
OnePerc: A Randomness-aware Compiler for Photonic
Quantum Computing

Hezi Zhang
hezi@ucsd.edu

University of California,
San Diego, USA

Jixuan Ruan
j3ruan@ucsd.edu

University of California,
San Diego, USA

Hassan Shapourian
hshapour@cisco.com
Cisco Quantum Lab

San Jose, USA

Ramana Rao Kompella
rkompell@cisco.com
Cisco Quantum Lab

San Jose, USA

Yufei Ding
yufeiding@ucsd.edu

University of California,
San Diego, USA

Abstract
The photonic platform holds great promise for quantum
computing. Nevertheless, the intrinsic probabilistic charac-
teristic of its native fusion operations introduces substantial
randomness into the computing process, posing signi�cant
challenges to achieving scalability and e�ciency in program
execution. In this paper, we introduce a randomness-aware
compilation framework designed to concurrently achieve
scalability and e�ciency. Our approach leverages an innova-
tive combination of o�ine and online optimization passes,
with a novel intermediate representation serving as a cru-
cial bridge between them. Through a comprehensive eval-
uation, we demonstrate that this framework signi�cantly
outperforms the most e�cient baseline compiler in a scalable
manner, opening up new possibilities for realizing scalable
photonic quantum computing.

ACM Reference Format:
Hezi Zhang, Jixuan Ruan, Hassan Shapourian, Ramana Rao Kom-
pella, and Yufei Ding. 2024. OnePerc: A Randomness-aware Com-
piler for Photonic Quantum Computing. In 29th ACM Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 3 (ASPLOS ’24), April 27-May
1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA, 17 pages.
h�ps://doi.org/10.1145/3620666.3651372

1 Introduction
Photonic platform holds great promise for universal quan-
tum computing due to the unique advantages of photonic
qubits [1, 2], including their great scalability, long coherence

This work is licensed under a Creative Commons Attribution International
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04.
https://doi.org/10.1145/3620666.3651372

time and easy integration with quantum networks. Besides
the experimental demonstration of quantum supremacy on
photonic systems [3–5], PsiQuantumhas proposed their tech-
nology roadmap towards one million qubits using silicon
photonics [6, 7]. The potential high clock speed of this ap-
proach [7] could make photonic platform advantageous for
near-term quantum algorithms.

Photonic quantum computing di�ers from other platforms
such as superconducting [8], ion trap [9] and neutral atoms
[10], as it is scaled up by a probabilistic operation known
as fusion [6]. Fusion plays a key role of forming large-scale
entanglements between photonic qubits by merging small
entangled states into larger ones upon success. Its proba-
bilistic feature comes intrinsically from the degeneracy in
fusions’ outputs for di�erent input states [11], bringing sig-
ni�cant randomness to the computing process. On the hard-
ware side, improvement of fusion success probability to a
high value requires an impractical amount of ancillary re-
sources [11, 12]. On the software side, this randomness is not
taken into consideration by existing software infrastructures
for the circuit-based model [13] (e.g., Qiskit [14], Tket [15]).
This is because the weak interaction between photons makes
it hard to realize 2-qubit gates in the circuit model, but favors
a di�erent computing model known as measurement-based
quantum computation (MBQC) or one-way quantum com-
putation (1WQC) [16, 17].
Recently, as an initial e�ort towards e�cient photonic

MBQC, a compilation framework OneQ [18] has been pro-
posed to signi�cantly reduce the depth of compiled programs
and the number of required fusions. However, it overlooks
the severe randomness brought by fusion failures, simply
assuming that fusions always succeed. As a compiler, OneQ
translates the construction of a program-speci�c entangled
state called graph state [17] (Fig. 1(a)) into a fusion pattern
between the small entangled resource states [6] available
on the hardware (Fig. 1(b)). However, when fusion failures
occur in real-time execution, as illustrated in Fig. 1(b), the
resulting state becomes a random graph state deviating from
the target structure. Thus the execution needs to be retried

738

https://doi.org/10.1145/3620666.3651372
https://doi.org/10.1145/3620666.3651372
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620666.3651372&domain=pdf&date_stamp=2024-04-27

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Zhang, J. Ruan, H. Shapourian, R. Kompella, Y. Ding

until success, which is non-scalable given that a practical
fusion success probability in the near term is merely around
75% [11, 12]. From now on, we will refer to the graph states
required by programs (e.g., Fig. 1(a)) as program graph states
and those generated by fusions (e.g., Fig. 1(c)) as physical
graph states.

x

(a) (b) (c)

Figure 1. Randomness brought by fusion failures.

The objective of this paper is to present a scalable and e�-
cient compilation framework capable of e�ectively handling
fusion failures in the computing process. This is intuitively
a hard problem. Firstly, with a failure rate as high as 25%, it
seems impossible to ensure the formation of any speci�c en-
tanglement structure among the photonic qubits. Secondly,
failed entanglements such as the disconnected edges in Fig. 1
cannot be recovered since the photons involved in the fusion
are completely destroyed by the fusion. Thirdly, the limited
lifetime of photons refuses the execution of over-complex al-
gorithms in real-time, as photons are prone to an increasing
loss rate with prolonged storage time in �bers [19].
Fortunately, there are some nice features of fusions and

graph states that we can leverage. Firstly, fusion failures are
heralded [20], allowing real-time awareness and enabling
the incorporation of classical feed-forward [20–22] to adjust
subsequent operations based on prior fusion outcomes. Sec-
ondly, when the fusion success probability exceeds a thresh-
old, the resulting physical graph state contains a long-range-
connected component with a high probability. This widely
studied phenomenon, known as percolation [23–25], plays
a crucial role in providing viable computing resource, in-
spiring our framework’s name, OnePerc (one-way quantum
computing based on percolation). Thirdly, a random graph
state can be reshaped into any subgraph of it by eliminating
the redundant qubits, which can be achieved by measuring
them out in / -bases [16].

However, leveraging these features is highly nontrivial. In
addition to the absence of a general fusion strategy to achieve
percolation for generic resource states, and the structural
mismatch between the high-level program graph state and
the low-level random physical graph state, we need to keep
in mind the limited time for real-time passes. Speci�cally,
the process associated with the formation of long-range
connectivity and the reshaping of the random physical graph
state both need to be carried out in real-time, leading to a
high demand on their lightweight design. This creates a

abstraction

FlexLattice IR Program

Physical Graph StateResource States

Program
Graph State

Measurement Pattern

Virtual
Hardware

Inter-level
Instructions

Offline Passes
Online PassesIntermediate

Layer

Figure 2. High-level design of OnePerc.

con�ict between the real-time scalability and the program
execution e�ciency, as a �exible optimization strategy for
e�cient program execution may require complex algorithms
that are not feasible in real-time.
To this end, we propose a randomness-aware compiler

to e�ciently scale up quantum computing on photonic sys-
tems, as illustrated in Fig. 2. Our framework achieves concur-
rent real-time scalability and program execution e�ciency
through the combination of an online pass and an o�ine pass.
The online pass handles real-time randomness in a scalable
manner through percolation and reshaping. In particular,
it provides a general fusion strategy for various resource
states and exposes the reshaped physical graph states to pro-
grams by the abstraction of a virtual hardware. Motivated by
the features of this virtual hardware, we propose a FlexLat-
tice intermediate representation (IR), which preserves the
high-level program information and provides maximal op-
timization space supported by the virtual hardware. This
allows o�ine passes to address the mismatch between pro-
gram and physical graph states by transforming the program
to an e�cient IR program, which can then be translated to
intermediate-level instructions to guide real-time operations.

Our contributions in this paper are summarized as follows:
• We propose a randomness-aware compiler for pho-
tonic quantum computing through a combination of
online and o�ine passes, which are bridged by a novel
FlexLattice IR facilitated with an intermediate-level
instruction set.

• The online pass handles real-time randomness in a scal-
able manner by formation of long-range connectivity
with various resource states and e�cient reshaping of
the random long-range connected structures.

• The FlexLattice IR provides programs with an opti-
mization space that balances the complexity of online
structure reshaping and the �exibility of the reshaped
structures. This enables an o�ine pass to enhance the
e�ciency of program execution through optimized
mapping algorithms.

• Our evaluation demonstrates a signi�cant outperfor-
mance over the e�cient baseline in a scalable man-
ner, implying a �rst-time concurrent achievement of
scalability and e�ciency in compilation of photonic
quantum computing.

OnePerc: A Randomness-aware Compiler for Photonic�antum Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

2 Background
2.1 MBQC Basics
MBQC is a universal but conceptually distinct computational
model from the circuit model. In MBQC, computation is
driven by 1-qubit projective measurements, rather than 1-
qubit and 2-qubit gates, on an initial entangled state called
graph state, whose graph structure⌧ = (+ , ⇢) is determined
by the quantum program [17]. As exempli�ed in 1(a), 3(b),
5(a), each vertex in the graph state stands for a qubit, with
the state formally de�ned as the eigenstates of operator

B = -8

Ã
92=8

/ 9 , 88 2 +

where-8 ,/ 9 are the Pauli operators on qubit 8, 9 respectively,
and=8 is the set of neighboring qubits of 8 2 + on graph⌧ . On
the graph state, computation can be driven by a set of equato-
rial measurements ⇢ (U), i.e., measurements on the X-Y plane
of Bloch sphere at an angle U , along with / -measurements.
The measurement basis of each qubit is predetermined by the
quantum program, known as a measurement pattern, but are
subject to a real-time adjustment according to the measure-
ment outcomes of prior qubits, with the angles adjusted from
U to (�1)BU + Cc where B, C 2 {0, 1}. This feed-forward mech-
anism is used to address the non-determinism of quantum
measurement outcomes.

MBQC has the same computation power with the circuit
model in the sense that they are both universal computing
models. There is a straightforward translation [17] from a cir-
cuit in the universal gate set {� (U),CZ} into a measurement
pattern on a graph state, where

� (U) =

1 eiU
1 �eiU

�

For example, Fig. 3 shows the translation from 3(a) to 3(b),
each vertex in (b) representing a qubit, with ‘in’ and ‘out’
denoting their roles of being input or output qubits. It can
be seen that the gates � (U), � (V), � (W) are translated to equa-
torial measurements with corresponding angles, i.e., ⇢ (U),
⇢ (V), ⇢ (W), while the CZ gates are translated to edges of the
graph states. This process can be rigorously described in ZX-
calculus and optimized by available tools such as PyZX [26].

!(#)

!(%) !(&)
'(#)

'(&) out

in out

in/out

in

in

in

out

out

out
in
'(%)

(a) (b)

Figure 3. Translation from a circuit (a) to a measurement
pattern on a graph state (b).

