
Advancing RAN Slicing with

Offline Reinforcement Learning

Kun Yang∗, Shu-ping Yeh‡, Menglei Zhang‡, Jerry Sydir‡, Jing Yang†, and Cong Shen∗

∗ Department of Electrical and Computer Engineering, University of Virginia, USA
† School of Electrical Engineering and Computer Science, The Pennsylvania State University, USA

‡ Intel Corporation, USA

Abstract—Dynamic radio resource management (RRM) in
wireless networks presents significant challenges, particularly
in the context of Radio Access Network (RAN) slicing. This
technology, crucial for catering to varying user requirements,
often grapples with complex optimization scenarios. Existing
Reinforcement Learning (RL) approaches, while achieving good
performance in RAN slicing, typically rely on online algorithms
or behavior cloning. These methods necessitate either continuous
environmental interactions or access to high-quality datasets,
hindering their practical deployment. Towards addressing these
limitations, this paper introduces offline RL to solving the RAN
slicing problem, marking a significant shift toward more feasible
and adaptive RRM methods. We demonstrate how offline RL can
effectively learn near-optimal policies from sub-optimal datasets,
a notable advancement over existing practices. Our research
highlights the inherent flexibility of offline RL, showcasing its
ability to adjust policy criteria without the need for additional
environmental interactions. Furthermore, we present empirical
evidence of the efficacy of offline RL in adapting to various
service-level requirements, illustrating its potential in diverse
RAN slicing scenarios.

Index Terms—RAN slicing, Radio Resource Management,
Offline Reinforcement Learning, Deep Reinforcement Learning

I. INTRODUCTION

In the rapidly evolving landscape of wireless communica-

tion, Radio Access Network (RAN) slicing plays an important

role in providing heterogeneous services to diverse wireless

network users, offering a paradigm shift towards more flexible

and efficient use of network resources. At its core, RAN slicing

involves partitioning a single physical network into multiple

virtual networks, each tailored to meet a set of specific

service requirements. This flexibility is pivotal in addressing

the diverse demands of modern wireless communications,

ranging from high-speed data services to massive machine-

type communications. By enabling dynamic allocation and

optimization of network resources [1], [2], RAN slicing sig-

nificantly enhances network efficiency, scalability, and service

customization. It is a key technology in the evolution of

wireless networks, facilitating the transition to more adaptive,

service-oriented architectures [3], [4].

However, the implementation of RAN slicing introduces

complex challenges, particularly in Radio Resource Manage-

ment (RRM) [5], [6]. The need for customized and sophisti-
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cated RRM strategies becomes paramount to ensure the near-

optimal performance of each network slice without compro-

mising the overall network integrity. Recently, Reinforcement

Learning (RL) has emerged as a promising tool [7]–[10],

offering adaptive and intelligent solutions to navigate the

intricate RRM landscape. The ability of RL to learn and make

decisions based on dynamic network environments makes

it ideally suited for managing the unique demand of each

network slice.

Prior to our work, RRM for RAN slicing has predomi-

nantly utilized online RL algorithms [11]–[14], which requires

intensive and continuous environmental interaction. Other

works follow the same online setting, but mainly changes

on neural network architectures [15]–[17] or extend to multi-

agent settings for scalability [18]–[20]. In contrast, offline-

based methods, which rely on behavior cloning [21]–[23], or

training online RL algorithms offline [24], face the challenge

of acquiring high-quality datasets or degraded training perfor-

mance. Our research aims to bridge these gaps, showcasing

the potential of offline RL in efficiently managing RAN slicing

without the constraints of constant environmental interactions

or dependency on high-quality expert data.

Offline RL [25]–[28], as aimed to develop RL policies with

only offline datasets, offers a solution that is less interaction-

intensive and more adaptive. Unlike online RL, offline RL

significantly reduces the need for environmental interaction

and mitigates a key drawback of online RL in real-world wire-

less systems. Besides this advantage, a growing investigation

on data coverage of offline RL [29]–[31], proving a potential

of recovering near-optimal policies with sub-optimal dataset.

