with a high number of demand and
capacity types, DKDDPG is much more efficient as compared to DDPG.
This validates our hypothesis of adding a prior policy-based penalty
to the Q-learning update rule. Upon observing the average learned Q-
values, DKDDPG is able to obtain approximately 345% higher average
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Q-values as compared to the standard DDPG for all the cases. We note
that in some cases, while the DDPG is able to converge sooner than
DKDDPG in time, it does so locally and achieves much lower reward
values. The accelerated convergence in both time and episode count,
along with the increased discounted rewards, indicate that DKDDPG
effectively leverages the prior policy-based penalty to mitigate biased
estimates and expedite learning. This results in quicker convergence
and consistently higher Q-values across all scenarios compared to stan-
dard DDPG. Furthermore, in Fig. 6, we illustrate the training process
for two large-scale experiments, highlighting DKDDPG’s superior per-
formance over DDPG in our dynamic matching problem. In both cases
presented, DKDDPG consistently achieves significantly higher average
Q-values compared to DDPG, which tends to converge to lower values
within our 3000 episode limit.

6.2.2. Out-of-sample performance of DKDDPG

For the evaluation phase, we test our trained models of DKDDPG
and DDPG over a single run of the resource matching problem. We run
our trained model while simulating the demand distribution over 500
timesteps. Here, we run the models over five instances with different
demand distributions for all the demand-capacity cases, that is, m =
10, 15,20, 25, and 30. These instances are separately generated and are
thus, different from the ones generated in the training phase. We record
the cumulative reward obtained by both the trained models as well
as the percentage change of the cumulative reward of DKDDPG over
DDPG.

From Table 3, we observe that the trained model of DKDDPG is able
to obtain higher cumulative reward over 500 timesteps as compared to
the DDPG model. Specifically, the DKDDPG model achieves an average
reward increment of 103% over DDPG amongst the 5 supply—demand
cases.
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Table 2

DKDDPG vs DDPG comparison for large size experiments during training.

Case Instance DDPG DKDDPG

(m x n) Average Time-to- Episodes-to- Average Reward Time-to- Time Episodes-to- Episodes

Q-values convergence convergence Q-values Increment/Decrement convergence Increment/Decrement convergence Increment/Decrement
(s) (%) (s) (%) (%)

1 556.2 25132 2871 2674.3 380.8 18512 -26.3 1858 -35.3
2 510.8 12311 1201 2506.7 390.7 14751 19.8 1099 -8.5

10 % 10 3 411.5 29712 2156 3072.2 646.6 14414 -51.5 1057 -50.9
4 681.3 12142 1147 3184.5 367.4 11556 -4.8 841 -26.7
5 582.3 26055 1983 3521.4 504.7 26 679 2.4 1668 -15.9
Average 548.4 21070 1872 2991.8 458.0 17182 -12.1 1305 -27.5
1 886.6 53512 2227 5189.2 485.3 52043 -2.7 1848 -17.0
2 823.9 45079 2513 6233.4 656.6 35171 -21.9 1678 -33.2

15 x 15 3 782.3 16687 1761 6424.5 721.2 4367 -73.8 312 -82.3
4 4765.2 32375 1931 6625.1 39.0 31229 -3.5 1575 -18.4
5 976.5 36994 1771 5243.3 436.9 37934 2.5 1605 -9.4
Average 1646.9 36929 2041 5943.1 467.8 32149 -19.8 1404 -32.1
1 22996.4 8862 598 55113.2 139.6 6026 -32.0 329 -44.9
2 9702.2 10958 647 15259.6 57.3 6424 -41.4 352 —45.6

20 x 20 3 4932.1 9083 612 8912.2 80.7 8525 -6.2 469 -23.4
4 911.7 53167 1546 7189.3 688.5 50091 -5.8 1416 -8.4
5 5488.1 17 405 918 11016.5 100.7 10789 -38.0 542 -40.9
Average 8806.1 19895 864 19498.2 213.4 16371 -24.7 622 -32.6
1 13276.5 53347 634 19693.2 48.3 38001 -28.7 544 -14.2
2 4475.4 51572 631 13952.6 211.7 11799 -77.1 276 -56.3