2.2 Photonic Platform
The weak interaction between photons, despite ensuring low
cross-talk between photonic qubits, also poses signi�cant
challenges for realizing multi-qubit gates in the circuit model.
Therefore, as a computing model that only requires measure-
ments, MBQC [27] emerges as highly suitable for photonic
quantum computing. Besides the experimental demonstra-
tion of small-scale photonic MBQC [28–30], the photonic
platform is rapidly scaling up with integrated waveguides
and optical chips [7, 31–35]
Practical photonic hardware scales up by creating small

resource states, e.g., 4-qubit, 6-qubit graph states, and connect-
ing them through fusions [6]. In particular, identical resource
states are periodically generated by an array of resource state
generators (RSGs) every cycle, with those generated in the
same RSG cycle forming a 2D resource state layer (RSL).
Along with the time dimension, this creates a 3D array of
resource states in the space-time.
The resource states can then be merged probabilistically

into larger graph states through (type II [20]) fusions, which
can be regarded as concurrent measurements of - ⌦ / and
/ ⌦- , on two photonic qubits from di�erent resource states.
Resource states on the same RSL can fuse with their neigh-
bors by a spatial routing of photons, while resource states
generated by the same RSG but on di�erent RSLs can fuse
with each other by a temporal routing that controls the ar-
rival times of photons at measurement devices.

effectively

(a) (b)

Figure 4. Form a large RSL from multiple small RSLs.

With the advanced integrated silicon photonics, hardware
components described above can operate on the scales char-
acterized by GHz clock rates [36–38], potentially leading
to a time scale ⇠ 1 ns for RSG cycles [7]. Spatial routing
can be adjusted in every RSG cycle with switches, while
temporal routing can be achieved by temporarily storing
photonic qubits in a high-capacity quantum memory known
as delay lines, realized by optical �ber technology. With a
low transmission loss rate of < 5% per km [19], photons can
have a lifetime of around 5000 RSG cycles in the delay lines.
Moreover, the size of RSL is not completely constrained by
the number of RSGs, but can be extended by leveraging the
tradeo� between spatial and temporal fusions [7]. For ex-
ample, the large RSL depicted in Fig. 4(b) can be formed by

740

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Zhang, J. Ruan, H. Shapourian, R. Kompella, Y. Ding

(g)

t1

t2

t3

t4

t5

fatal: A has no more neighbors

A

t6 t7

t8

t9 t10

C

B

t10

(f)

t1

t2

t3

t4

t6

fatal: only a single node remained

A C

B

t4

t5

fusion strategy to generate (a)

A

C

B

D

(c)

(e)

t1

t2

t3

t4
t5

success: graph state(a) generated

A

t6 t7

t8

t9 t10 CB

t10

D
t11

(b)
hardware: a resource state layer (RSL)

(d)
Representation of fusion strategy

fusion success

fusion failure

Z-measurement

planned fusion

leaf-leaf fusion

root-leaf fusion

A B

C

D

(a)
program graph state

Figure 5. Why OneQ does not work.

fusing the edges of several small RSLs as depicted in Fig. 4(a),
resembling folding a paper by twice (4(b)! 4(a)). With a
photon lifetime around 5000 RSG cycles, this allows for an
extension of RSL size by up to 5000 times.

However, as the key operation for merging resource states,
fusions are intrinsically probabilistic. By allowing two ancilla
photons, their success probability can be practically boosted
to 75% [11, 12]. While no conceptual limit has been found
yet, so far the maximum known success probability attain-
able using linear optics is 78% by injecting 8 ancilla single
photons [12]. Reaching a higher success probability not only
requires a larger number of ancilla photons but could also
require the ancilla photons to be entangled. For example, it
would take 30 entangled ancilla photons to reach a success
probability over 95% [11].

3 Motivation and Overview
In this section, we present a motivating example to demon-
strate that a straightforward adaption of OneQ is insu�cient
to yield a scalable compiler in the presence of fusion failures.
Then we provide an overview of our innovative randomness-
aware compiler designed to e�ectively overcome these chal-
lenges.

3.1 Motivating Example
OneQ + Retry. Fig. 5(c) illustrates OneQ’s strategy with

an example of generating a graph state in Fig. 5(a) from a
single RSL depicted in Fig. 5(b), with the strategy represented
more compactly by Fig. 5(d). Since the resource states have a
star-like tree structure, we refer to the qubits of degree 1 as
leaf qubits, and those of degree > 1 as root qubits. Light blue
lines in Fig. 5(d) denote leaf-leaf fusions (i.e., fusions between

two leaf qubits) of the resource states (yellow circles), while
dark blue lines denote root-leaf fusions (i.e., fusions between
a root and a leaf qubit).

To handle real-time randomness, a straightforward adap-
tion is to introduce a retry mechanism. For example, the
strategy in Fig. 5(c) can result in a dynamic implementation
in Fig. 5(e) according to the fusion successes and failures
(green and red ellipses), with these fusions performed se-
quentially from t1 to t11. If a fusion such as t3 fails, we retry
the fusion using another two qubits at t4, and the same ap-
proach is applied to t6 and t7. This allows us to successfully
generate the graph state in Fig. 5(a).
However, it is worth noting that some fatal failures may

necessitate the retry of the entire compilation. For exam-
ple, in Fig. 5(f), the triangular structure ABC is successfully
generated from t1 to t4, but subsequent failures at t5 and t6
deplete the qubits in ABC, only leaving the isolated qubit B.
In Fig. 5(g), a 5-qubit linear graph state forms from t1 to t9,
which provides the potential for generating the triangle ABC
if the fusion at t10 succeeds in fusing the two qubits at the
line ends. Unfortunately, this fusion fails and consumes the
last neighboring resource state of qubit A (except C), leaving
A with no chance to fuse with other qubits.

Critical Issues. From this example, we can �nd some crit-
ical issues of this dynamic retry mechanism. First, adapting
to prior fusion outcomes necessitates a sequential execution
of fusions. This considerably extends the processing time for
each RSL, resulting in a time ine�ciency as subsequent RSLs
must wait for the completion of the current one. Second,
since the decision-making process for responding to prior fu-
sions occurs in real time, this extended processing time could

OnePerc: A Randomness-aware Compiler for Photonic�antum Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

exceed the limited lifetime of photons, especially for large
RSLs. This would result in substantial photon loss, compro-
mising the overall �delity as computing scales up. Third, the
frequent retries in real-time implementation lead to signi�-
cant deviations from the planned strategy in Fig. 5(c). This
undermines the bene�ts of the proactive planning, eroding
the e�ciency achieved by the mapping strategy of OneQ.

3.2 Framework Overview
Tolerating randomness in the compilation while maintaining
e�ciency presents a signi�cant challenge. To address this, we
propose an innovative framework that achieves scalability
and e�ciency simultaneously through a synergy of online
and o�ine passes. The online pass prioritizes the real-time
scalability by maximizing the concurrency among fusions
and the parallelism of the associated path searching. The
o�ine pass focuses on the e�cient deployment of high-level
program graph states onto the randomness-eliminated com-
puting resource guaranteed by the online pass. The bridge
between the online and o�ine passes is established through
an intermediate software layer positioned between the low-
level physical layer and the high-level program layer. This
is achieved through a novel FlexLattice IR, along with an
instruction set supported by the online pass and ful�lling
the requirements of the o�ine pass.
To provide a concise overview, we exemplify the compi-

lation �ow by compiling a simple program graph state in
Fig. 6(a) onto the hardware in Fig. 6(b), which is 3 layers of
that in Fig. 5(b). Indeed, while Fig. 5(b) depicts only a single
RSL, the incorporation of additional layers is both allowed
and necessary for larger graph states. Steps (b)!(d)!(c)
demonstrate the online pass, while step (a)!(c) illustrates
the o�ine pass. In the online pass, fusions are conducted
concurrently in a predetermined pattern (Fig. 6(d)) without
individual retries of the failed ones, which eliminates the
necessity for sequential operations. In this simple example,
the resource states would result in a 3⇥ 3 lattice if all fusions
succeed, since the 3 resource states on the same locations of
di�erent layers would form a 4-degree star-like graph state
(as depicted in the legend), while these star-like graph states
would be joined into a lattice. In the presence of fusion fail-
ures, the resulting physical graph state becomes a subgraph
of the 3⇥3 lattice, which is then reshaped to a smaller lattice
(Fig. 5(c)). The target structure of the reshaping is program-
agnostic, with its simple and regular structure facilitating
the enhancement of real-time e�ciency. When the fusion
success probability exceeds the percolation threshold, this re-
shaping process attains near-deterministic success as the RSL
size increases. This eliminates the necessity for repetitive
retries of the entire compilation. With this near-determinism,
the o�ine pass can be employed to improve the e�ciency
by mapping the program graph state compactly onto the
reshaped lattice (bold blue lines in Fig. 5(c)).

A B

C

D

(a)

C

D

A B

(b)

(d)(c)

Offline Passes Online Passes

Figure 6. Overview of the compilation �ow.

Note that the compilation of general programs can be con-
siderably more intricate than the example presented here.
First, the fusion strategy among resource states is more com-
plex than Fig. 6(d). Speci�cally, it enables the formation of
a 3D structure rather than 2D, being adaptable to various
resource states and allowing collective retries with a small
overhead. Second, the complexity of the reshaping algorithm
is carefully reduced to enhance its real-time scalability. This
is achieved by a modular design on each RSL that improves
the parallelism of path searching. Third, the reshaping pro-
cess is heterogeneous in the spatial and temporal dimensions,
with the temporal dimension supporting connections both
between adjacent layers and non-adjacent layers. These �ex-
ible connections provides a larger optimization space for the
o�ine mapping than Fig. 6(c). Forth, the online and o�ine
passes are further bridged by posing a FlexLattice IR, which
guides the low-level operations by its translation to an in-
struction set. For general programs, the compilation �ow
can be summarized as the following.

1. Before program execution, an o�ine pass transforms
the program graph state to an e�cient FlexLattice IR,
which is then translated to intermediate-level instruc-
tions to guide real-time operations (Section 6).

2. During real-time execution, fusions between resource
states are performed concurrently in a predetermined
pattern, allowing collective retries of failed connec-
tions to improve the long-range-connectivity of the
resulting physical graph state (Section 4).

3. The resulting physical graph state is then reshaped
to a 3D structure that ful�lls the requirement of the
IR program, with measurements performed on qubits
according to the IR program (Section 5).

The following sections (Section 4, 5, 6) will provide a bottom-
up introduction to the framework.

742

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Zhang, J. Ruan, H. Shapourian, R. Kompella, Y. Ding

=

=

=

=

succ

fail

(c) resource state max degree 4: merge multiple resource states to a higher-degree resource state with root-leaf fusions

=

succ

fail collective
retry

(a) resource state max degree 4: sufficient to form 2D lattices

=

succ

fail

=

succ

fail

leaf-leaf fusion

root-leaf fusionleaf-leaf fusion

leaf-leaf fusion

(b) resource state max degree 6: sufficient to form 3D lattices

merged
merged

merged

merged

flying photonic qubits

flying photonic qubits

Figure 7. Fuse small resource states into 3D lattices.