Combining these attractive features, there are recent efforts

in developing tailored offline RL solutions to wireless RRM

problems [10]. We note, however, that while [10] has explored

the use of offline RL in RRM, their work does not address

the flexibility in reward function adaptation, overlooked a

key advantage of the offline RL when applying to real-world

wireless systems.

In this paper, we introduce offline RL to solving RRM

problems in RAN slicing, exploring its potential in address-

ing complex network management challenges. Our research

focuses on the adaptability of offline RL when trained on

diversely collected datasets. The contributions of this study

are three-fold, each highlighting a distinct aspect of offline

RL in the context of RRM in RAN slicing.
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Learning from Sub-optimal Data: We present findings

indicating that offline RL has the potential to obtain near-

optimal policies even when trained on sub-optimal datasets.

This suggests that offline RL might be less dependent on the

quality of data compared to traditional methods, a promising

direction for scenarios where optimal data is not available.

Adapting to Different SLA Requirements: Our study

explores how offline RL can potentially adapt to different

SLA requirements. The result indicates that, by training across

datasets with varying SLA conditions, offline RL could adjust

its strategies to meet the specific needs of different network

slices, a valuable feature for managing diverse network de-

mands.

Behavioral Flexibility with Tailored Reward Functions:

We also investigate the ability of offline RL to alter its behavior

by changing the reward functions during offline training, even

when using the same dataset. This result suggests that offline

RL could offer a flexible approach to RRM, adapting to

various operational objectives without the need for additional

data.

The remainder of this paper is organized as follows. We

discussed The formulation of the RRM problem for network

slicing and how it can be posed in an RL framework in Section

II. Section III details our experimental settings, highlighting

how offline RL is applied and elucidating the mechanisms en-

abling SLA and objective adaptation within this context. Key

insights and observations from the experiments are discussed

in Section IV. Finally, Section V concludes the paper.

II. PROBLEM SETTING

We begin with an in-depth exploration of the wireless RRM

problem that we aim to address. We emphasize the importance

of flexibility in adapting to different SLA requirements and

optimization objectives, illustrating why this adaptability is

crucial for efficient RAN slicing systems. To facilitate a

comprehensive understanding, we start with the context of

RAN slicing in Section II-A, setting the stage for our analysis.

Building upon this foundation, we then methodically illustrate

how this RRM challenge can be aptly formulated in an RL

problem in Section II-B. This formulation is pivotal as it

lays the groundwork for applying advanced RL techniques,

including offline RL methods, to effectively manage and

optimize resource allocation in RAN slicing.

A. RRM for RAN Slicing

1) RRM as An Optimization Problem: We focus on a

scenario within our system that involves one cell with N slices.

Here, the first N − 1 slices are designated as high-priority,

while the final slice is allocated for background traffic. Each

slice comprises a set of users, denoted as k1, k2, · · · , kN . Our

analysis unfolds in discrete time slots, labeled as t, during

which radio resources need to be allocated to the first N − 1
slices. These resources are organized into block groups, with

a total of M resource block groups (RBGs) available. The

considered RRM system is illustrated in Figure 1.

Fig. 1: An illustration of the RRM system in RAN slicing,

where different resource blocks are allocated to different slices

with distinctive purposes.

The primary objective of this RRM problem is the strate-

gic allocation of these resources, represented by M =
{m1,m2, · · · ,mN−1}, across the N − 1 high-priority slices.

In our particular implementation, following this allocation, a

scheduler within the NS-3 framework takes over to further

distribute the resources among the users in each slice.

The overarching goal of resource management is to strike an

optimal balance in allocation, thereby fulfilling diverse Quality

of Service (QoS) requirements captured by a utility function

ft. To formally represent this optimization challenge, we can

articulate it as follows:

maximize
m1,m2,··· ,mN−1

ft(m1,m2, ...,mN−1)

subject to

N−1
∑

i=1

mi ≤ M.
(1)

The optimization formulation (1) encapsulates the essence

of the RRM problem in our system. It aims to maximize

the QoS function ft, considering the constraints on the total

available resources. The formulation underscores the need

to judiciously allocate resources across slices, ensuring that

high-priority slices receive the necessary resources while also

catering to the background traffic needs.

