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Abstract—Causal discovery has become increasingly popular
in recent years, with the emergence of various methods for
inferring causal relationships from observational data. While
NOTEARS is a widely-used structure learning method known
for its effectiveness in handling scalar-valued continuous data, it
is not well-posed for conceptual data. In this study, we present
a novel extension of the NOTEARS method, called Concept-
Driven NOTEARS (CD-NOTEARS), that leverages concept-level
prior knowledge to impose DAGness on concepts instead of the
raw high-dimensional data. Our proposed approach preserves the
non-parametric nature of the original NOTEARS method and is
evaluated on synthetic, benchmark, and real-world datasets. The
results demonstrate that CD-NOTEARS outperforms the original
implementation and offers a promising tool for causal discovery
in scenarios where causality should be imposed on the concept
level. Our study provides insights into how incorporating concept-
level knowledge improves the performance of causal discovery
and paves the way for further research in this direction.

Index Terms—Causality, Structured Prediction and Learning,
Supervised Deep Learning, Optimization for Neural Networks.

I. INTRODUCTION

In recent years, the field of causal discovery has gained sig-
nificant traction, driven by advancements in machine learning
models that excel in handling large datasets and approximating
intricate relationships. Consequently, numerous methods have
emerged to infer causal relationships from observational data.
These methods can be categorized into constraint-based algo-
rithms e.g. PC [1], IC [2], and FCI [3], score-based approaches
e.g. GES [4] and FGES [5], and functional causal models
e.g. LiNGAM [6] and ANMs [7]. Constraint-based methods
utilize conditional independence tests and rules to detect edge
directions, often pinpointing the Markov equivalence class
of the genuine causal graph. Meanwhile, score-based models
target causal graph optimization over the DAG space, a process
that becomes computationally intensive due to its combi-
natorial nature. NOTEARS, present in linear [8] and non-
parametric [9] forms, adopts an algebraic acyclicity charac-
terization, transforming the combinatorial challenge into con-
tinuous constrained optimization. Variants of this continuous
optimization approach have surfaced in works Ref. [10], [11],
and [12], offering versatile causal mechanism modeling. While
NOTEARS stands out for its efficacy across diverse uses, it’s
not limited to structure learning for continuous or scalar data
but extends to feature vectors of conceptual data as well.

Fig. 1. Mapping of conceptual data to high-dimensional features for movie
dataset. The three main concepts considered are revenue (C1), genre (C2),
and synopsis (C3). The one-dimensional feature X1 corresponds to revenue,
while the encoding of genre results in two-dimensional features X2 and X3.
Synopsis is represented by a three-dimensional embedding with features X4,
X5, and X6.

For example, consider an IMDb movie dataset with three
concepts: revenue (C1), genre (C2), and synopsis (C3). Rev-
enue (C1) represents movie-generated revenue (X1). Assuming
our dataset has only thriller and sci-fi genres, we can use
one-hot encoding to represent the genre (C2), creating a two-
dimensional vector (X2 and X3) for these genres. For the
movie synopsis (C3), we can use NLP methods to produce
a three-dimensional embedding (X4, X5, and X6). Thus, our
dataset has three concepts (C1, C2, C3) leading to a six-
dimensional feature vector for each movie (X1 through X6,
as depicted in Fig. 1). By applying NOTEARS to this vector-
valued data, causal relationships within the high-dimensional
feature space can be discerned, shedding light on the intercon-
nections between features X1 through X6. However, a general
challenge with structure learning is that uncovering the causal
structure requires complete coverage of the data distribution.
Intuitively, without a comprehensive representation of the
data distribution, one can miss latent causal relationships or
infer spurious ones due to sample biases. To address this
challenge, researchers often provide algorithms with additional
knowledge to augment the optimization with prior knowledge,
as featured in software packages such as CausalNex 1, causal-
learn 2, bnlearn [13], DoWhy [14], and gCastle [15]. Previous
studies have shown that incorporating domain knowledge can
be beneficial and lead to superior performance. For example,

1https://github.com/quantumblacklabs/causalnex
2https://github.com/cmu-phil/causal-learn



the impact of prior knowledge on score-based causal learning
algorithms was evaluated in Ref. [16], and a separate study
evaluated the impact on NOTEARS [17]. Additionally, another
recent study [18] presents KGS, a novel knowledge-guided
greedy score-based causal discovery approach that uses struc-
tural priors to constrain the search space and guide the process.