25 x 25 3 1356.3 58195 655 9635.9 610.4 10509 -81.9 258 —-60.6
4 12324.7 52751 624 15097.2 22.5 9794 -81.4 232 —-62.8
5 9546.1 16227 355 10828.3 13.4 23543 45.1 415 16.9
Average 8195.8 46418 580 13841.4 181.3 18729 -44.8 345 -35.4
1 4727.5 55139 717 13024.1 175.5 16689 -69.7 332 -53.7
2 21046.2 55561 720 64567.3 206.8 19087 —65.6 362 -49.7

30 x 30 3 3285.4 48838 664 19604.1 496.7 13289 -72.8 283 -57.4
4 1751.4 58465 722 17785.2 915.5 58252 -0.36 692 -4.2
5 5286.5 39259 583 19145.3 262.2 21992 -44.0 396 -32.1
Average 7219.4 51452 681 26825.2 411.3 25862 -50.5 413 -39.4
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Table 3
DKDDPG vs DDPG comparison for large size experiments during evaluation.
Case Instance DDPG DKDDPG
(m x n) Cumulative Reward Cumulative Reward Reward
Increment/Decrement
(%)

1 57 640 98790 71.3
2 17700 94229 432.3

10 x 10 3 20097 35020 74.2
4 16136 119297 639.3
5 65906 122830 86.4
Average 35496 94033 260.7
1 27545 47 625 72.9
2 37118 68237 83.8

15 x 15 3 28546 78356 174.5
4 13447 56 321 318.8
5 53487 87612 63.8
Average 32029 67630 142.8
1 28994 39554 36.4
2 36670 54933 49.8

20 x 20 3 30812 43090 39.9
4 47 200 67 478 42.9
5 41698 48933 17.3
Average 37075 50798 37.3
1 379956 527663 38.9
2 843976 976 238 15.7

25 x 25 3 538745 679832 26.2
4 306357 475 368 55.2
5 481672 538135 11.7
Average 510141 639447 29.5
1 685083 831725 21.4
2 721876 904137 25.2

30 x 30 3 377772 542611 43.6
4 432175 852467 97.3
5 483467 655734 35.6
Average 540075 747 335 44.6

7. Conclusion & future work

In this paper, we considered the problem of dynamically matching
the demand-capacity types of resources in manufacturing. We formu-
lated the problem as an MDP where the outstanding demand at the
end of a period is considered the state and the quantity of demand and
capacity matched is the action matrix. To tackle the issue of biased esti-
mates and infeasible actions, we introduced prior policy-based penalty
and infeasibility penalty respectively into the traditional Q-learning
algorithm. We considered two cases of the regularization parameter
p: constant and scheduling, and further theoretically proved the con-
vergence of our domain knowledge-informed Q-learning algorithm for
both p cases. To avoid the curse of dimensionality, we proposed the
DKDDPG algorithm which utilizes our modified Q-learning update rule.
We investigated the performance of our DKDDPG algorithm with some
benchmark RL algorithms for both small and large-size experiments and
were able to demonstrate improvement in performance and efficiency
over those algorithms.

In this paper, we considered a dynamic resource-matching problem
in manufacturing for a matching firm with centralized control. It is
worth considering a decentralized, cooperative problem with multiple
agents having only local information. While our problem considers a
single-period lead time, it will be interesting to model a system with a
multi-period lead time to accommodate for delays in production due to
numerous reasons. We have not considered any matching costs in our
system; including a supply-based cost in our reward framework could
aid in minimizing the number of suppliers to fulfill a given demand
type. We provided theoretical results for domain knowledge-informed
Q-learning which establishes a performance guarantee for small-size
problems. Future work will consider deriving convergence results for
algorithms with function approximations.
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Appendix A. Proof of Theorem 1

We shall first state the result by Bertsekas and Tsitsiklis (1996)
provided as Lemma 1 below.

Lemma 1. Let f, be the sequence generated by the iteration (15). Given
the conditions in Assumption 1 are satisfied, then f, converges to f* with
probability 1.