2) Choices of Resource Allocation: We now discuss the

resource allocation strategies for the RAN slicing system.

We categorize resources into two primary types: dedicated

and prioritized [32], [33]. Dedicated resources are exclusively

reserved for a specific slice and cannot be utilized by others.

In contrast, prioritized resources, while initially allocated to a

particular slice, may be used by other slices if any residual

capacity remains. Based on these two distinct resource types,

we draw our first two resource allocation strategies from the

IETF report [34]. Besides these two strategies, we introduce

a third strategy that is derived from the capabilities of the

netgymenv simulator [35]. All three strategies are presented

in the following:

1) Hard Slicing [34]: This strategy involves allocating only

dedicated RBGs to each slice. While it simplifies the
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system implementation, it can also lead to potentially

inefficient resource utilization due to its rigid allocation.

2) Limited Soft Slicing: This approach utilizes only pri-

oritized RBGs. It aims for more efficient resource usage

by allowing the possibility of shared resources among

slices, depending on the availability.

3) Soft Slicing [34]: A hybrid strategy that combines both

dedicated and prioritized resources, offering a balance

between resource efficiency and allocation specificity.

In this work, we recognize that while hard slicing offers

simplicity and ease of implementation, it may not optimally

utilize the available resources. On the other hand, soft slicing,

though potentially more efficient, poses challenges in practical

deployment due to its higher complexity. Given these consider-

ations, we opt to focus on limited soft slicing as the primary

approach. This choice is motivated by the aim to achieve a

more resource-efficient allocation while maintaining a feasible

level of system complexity.

B. Reinforcement Learning Formulation

As we have previously highlighted in Section I, RL has

become a pivotal tool for addressing RRM challenges in RAN

slicing. The core rationale for employing RL in RRM lies in

its adeptness at navigating the dynamic decision-making pro-

cesses, which is typical in resource management. Particularly

in the context of RAN slicing, as detailed in Section II-A, the

focus is on the sequential allocation of packed RBGs to opti-

mize the QoS performance. The iterative learning and policy

refinement capabilities of RL enable an agent to progressively

navigate this complex decision space, ultimately leading to

strategies that can significantly enhance resource utilization

and overall network efficacy. This successful application of

RL in RRM hinges on effectively formulating the problem as

a Markov Decision Process (MDP).

Diverging from the conventional methodologies that often

adhere to a predetermined structure in formulating the RRM

problem as an MDP, our approach introduces an innovative

and more flexible paradigm as shown in Figure 2. We break

away from the standard practice of fixed observations, actions,

and reward structures, instead adopting an adaptive process

that is more reflective of real-world scenarios. Our system

closely replicates a practical wireless network environment by

capturing a comprehensive range of traffic monitoring metrics

during data collection. This extensive dataset then undergoes

a meticulous process of observation distillation and reward

adjustment, tailored to extracting the most relevant information

for the specified design objective. This nuanced approach not

only brings a higher degree of realism to our simulator but also

provides the adaptability necessary for a more customized RL

formulation. This flexibility is critical, as it allows our system

to adjust to various RRM scenarios, offering solutions that are

more aligned with specific challenges and objectives encoun-

tered in real-world RAN slicing scenarios. In the following,

we will elaborate on our distinct RL formulation, which we

assert is well-suited for addressing the intricacies of the RRM

problem.

Fig. 2: Offline RL with reward adjustment and observation

distillation.

• States: The wireless system will collect all possibly

useful information from the environment, including user-

level traffic load, user-level throughput, average one-way

delay, maximum one-way delay, delay violation rate (with

a designed threshold), resource block usage rate, and the

relative location of the user. Among all the possibly useful

states, we choose to collect slice-level information of

throughput Trx, traffic load Ttx, resource utilization rate

U , delay violation rate Dvio, and average one-way delay

Davg from every slice in the system. The states can thus

be specified as:

{Trx,i, Ttx,i, Ui, Dvio,i, Davg,i}i=1,··· ,N

• Actions: As stated in Section II-A, our goal is to al-

locate the RBGs to prioritized slices, and we choose

to use the limited soft slicing technique so that we are

allocating prioritized resources to prioritized slices, i.e.

