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Abstract

Optimizing the allocation of units into treatment groups can help researchers improve the
precision of causal estimators and decrease costs when running factorial experiments. How-
ever, existing optimal allocation results typically assume a super-population model and that the
outcome data comes from a known family of distributions. Instead, we focus on randomization-
based causal inference for the finite-population setting, which does not require model spec-
ifications for the data or sampling assumptions. We propose exact theoretical solutions for
optimal allocation in 2% factorial experiments under complete randomization with A-, D- and
E-optimality criteria. We then extend this work to factorial designs with block randomization.
We also derive results for optimal allocations when using cost-based constraints. To connect
our theory to practice, we provide convenient integer-constrained programming solutions using
a greedy optimization approach to find integer optimal allocation solutions for both complete
and block randomization. The proposed methods are demonstrated using two real-life factorial

experiments conducted by social scientists.

1. Introduction

Randomized 2% factorial experiments are conducted to assess the marginal causal effects of K
factors, each with two levels, along with their interactions on a response of interest. The two levels
are often denoted as the “high level” and “low level” of the factor (Fisher 1935; Yates 1937). With
oK

K factors, there are unique treatment combinations to which units can be assigned. In the
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twentieth century, factorial designs have mostly been discussed in an industrial setting, whereas
in recent times, there has been a lot of interest in their application in the social, behavioral and
biomedical sciences and randomization-based inference from such designs (e.g., Branson et al. 2016;
Egami and Imai 2019).

Randomization-based inference is a useful methodology for drawing inference on causal ef-
fects of treatments in a finite population setting (e.g., Freedman 2006, 2008). A major advantage
of randomization-based inference is that it applies even if the experimental units are not ran-
domly sampled from a larger population, which is the case in most social science experiments
(Abadie et al. 2020; Olsen et al. 2013). The theory, methods, and applications of randomization-
based inference for two-level factorial experiments with a completely randomized treatment assign-
ment mechanism have been developed and discussed (e.g., Dasgupta et al. 2015; Lu 2016). Further,
randomization-based inference from experiments with more general factorial structures and com-
plex assignment mechanisms have been discussed in Mukerjee et al. (2018). Connections between
regression-based and randomization-based causal inference from factorial experiments have been
studied by Zhao and Ding (2021).

Despite the growing literature in this area, most of the recent research on randomization-based
inference of factorial experiments has been confined to the analysis side. On the design side, the
main focus has been on rerandomization (Branson et al. 2016; Li et al. 2020; Morgan and Rubin
2012), which generalizes the idea of blocking by pre-defining an acceptable criterion for random-
ization based on covariate balance between treatment groups. There have also been extensions
to fractional and incomplete factorial designs (Pashley and Bind 2022) and to the use of screening
steps (Shi et al. 2023). However, the distribution of the total number of experimental units into the
2K treatment groups has not received much attention. Balanced designs that assign equal number
of units to the treatment groups are often the default choice, but it is unclear whether they are the
“best” design under different conditions. One work that does discuss how to allocate units to opti-
mize precision of factorial estimators from the randomization-based perspective is Blackwell et al.
(2022). That work explores the advantages of Neyman-Allocation (Neyman 1934; Cochran 1977b)
by extending the two-stage adaptive design in Hahn et al. (2011) to multiple treatment designs.
Dai et al. (2023) similarly explores Neyman-Allocation but within sequential designs.

To motivate this problem, we consider an education experiment from Angrist et al. (2009),
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conducted to assess the causal effects of two different interventions, a student support program
(SSP) and a student fellowship program (SFP), on the academic performance of freshmen. This
is a 22 factorial experiment in which each unit (freshman) can receive only one of four treatment
combinations: control (neither of the two), SSP only, SFP only, and SFSP (both). The units were
divided into two blocks based on their sex. Table 1 shows the allocation of units within each block
to the four treatment combinations.

Table 1: Allocation of units to treatment combinations

Sex Control | SFP | SSP | SFSP
Female 574 150 | 142 82
Male 432 100 | 108 68
Total 1006 250 | 250 150

Clearly, the design is unbalanced, with the highest number of units assigned to control and the
fewest to the treatment SFSP. Such an allocation, among other reasons, could be motivated by
the budget for experimentation. The question we investigate in this paper is the following: Under
what assumptions, conditions, and requirements will such an allocation be the best possible one
(in terms of being able to precisely answer scientific questions of interest)?