4 Resource State Fusion
In this section, we discuss the semi-static fusion strategy for
generic star-like resource states. This strategy is static in that
it is predetermined independent of high-level programs, yet
semi-static in that it allows collective retries which induces
only a constant overhead. In Fig. 2, this corresponds to the
online pass from resource states to physical graph states.

4.1 Su�cient / Insu�cient Degree
The predetermined strategy attempts to create a lattice struc-
ture from the resource states, which is straightforward when
resource states have su�cient node degrees, i.e., the max-
imum degree in the resource states surpasses that in the
lattice. For example, Fig. 7(a) shows the strategy of forming
a 2D square lattice using 4-degree resource states. On the
left side, each light blue line represents a leaf-leaf fusion of
the resource states (yellow circles). The right side displays
the resulting physical graph state, with the consequences
of successful and failed fusions depicted in the middle box.
Similarly, Fig. 7(b) demonstrates the case of forming a 3D
cubic lattice from 6-degree resource states.

As resource states on realistic hardwaremay lack su�cient
degrees, such as forming 3D cubic lattices using 4-degree
resource states, we can increase resource state degrees by
merging multiple RSLs into one layer using root-leaf fusions,
represented by the dark blue lines in Fig. 7(c). Upon fusion
success, while the two qubits in the fusion vanish, the two
set of neighboring qubits of them would be connected in
pairwise. Hence a successful root-leaf fusion between two
4-degree resource states can generate a 7-degree graph state,
which then has su�cient degree to form a 3D lattice.

4.2 Removal of Irregular Structures
However, a failed root-leaf fusion may result in irregular
cyclic structures in the generated graph state, leading to
signi�cant challenges for subsequent reshaping process. For
example, a failed root-leaf fusion between two resource states
�0 and ⌫0 in Fig. 8 generates a star-like graph state � and a
fully connected cyclic graph state ⌫. This is because a failed
fusion on a qubit E can be regarded as removing the qubit
after a process of local complementation (LC) on E , denoted
as gE (⌧). Speci�cally, LC is de�ned as: among all neighbors
of qubit E in its resource state, if there was an edge between
a pair of neighbors, then that edge is deleted; otherwise, an
edge is added between that pair of neighbors.
To remove these cyclic structures, resource states with

failed root-leaf fusions can be transformed to their local com-
plementations of star-like structures (from ⌫ to ⇠ in Fig. 8)
by applying the following sequence of 1-qubit operators [39]

*E (⌧) = exp(�ic
4
-E)

÷
D2#E

exp(ic
4
/D)

with #E being the neighbors of E in⌧ . Computation on these
local complementation states is equivalent to that on the orig-
inal states. This is because we can interchange the orders
of measurements and LC operators by adjusting the mea-
surement bases, with the rules summarized in Theorem. 4.1.
Similarly, the LC operators can also be interchanged with
fusion operations, with the rules summarized in Theorem 4.2.
Consequently, all LC operators can be postponed to the end
of the computing process, which eliminates the necessity to
implement them in the real-time.

OnePerc: A Randomness-aware Compiler for Photonic�antum Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

=

succ

fail LC

A

B

C

A0

B0

A1

Figure 8. Root-leaf fusion failure.

Theorem 4.1. The local operator * ±
/ = exp(±ic4/) or * ±

- =
exp(±ic4-) can be propagated through a /�measurement or
a 1-qubit equatorial measurement on the Bloch sphere, i.e., a
measurement in the basis of cosq- +sinq. whereq 2 [0, 2c),
by a change of measurement basis.

Proof. When measuring a 1-qubit state |k i along�-basis, the
state collapses to |k 0i ⌘ M[�] |k i = I±�2 |k i, with the sign ±
determined by the measurement outcome, 0 or 1. Therefore,

M/*
±
/ = * ±

/M/

M/*
±
- = * ±

-M[⌥.]

M[cosq-+sinq.]*
±
/ = * ±

/M[±(cosq.�sinq-)]

M[cosq-+sinq.]*
±
- = * ±

-M[cosq-±sinq/] ⇤

Theorem 4.2. The local operator * ±
/ = exp(±ic4/) or * ±

- =
exp(±ic4-) can be propagated through a 2-qubit -/ ,/- fu-
sion, i.e., a joint measurement of -1/2,/1-2 on qubit 1 and
qubit 2, by a change of fusion basis.

Proof. When measuring a 2-qubit state |k i along basis �1⌫2,
the state collapses to |k 0i ⌘ M[�1⌫2] |k i = I±�1⌫2

2 |k i, with ±
determined by the measurement outcome, 0 or 1. Therefore

M[-1/2]M[/1-2]*
±1
/1
* ±2
/2

= * ±1
/1
* ±2
/2
M[±1.1/2]M[±2/1.2]

M[-1/2]M[/1-2]*
±1
-1
* ±2
-2

= * ±1
-1
* ±2
-2
M[⌥1.1-2]M[⌥2-1.2]

M[-1/2]M[/1-2]*
±1
/1
* ±2
-2

= * ±1
/1
* ±2
-2
M[±1⌥2.1.2]M[/1-2] ⇤

4.3 Collective Feed-forward
The semi-static fusion strategy allows collective feed-forward
in the granularity of RSL, which can be pipelined to reduce
the overhead. On one hand, the propagation of LC operators
through measurements and fusions requires an adaptive ad-
justment of measurement and fusion bases. With this depen-
dency, each RSL are fused in two batches: a batch of root-leaf
fusions and a batch of leaf-leaf fusions. On the other hand,
the connectivity of the physical graph state can be enhanced
by retries of the failed connections, including retrying failed
leaf-leaf fusions with redundant degrees (e.g., with the 7th
degree of �1 in Fig. 8) and retrying failed root-leaf fusions
with remaining degrees (e.g., with � and ⇠ in Fig. 8). In this
way, each RSL may undergo more batches of fusions. How-
ever, since earlier batches of later RSLs can be conducted
concurrently with later batches of earlier RSLs, this only
introduces a constant overhead to program execution.

5 Random State Reshaping
In this section, we delve into the reshaping of physical graph
states, which is characterized by a (2+1)-D design, motivated
by the continuous generation of RSLs over time and the pres-
ence of delay lines. In Fig. 2, this corresponds to the online
pass from physical graph states to measurement patterns.

5.1 E�cient 2D Renormalization
On each (merged) RSL, we apply a process known as renor-
malization [25], which reshapes the largest connected com-
ponent of the physical graph state to a coarse-grained 2D
lattice. The key to its viability lies in the percolation phenom-
enon [23–25]. That is, when the fusion success probability
exceeds a certain threshold, the random physical graph state
undergoes a phase transition from short-range connectivity
to long-range connectivity, leading to the largest connected
component reaching a comparable size with the original
graph state. Since fusions on each RSL are constrained as
a squared lattice, the percolation threshold is only 0.5 [40],
lower than the achievable fusion success probability.
Identifying intersections of horizontal and vertical paths

in the largest connected component reveals a coarse-grained
square lattice, represented by bold nodes and edges in Fig. 9(b).
This is achieved in the following way. We search for vertical
paths from left to right and horizontal paths from bottom to
top, enforcing distinct vertical or horizontal paths to main-
tain a separation of at least one qubit. When searching for
vertical (horizontal) paths, a connectivity check is conducted
between nodes at the top (left) and bottom (right), facilitated
by a disjoint-set data structure to reduce the complexity.
Upon con�rming connectivity, a breadth-�rst search (BFS) is
applied to determine the shortest path, ensuring it remains
free of self-tangling. To further prevent tangling between
vertical and horizontal paths, we remove the surrounding
qubits of each identi�ed path after discovery, preventing
their interference with subsequent searches. Considering
the removals, an alternating search of vertical and horizon-
tal paths emerges as an e�ective searching order.

To improve real-time scalability, the 2D renormalization is
designed to allow modularity, with areas on the RSL renor-
malized concurrently and then joined together. As shown
in Fig. 10, the RSL is divided into several modules of size
!">3D;4 ⇥ !">3D;4 , with some intervals of length !8=C4AE0;
left in between for joining the modules by connected paths.
With the path searching algorithm above, the complexity
of a modular 2D renormalization is $ (!2module) ⇠ $ (# 2/<),
where < is the number of modules. Since an entire path
can only be established if all inter-module paths involved
are successful (e.g., the orange path), the potential for failed
inter-module paths could lead to the renormalized lattice size
being smaller than the total size of all individual modules.
A suitable ratio of !">3D;4 and !�=C4AE0; , de�ned as MI ratio,
can help mitigate this resource overhead.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Zhang, J. Ruan, H. Shapourian, R. Kompella, Y. Ding

layer 1

layer 2

layer 3

A

C

B

D
time-like connection

delay lines

logical node

logical edge

(a) inter-connectable 2D lattices (b) 2D renormalization (c) time-like connecting

A
C

B

D

B

A
program-agnostic
2D lattice structure

on-demand
time-like edges

flying photonic qubits

layer 1.1
layer 1.2

layer 2.1
layer 2.2

layer 2.3

Figure 9. (2+1)-D reshaping for handling random graph states generated by fusions.

!!"#$%& !'()&*+,% !"	$%&'(≡ 	 !!"#$%&
!'()&*+,%

Figure 10. Modular renormalization.

5.2 Flexible Time-like Connections
Nodes on the renormalized 2D lattices can be connected
along the time dimension, referred to as time-like connections.
Connections between adjacent 2D lattices and across non-
adjacent 2D lattices are called adjacent-layer connections
and cross-layer connections, respectively. Before program
execution, the connections to establish are given by the IR
program as a 3D graph, as illustrated in Fig. 9(a).
The process of generating this 3D graph is illustrated in

Fig. 9(c) on 8 RSLs, with the adjacent-layer connection �⇠
and the cross-layer connection ⌫⇡ implemented through the
bold blue paths. This involves an attempt of 2D renormaliza-
tion on each RSL. The successful ones then serve as logical
layers, indexed by integers in Fig. 9(c), with the renormal-
ized nodes on them referred to as logical nodes. In contrast,
the RSLs with failed renormalization serve as routing layers,
which are indexed by decimals in Fig. 9(c). The renormaliza-
tion on an RSL is considered successful if:

1. The renormalized 2D lattice reaches a target size, which
is equivalent to a choice of average node size, where

average_node_size ⌘ RSL_size
renormalized_la�ice_size

2. The RSL can establish all necessary time-like connec-
tions with prior logical layers through the following
procedure.