A(t) = [a1(t), · · · , aN−1(t)] where ai(t) ∈ [0, 1].
• Reward: The reward design of a RAN-slicing system

should align with its QoS or the SLA. In our setting,

we care about three components: the overall throughput

of the system, the delay violation rates, and the resource

utilization rate. We thus design a prioritized SLA-aware

reward as the following. We first define a priority vector

as p = [p1, · · · , pi, · · · , pN ]. Then the reward is given as

R(t) =

N
∑

i=1

piri(t),

where

ri(t) = Trx,i(t)− αDvio,i(t)− δUi(t).

In our experiment, we initially set p =
[ 1

N−1
, ..., 1

N−1
, ...., 0], α = 4, and δ = 1.

We note that the reward design incorporates a flexible

mechanism for adjusting the priority of different slices via

the priority vector p. Additionally, it allows fine-tuning of

the significance of each key component – throughput, delay

violation, and resource utilization – using hyperparameters α

and δ. This flexibility is crucial for customizing the behavior
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TABLE I: Experiment parameters

Parameter Value

Number of Slices 3
Number of UEs 6− 20

Delay violation threshold [100, 50, 10] ms

Area 120× 10 m2

Downlink traffic 2 Mbp/s
Traffic pattern Poisson arrival
UE mobility 1− 2 m/s

of an RL agent to match the specific network conditions and

SLA requirements. By varying these parameters, the reward

function can be tailored to emphasizing different aspects of the

network performance, thus ensuring that the learning process

of an RL agent is aligned with the overarching goals of the

RAN slicing system. This carefully crafted design enables the

RL model to adaptively balance between maximizing through-

put, minimizing delay violations, and optimizing resource

usage, in accordance with the defined priorities and operational

constraints.

Based on the MDP design, the objective of the RL system

is given as:

max
π

E

[

∞
∑

t=0

γtR(t)

]

.

III. EXPERIMENTAL SETUP AND RESULTS

A. Simulation Setup and Baseline Methods

We now detail the experimental setup and the initial strate-

gies employed for data collection and performance evaluation.

Our experiments are conducted using the netgymenv sim-

ulator developed by Intel [35], as mentioned in Section II.

This simulation environment focuses on a RAN slicing system

comprising one cell and N slices. The traffic module follows

the LTE module in NS-3 [36]. Specifically, our experimental

setup involves a system with three slices: the first two slices are

prioritized for essential services, while the third slice handles

background traffic. The key parameters of our simulation are

summarized in Table I.

For delay violation rate data collection, the simulator does

not record individual packet delays due to the high compu-

tational overhead. Instead, it maintains a histogram of packet

arrivals over a specific period of time, from which the delay

violation rate is calculated.

Regarding data collection for offline RL training, we deploy

the following behavior policies (BPs), which also serve as

baselines for comparative evaluation.

1) Traffic load-based resource allocation: Resources are

allocated proportionally based on the traffic load ob-

served in the previous time period:

ai(t) =
Ttx,i(t− 1)

∑

j Ttx,j(t− 1) + ∆
, ai(0) =

1

N
,

where ∆ is a small positive number to avoid numerical

instability.

2) Delay violation rate-based resource allocation: Here,

resource allocation is proportionally based on the delay

violation rates, using a softmax function for more stable

allocation:

ai(t) =
expDvio,i(t− 1)

∑

j expDvio,j(t− 1)
, ai(0) =

1

N

3) Online RL: We also include an online RL policy as a

BP for both ‘expert’ dataset collection and performance

benchmarking. The specific algorithm we choose to use

is Soft Actor-Critic (SAC) [37], selected for its actor-

critic structure that aligns with the offline RL algorithms

we deploy.

The formulation of the first two baseline methods, Traffic

Load-Based and Delay Violation Rate-Based Resource Allo-

cation, is specifically designed to incorporate limited aspects

of system information. As a result, while they are adept at

optimizing certain traffic patterns, their performances may

be sub-optimal when the broader system dynamics are taken

into consideration. These methods, therefore, serve as useful

starting points but may not fully capture the complexity and

variability of real-world traffic scenarios.