In this paper, we present CD-NOTEARS, an extension of
the NOTEARS algorithm designed for concept-driven causal
structure learning in vector-valued data. This novel approach
integrates prior knowledge on relations between concepts
and high-dimensional features as meta-information, impos-
ing DAGness on concept-level data, a departure from the
original NOTEARS which operates on raw high-dimensional
features. Through extensive experiments on varied datasets, we
showcase CD-NOTEARS’s proficiency in identifying causal
relationships, highlighting its enhanced performance compared
to the original NOTEARS. Our key contributions can be
summarized as follows: (1) We introduced CD-NOTEARS,
a novel extension of the NOTEARS algorithm, that facili-
tates concept-driven causal structure learning in vector-valued
data while incorporating prior relations between different
concepts and high-dimensional features, preserving the non-
parametric essence of the original NOTEARS algorithm, (2)
Departing from traditional methods, our approach emphasizes
DAGness at the concept level rather than focusing solely on
high-dimensional raw features, and (3) our study illustrates
empirical validation through comprehensive experiments on
synthetic, benchmark, and real-world datasets.

The remainder of this paper is organized as follows: Sec-
tion II delves into the methodology of CD-NOTEARS, Sec-
tion III presents our experimental settings and evaluations. Fi-
nally, Section IV encapsulates our conclusions and highlights
the significant takeaways.

II. METHODOLOGY

The proposed CD-NOTEARS method builds on the origi-
nal nonparametric NOTEARS algorithm [9], specifically the
NOTEARS-MLP instance, to infer causal relationships from
vector-valued data. In this section, we summarize the back-
ground of linear [8] and nonparametric [9] extensions of
NOTEARS and then delve into our adaptation: the CD-
NOTEARS approach.

Observational causal structure learning aims to learn the
causal relationships encoded by a directed acyclic graph
(DAG) G from n i.i.d. observations in the data matrix X =
[x1| . . . |xd] ∈ Rn×d. The score-based approach focuses on
identifying the DAG model G that best fits the observed data
X based on a scoring criterion S(G, X) over the discrete space
of DAGs D where G ∈ D [4]. This optimization problem can
be formulated as:

min
G

S(G, X)

subject to G ∈ D
(1)

The linear NOTEARS [8] algorithm reformulates the combi-
natorial optimization in Eq. 1 to a continuous one through
an algebraic characterization of the acyclicity constraint. This

method encodes the graph G defined over the d nodes into a
weighted adjacency matrix W = [w1| . . . |wd] ∈ Rd×d where
wi,j ̸= 0 if there is an active edge Xi → Xj and wi,j = 0
otherwise. The weighted adjacency matrix W entails a linear
structural equation model (SEM) by Xi = fi(X) + Ni =
wT

i X + Ni; where Ni is the associated noise. The authors
define a smooth score function on the weighted matrix as
h(W ) = tr(eW◦W )− d where ◦ is the Hadamard product and
eM is the matrix exponential of M. This reformulates Eq. 1
into its equivalent form:

min
W∈Rd×d

L(W )

subject to h(W ) = 0
(2)

where L(W ) is the least square loss over W and h(W )
score defines the DAG-ness of the graph. The nonparametric
NOTEARS [9] uses partial derivatives on the functional form
fj to determine the dependency of random variable Xj on
other random variables. The authors define fj ∈ H1(Rd) ⊂
L2(Rd) over the Sobolev space of square integrable functions
whose derivatives are also square integrable, and fj can be in-
dependent of random variable Xi if and only if ||∂ifj ||L2 = 0
where ∂i denotes partial derivative with respect to Xi. This
redefines the weighted adjacency matrix as W (f) with each
Wi,j encoding the partial dependency of fj on variable Xi

and allows us to write Eq. 2 equivalently:

min
f :fj∈H1(Rd),∀j∈[d]

L(f)

subject to h(W (f)) = 0
(3)

Fig. 2. Illustration of concept-driven adjacency matrix and graph formulation
process from high dimensional data: (a) graphical representation of relations
between high dimensional features in raw data, (b) corresponding adjacency
matrix for high dimensional graph relations, W , (c) intermediate matrix
formulation obtained by applying row aggregation based on the concept-
level meta-information, (d) concept-driven adjacency matrix obtained after
full transformation using row and column aggregation, W con, (e) graphical
representation of the relations between concepts (C1, C2, C3), (f) Prior knowl-
edge or meta-information regarding the concepts and their representations
in high dimensional feature space. For the purpose of simplicity, this figure
demonstrates the process using binary adjacency matrices.