To establish a time-like connection between two nodes, a
set of physical qubits around the preceding node are fused
with corresponding qubits on a correct subsequent RSL. For
adjacent-layer connections such as �⇠ , the qubits around
� are directly fused to the next RSL, which is layer 1.1 in
Fig. 9(c). For cross-layer connections such as ⌫⇡ , the qubits
around ⌫ are temporarily stored in delay lines, depicted
by the green thin lines in Fig. 9(c), until they can be fused
to layer 2.1, which is the �rst RSL between the current at-
tempting RSL (layer 3) and its prior logical layer (layer 2).
Subsequently, a path searching between the two nodes is
conducted within the physical graph state, exempli�ed by
the bold blue lines �⇠ and ⌫⇡ in Fig. 9(c). Again, this is
achieved by a connectivity check utilizing a disjoint-set data
structure and a BFS for the shortest path. If the connectivity
check yields a negative result, it indicates that the current
RSL fails to meet the second condition and would become a
routing layer. It is worth mentioning that the reshaping pro-
cess can tolerate photon loss, since a fusion is considered as
successful only if both two photons are detected. E�ectively,
the presence of photon loss causes a reduction of the fusion
success probability, possibly leading to more routing layers
between logical layers.
In contrast to the logical layers, all qubits of each rout-

ing layer are directly fused with their next RSL, as depicted
by the grey thin lines in Fig. 9(c). This is because before
obtaining the next successful renormalization, we can’t pre-
dict where the logical node would locate and which fusions
around it would succeed. Moreover, in contrast to the simple
case in Fig. 9 where there is only one connection between
layer 1 and layer 2, in practice we may need to establish
multiple connections between logical layers. This makes it
even harder to predict which fusions are redundant before
executing the fusions.

OnePerc: A Randomness-aware Compiler for Photonic�antum Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

6 O�line Optimization with IR
In this section, we introduce the virtual hardware, FlexLattice
IR, o�ine mapping and intermediate-level instructions. This
covers the o�ine pass in the compilation �ow (Fig. 2).
Before program execution, the mismatch between pro-

gram graph states and physical graph states can be addressed
by mapping the program graph state onto the virtual hard-
ware, leading to an IR graph state that maintains the high-
level program information. This IR program can then be
transformed to a set of intermediate-level instructions, which
guides real-time physical operations through the reshaping
algorithm above.

6.1 Virtual Hardware
The virtual hardware abstracts the adjustable structures sup-
ported by the reshaping algorithm. It pocesses a (2+1)-D
structure, characterized by the following features, as illus-
trated in Fig. 11(b).

1. The virtual hardware consists of consecutive layers
of 2D lattices in a �xed size, with a virtual memory
located on each 2D coordinate.

2. Nodes on the same 2D coordinate of di�erent layers,
either on adjacent or non-adjacent layers, can be con-
nected along the third dimension, with the connections
between non-adjacent layers realized by temporary
storage of nodes in the virtual memory.

3. Each connection within or between 2D layers can be
enabled or disabled on demand, but each node can
have at most one connection with preceding layers
and at most one connection with subsequent layers.

While this virtual hardware can be used to generate 3D
cluster states (i.e., lattice-like graph states), which serve
as the universal computing resource of MBQC in previous
work [16], it is more advantageous in the following aspects.
First, an individual connection can be �exibly enabled or dis-
abled without removing any logical node or a�ecting other
edges. This is in contrast to the cluster state, wherein the
removal of edges is usually achieved by removing involved
vertices and all their edges. Second, the connections among
2D layers exhibit greater �exibility than cluster states. Specif-
ically, inter-layer connections between nodes on the same 2D
coordinates extend beyond adjacent layers, encompassing
cross-layer connections as well.

6.2 FlexLattice IR and O�line Mapping
With this virtual hardware, graph state mapping algorithms
such as that in OneQ can be utilized as an o�ine pass to
enhance the e�ciency of program execution. Speci�cally,
the mapping onto virtual hardware transforms a program
graph state to an equivalent IR program with compatible
structure with the virtual hardware, which is referred to as
a FlexLattice IR based on its structural features. This process
is illustrated by Fig. 11(a)! (c) ! (d).

(a) program graph state (b) virtual hardware

(c) graph state embedding (d) IR graph state

A

B
C

D
EF

G
HI

J K

L

N O

P Q

M

C

E

F G

I
J

K
A

B

H

L

M

N

P

D

Q
O

A1A1

A

Figure 11. O�ine mapping onto the virtual hardware.

To further improve the mapping e�ciency and scale to
larger programs, we extend OneQ’s mapping algorithm with
three optimizations.

• First, to map graph nodes as early as possible, we
replace the static partition in OneQ with a dynamic
scheduling. Speci�cally, we analyze the dependency
among graph state qubits [41], representing it with a
directed acyclic graph (DAG) and updating the front
layer of the DAG as nodes are consumed by the map-
ping.

• Second, to reserve enough space for routing and avoid
node congestion, we enforce an upper-limit for the
occupancy of incomplete nodes on each virtual hard-
ware layer (25% by default), with incomplete nodes
de�ned as those mapped nodes whose edges are not
all mapped yet.

• Third, to mitigate the increasing demand on classical
memory for graph information storage, we propose
a refresh mechanism, which periodically retrieves all
nodes stored in the virtual memory, refreshing them by
mapping onto multiple layers of the virtual hardware,
and then storing them again.

6.3 Instruction Set
A FlexLattice IR program can be executed by transforming to
a set of intermediate-level instructions, which guides the real-
time physical operations to generate necessary connections
among logical nodes through the reshaping algorithm in
Section 5. By default, qubits in the physical graph state are
subject to Z-measurements, which means that edges are
disabled on the virtual hardware unless explicitly enabled by

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Zhang, J. Ruan, H. Shapourian, R. Kompella, Y. Ding

the intermediate-level instructions. We list the intermediate-
level instructions as the following, with nodes in the high-
level program graph state denoted as g_node and nodes on
the virtual hardware denoted as v_node.

map_v_node(v_node, g_node)

make_v_node_ancilla(v_node)

store_v_node(v_node)

retrieve_v_node(v_node, position)

enable_spatial_v_edge(v_node, adjacent_v_node)

enable_temporal_v_edge(v_node, adjacent_v_node)

By map_v_node() and make_v_node_ancilla(), a vir-
tual node can be mapped by a g_node or used as an ancilla
node to facilitate routing. In the former case, the physical
qubit corresponding to v_node will be measured in the basis
of the g_node, while in the latter case, it will be measured
in - - or . -basis to play as a wire (depending on whether
the wire length is even or odd). By store_v_node() and
retrieve_v_node(), a virtual node can also be stored into
or retrieved from the virtual memory by pushing or poping
its surrounding physical qubits to or from the delay lines.
By enable_spatial_v_edge(), a spatial edge between ad-
jacent nodes on the same layer can be enabled by setting
associated qubits to - - or . -measurements.

By enable_temporal_v_edge(), a temporal edge between
logical nodes at the same coordinate of adjacent layers can
be enabled. Establishment of a cross-layer edge between
layer< and layer = (> <) can be realized through the com-
bination of three instructions: storing the node at layer<
into the virtual memory, retrieving it at layer = � 1, and
enabling a temporal edge between layer = � 1 and layer =.
For example, the cross-layer temporal edge between ancilla
node �1 at (1,1,0) and graph node � at (1,1,2) in Fig. 11(d)
can be implemented with the instructions below. Note that
retrieving v_node at layer = � 1 does not con�ict with the
original v_node at layer =� 1 (i.e., node # in Fig. 11(d)). This
is because the original node at layer = � 1 would not have
an edge with layer =, since each node in a FlexLattice IR has
at most one edge with preceding layers. This implies that
the original node will either have no further edges or will
be stored in the virtual memory at layer = � 1.

make_v_node_ancilla((1, 1, 0))

store_v_node((1, 1, 0))

...

retrieve_v_node((1, 1, 0), (1, 1, 1))

enable_temporal_v_edge((1, 1, 1), (1, 1, 2))

map_v_node((1, 1, 2), A)

7 Evaluation
7.1 Experiment Setup

Baseline. We compare the performance of our framework
with the e�cient photonic MBQC compiler OneQ. Since
OneQ is not able to handle fusion failures, we employ it with
a repeat-until-success strategy. Speci�cally, for each RSL we
conduct the fusions instructed by OneQ repeatedly until all
fusions are successful. Subsequently, the successful RSL is
fused with its preceding RSLs. If failures occur in the inter-
RSL fusions, the entire compilation is restarted and repeated
until success.

Table 1. Benchmark Programs.

Fusion Success
Rate

#Qubits Virtual Hard-
ware Size

RSL Size

0.90
4 2x2 24x24
9 3x3 36x36
25 5x5 60x60

0.75

4 2x2 48x48
25 5x5 120x120
64 8x8 192x192
100 10x10 240x240

Metrics. Aligning with OneQ, we evaluate the perfor-
mance of compilation with two metrics: the number of con-
sumed RSL, denoted by #RSL, and the number of required
fusions, denoted by #fusion. In particular, a smaller #RSL in-
dicates less execution time of the program and less chance for
photon loss, while a smaller #fusion implies less operations
and less chance for error occurrence.

Photonic Hardware Model. We adopt the same photonic
hardware architecture with OneQ, as introduced in Section 2.
In the main experiment (Table 2, 3), the comparison with
OneQ is performed on 4-qubit star-like resource states, with
the sizes of hardware for di�erent benchmarks listed in Ta-
ble 1. Experiments for further analysis are conducted with
7-qubit star-like resource states, which naturally have su�-
cient degrees for forming 3D lattice-like graph states.

Benchmark Programs. We select a set of benckmark
programs including Quantum Approximate Optimization Al-
gorithm (QAOA), Quantum Fourier transform (QFT), Ripple-
Carry Adder (RCA) [42] and Variational Quantum Eigen-
solver (VQE). For QAOA, we choose the graph maxcut prob-
lem on randomly generated graphs. Speci�cally, the graphs
are generated by randomly connecting half of all its pos-
sible edges. For VQE, we follow the commonly used full-
entanglement ansatz, which proves to be an expressive ansatz
[43, 44]. In table 1, we list the benchmarks with their num-
bers of qubits in the circuit representation. We also list the
sizes of virtual hardware layers, which are chosen to cor-
respond with the qubit quantities, along with the required

747

OnePerc: A Randomness-aware Compiler for Photonic�antum Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 2. The results of OnePerc and its relative performance to the baseline.

Fusion Success
Rate

Benchmark
Name

OneQ #RSL OnePerc #RSL #RSL Improv. OneQ #Fusion OnePerc #Fusion #Fusion Improv.