In contrast, the online RL policy, specifically the SAC algo-

rithm, is employed with the intention of reaching a more com-

prehensive system optimization. To ensure its effectiveness,

we commit to training this policy over an extended period,

allowing it to adapt and learn from a wide range of network

conditions and scenarios. This extended training is crucial for

the online RL policy to develop a detailed understanding of

the system and achieve near-optimal performance, potentially

exceeding the more narrowly focused baseline methods. The

comparison between these baseline strategies and the more

dynamically trained online RL policy will provide valuable

insights into the effectiveness and adaptability of different

resource allocation approaches in RAN slicing.

Data Collection for Offline Datasets: To construct compre-

hensive offline datasets, we systematically execute each BP for

40 episodes. An individual episode comprises 200 continuous

steps. At the beginning of each episode, we introduce vari-

ability by randomly selecting both the number of users and

the random seed for the prioritized slices, while maintaining

a constant user count of 5 for the background slice. This

approach ensures a diverse dataset that encapsulates a range

of possible network states and user behaviors. By adopting

this method for each BP under varying SLA requirements,

we accumulate a substantial dataset of approximately 80,000

data samples per BP under the same SLA requirement. This

extensive collection forms the foundational dataset for training

our offline RL algorithms, providing them with a broad

spectrum of scenarios to learn from and adapt to. The diversity

and volume of this dataset are critical for enabling the offline

RL models to develop robust and effective resource allocation

strategies that can cater to the dynamic and complex needs of

RAN slicing.
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TABLE II: Training parameters

Parameter Value

Actor structure 2 Layer MLP with hidden dimension 64
Critic structure 2 Layer MLP with hidden dimension 64

Critic learning rate 1e−3 for online, 3e−4 for offline

Actor learning rate 3e−4 for online, 5e−5 for offline

B. Offline RL with Sub-optimal Datasets

The initial phase of the offline RL experimentation employs

Conservative Q-learning (CQL) [38], a method widely known

for its straightforward implementation and the pessimistic

approach to offline RL training, characterized by the inclusion

of a regularizer in its loss function. The specific design of

CQL makes it an ideal algorithm to use as a starting point for

offline RL experiments, particularly for evaluating the efficacy

of offline RL in deriving practical algorithms. The training

details for the online and offline RL clients are given in Table

II.

Our experimental setup in this section is tailored to a

scenario where both prioritized slices have identical SLA

levels, though the number of users in each slice can vary.

To maintain a level playing field in our comparative analysis,

we standardize the definition of a training step across both

online and offline RL. For online learning, a step involves

collecting a data sample from the environment followed by a

mini-batch gradient descent update. In the offline RL context,

a step is defined as sampling a mini-batch from the dataset

and performing a corresponding mini-batch gradient descent

update.

As depicted in Figure 3a, we present the performance results

of the offline RL model, which utilizes an expert dataset

collected via a SAC agent. Intriguingly, the results indicate that

offline RL, when trained on a dataset acquired from a high-

performing online RL agent, can surpass the performance of

its online counterpart within the same number of training steps.

While this outcome is noteworthy, it is important to remember

that access to an expert-level dataset is not always feasible in

practical systems. Therefore, a more critical assessment of the

capabilities of offline RL lies in its ability to learn effective

policies from sub-optimal datasets.

In our exploration of offline RL with sub-optimal datasets,

we conduct tests using the two baseline strategies outlined in

Section III-A. Initially, we train an offline RL agent separately

on datasets generated from each of these baselines. Subse-

quently, we combine these two datasets to assess any potential

performance benefits from this mixed dataset approach.

The outcomes of these training exercises on the sub-optimal

datasets are illustrated in Figure 3b. From these results, we

observe that the performance achieved with the sub-optimal

datasets notably surpasses that of the corresponding BPs, yet

falls marginally short of the expert-level performance. This

finding underscores the capability of offline RL to extract

valuable learning even from less-than-ideal data.