While NOTEARS deduces causal relationships among fea-
tures by applying a continuous acyclicity constraint on the
high-dimensional adjacency matrix, W , our CD-NOTEARS



method adopts a concept-driven strategy. Firstly, we obtain the
adjacency matrix similarly to NOTEARS. Instead of directly
constraining this matrix, we transform it into an aggregated
adjacency matrix, W con, using concept-level prior knowl-
edge. This matrix captures concept-level relationships, with
aggregation refining the optimization search space to guide
the optimization. CD-NOTEARS imposes acyclicity on the
concept-level relations captured in W con. Fig. 2 illustrates the
CD-NOTEARS approach to derive concept-driven causal re-
lations, W con, from the high-dimensional matrix, W . In order
to maintain consistency with our previous example presented
in Fig. 1, we demonstrate the matrix transformation using the
three concepts introduced earlier. Therefore, C1 refers to the
revenue of each movie, represented by a scalar-valued one-
dimensional feature X1. Meanwhile, C2 and C3 correspond
to the genre and synopsis concepts of the movie, represented
by two-dimensional (X2 and X3) and three-dimensional (X4,
X5, and X6) feature spaces, respectively. Unlike the original
NOTEARS implementation that imposes acyclicity on the
raw-level high-dimensional graph as shown in Fig. 2(a), CD-
NOTEARS imposes acyclicity on the concept-level graph as
in Fig. 2(e). To achieve the concept-level matrix, we first
generate the high-dimensional adjacency matrix (Fig. 2(b)).
An intermediate matrix is then formed using row aggregation
informed by concept-level meta-information (Fig. 2(c)). The
final transformation, integrating both row and column aggre-
gation, yields the concept-driven matrix W con (Fig. 2(d)),
influenced by the relations between concepts and features
shown in Fig.2(f). It is to be noted that various matrix
transformation or aggregation methods can be employed to
get the concept-level relations from the raw relations, as long
as they preserve the causal relationships from the raw level to
the concept level. Such transformation or aggregation function
should satisfy the following equation:

W con
m, n =

{
0 if ∀(Xi ∈ Cm, Xj ∈ Cn) Wi,j = 0

̸= 0 otherwise
(4)

Eq. 4 allows us to aggregate the raw-level information in
W and determine the relationship between concepts such as
Cm and Cn. If any of the random variables Xi that belong
to concept Cm has a causal link in high-dimensional feature
space to any other random variable Xj that belongs to concept
Cn, the corresponding cell in the concept-level aggregated
matrix, W con

m,n should reflect that relationship. Otherwise, the
cell in the concept-level matrix is set to zero. After applying
the transformation using Eq. 4, our optimization problem
reformulates to:

min
f :fj∈H1(Rd),∀j∈[d]

L(f)

subject to h(W con(f)) = 0
(5)

Following a similar strategy to the original NOTEARS
implementation, we solve the optimization problem using
the augmented Lagrangian method [19]. The proposed CD-
NOTEARS method preserves the non-parametric nature of the

original NOTEARS algorithm while leveraging concept-level
meta-information.

III. EXPERIMENTS AND RESULTS

To evaluate our extended NOTEARS algorithm, CD-
NOTEARS, we conducted case studies comparing its per-
formance against the original NOTEARS model. Given the
sensitivity of the NOTEARS algorithm to data scaling, as
shown in earlier studies [20], [21], we scaled our data using
the standardization method from Python’s scikit-learn [22]
library. We ensured consistent model structures by employing
an MLP with 10 hidden units and sigmoid activations for both
models. While CD-NOTEARS integrates meta-information
during optimization, focusing on concept-level relations, the
original NOTEARS first learns the causal graph in the high-
dimensional feature space, then post-processes with meta-
information. We adopted the ‘mean’ as the aggregation func-
tion in both models for concept-level causal graph learning.
For comparative analysis, we utilized two key performance
metrics: false discovery rate (FDR) and structural hamming
distance (SHD). The FDR, in particular, offers insights into
the conservativeness of our method. A lower FDR indicates
fewer unwarranted causal claims, addressing the challenge
highlighted by previous study [23] regarding non-conservative
error trade-offs seen in many causal discovery methods. On
the other hand, the SHD, a widely-recognized pattern metric
for evaluating causal discovery methodologies [24], provides
a holistic view of how closely the predicted graph aligns with
the ground truth. To emphasize reliability, we conducted 50
different random trials for each case study, evaluating the
performance of both models based on the mean and standard
deviation of the performance metrics. We then performed
statistical significance analysis using a t-test with α level of
0.05.