0.90
(hyper-
advanced)

QAOA-4 304 84 3.62 13,990 117,664 0.12
QFT-4 3,759 174 21.59 180,634 274,155 0.66
RCA-4 3,107 237 13.11 63,814 373,646 0.17
VQE-4 56 22 2.55 1,707 33,526 0.05
QAOA-9

> 106

240 > 103

> 1010

855,354 > 104

QFT-9 570 > 103 2,031,813 > 103

RCA-9 1,017 > 102 3,627,950 > 103

VQE-9 156 > 103 555,065 > 104

QAOA-25 768 > 103 7,637,711 > 103

QFT-25 2,418 > 102 24,065,102 > 102

RCA-25 3,111 > 102 30,962,172 > 102

VQE-25 705 > 103 7,010,656 > 103

0.75
(practical)

QAOA-4 1,708 48 35.58 119,731 169,431 0.71
QFT-4 > 106 210 > 103 > 1010 746,977 > 104

RCA-4 > 106 201 > 103 > 1010 714,835 > 104

VQE-4 1,017 23 44.22 25,354 96,332 0.26
QAOA-25

> 106

882 > 103

> 1010

19,743,350

> 10

QFT-25 2,271 > 102 50,835,771
RCA-25 3,252 > 102 72,795,212
VQE-25 759 > 103 17,292,345
QAOA-64 3,339

> 102
191,341,276

QFT-64 9,000 515,801,985
RCA-64 9,324 534,311,489
VQE-64 3,042 174,321,702

sizes of RSLs needed to generate them, which are determined
through Fig. 16, as explained later.

Table 3. E�ect of refresh on the performance of OnePerc,
considering 4-qubit resource state, a fusion success rate of
0.75, refresh rate of 50 logical layers, and 32GB of RAM.

Benchmark #Qubits Non-refreshed
#RSL

Refreshed
#RSL

QAOA
25 882 999
64 - 4,284
100 - 8,325

QFT
25 2,271 2,637
64 - 9,945
100 - 19,494

RCA
25 3,252 3,870
64 - 10,206
100 - 16,056

VQE
25 759 774
64 - 3,555
100 - 7,551

7.2 Experiment Result
In this subsection, we �rst show the performance of our com-
piler in comparison with OneQ, then analyze the e�ects of
underlying resource states, hardware size and fusion success
probability, for which we only focus on the #RSL metric. This
is because unlike OneQ, the #fusion in OnePerc is predictable
from its #RSL, thus following a same trend with #RSL.

Performance. Table 2 presents the comparison of our
framework with OneQ. The results indicate a signi�cant
reduction of #RSL by our framework, as well as a signi�cant
reduction of #fusion when the circuits are beyond 4 qubits.
Speci�cally, the experiments show that OneQ can work only
in the region of small programs and high fusion success
probabilities. When the fusion success probability decreases
to a practical value around 0.75, it takes more than 106 RSLs
to even execute the 4-qubit benckmarks. This implies OneQ’s
non-scalability due to its lack of capability in systematically
handling the randomness of fusion failure. In contrast, our
framework canworkwell with a practical success probability,
demonstrating an increasing outperformance over OneQ as
the programs scale up.
An obstacle of scaling up the experiments in Table 2 is

the large classical memory required in the real-time stage
for the storage of graph information. Indeed, the 64-qubit
benchmarks in Table 2 takes a RAM as much as 192 GB.
This can be overcome by the refresh mechanism proposed
in Section 6, with an overhead of increased #RSL. Under the
practical fusion success rate of 0.75, Table 3 shows the e�ect
of refresh given 32 GB RAM. It can be seen that while the
32 GB RAM can only a�ord 25-qubit benchmarks without
refresh, it allows for benchmarks of up to 100 qubits with a
refresh every 50 logical layers. Compared with the perfor-
mance of 25-qubit benchmarks (Table 2 or 3) and 64-qubit
benchmarks (Table 2) without refresh, the introduction of
refresh leads to an average increase of 15.6% in #RSL for

748

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Zhang, J. Ruan, H. Shapourian, R. Kompella, Y. Ding

25-qubit benchmarks and an average increase of 13.3% in
#RSL for 64-qubit benchmarks.

7.3 Sensitivity Analysis
Resource State Size. Our compiler has a general appli-

cability to the underlying resource states of various sizes.
Fig. 12(a) illustrates the varying #RSL when executing the
programs with star-like resource states of di�erent sizes, i.e.,
consisting of di�erent numbers of photonic qubits. It can be
seen that the #RSL decreases as the size of resource states
increases. This is because a larger resource state can partici-
pate in fusions with more qubit degrees, without the need
of increasing the degrees by merging multiple RSLs.

Hardware Size. Our compiler has an adaptability to vari-
ous hardware sizes. Fig. 12(b) shows the varying #RSL when
executing the programs on photonic hardware of di�erent
RSL sizes. It can be seen that a larger photonic hardware
leads to a reduced #RSL, which indicates that our framework
can e�ectively utilize the computing resource as it scales up.
In particular, a larger RSL can enable a larger renormalized
lattice, thus a larger virtual hardware. This provides the of-
�ine mapping with an increased space for �exible routing,
thereby reducing the required logical layer and the #RSL.

Fusion Success Probability. Our compiler has a capabil-
ity of tolerating fusion failures at a practical level. Fig. 12(c)
shows the varying #RSL when executing the programs un-
der di�erent fusion success probabilities. It can be seen that
our compiler can tolerate a fusion success probability as
low as 0.66, with the #RSL decreasing as the fusion success
probability increases. This is because a higher fusion success
probability results in a larger renormalized lattice on RSLs,
enabling a larger virtual hardware. This provides the o�ine
mapping with an increased space for �exible routing, thereby
reducing the required logical layer and the #RSL.

7.4 Scalability
Resource Consumption. Our compiler presents a great

scalability in resource consumption, characterized by the
stable overhead as the computing scales up. Fig. 13(a) shows
the suitable average node size of 2D renormalization as the
hardware size increases, corresponding to the average node
size at which the renormalization success probability ap-
proaches 1 in Fig. 16. As can be seen, it keeps stable against
the variation of hardware size, being smaller with a higher
fusion success probability. Fig. 13(b) shows the average ratio
of RSL to logical layers as the program size increases. It �rst
increases with the program size and then soon gets stable
at a value around 3, implying the successful formation of a
logical layer about every 3 RSLs. These stable behaviours
provide a predictability of the resource consumption and
ensures the scalability of our framework.

Modularity Overhead. The real-time scalability of our
framework can be greatly enhanced through a modular 2D
renormalization, which reduces the latency for each RSL by
a factor corresponding to the modular number. However,
this comes with an overhead, as the presence of intervals
between the modules (as illustrated in Fig. 10) reduces the
available resource on each RSL. To evaluate this resource
overhead, Fig. 13(c) depicts the size of the renormalized 2D
lattice against the number of modules, with the MI ratio (as
de�ned in Fig. 10) ranging from 2 to 19. For comparison, the
red dots represent the renormalized 2D lattice size by a non-
modular algorithm in an unlimited time, while the black dots
represent the renormalized size by the non-modular algo-
rithm in a time restricted by that consumed by the modular
approach.

It can be seen that the size of renormalized 2D lattice by the
modular approach is around 60% of that by the non-modular
approach with unlimited time (red), which decreases slightly
with the number of modules. This is because an increased
number of modules leads to a higher probability of being
unable to connect the corresponding paths across di�erent
modules. However, the renormalized lattice is signi�cantly
larger than that can be achieved by the non-modular ap-
proach restricted in the same time (black), ranging from 2⇥
to 6⇥ as the number of modules increases from 4 to 16. This
is very important since the time for the online algorithm is
always restricted by the limited lifetime of photons. Overall,
Fig. 13(c) indicates that the modular approach in our frame-
work can signi�cantly improve the real-time scalability with
a reasonable overhead of computing resource.

Compilation Time. We show the online and o�ine com-
pilation time of the benchmarks in Fig. 14 and Fig. 15, with
the compiler implemented in Python. From Fig. 14(a) it can be
seen that the online processing time for each RSL stays stable
as the program size increases. From Fig. 14(b), which takes
an average of all 36-qubit benchmarks, it can be seen that
the processing time for each RSL increases with RSL size, but
can be signi�cantly reduced by employing a modular renor-
malization. For o�ine compilation time, Fig. 15(a) shows
that it increases with the program size. Fig. 15(b) shows that
it decreases with the virtual hardware size �rst and then
increases. This occurs because an excessively small virtual
hardware size leads to a signi�cant total depth, whereas
an overly large virtual hardware size results in extended
compilation times for each logical layer.

7.5 Hyper Parameters
MI Ratio. The sizes of renormalized lattices rely on a

suitable choice of MI ratio (de�ned in Fig. 10). Fig. 13(c) il-
lustrates the renormalized lattice size with di�erent choices
of MI ratios. It can be seen that the renormalization size �rst
increases with the MI ratio and then slightly decreases, peak-
ing at a value around 7. This is because an excessively low

749

OnePerc: A Randomness-aware Compiler for Photonic�antum Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

	
 � �

����!����� � ����"�

����

	���

����

���

�����

�����

�
�
�
�

������

�����

�����

�����

�� ��
� �� �� �� ��� ��� �	�

���������!������ ���

����

	���

���

����

����

���

����

�
�
�
�

����

���

���

���

���� ���� ��
� ��
� ��

 ��
� ��
�

�" �����"��� ���!�

����

����

	���

���

����

����

���

����

�
�
�
�

����	�

���	�

���	�

���	�

(a) (b) (c)

Figure 12. E�ects of resource state size (a), hardware size (b) and fusion success probability (c), with the resource states being
7-qubit ones for (b)(c), hardware size being 84x84 for (a)(c), and the fusion success probability being 0.75 for (a)(b).

�� ��� ��� 	�� 	��
��
���������!������ ���

�

��

	�

�

��

��

�

��
��
��

��
��

��
��

��
��
!�
��
��
�
��
�

������

�������	
��������

 �� �
 �� �
 �� �

�������������

���

��

���

��

���

��

���

��

	��

	�

�
�
��
�
�
��

����

���

��

���

 � ��
�#��� �������#��!

�

	�

�

��

�

���

�	�

�
�

��
��

 �
��

�$�
��

��
$�

�������#�� �#�����"���"����
�������#�� � �!" ��"���"����
��� �"�����	
��� �"�����

��� �"������
��� �"������

��� �"�������

(a) (b) (c)

Figure 13. Scalability and parallelism of OnePerc with 7-qubit resource states. The node size = ⇥ = in (a) corresponds to the
smallest node size where the renormalization success rate approaches to 1 in Fig. 16.

MI ratio leads to a waste of resource with its wide interval
space, while an overly high MI ratio increases the probability
of unable to connect corresponding paths with its restricted
routing space in the intervals.