The problem of finding optimal designs in the context of model-based inference has been ex-
tensively studied in the twentieth century (see Atkinson et al. 2007, for example). In such set-
tings, optimal designs depend on a postulated outcome model, that may be linear or non-linear.
For example, for binary responses, optimal designs based on logistic models are likely to differ
from those based on probit models, and depend on unknown model parameters (Yang et al. 2012;
Yang and Mandal 2015; Yang et al. 2016). We aim to develop optimal designs that are tied to
model-free, randomization-based analysis for finite and super populations. In addition to being
robust to model assumptions, our approach works for continuous as well as binary outcomes as
long the finite-population estimand is well-defined.

This paper is organized as follows: The next section introduces basic notation and estimands
for factorial experiments using the potential outcomes framework. In Section 3 we derive optimal
allocations of the N units in a population to different treatment combinations under three commonly

used optimality criteria for a completely randomized design (CRD). In addition to theoretical results



for exact optimal allocations, we also provide numerical algorithms for obtaining integer solutions.
In Section 4, we extend our results for CRDs to the setting of randomized block designs (RBDs).
In Section 5, we derive optimality results under cost constraints. Two different applications of the
proposed methodology, the motivating education experiment and an audit experiment conducted
to assess discrimination, are described in Section 6. We conclude with a discussion, including

opportunities for future work, in Section 7.

2. 2K factorial experiments under the potential outcomes framework

Here, we introduce some key definitions and notation from Dasgupta et al. (2015). Consider a 2%
experiment with N units, in which the levels of each of the K factors are denoted by 0 and 1. Each
treatment combination is of the form z; = (21 ...,2x), where z; € {0,1} for k € 1,..., K. There
are J = 2% treatment combinations arranged in lexicographic order 1,...,J, where treatment
combination z; is such that j = oK1y 42824 + ...+ 2zx + 1. In other words, (21...2K) is a
binary representation of integer j — 1. Thus, for example, in a 22 experiment, the four treatment
combinations 00, 01, 10 and 11 are numbered as j = 1,2, 3 and 4 respectively, and the 8" treatment
combination in a 2% experiment is 0111. We will just refer to the treatment combination by its
number (j) in notation below.

For i =1,..., N, under the Stable Unit Treatment Value Assumption or SUTVA (Rubin 1980),
the " unit has J = 2% potential outcomes Y;(1),...,Y;(J) corresponding to the J treatment
combinations zq,...,zy. Let Y; denote the J x 1 vector of potential outcomes for unit 7. For
unit 4, the unit-level main effect of factor k = 1,..., K is defined as the difference between the
averages of potential outcomes for unit ¢ for which the levels of factor k are at levels 0 versus
1. Mathematically, it is a contrast of the form 2_(K_1))\EYZ- = 9~ (K-1) ijl Nk Yi(j), where
xT denotes the transpose of vector x, A; is a J x 1 column-vector with coefficient Ajk such that
Ajr = —1 if the level of factor k in 4t treatment combination is 0, and Ajr = 1 otherwise. For all
k=1,...,K, A is a contrast vector, i.e., E}'le Aji = 0.

Proceeding along the lines of Dasgupta et al. (2015), for unit ¢, we can define ([2{ ) two-factor
interactions, (g ) three-factor interactions, and finally one K-factor interaction as contrasts of the

K—1)

form 2~ ( ATY;, where the contrast vector A for any interaction can be derived by element-wise



multiplication of the contrast vectors of the corresponding main effects Ay, for factors involved in
the interaction. Denoting the J — 1 = 25 — 1 contrast vectors for the J — 1 unit-level factorial

effects T14,...,77-1,; by A1,...,Aj-1 respectively, we define the J x J matrix as