A. Synthetic Dataset

To evaluate the effectiveness of CD-NOTEARS against the
original NOTEARS, we ran simulations on synthetic datasets.
We examined 16 combinations, varying between Erdos-Renyi
and Scale-Free graph models (gt = ER, SF), number of nodes
(d = 10, 20), sample sizes (n = 200, 1000), and edges (s0 = 1d,
4d), where d indicates node count. Each combination yielded
50 random graphs or true DAGs, generated via the Additive
Noise Model (ANM) with MLPs following the methodology
in the original work [9]. For the experiments with synthetic
datasets, we considered two different ranges for the dimension
of each concept. In the first case, the range was limited to 1 to
3, and in the second case, the range was expanded to 1 to 5.
The results are presented in Table I and Table II, respectively.
Our evaluation showcases the superiority of CD-NOTEARS
over the original implementation. By integrating prior knowl-
edge into the graph formulation and imposing acyclicity at the
concept level, CD-NOTEARS achieves lower FDR and SHD
in most scenarios. This underscores the merit of employing
concept-level knowledge for precise causal structure leaerning.



TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED CD-NOTEARS MODEL AND THE ORIGINAL NOTEARS IMPLEMENTATION ON SYNTHETIC DATA

CONSIDERING RANDOM VARIABLES AS CONCEPTS HAVING DIMENSION RANGES FROM 1 TO 3.

n d s0 gt fdr shd
CD-NOTEARS NOTEARS CD-NOTEARS NOTEARS

200

10 10 ER 0.86 ± 0.04 0.89 ± 0.02 37.84 ± 2.20 47.36 ± 2.99
40 SF 0.89 ± 0.04 0.90 ± 0.03 38.90 ± 2.27 47.77 ± 2.55

20 20 ER 0.48 ± 0.11 0.56 ± 0.05 22.04 ± 4.90 35.78 ± 5.02
80 SF 0.58 ± 0.07 0.66 ± 0.05 26.20 ± 3.35 40.30 ± 4.43

10 10 ER 0.93 ± 0.01 0.94 ± 0.01 165.64 ± 6.34 188.09 ± 6.07
40 SF 0.94 ± 0.02 0.94 ± 0.01 167.82 ± 6.77 184.50 ± 6.06

20 20 ER 0.75 ± 0.04 0.77 ± 0.03 139.42 ± 6.91 166.78 ± 10.03
80 SF 0.78 ± 0.05 0.81 ± 0.03 142.90 ± 10.37 167.21 ± 9.06

1000

10 10 ER 0.83 ± 0.14 0.86 ± 0.07 22.12 ± 4.91 33.78 ± 8.07
40 SF 0.88 ± 0.09 0.86 ± 0.08 21.42 ± 5.58 30.70 ± 7.23

20 20 ER 0.48 ± 0.15 0.54 ± 0.09 30.80 ± 4.41 33.88 ± 5.13
80 SF 0.55 ± 0.18 0.63 ± 0.10 27.26 ± 4.57 32.54 ± 4.61

10 10 ER 0.93 ± 0.03 0.92 ± 0.02 122.26 ± 20.65 152.18 ± 19.26
40 SF 0.95 ± 0.03 0.94 ± 0.02 124.88 ± 14.90 149.30 ± 17.91

20 20 ER 0.72 ± 0.05 0.76 ± 0.03 119.34 ± 9.89 147.36 ± 11.28
80 SF 0.76 ± 0.07 0.78 ± 0.05 115.38 ± 15.17 140.56 ± 16.82

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED CD-NOTEARS MODEL AND THE ORIGINAL NOTEARS IMPLEMENTATION ON SYNTHETIC DATA

CONSIDERING RANDOM VARIABLES AS CONCEPTS HAVING DIMENSION RANGES FROM 1 TO 5.