Furthermore, an interesting development emerged when

we amalgamate the load-oriented and delay-oriented baseline

datasets for training. This blend of datasets, encompassing

a broader spectrum of network scenarios and challenges,

enabled the offline RL agent to approach, and in some

cases match, the performance level of the expert-level dataset.

This enhancement in performance indicates that diversity and

comprehensiveness in the training dataset play a crucial role

in the efficacy of offline RL. It suggests that by judiciously

combining datasets with varied characteristics, we can equip

the offline RL model with a richer learning experience, thus

enabling it to develop more robust and effective strategies

that are closer to those derived from optimal conditions.

This approach might be particularly beneficial in practical

scenarios, where access to expert-level data is limited, and

reliance on diverse sub-optimal data sources is more realistic.

Behavior Understanding and Performance Analysis: Be-

yond the encouraging cumulative reward outcomes observed

during the training phase, it is crucial to delve deeper into the

underlying factors contributing to the superior performance of

the RL algorithms over the baselines. To this end, we conduct

a thorough analysis across 20 distinct environments, encom-

passing five different user distributions, each evaluated with

four unique random seeds. This comprehensive test allows us

to assess the robustness and adaptability of the policies in

various scenarios. The results, focusing on key metrics like

throughput and delay violation rate, are presented in Figure

4. As illustrated in the figure, the RL algorithms demonstrate

the ability to sustain the throughput performance (0.3 Mbp/s

drop total throughput wise) while simultaneously achieving a

significant reduction in delay violation rates, with a relative

improvement of approximately 50%. This impressive feat is

attributed to the adoption of a more conservative resource

allocation strategy compared with the load or delay-aware

baselines. Unlike these baseline methods, which may resort

to drastic adjustments leading to increased delay violations

or throughput drops, the RL algorithm implements a more

balanced approach. This strategy effectively mitigates the

risk of extreme resource allocation decisions that could be

detrimental to overall system performance. The results clearly

showcase the proficiency of RL in not only maintaining service

quality but also significantly improving network reliability and

user experience by reducing delay violations, a critical aspect

in RAN slicing environments.

The experiment revealed an intriguing outcome: despite

being designed to allocate resources based on delay violation

rate, the delay-based baseline exhibited unstable and drastic

allocation changes. This led to increased delay violations,

contrary to our initial intent. Notably, this supports our ob-

servation that the effectiveness of RL policies stems from

a conservative allocation approach. Thus, the results suggest

that prioritizing a conservative strategy could more effectively

balance throughput and delay violations.

C. Adaptation to Different SLA Requirements

In the preceding section, we have established that offline

RL can surpass online RL in scenarios with consistent SLA

requirements, demonstrating the advantage of offline RL in
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(a) Expert dataset. (b) Sub-optimal datasets.

Fig. 3: Offline training results with different datasets

Fig. 4: Delay violation rate (average of two slices) and total throughput (sum of two slices). The results are averaged over 20

different environments as discussed in Section III-B.

leveraging mixed sub-optimal datasets. In practical RAN slic-

ing systems, however, heterogeneity is a result of not only

different BPs but also distinct SLA requirements. In this

context, we explore how offline RL adapts to varying SLAs

within a RAN slicing system.

Specifically, we adjust the SLA requirements for Slice 1

by reducing the delay violation threshold from 100 ms to 50

ms and further down to 30 ms. Our goal is to investigate if

an offline RL policy can effectively utilize datasets collected

under different SLAs to adapt to new SLA conditions that

have not been seen before.

For this experiment, we train an offline RL policy using data

collected at delay violation thresholds of 100 ms and 50 ms.

We then test this policy in an environment where Slice 1 has

a delay violation threshold of 30 ms. The performance of this

offline RL policy is compared against an online RL policy: one

trained in an environment with an exact 30 ms threshold. The

comparative performance is illustrated in Figure 5. The result

reveals that both RL methods successfully adapt to the new

SLA requirement. Notably, both methods slightly compromise

the performance on Slice 2 to mitigate substantial delay

violations resulting from the altered SLA on Slice 1. In Figure

5, a trade-off of less than 1% in the mean delay violation

rate for Slice 2 leads to a reduction of over 10% in delay

violations for Slice 1, translating to a relative improvement

of over 100% compared with the best-performing baseline. It

is more exciting that this is accomplished while the offline

policy has never seen any data collected from 30 ms SLA

environment. Despite having no prior exposure to this specific

SLA requirement, it manages to achieve a performance level

comparable to that of the online RL agent, which necessitates

tens of thousands of steps of environmental interaction.