L=MXo,A1,---,A5-1), (1)

where A is the J x 1 vector with all elements equal to one. We note that L is an orthogonal matrix
with LLT = LTL = 25711, where I; denotes the identity matrix of order J. For i =1,..., N, let
Ti = (2704, Tliy - - - T, L]_177;)T, where 71y; denotes the average of all potential outcomes for unit . The
linear transform between the vector of unit-level potential outcomes Y; and the vector of unit-level

factorial effects 7; can be expressed as

T, — 2_(K_1)LTYZ'. (2)

Having defined unit-level factorial effects, we now move to their population-level counterparts.
Let Y = N~! Y1 Yiand T = N1 > ;_1 Ti respectively denote the J x 1 vectors of average
potential outcomes and the average factorial effects. Then, averaging (2) over ¢ = 1,..., N, the

vector of population-level factorial effects is given by

=2 (K-DLTY. (3)

Note that the first element of 7 is twice the average of all potential outcomes.

In a CRD, a pre-assigned numbers of units, N;, are randomly assigned to treatment j. The
experiment generates an N X 1 vector of observed outcomes data from which the vector of factorial
effects 7 can be unbiasedly estimated. We examine the properties of 7, the unbiased estimator of T,
with respect to its randomization distribution, and formulate the problem of optimally allocating

the N units to the J treatment combinations in Section 3.

Remark 1 (A super population perspective). While the finite-population perspective does not de-
pend on any hypothetical data generating process for the outcomes, alternative approaches assume
that the potential outcomes are drawn from a, possibly hypothetical, super population. Assum-

ing that Yi,..., Yy are independent and identically distributed random vectors with E[Y;] = u,
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factorial effects at a super population level are defined as

7SP — o= (K-D,T,,

Ding et al. (2017) discussed the conceptual and mathematical connections between finite- and
super-population inference, showing that while the same estimator commonly used to estimate 7
unbiasedly is also an unbiased estimator of 757, its sampling variances under the two perspectives

are different.

3. Optimal designs for completely randomized experiments

In a randomized experiment with N; units assigned to treatment combination j € {1,...,J}, only
one of the J potential outcomes is observed for unit i. This observed outcome is y; = Y;(T;) for
i=1,...,N, where T; is the random treatment assignment variable for unit ¢ taking value j if unit

i receives treatment j. In a CRD, the joint probability distribution of (71,...,Tx) is

(N1 NG NV E Y Ly = N for j=1,....,J,

0 otherwise,

where 14, denotes the indicator random variable for set A. Let y(j) = N j_l ZZ]\L 1 L=y Ya(d)
denote the average response for treatment j. Let ¥ denote the vector (5(1),7(2),...,5(J))" of
observed averages. Substituting ¥ in place of Y in (3), we can unbiasedly estimate the vector of
factorial effects as

7 =92 (K-DpTy (4)

Lu (2016) derived sampling properties of the estimator 7 with respect to its randomization
distribution for the general case of unequal Ny, ..., N;. Lu showed that T is an unbiased estimator

of 7, and has the following finite-population covariance matrix:

1 2 52 ~ —~T 1 N T
V., =Var (1) = AR Z FJJA]Aj — m Z (m—7)(—7)", (5)
j=1 i=1



where /N\j represents the transpose of row j of the model matrix L defined in (1), 7; denotes the
vector of unit-level factorial effects given by (2), 7 the vector of population-level factorial effects

given by (3), and
N

S; =57 2. 50 - Y()° (6)

the variance of all N potential outcomes for treatment j with divisor N — 1, where Y (j) =
N7 Yi().

In the spirit of classical optimal designs (Atkinson et al. 2007), we can define a design optimality
criterion as a functional of the matrix V. defined in (5). For example, the D-optimality criterion,
which aims to minimize the determinant of the covariance matrix, or the A-optimality criterion,
which aims to minimize the trace of the covariance matrix, or the E-optimality criterion which aims
to minimize the maximum eigenvalue of the covariance matrix, can be considered. However, the
second term 1/(N(N—1)) X, (1, — 7) (7: — 7) ", which is a measure of heterogeneity of treatment
effects, cannot be estimated from observed data, because none of the unit-level treatment effects
T; are estimable without additional assumptions due to the missing potential outcomes. Because
1/(N(N=1)) Y (7, — 7) (1; — )T is positive semi-definite, the first term of (5) can be considered
an upper bound of V., which is attained under specific restrictions on the potential outcomes (e.g.,
treatment effect homogeneity). Thus, we propose optimizing a functional of the first term of (5),

which in turn is equivalent to optimizing a functional of the positive definite matrix

|bl\3

S5~ ~T T
AA; =LTAL,
J

=

N J
V-3
j=1

instead, where A = diag(S?/Ny,...,S%/Ny).