Notice that at the optimal policy, the optimal domain knowledge-
informed Q-function satisfies

Q*(s,a) = r + y max[F*(s")|s, a]
=B* [Q*](S,g)

The contraction property of operator B* defined above can be
proven similarly as done by Fox et al. (2015).
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Theorem 1. Let Q, be the sequence generated by the iteration (14). We
assume that the step-sizes a, are non-negative and satisfy

[s+] [s+]

2 a, = o, Z a,z < o0

=0 =0

Then Q, converges to Q* with probability 1.

Proof. We can see that the 1st assumption above is the same as condi-
tion (a) stated in Assumption 1. Since B* is a contraction mapping,
B* is automatically a pseudo-contraction, satisfying condition (d) of
Assumption 1.

We now verify the assumptions on the noise variable w,. Using the
definition of B*, we automatically get

Elo,(r, s, DIF] = E[_B*[Qr](:,,a,) + 1+ VE [F (s Dlsy, a,]‘r’,]

=-B* [Qt](x,,a,) + E[rt + yEp[F”(SHl)lst’al]
=0

F

Hence, the condition (b) of Assumption 1 is satisfied. Now, we shall
verify condition (c).

E[w2(ry, 5,31 F] = E[(—B*[Q,](Sh,,[) + 1V F (s, a,])z‘}’,]
= E[(-B'1Q/.q))" + (1 + VB (5. a])
= 2B1Q, L (1 + VB, F™ (5,51 a]) |
Taking expectation for each term, we get
= E[(~B 10 p)[72] + B[ (r + VB LF* (50l )|
= 2E[ (B0, ) (1 + VE,LF* 1l 1) |7
= (“B1Qs.a)” + E[ (0 + VB, F G50l )|
- ZE[(B*[Q,](SM)) ‘T’,]E[(rt + VB [ (5,45, a,])(r}]
= (B*[Q/)0) + E[(r, + VB, [F™(s,11)ls,, a,])z(r,]
= 2(B*[Q:(5,.0p) (B*[Q1](5,.0)
=E[(r, + 7B, LF"(500l501) |71 = (B1Q 1)

<as sl

where A > E|(r, + yEp[F”(s,+1)|s,,a,])z‘f’t] and B = —1 are constants.
Since, all the conditions of Assumption 1 are satisfied, hence using
Lemma 1 we conclude that Q, converges to Q* with probability 1. []

Appendix B. Proof of Theorem 2

We use a result provided by Singh et al. (2000) denoted as Lemma 2
to help prove Theorem 2.

Lemma 2. Consider a stochastic process (a,,4,, H,),t > 0, where
a, 4, H, : X — R satisfy the equations

A1 () = (1 =, (x))4,(x) + o, (x) H,(x), x € X, 1=0,1,2,...

Let P, be a sequence of increasing c—fields such that the o, and A, are
P,—measurable and a,,A, and H,_, are P,—measurable, t+ = 1,2,....
Assume that the following hold:

1. the set X is finite.

2. 0<q(x) <L, Y, a,x) =00, Y, a’(x) < co w.p.1.

3. |E{H,O)IP}w < kll4lly + ¢, where k € [0,1) and ¢, converges
to zero w.p.1.

4. Var{H(X)|P,} < K(1 + ||A,||W)2, where K is some constant.

Then, A, converges to zero with probability one(w.p.1).
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Theorem 2. Let Q, be the sequence generated by the iteration (19). We
assume that the step-sizes a, are non-negative and satisfy

5 5

Z o = o0, Z (Jtt2 < 00

=0 =0

Then Q, converges to Q* with probability 1.

Proof. Subtracting the optimal O* on both sides of Eq. (9), we get
A1 Gppa) =1 —a)A (s, a) +a(ry +y mj\x FF(sq1) — 0*(s;,a)

where, 4,(s;,a,) = O,(s;,a,) — O*(s;,a,). We shall denote H,(s,,a,) =
ry +ymax, F(s, ) — Q*(s;, a,). Thus, rewriting it, we get

AH.](Stv az) = (1 - ar)At(stv (Z,) + a,H,(s,,a,)
Notice that the optimal Q-function for a given g, satisfies

Q*,(s,,a,)=r+ym7zrix F(s141) (B.1)
=r+ymax Z (apyi15i41) lg”(st+1’“x+1) + OF (Sp415 1)
T ﬂt 1