n d s0 gt fdr shd
CD-NOTEARS NOTEARS CD-NOTEARS NOTEARS

200

10 10 ER 0.86 ± 0.04 0.89 ± 0.01 37.70 ± 1.78 50.33 ± 2.16
40 SF 0.86 ± 0.03 0.90 ± 0.01 38.24 ± 1.66 50.39 ± 2.30

20 20 ER 0.48 ± 0.12 0.57 ± 0.04 21.92 ± 5.37 42.50 ± 5.17
80 SF 0.59 ± 0.10 0.67 ± 0.04 26.64 ± 4.79 45.16 ± 4.14

10 10 ER 0.93 ± 0.01 0.94 ± 0.01 161.68 ± 6.44 194.46 ± 5.92
40 SF 0.94 ± 0.02 0.95 ± 0.01 165.14 ± 6.15 195.42 ± 4.56

20 20 ER 0.76 ± 0.04 0.78 ± 0.01 139.66 ± 6.65 179.57 ± 7.04
80 SF 0.78 ± 0.05 0.81 ± 0.02 139.28 ± 10.15 180.54 ± 10.21

1000

10 10 ER 0.85 ± 0.06 0.87 ± 0.03 30.14 ± 4.89 43.60 ± 4.67
40 SF 0.89 ± 0.06 0.89 ± 0.03 29.90 ± 5.14 43.78 ± 5.33

20 20 ER 0.45 ± 0.12 0.55 ± 0.07 25.30 ± 5.23 37.88 ± 6.13
80 SF 0.56 ± 0.15 0.64 ± 0.08 26.48 ± 5.76 38.62 ± 6.90

10 10 ER 0.93 ± 0.02 0.93 ± 0.01 137.40 ± 13.93 177.26 ± 9.79
40 SF 0.94 ± 0.02 0.94 ± 0.02 136.46 ± 13.81 174.08 ± 12.48

20 20 ER 0.74 ± 0.04 0.78 ± 0.03 127.02 ± 10.89 169.86 ± 10.51
80 SF 0.77 ± 0.07 0.79 ± 0.04 123.34 ± 16.34 162.56 ± 15.12

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED CD-NOTEARS MODEL AND THE ORIGINAL NOTEARS IMPLEMENTATION ON BINARY BENCHMARK

DATASETS.

dataset fdr shd
CD-NOTEARS NOTEARS CD-NOTEARS NOTEARS

Lucas 0.76 ± 0.03 0.82 ± 0.02 12.16 ± 0.78 22.96 ± 1.37
Asia 0.75 ± 0.01 0.87 ± 0.04 9.02 ± 0.14 16.00 ± 1.13

B. Benchmark Dataset

a) Benchmark Datasets for Binary Variables: We then
compared CD-NOTEARS and the original NOTEARS on two
benchmark datasets for categorical variables: LUCAS and
ASIA. The LUCAS (LUng CAncer Simple set) dataset [25],
sourced from the Causality Workbench project, comprises
2000 instances of 12 binary variables detailing factors affect-
ing lung cancer. The data is synthetically created by causal
Bayesian networks and in our study, we used the unmanipu-
lated distribution of the dataset referred to as LUCAS0 3, as

3http://www.causality.inf.ethz.ch/data/LUCAS.html

visualized in Fig 3. The second dataset, ASIA [26] depicts
the interplay between tuberculosis, lung cancer, bronchitis,
and Asia visits. Containing 8 binary variables and 5000
samples generated following the causal Bayesian network,
its causal graph 4 and dataset 5 are available online. Our
evaluation, presented in Table III, shows CD-NOTEARS sur-
passing NOTEARS in terms of FDR and SHD values on both
datasets, emphasizing its effectiveness for concept-driven data
with binary categorical variables.

4https://www.bnlearn.com/bnrepository/discrete-small.html#asia
5https://github.com/AnaRitaNogueira/Methods-and-Tools-for-Causal-

Discovery-and-Causal-Inference



TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED CD-NOTEARS AND ORIGINAL NOTEARS IMPLEMENTATION ON MULTINARY BENCHMARK DATASETS

USING PYTORCH [27] EMBEDDING LAYER TO GENERATE VECTOR-VALUED DATA FROM CATEGORICAL VARIABLES.

dataset fdr shd
CD-NOTEARS NOTEARS CD-NOTEARS NOTEARS

Dutch 0.56 ± 0.29 0.69 ± 0.07 41.62 ± 1.74 46.84 ± 2.56
Adult 0.56 ± 0.20 0.73 ± 0.07 38.42 ± 1.34 44.70 ± 2.23