Another justification for using a functional of the matrix V as an optimality criterion comes
from the super-population perspective mentioned in Section 1. Ding et al. (2017) showed that
the estimator 7 defined earlier is also an unbiased estimator of the super-population estimand

SP

5P, Further, extending their argument for a single factor with two levels to the case of 2K

factorial designs, if Vj2 = Var[Y;(j)], 7 =1,...,J, then a variance decomposition yields the following



sampling variance of T

2K ;2 2K 2
1 Vaie —1 1 E(S7)+ ~T
SP /=~y _ i x0T _ ey
Var™ () = 92(K—1) Z EAJ}V = 92(K-1) Z N, AjAj
= =1

where Var®" denotes variance over the random sampling from the super population and random
assignment, and Vj2 = E(SJQ) represents expectation of 5]2 with respect to the distribution of the
potential outcomes in the super population. This connection provides further motivation for the

form of our optimization, but we focus on the finite-population setting going forward.

3.1. Exact optimal designs

The problem of finding an optimal design can be formulated as minimization of an appropriate
functional 1/1(\7) subject to the constraint 25:1 N; = N or equivalently as 25:1 p; = 1 in terms
of the proportions of units p; = N;/N to be assigned to treatment combination j. As discussed
earlier, we consider three widely used functionals in optimal design literature: the D-optimality
criterion where w({/') = ‘\7‘ and |.| refers to the determinant, the A-optimality criterion where
¢(\~7) =tr (\7), and the E-optimality criterion where 1/)(\7) = max{vy,...,vs} and vy,...,v; are
the eigenvalues of V. The following theorem, proved in Supplementary Material A, summarizes

these optimality results.

Theorem 1. Let N units be allocated to J treatment groups such that p; = N;/N proportion of
units receive treatment j. Then, the optimal allocation of N units to J treatment groups on the

basis of covariance matrix V' under

(a) A-optimality is proportional to the finite-population standard deviations of potential out-

comes in the corresponding treatment groups, i.e., p; = Sj/(Zj Sj).
(b) D-optimality is balanced assignment to all J treatment groups, i.e., p; = 1/J.
(c) E-optimality is proportional to the finite-population variances of potential outcomes in the

corresponding treatment groups, i.e., p; = 5]2/(2] 5]2)

Remark 2. The optimality results in Theorem 1 are similar in spirit to the determination of

optimal sample sizes in stratified survey sampling (Cochran 1977a, Ch. 5). The A-optimality result
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is the same as the Neyman-Allocation discussed in Blackwell et al. (2022), who motivate its use as
reducing the identifiable portion of the finite-population variance of classical factorial estimators.
Derivations of the A- and D- optimal designs are straightforward and use the Lagrangian multiplier-
based optimization technique. The proof of the E-optimality result uses the idea of perturbing the
eigenvalues of a scaled identity matrix to show that the E-optimal design is indeed characterized

by equal eigenvalues of the matrix V.

Remark 3. In order to implement the results of Theorem 1, researchers need to “guess” the
variances sz, Jj =1,...,J and substitute them into the expressions for p;. This is similar to the
application of optimal designs in non-linear models, where optimal designs are actually “locally
optimal” (Chernoff 1953). It is often a common practice to conduct pilot studies to obtain some

preliminary estimates of the sz’s, as done in finite-population survey sampling.

We now introduce two conditions associated with the matrix of potential outcomes under which

Theorem 1 can be further simplified.

Condition 1 (Homoscedasticity). We call an N x J matrix of potential outcomes homoscedastic

if each column has the same variance i.e., SJZ =S%forj=1,...,J.