A1

(B.2)

= B;‘ [Qt](spa,) (B.3)

Now, as the value of p, increases to a large number,

ﬁig”(s, +1>a:41) — 0. So, the optimal Q-function as f, — oo is given
1
by

O*(spa))=r+y mfx 2 (11 1504107 (81415 Arp1) (B.4)
a/

=B 10,14 (B.5)

We verify all the assumptions in Lemma 2 to prove the convergence
of domain knowledge-inspired Q-learning with scheduled g,. Assump-
tions 1 and 2 of Lemma 2 are trivially satisfied for our algorithm.
We need to check Assumptions 3 and 4 in Lemma 2. Let P,
{Qo(s, @), ... ,0,(s,a), Hy(s, a),

... Hy(s,a)}, for s € S,a € A. Then,

[ECH G5 anI B, = [[Btr + 7 max (i) = Qa1 |,
= |Btr+ 7y max F7 (s, IR - ELQ (5@l B,

Using Equation (B.1) and (B.3)

= B0y — Q51|
Adding and subtracting Q*,,

= ”Bj [Qt](s,,a,) - Q*,(S,,a,) + Q*t(S,, a;) - Q*(S,»ay)”W

5T Ao ONA] IR [ ONA RN ONA) 1
Applying the definitions from Eq. (B.5) to the first term,
= | Bj [Qt](st.a,) - B:( [Qt](s,,a,)

= |o*tsian - 05|,
By definitions (B.3) and (B.5),

w+ HQ*I‘(SI’ a) — Q*(S,,a,)”W

0% (5,a,) = Q" (s, a)] = [BYIO, ), o)) — B*[Q: 5, 0|

= ‘7 max Fi (i) —v max Z 7(a4 |St+1)Qf(st+l’at+l)|
Ar41

< y max
T

F;”(SHI) - Z 7y |S,+|)Q:[(S,+1,a,+1))

A+l

1
<v m,flx 2 (@ |Sr+1)|Fg”(St+1 )+ Q;r(SH—l’ Aryp) — Q:r(sz+l’ar+l)
t

A+l

1
=Y m,flx 2 (@ |Sr+1)|Fg”(St+1 > at+|)‘
t

A+l
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Assume g”(s,,,a,,;) is bounded by a constant C for all x,s,,,a,,;. It
follows that

|Q*f(sts a;) - Q*(sp a;)l < lC

B
Therefore, we have
O e

lC — 0.
B

IA

Thus,

”E{H,(s,,axﬂpx < K”Af(s"a’)”vv ta

1"
where ¢, = y|| — A;‘(s,,a,)”W + ”A;*(s,,a,)”W which converges to zero
w.p.1 and x¥ = 0 in the 1st term. Thus, assumption 3 is verified. We
shall now verify assumption 4 in Lemma 2.

Var{H(s;,a)| P} = E{H](s;,a)|P;} — B{H/(s;,a))| P, }}
= E{(r+ymax 7 (s,11) = Q")) |}
—E{r+ymax F(s,.) = Q" (5. a)I P}’
= E{(r+y max F(s.01)” + (@50 00)”
= 2(r+y max FF(s;41)) Q" (5. a) | Py}
—B{r+ymax F(s,1) = 0" (s, 0| Py}
= E{(r+ 7 max F*(5,,)) "I} + E{(Q*(5.4)) "I}
= 2B{(r 4y max F(5,41)) Q" (s, a)| P, }
= (B{(r+ymax F7(s,.1)) 171}
~B{0"Gs.a)IP})’
Applying the definitions (B.3) and (B.5),

= (B/1O/)(5.)” + (B'[Q:)is,)” = 2B 10,1 0B 1Q1 )
- allour(B;‘ [Qt](s,,a,) -B* [Qt](sr’ar))z

Combining the first 3 terms above,

= (B/1Q/)5,0p ~ B0/ 51)” = (BI1Q: ) = BTIQN(5,0)
= K+ 14,1y )?

where K = 0, hence making it zero variance. Thus, assumption 4 is
verified. Since all the assumptions are verified, 0, — Q* w.p.1 by
Lemma 2. []
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