Average Node Size. A suitable choice of average node
size is also important, as it determines the target size of a
successful 2D renormalization. Fig.16 illustrates the success
probability of reaching di�erent predetermined lattice sizes,
i.e., di�erent choices of average node size. It can be seen that
the success probability approaches 1 rapidly as the target
lattice becomes more coarse-grained. This sharp transition
motivates us to choose the smallest average node size that
brings the success probability close to 1.

8 Conclusion
In this work, we provide in-depth analysis and discussion of
the challenges for photonic quantum compilation brought by
the probabilistic operations involved in the computing. We
propose a randomness-aware compiler to handle these proba-
bilistic operations, demonstrating a concurrent achievement

of scalability and e�ciency on photonic systems. Neverthe-
less, we believe that there is still signi�cant potential for fully
exploring the optimization space. We hope that our work
could attract more e�ort from the computer architecture and
compiler community to explore the advantages of photonic
quantum computing and overcome the unique challenges.

9 Acknowledgement
We thank the anonymous reviewers for their constructive
feedback and the cloud bank [45]. This work is supported in
part by Cisco Research, NSF 2048144 and Robert N.Noyce
Trust.

A Artifact Appendix
A.1 Abstract
The artifact contains source codes of OnePerc and neces-
sary code scripts to reproduce key results (Table 2, 3, Fig.
12,13,14,15,16) and compare with the baselines in our eval-
uation. The hardware requirement is a regular X86 server.
The software dependencies only contain common python

750

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Zhang, J. Ruan, H. Shapourian, R. Kompella, Y. Ding

 �� �
 �� �
 �� �

�!��!�����#��

���

���

���

���

��	

��

�
�
�
�
�
�
"
�
�
!
��
�
�

����

���

��

���

(a)

��� ��� ��� ���
���������!������ ���

�

�

�

	

�

��
��
��

��
��

���
��

������������

��������

��������
����������

(b)

Figure 14. Oneline proccessing time for each RSL with 7-
qubit resource states. RSL size is 96⇥96 for (a); fusion success
rate is 0.75 for (a)(b); average node size is chosen as 24 ⇥ 24
for (a)(b); MI ratio is chosen as 7 for (b).

packages. As results in Section 7 are averaged over multiple
executions, slight deviation is expected in the reproduction.

A.2 Artifact check-list (meta-information)
• Algorithm: OnePerc contains two major algorithms.
– The directory Graph_State_Mapping/ is dedicated to the
o�ine passes, comprising several essential components:
⇤ Construct_Test_Circuit.py creates benchmark circuits
with a speci�c number of qubits.

⇤ Graph_State.py transforms the generated quantum cir-
cuits into corresponding program graph states.

⇤ Determine_Dependency.py examines the dependency
relationships within the entire graph state.

⇤ Mapping_Routing.py maps the entire graph state onto
a virtual hardware of a speci�c size.

– The directory Renormalization/ is dedicated to the online
passes, comprising the following key components:
⇤ Percolate.py simulates probabilistic fusion within a real
physical scenario to generate a physical graph state.

⇤ Renormalization.py reshapes the generated physical
graph state to the desired shape of the IR graph state
obtained in the o�ine pass.

�� �� 	�
� ��

�#!�#�����%��

�

��

�

��

�

���

���

�
�

�
��
��

�
��
!
�
"
��
�
�
��
��
�
�
$
� ����

���

���

���

(a)

	
 � �
 � � ��
�!')*�"���'�+�'����$�)

�

�

��

��

��

��

	�

	�

�

�
��"
!$
��
�%

#
&!
"!$
��
�!
#
��
(� ����	�

���	�
���	�
���	�

(b)

Figure 15. O�ine compilation time on a virtual hardware,
with the virtual hardware size being 4⇥ 4 for (a). The virtual
hardware sizes correspond to the sizes that can be formed
by the RSL settings in Fig. 14.

� �� 	�
� �� ��
�
����%�!�����������'������&���

���

��	

���

��

���

���

��
��
!�

��
�'�

#��
��
�$
��
�"
"�
��

#�

 �����

 �����
�
 ������	
 �������
 �������

Figure 16. E�ect of choices of average node size, with RSL
size being 200 ⇥ 200.

⇤ Draw_Grid.py executes 2D renormalization within a
single resource state layer.

⇤ Check_Connectivity.py veri�es the presence of time-
like connections de�ned in the previous o�ine pass.

• Output: The output of the compilation process is the re-
shaped physical graph state identi�ed within the layers of
the physical resource state.

• Run-time environment: Python, Jupyter Notebook.

751

OnePerc: A Randomness-aware Compiler for Photonic�antum Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

• Hardware: Memory size depends on the benchmark size
and whether the refresh is enabled (the largest benchmarks
without refresh can be processed with 192 GB RAM).

• Experiments: Compiling the benchmark programs with
OnePerc, using OneQ compiler as the baseline.

• Required disk space (approximately): When selecting
the refresh option, only 32GB of disk space is necessary,
whereas opting out could necessitate 130GB of disk space.

• Metrics: Resource state depth and fusion cost.
• Time needed to complete experiments: The approx-
imate execution time for each benchmark ranges from 10
seconds to 2 hours with program size expanding for OnePerc.
For OneQ basline, the execution time can be in�nit. In the
experiement setting, it is given a upper bound to cost 106
resource state layers, after which the execution time varies
from 3 minutes to 6 hours with program size expanding.
It will take hundreds of CPU hours to fully reproduce all
results in Table 2, 3 and Fig. 12, 13, 14, 15, 16.

• Publicly available: Yes
• Code licenses: Apache License 2.0
• Work�ow framework used: Jupyter, Qiskit, PyZX
• Archived repo: https://zenodo.org/records/10799879
• DOI: 10.5281/zenodo.10799879

A.3 Description
A.3.1 How to access. This artifact can be downloaded at
the link h�ps://zenodo.org/records/10799879.

A.3.2 Hardware dependencies. A standard server with
Intel CPUs can e�ectively run our artifact, with the capacity
of RAM potentially constraining the scale of benchmarks
that can be executed. In our experiments, we allocated 192GB
of RAM to accommodate the execution of all benchmarks.
However, activating the refresh option would reduce this
requirement to just 32GB of RAM.

A.3.3 Software dependencies. The artifact is developed
using Python 3.10, and we require Jupyter Notebook for its
utilization. We have prepared �les containing scripts to fa-
cilitate the automatic and interactive reproduction of results
for convenient validation. Pyzx is employed for generating
speci�c quantum circuits, while other dependencies such as
NetworkX, Matplotlib, and NumPy are also utilized.

A.4 Installation
To use our artifact, you may download the repo to your
local machine from h�ps://zenodo.org/records/10799879 and
install the software dependencies by running commands:

conda create -n oneperc python=3.10

pip3 install -r requirements.txt

A.5 Evaluation and expected results
After downloading the artifact and installing all software
dependencies, you can open the following jupyter notebook
�les to reproduce experimental data of baseline and OnePerc
for corresponding table and �gures.

• Compiler.ipynb (Table 2)
• refesh.ipynb (Table 3)
• sensitivity.ipynb (Fig. 12)
• scalability.ipynb (Fig. 13, 16)
• time.ipynb (Fig. 14, 15)

The previous experimental data has already been saved to
data/. In scalability.ipynb, sensitivity.ipynb, time.ipynb and
refresh.ipynb, setting ‘RunAgain = False’ will generate the
plots directly from original data, while setting ‘RunAgain
= True’ will run the experiments again, generating new
data and new plots. Note that running with a parameter #
corresponds to an # 2-qubit benchmark instead of # -qubit.
The generation of Table 2 is the most time-consuming

procedure in the evaluation. This is because OneQ performs
badly for large programs. Although we force the compilation
to terminate when the consumed #RSL reaches 106, it can
take hours to reach this limit. As a result, we provide three
code blocks in Compiler.ipynb.

• The �rst code block allows users to run OneQ for indi-
vidual benchmarks. By changing the value of # , users
can obtain the result of OneQ for an # 2-qubit bench-
mark. We recommend users to try benchmarks from
small to large and feel free to stop at the scale they
obtain a 106 #RSL for OneQ since larger scales should
also lead to a 106 #RSL.

• The second code block allows users to run OnePerc
for individual benchmarks. By changing the value of
, users can obtain the result of OnePerc for an # 2-
qubit benchmark. In this process, users can monitor
the consumed RAM manually in the terminal.

• The third code block allows users to obtain all results
of OnePerc in Table 2 in one shot.

The experiment results of these code blocks will be automat-
ically saved to data/. After the experiments, users can run
Compiler_Table.ipynb to read the saved data and generate
Table 2.

Table 3 can be generated by refresh.ipynb, which runs
the o�ine mapping and obtain an estimated #RSL from the
number of logical layer. This is because from Fig. 13(b), we
know that #RSL has a stable relation with the number of
logical layers. The results of non-refreshed #RSL for 25-qubit
benchmarks can be obtained directly from Table 2. The ‘-’ in
Table 3 means that the compilation utilizes more than 32 GB
RAM. In the execution of OnePerc for individual benchmarks
(code block 2 in Compiler.ipynb), users can monitor the con-
sumed RAM manually in the terminal (e.g., using htop on
Linux). When running the compiler with large enough RAM,
users will observe that the consumed RAM exceeds 32 GB
for benchmarks larger than 25 qubits. When running the
compiler with only 32 GB RAM, users will observe that the
compilation of benchmarks larger than 25 qubits would be
killed after some time.

752

https://zenodo.org/records/10799879
https://zenodo.org/records/10799879

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Zhang, J. Ruan, H. Shapourian, R. Kompella, Y. Ding

References
[1] Jeremy L. O’Brien, Akira Furusawa, and Jelena Vučković. Photonic

quantum technologies. Nature Photonics, 3(12):687, 2009. URL:
h�ps://www.nature.com/articles/nphoton.2009.229, doi:10.1038/
nphoton.2009.229.

[2] S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev.
Material platforms for integrated quantum photonics. Opt. Mater.
Express, 7(1):111–132, Jan 2017. URL: h�p://opg.optica.org/ome/
abstract.cfm?URI=ome-7-1-111, doi:10.1364/OME.7.000111.

[3] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-
Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng
Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang,
Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le
Liu, Chao-Yang Lu, and Jian-Wei Pan. Quantum computational ad-
vantage using photons. Science, 370(6523):1460–1463, 2020. URL:
h�ps://www.science.org/doi/10.1126/science.abe8770, doi:10.1126/
science.abe8770.

[4] Han-Sen Zhong, Yu-Hao Deng, Jian Qin, Hui Wang, Ming-Cheng
Chen, Li-Chao Peng, Yi-Han Luo, Dian Wu, Si-Qiu Gong, Hao
Su, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yux-
uan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen
Wang, Li Li, Nai-Le Liu, Jelmer J. Renema, Chao-Yang Lu, and Jian-
Wei Pan. Phase-programmable gaussian boson sampling using
stimulated squeezed light. Phys. Rev. Lett., 127:180502, Oct 2021.
URL: h�ps://link.aps.org/doi/10.1103/PhysRevLe�.127.180502, doi:
10.1103/PhysRevLett.127.180502.