D. Variation on Reward Functions

One unique advantage of offline RL in the context of RAN

slicing lies in its ability to adjust the reward function based

on existing datasets, thereby enabling tailored policy behavior.

For instance, in our initial setup, we set the parameters α = 4
and δ = 1 to emphasize the impact of delay violation. To shift

the focus towards throughput, we adjust the reward parameters

to α = 0.5 and δ = 0.5. Subsequently, to underscore

resource usage, we modify them to α = 1 and δ = 4.

These modifications in the reward function are expected to

2024 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

336
Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 28,2024 at 19:54:52 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5: Delay violation rate comparison across slices with different SLA requirements.

significantly influence the behavior of the offline RL policy,

as demonstrated in Table III.

The result in Table III reveals that adapting the re-

ward parameters indeed changes the policy behavior. The

CQLthroughput policy, with a reduced emphasis on delay vi-

olation, yields the highest total throughput but at the cost

of increased delay violations. Meanwhile, CQLdelay, with

its focus on minimizing delays, has the lowest mean delay

violation rate. Interestingly, the CQLresource policy, aimed at

optimizing resource usage, does not demonstrate a marked im-

provement in resource efficiency. This is particularly notable in

our tested limited soft-slicing system, where shared resources

inherently limit the scope for significant optimization. This

finding suggests that the system architectural setup – soft

versus hard slicing – plays a critical role in determining the

efficacy of different reward-oriented policies. In hard-slicing

environments, where resources are exclusively allocated, the

potential for a resource-oriented policy to improve utilization

may become more pronounced.

IV. DISCUSSION

We discuss several key insights gleaned from the experi-

ments with offline RL in the context of RAN slicing.

Efficiency Gains through Reduced Interactions: Our

use of the netgymenv simulator, a near-real-world tool

developed by Intel Labs that is based on NS-3 [36], offers

practical and credible experimental outcomes. However, it also

highlights the increased cost associated with environmental

interactions in more sophisticated simulators. In contrast to

lightweight simulators where interactions are nearly cost-free

and instantaneous, each interaction with netgymenv incurs

a substantial delay of approximately 200 ms, encompassing

both simulation and communication overheads (this could be

optimized with improved networking solutions). In compar-

ison, a single neural network update step takes about 100

ms. Consequently, offline RL, in addition to reducing resource

interactions and circumventing sub-optimal exploratory steps

inherent in online RL, offers significant time savings. In our

experiments, offline RL achieves a time reduction of at least

50%, potentially extending up to 67%.

The Crucial Role of State Normalization: As outlined in

Section II, the initial state definitions utilize raw data metrics

including throughput, delay violation rate, and delay. However,

we have observed that directly using these raw values could

lead to instability in the RL model convergence, sometimes

resulting in the policies getting trapped at sub-optimal per-

formance levels. To address this issue, we have found that

normalizing the state values is extremely beneficial. By scaling

all state values to a normalized range of [0, 1], we significantly

enhance the stability of the training process. Therefore, we

advocate for the implementation of state normalization in

future experiments involving RL, as it markedly improves

training stability and the overall effectiveness of the RL model.

V. CONCLUSION

This work established that offline RL can effectively extract

(near)-optimal policies from sub-optimal datasets, highlighting

a key advantage over online RL, especially in the context of

real-world wireless systems. This is attributed to the capability

of offline RL to operate without the need for costly envi-

ronmental interactions. Additionally, we observed that offline

RL is adept at adapting to varying Service Level Agreement

(SLA) requirements, demonstrating promising transferability

even to previously unseen SLA scenarios. Another important

finding was the flexibility of offline RL in policy adjustment.

By altering reward functions offline, it is feasible to train

multiple policies with distinct objectives. We believe this work

is helpful in enhancing the current workflow of applying RL

to RRM in RAN slicing systems.
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