Fig. 3. Causal graph for unmanipulated distribution of LUCAS0 [25]

b) Benchmark Datasets for Multinary Variables: In our
next experimental study, we assessed CD-NOTEARS on two
mixed numeric and multinary datasets: the Dutch Census [28]
and the Adult dataset [29]. The Dutch Census has 60,420 en-
tries with 12 attributes utilized for structural learning, such as
sex, age, household position, country birth, occupation, etc.
Among these attributes, sex and occupation are binary, while
the remaining attributes can take multiple values. The Adult
dataset comprises 32,561 samples with 11 attributes, including
a combination of continuous and categorical variables such as
age, working class, sex, hours per week, marital status, in-
come, etc. Age and hours per week are continuous variables,
while the rest are categorical. Among the categorical vari-
ables, sex and income are binary, and the remaining variables
are multinary. We considered the causal graph from a prior
study [30] for both datasets. To process multinary categorical
variables, we used PyTorch’s [27] embedding layer to create
vector embeddings for each concept. This technique efficiently
manages mixed data, leading to a compact dataset. As illus-
trated in Table IV, CD-NOTEARS outperforms NOTEARS
in the identification of causal structures from mixed data. By
leveraging concept-level understanding and DAG properties,
our approach highlights the significance of conceptual insights
in high-dimensional causal learning.

C. Real Data

Finally, we evaluated CD-NOTEARS and the original
NOTEARS using the IMDb movie dataset sourced from two
Kaggle repositories: IMDB Movie data Analysis 6 and Movie
Scripts Corpus 7. The dataset, after cleaning, had data on 1764

6https://www.kaggle.com/code/robinjrjr/imdb-movie-data-analysis/data
7https://www.kaggle.com/datasets/gufukuro/movie-scripts-corpus

Fig. 4. Causal relations obtained from the movie datasets using two dif-
ferent models: (a) CD-NOTEARS and (b) the original implementation of
NOTEARS. r. week stands for the release week of the movie.

movies, including features like budget, cast, genre, release
week, user rating, and revenue. Cast and genre are vector-
valued features, while the remaining features are scalar in
nature. As each movie sample can have one or more casts and
genres, we applied one-hot encoding to generate embeddings
for each sample followed by training an auto-encoder to
retain maximum information with lower dimensional features
from these concepts. This process was applied independently
to each of the multi-dimensional concepts in the dataset,
namely cast and genre. To ensure a fair comparison, we
kept the common settings of both model implementations
similar. In total, CD-NOTEARS estimated six edges, which
are budget → rating, cast → rating, genre → budget, genre
→ release week, genre → rating, and revenue → rating. Due
to the absence of an established ground truth or consensus
within the dataset, we depended on our own assessment to
evaluate the predicted connections. Upon examination, we
discovered that the majority of causal relationships estimated
by CD-NOTEARS appeared to be reasonable and coherent.
However, the relationship between rating and revenue appears
ambiguous as higher rating of a movie can draw more people
to watch the movie, resulting in increased revenue, and con-
versely, higher revenue could bias viewers to rate the movie
higher. Despite this ambiguity, both implementations agreed
on the direction of this relationship, suggesting it would not
affect our comparative evaluation. Nevertheless, the original
implementation of NOTEARS estimated six additional edges,
some of which appeared unlikely such as cast → release week,
rating → cast, and revenue → cast. Fig 4 illustrates the causal
relations retrieved by both these models. Notably, NOTEARS
applies DAGness to the raw-level high-dimensional features,
which resulted in the generation of two self-loops for the
concepts cast and genre. While this violates the acyclicity
assumption, we found this characteristic intriguing as the
selection of one cast may impact the selection of other casts,
and a similar phenomenon may apply to genres. Nonetheless,



our proposed CD-NOTEARS implementation, which enforces
DAGness on the concepts, appears to surpass the original
NOTEARS implementation in terms of performance. Although
we lack a quantitative metric for assessing performance, our
analysis of the IMDb movie dataset presents persuasive evi-
dence in favor of CD-NOTEARS.

IV. CONCLUSIONS

Our proposed method, CD-NOTEARS, represents a signifi-
cant advancement in the field of causal discovery for concept-
driven data. By emphasizing acyclicity constraints at the con-
cept level and leveraging prior feature-to-concept knowledge,
it refines causal relationship representation, bolstering reliabil-
ity and accuracy. Through evaluations on diverse datasets, we
have highlighted its efficacy, especially in sectors where con-
ceptual data is prevalent such as healthcare, finance, and social
science . This research emphasizes the benefits of integrating
prior concept knowledge in causal structure learning, making
CD-NOTEARS a valuable addition to the causal discovery
repertoire. Looking ahead, there is potential to combine this
concept-driven approach with other leading causal discovery
methods to further amplify its potency. In conclusion, we
firmly believe that our extension of the NOTEARS approach
will be a pivotal asset for causal discovery across various
domains. We hope that this research will inspire further studies
and advancements in the field of causal discovery, ultimately
leading to a better understanding of causality in complex
systems and guiding effective causal learning methods.
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