[5] Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi. Askarani, Fa-
bien Rortais, Trevor Vincent, Jacob F. F. Bulmer, Filippo M. Miatto,
Leonhard Neuhaus, Lukas G. Helt, Matthew J. Collins, Adriana E. Lita,
Thomas Gerrits, Sae Woo Nam, Varun D. Vaidya, Matteo Menotti, Ish
Dhand, Zachary Vernon, Nicolás Quesada, and Jonathan Lavoie. Quan-
tum computational advantage with a programmable photonic proces-
sor. Nature, 606(7912):75–81, Jun 2022. URL: h�ps://www.nature.com/
articles/s41586-022-04725-x, doi:10.1038/s41586-022-04725-x.

[6] Terry Rudolph. Fusion based photonic quantum computing. In APS
March Meeting Abstracts, volume 2022, pages D28–001, 2022. URL:
h�ps://www.nature.com/articles/s41467-023-36493-1, doi:10.1038/
s41467-023-36493-1.

[7] H Bombin, IH Kim, D Litinski, N Nickerson, M Pant, F Pastawski,
S Roberts, and T Rudolph. Interleaving: Modular architectures
for fault-tolerant photonic quantum computing (2021). arXiv
preprint arXiv:2103.08612. URL: h�ps://arxiv.org/abs/2103.08612, doi:
10.48550/arXiv.2103.08612.

[8] Michel H Devoret and Robert J Schoelkopf. Superconducting cir-
cuits for quantum information: an outlook. Science, 339(6124):1169–
1174, 2013. URL: h�ps://science.org/doi/10.1126/science.1231930,
doi:10.1126/science.1231930.

[9] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and
Jeremy M Sage. Trapped-ion quantum computing: Progress and
challenges. Applied Physics Reviews, 6(2):021314, 2019. URL: h�ps:
//pubs.aip.org/aip/apr/article-abstract/6/2/021314/570103/Trapped-
ion-quantum-computing-Progress-and?redirectedFrom=fulltext,
doi:10.1063/1.5088164.

[10] Mark Sa�man. Quantum computing with atomic qubits and
rydberg interactions: progress and challenges. Journal of
Physics B: Atomic, Molecular and Optical Physics, 49(20):202001,
2016. URL: h�ps://iopscience.iop.org/article/10.1088/0953-4075/49/20/
202001, doi:10.1088/0953-4075/49/20/202001.

[11] Warren P Grice. Arbitrarily complete bell-state measure-
ment using only linear optical elements. Physical Review A,
84(4):042331, 2011. URL: h�ps://journals.aps.org/pra/abstract/10.1103/
PhysRevA.84.042331, doi:10.1103/PhysRevA.84.042331.

[12] Fabian Ewert and Peter van Loock. 3/4-e�cient bell mea-
surement with passive linear optics and unentangled ancillae.

Physical review letters, 113(14):140403, 2014. URL: h�ps://
journals.aps.org/prl/abstract/10.1103/PhysRevLe�.113.140403, doi:
10.1103/PhysRevLett.113.140403.

[13] Michael A Nielsen and Isaac L Chuang. Quantum computation
and quantum information. Phys. Today, 54(2):60, 2001. URL: h�ps:
//cds.cern.ch/record/465953/files/0521635039_TOC.pdf.

[14] Qiskit contributors. Qiskit: An open-source framework for quan-
tum computing, 2023. URL: h�ps://zenodo.org/records/2562111, doi:
10.5281/zenodo.2573505.

[15] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec
Edgington, and Ross Duncan. t|ket〉: A retargetable compiler for nisq
devices. Quantum Science and Technology, 6, 04 2020. URL: h�ps:
//iopscience.iop.org/article/10.1088/2058-9565/ab8e92, doi:10.1088/
2058-9565/ab8e92.

[16] Robert Raussendorf, Dan Browne, and Hans Briegel. Measurement-
based quantum computation on cluster states. Raussendorf, R. and
Browne, D.E. and Briegel, H.J. (2003) Measurement-based quantum com-
putation on cluster states. Physical Review A, 68 (2). 022312.1-022312.32.
ISSN 10502947, 68, 08 2003. URL: h�ps://journals.aps.org/pra/abstract/
10.1103/PhysRevA.68.022312, doi:10.1103/PhysRevA.68.022312.

[17] Anne Broadbent and Elham Kashe�. Parallelizing quantum
circuits. Theoretical computer science, 410(26):2489–2510,
2009. URL: h�ps://www.sciencedirect.com/science/article/pii/
S0304397508009377?via%3Dihub, doi:10.1016/j.tcs.2008.12.046.

[18] Hezi Zhang, Anbang Wu, Yuke Wang, Gushu Li, Hassan Shapourian,
Alireza Shabani, and Yufei Ding. Oneq: A compilation framework for
photonic one-way quantum computation. In Proceedings of the 50th
Annual International Symposium on Computer Architecture, pages 1–
14, 2023. URL: h�ps://dl.acm.org/doi/10.1145/3579371.3589047, doi:
10.1145/3579371.3589047.

[19] Ming-Jun Li and Tetsuya Hayashi. Advances in low-loss, large-
area, and multicore �bers. In Optical Fiber Telecommunications VII,
pages 3–50. Elsevier, 2020. URL: h�ps://www.sciencedirect.com/
science/article/abs/pii/B9780128165027000014, doi:10.1016/B978-0-
12-816502-7.00001-4.

[20] Pieter Kok, William J Munro, Kae Nemoto, Timothy C Ralph,
Jonathan P Dowling, and Gerard J Milburn. Linear optical quan-
tum computing with photonic qubits. Reviews of modern physics,
79(1):135, 2007. URL: h�ps://journals.aps.org/rmp/abstract/10.1103/
RevModPhys.79.135, doi:10.1103/RevModPhys.79.135.

[21] Guilherme Luiz Zanin, Maxime J Jacquet, Michele Spagnolo, Peter
Schiansky, Irati Alonso Calafell, Lee A Rozema, and Philip Walther.
Fiber-compatible photonic feed-forward with 99% �delity. Op-
tics Express, 29(3):3425–3437, 2021. URL: h�ps://opg.optica.org/oe/
fulltext.cfm?uri=oe-29-3-3425&id=446800, doi:10.1364/OE.409867.

[22] Atsushi Sakaguchi, Shunya Konno, Fumiya Hanamura, Warit Asa-
vanant, Kan Takase, Hisashi Ogawa, Petr Marek, Radim Filip, Jun-
ichi Yoshikawa, Elanor Huntington, et al. Nonlinear feedforward
enabling quantum computation. Nature Communications, 14(1):3817,
2023. URL: h�ps://www.nature.com/articles/s41467-023-39195-w,
doi:10.1038/s41467-023-39195-w.

[23] Mercedes Gimeno-Segovia, Pete Shadbolt, Dan E Browne, and Terry
Rudolph. From three-photon ghz states to universal ballistic quantum
computation. 2015. URL: h�ps://journals.aps.org/prl/abstract/10.1103/
PhysRevLe�.115.020502, doi:10.1103/PhysRevLett.115.020502.

[24] Mihir Pant, Don Towsley, Dirk Englund, and Saikat Guha. Percolation
thresholds for photonic quantum computing. Nature communications,
10(1):1070, 2019. URL: h�ps://www.nature.com/articles/s41467-019-
08948-x, doi:10.48550/arXiv.1701.03775.

[25] Daniel E Browne, Matthew B Elliott, Steven T Flammia, Seth T
Merkel, Akimasa Miyake, and Anthony J Short. Phase transition
of computational power in the resource states for one-way quan-
tum computation. New Journal of Physics, 10(2):023010, 2008. URL:
h�ps://iopscience.iop.org/article/10.1088/1367-2630/10/2/023010, doi:

753

https://www.nature.com/articles/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
http://opg.optica.org/ome/abstract.cfm?URI=ome-7-1-111
http://opg.optica.org/ome/abstract.cfm?URI=ome-7-1-111
https://doi.org/10.1364/OME.7.000111
https://www.science.org/doi/10.1126/science.abe8770
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1126/science.abe8770
https://link.aps.org/doi/10.1103/PhysRevLett.127.180502
https://doi.org/10.1103/PhysRevLett.127.180502
https://doi.org/10.1103/PhysRevLett.127.180502
https://www.nature.com/articles/s41586-022-04725-x
https://www.nature.com/articles/s41586-022-04725-x
https://doi.org/10.1038/s41586-022-04725-x
https://www.nature.com/articles/s41467-023-36493-1
https://doi.org/10.1038/s41467-023-36493-1
https://doi.org/10.1038/s41467-023-36493-1
https://arxiv.org/abs/2103.08612
https://doi.org/10.48550/arXiv.2103.08612
https://doi.org/10.48550/arXiv.2103.08612
https://science.org/doi/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://pubs.aip.org/aip/apr/article-abstract/6/2/021314/570103/Trapped-ion-quantum-computing-Progress-and?redirectedFrom=fulltext
https://pubs.aip.org/aip/apr/article-abstract/6/2/021314/570103/Trapped-ion-quantum-computing-Progress-and?redirectedFrom=fulltext
https://pubs.aip.org/aip/apr/article-abstract/6/2/021314/570103/Trapped-ion-quantum-computing-Progress-and?redirectedFrom=fulltext
https://doi.org/10.1063/1.5088164
https://iopscience.iop.org/article/10.1088/0953-4075/49/20/202001
https://iopscience.iop.org/article/10.1088/0953-4075/49/20/202001
https://doi.org/10.1088/0953-4075/49/20/202001
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.84.042331
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.84.042331
https://doi.org/10.1103/PhysRevA.84.042331
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.140403
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.140403
https://doi.org/10.1103/PhysRevLett.113.140403
https://doi.org/10.1103/PhysRevLett.113.140403
https://cds.cern.ch/record/465953/files/0521635039_TOC.pdf
https://cds.cern.ch/record/465953/files/0521635039_TOC.pdf
https://zenodo.org/records/2562111
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://iopscience.iop.org/article/10.1088/2058-9565/ab8e92
https://iopscience.iop.org/article/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.68.022312
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.68.022312
https://www.sciencedirect.com/science/article/pii/S0304397508009377?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0304397508009377?via%3Dihub
https://doi.org/10.1016/j.tcs.2008.12.046
https://dl.acm.org/doi/10.1145/3579371.3589047
https://doi.org/10.1145/3579371.3589047
https://doi.org/10.1145/3579371.3589047
https://www.sciencedirect.com/science/article/abs/pii/B9780128165027000014
https://www.sciencedirect.com/science/article/abs/pii/B9780128165027000014
https://doi.org/10.1016/B978-0-12-816502-7.00001-4
https://doi.org/10.1016/B978-0-12-816502-7.00001-4
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.79.135
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-3-3425&id=446800
https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-3-3425&id=446800
https://doi.org/10.1364/OE.409867
https://www.nature.com/articles/s41467-023-39195-w
https://doi.org/10.1038/s41467-023-39195-w
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.020502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.020502
https://doi.org/10.1103/PhysRevLett.115.020502
https://www.nature.com/articles/s41467-019-08948-x
https://www.nature.com/articles/s41467-019-08948-x
https://doi.org/10.48550/arXiv.1701.03775
https://iopscience.iop.org/article/10.1088/1367-2630/10/2/023010
https://doi.org/10.1088/1367-2630/10/2/023010
https://doi.org/10.1088/1367-2630/10/2/023010

OnePerc: A Randomness-aware Compiler for Photonic�antum Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

10.1088/1367-2630/10/2/023010.
[26] Aleks Kissinger and John van deWetering. Pyzx: Large scale automated

diagrammatic reasoning. arXiv preprint arXiv:1904.04735, 2019.
[27] Sergei Slussarenko and Geo� J Pryde. Photonic quantum information

processing: A concise review. Applied Physics Reviews, 6(4):041303,
2019. URL: h�ps://pubs.aip.org/aip/apr/article/6/4/041303/997349/
Photonic-quantum-information-processing-A-concise, doi:10.1063/
1.5115814.

[28] Philip Walther, Kevin J Resch, Terry Rudolph, Emmanuel Schenck,
Harald Weinfurter, Vlatko Vedral, Markus Aspelmeyer, and Anton
Zeilinger. Experimental one-way quantum computing. Nature,
434(7030):169–176, 2005. URL: h�ps://www.nature.com/articles/
nature03347, doi:10.1038/nature03347.

[29] Giuseppe Vallone, Gaia Donati, Natalia Bruno, Andrea Chiuri,
and Paolo Mataloni. Experimental realization of the deutsch-
jozsa algorithm with a six-qubit cluster state. Physical Review A,
81(5):050302, 2010. URL: h�ps://journals.aps.org/pra/abstract/10.1103/
PhysRevA.81.050302, doi:10.1103/PhysRevA.81.050302.

[30] Mark S Tame, Bryn A Bell, Carlo Di Franco, William J
Wadsworth, and John G Rarity. Experimental realization of a
one-way quantum computer algorithm solving simon’s prob-
lem. Physical Review Letters, 113(20):200501, 2014. URL: h�ps:
//journals.aps.org/prl/abstract/10.1103/PhysRevLe�.113.200501,
doi:10.1103/PhysRevLett.113.200501.

[31] Simone Ferrari, Carsten Schuck, and Wolfram Pernice.
Waveguide-integrated superconducting nanowire single-
photon detectors. Nanophotonics, 7(11):1725–1758, 2018. URL:
h�ps://www.degruyter.com/document/doi/10.1515/nanoph-2018-
0059/html?lang=en, doi:10.1515/nanoph-2018-0059.

[32] Jianwei Wang, Stefano Paesani, Yunhong Ding, Ra�aele Santagati,
Paul Skrzypczyk, Alexia Salavrakos, Jordi Tura, Remigiusz Augusiak,
Laura Mančinska, Davide Bacco, et al. Multidimensional quantum en-
tanglement with large-scale integrated optics. Science, 360(6386):285–
291, 2018. URL: h�ps://www.science.org/doi/10.1126/science.aar7053,
doi:10.1126/science.aar7053.

[33] Vinicius S Ferreira, Gihwan Kim, Andreas Butler, Hannes Pichler,
and Oskar Painter. Deterministic generation of multidimensional
photonic cluster states with a single quantum emitter. arXiv preprint
arXiv:2206.10076, 2022. URL: h�ps://arxiv.org/abs/2206.10076, doi:
10.48550/arXiv.2206.10076.

[34] Peter J Shadbolt, Maria R Verde, Alberto Peruzzo, Alberto Politi, An-
thony Laing, Mirko Lobino, Jonathan CFMatthews, Mark G Thompson,
and Jeremy L O’Brien. Generating, manipulating and measuring en-
tanglement and mixture with a recon�gurable photonic circuit. Nature
Photonics, 6(1):45–49, 2012. URL: h�ps://www.nature.com/articles/
nphoton.2011.283, doi:10.1038/nphoton.2011.283.

[35] Jacques Carolan, Christopher Harrold, Chris Sparrow, Enrique Martín-
López, Nicholas J Russell, Joshua W Silverstone, Peter J Shad-
bolt, Nobuyuki Matsuda, Manabu Oguma, Mikitaka Itoh, et al.
Universal linear optics. Science, 349(6249):711–716, 2015. URL:
h�ps://www.science.org/doi/10.1126/science.aab3642, doi:10.1126/
science.aab3642.

[36] Stefano Paesani, Yunhong Ding, Ra�aele Santagati, Levon
Chakhmakhchyan, Caterina Vigliar, Karsten Rottwitt, Leif K
Oxenløwe, Jianwei Wang, Mark G Thompson, and Anthony
Laing. Generation and sampling of quantum states of
light in a silicon chip. Nature Physics, 15(9):925–929, 2019.
URL: h�ps://www.nature.com/articles/s41567-019-0567-8,
doi:10.1038/s41567-019-0567-8.

[37] Felix Eltes, Gerardo E Villarreal-Garcia, Daniele Caimi, Heinz Sieg-
wart, Antonio A Gentile, Andy Hart, Pascal Stark, Graham D Marshall,
Mark G Thompson, Jorge Barreto, et al. An integrated optical modula-
tor operating at cryogenic temperatures. Nature Materials, 19(11):1164–
1168, 2020. URL: h�ps://pubmed.ncbi.nlm.nih.gov/32632281/, doi:

10.1038/s41563-020-0725-5.
[38] Cheng Wang, Mian Zhang, Xi Chen, Maxime Bertrand, Amirhassan

Shams-Ansari, Sethumadhavan Chandrasekhar, Peter Winzer, and
Marko Lončar. Integrated lithium niobate electro-optic modulators
operating at cmos-compatible voltages. Nature, 562(7725):101–104,
2018. URL: h�ps://www.nature.com/articles/s41586-018-0551-y, doi:
10.1364/OPTICA.415762.

[39] Marc Hein,Wolfgang Dür, Jens Eisert, Robert Raussendorf, MNest, and
H-J Briegel. Entanglement in graph states and its applications. arXiv
preprint quant-ph/0602096, 2006. URL: h�ps://arxiv.org/abs/quant-
ph/0602096, doi:10.48550/arXiv.quant-ph/0602096.

[40] Harry Kesten et al. The critical probability of bond percolation on the
square lattice equals 1/2. Communications in mathematical physics,
74(1):41–59, 1980. URL: h�ps://link.springer.com/article/10.1007/
BF01197577, doi:10.1007/BF01197577.

[41] Vincent Danos, Elham Kashe�, and Prakash Panangaden. The mea-
surement calculus. Journal of the ACM (JACM), 54(2):8–es, 2007.

[42] Steven A Cuccaro, Thomas GDraper, Samuel A Kutin, and David Petrie
Moulton. A new quantum ripple-carry addition circuit. arXiv preprint
quant-ph/0410184, 2004. URL: h�ps://arxiv.org/abs/quant-ph/0410184,
doi:10.48550/arXiv.quant-ph/0410184.

[43] Max Alteg, Baptiste Chevalier, Octave Mestoudjian, and Johan-Luca
Rossi. Study of adaptative derivative-assemble pseudo-trotter ansatzes
in vqe through qiskit api. 2022. arXiv:2210.15438.

[44] Jia-Bin You, Dax Enshan Koh, Jian Feng Kong, Wen-Jun Ding,
Ching Eng Png, and Lin Wu. Exploring variational quantum eigen-
solver ansatzes for the long-range xy model. 2021. arXiv:2109.00288.

[45] Michael Norman, Vince Kellen, Shava Smallen, Brian DeMeulle, Shawn
Strande, Ed Lazowska, Naomi Alterman, Rob Fatland, Sarah Stone,
Amanda Tan, et al. Cloudbank: Managed services to simplify cloud
access for computer science research and education. In Practice and
Experience in Advanced Research Computing, pages 1–4. 2021.

754

https://doi.org/10.1088/1367-2630/10/2/023010
https://pubs.aip.org/aip/apr/article/6/4/041303/997349/Photonic-quantum-information-processing-A-concise
https://pubs.aip.org/aip/apr/article/6/4/041303/997349/Photonic-quantum-information-processing-A-concise
https://doi.org/10.1063/1.5115814
https://doi.org/10.1063/1.5115814
https://www.nature.com/articles/nature03347
https://www.nature.com/articles/nature03347
https://doi.org/10.1038/nature03347
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.81.050302
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.81.050302
https://doi.org/10.1103/PhysRevA.81.050302
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.200501
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.200501
https://doi.org/10.1103/PhysRevLett.113.200501
https://www.degruyter.com/document/doi/10.1515/nanoph-2018-0059/html?lang=en
https://www.degruyter.com/document/doi/10.1515/nanoph-2018-0059/html?lang=en
https://doi.org/10.1515/nanoph-2018-0059
https://www.science.org/doi/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://arxiv.org/abs/2206.10076
https://doi.org/10.48550/arXiv.2206.10076
https://doi.org/10.48550/arXiv.2206.10076
https://www.nature.com/articles/nphoton.2011.283
https://www.nature.com/articles/nphoton.2011.283
https://doi.org/10.1038/nphoton.2011.283
https://www.science.org/doi/10.1126/science.aab3642
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1126/science.aab3642
https://www.nature.com/articles/s41567-019-0567-8
https://doi.org/10.1038/s41567-019-0567-8
https://pubmed.ncbi.nlm.nih.gov/32632281/
https://doi.org/10.1038/s41563-020-0725-5
https://doi.org/10.1038/s41563-020-0725-5
https://www.nature.com/articles/s41586-018-0551-y
https://doi.org/10.1364/OPTICA.415762
https://doi.org/10.1364/OPTICA.415762
https://arxiv.org/abs/quant-ph/0602096
https://arxiv.org/abs/quant-ph/0602096
https://doi.org/10.48550/arXiv.quant-ph/0602096
https://link.springer.com/article/10.1007/BF01197577
https://link.springer.com/article/10.1007/BF01197577
https://doi.org/10.1007/BF01197577
https://arxiv.org/abs/quant-ph/0410184
https://doi.org/10.48550/arXiv.quant-ph/0410184
https://arxiv.org/abs/2210.15438
https://arxiv.org/abs/2109.00288