Condition 2 (Strict additivity). Following Dasgupta et al. (2015), we call an N x J matrix of

potential outcomes strictly additive if Y;(j) — Yi(j) = 7(j,7) for all j # j € {1,2,...,J}. Potential

outcomes satisfying this condition also satisfy Condition 1.
The following corollary of Theorem 1 is straightforward but useful:

Corollary 1. If the matrix of potential outcomes satisfies Condition 1, then the A-, D- and E-
optimal designs are all balanced designs with p; = 1/J for j = 1,...,J. Further, under Condition 2,

optimizations based on V and V, are equivalent.

While Theorem 1 provides results on exact optimal designs in terms of proportions p;, experi-
menters need integer solutions in terms of N;’s satisfying > ;Nj =N. For example, while the exact
D-optimal design is balanced, N is not necessarily a multiple of 25 and the result does not provide
a D-optimal allocation of, say, 69 units to the 8 treatment combinations in a 22 factorial experi-

ment. Thus we need approximate integer solutions to the optimization problem in which additional



constraints on the sample sizes assigned to specific treatment groups can also be introduced. Next,

we discuss an integer programming approach to obtain such solutions.

3.2. Computation of exact optimal designs using an integer programming ap-

proach

Many sources in the integer programming literature address constrained optimization under integer
space constraints (e.g. see Nemhauser and Wolsey 1988; Schrijver 1998; Khan 1995; Sofi et al.
2020). We adopt the methods proposed in Friedrich et al. (2015) that are designed for settings very
similar to the ones we consider. Friedrich et al. (2015) consider the following integer programming
problem:

Z}'I=1 Nj =N,

N FNL - NG) st QL <Ny <wg, Vi =12, (7)

N; €Z], Vi=1,2,...,J.
\

where, Z, is the set of positive integers, (I;,u;) are the lower and upper bound constraints on
Nj and f: R] — R is a convex function. If f(Ny,...,N;) is separable (i.e., can be expressed as
ijl fj(IN;)) then the greedy algorithm in Figure 1 finds the globally optimal integer solution of the
minimization problem given in (7) under some regularity conditions that we show in Supplementary
Material B.

From the proof of Theorem 1 in Supplementary Material A, it follows that the A-optimality
and D-optimality criteria can respectively be expressed as ijl(sz /N;) and Z;»]:l(log 5]2 /Nj).
In Supplementary Material B, we show that the conditions for global convergence of the greedy
algorithm are met and thus, convergence to the true integer optimal solution in the cases of A- and
D-optimality are guaranteed if this algorithm is used. Hence, substitution of Sj2- /N; and log Sj2- /N;
for f;(IN;) in the algorithm described in Figure 1 leads to optimal integer solutions for the A-
optimality criterion and the D-optimality criterion, respectively. In our implementation of this
algorithm, we take I; = 2 for j = 1,...,J to guarantee at least two units are assigned to each
treatment combination, allowing variance estimation within each treatment group.

We provide a modified greedy algorithm described in Figure 2 for solving the E-optimality

problem since the optimization problem cannot be written in a separable form as in A- or D-
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Figure 1: Greedy algorithm for separable functions

1. Set T+ {1,...,.J}.
2. Let t = 0. Initialize N](t) —ljforj=1,...,J.
3. While (X7, N\ £ N & I # ¢) do

o forall (j € 1), §; « f;(N” +1) - f;(N\")

e choose J + argminjej 0

o j  +— minJ

o it N1 < e, then NI o N1 ¢t 41
else T+ I\{j*}

4. Return optimal (Ny,...,Ny).

optimality criterion above. In this algorithm we take f;(NN;) = sz /N; and [; = 2. In Section
4.2, the ability of this greedy algorithm to find E-optimal solutions is demonstrated empirically for

blocked designs, discussed next.

Figure 2: Greedy algorithm for E-optimality

1. Set I+ {1,...,J}.
2. Let t = 0. Initialize N\" ¢ {; for j =1,...,J.

3. While (X1, NIV £ N & I # ¢) do

e choose J < argmax;¢; fj(N](t))

e /<« minJ

o if N 41 < uje, then NIFY o N1t o t41
else I« I\{j*}

4. Return optimal (Ny,...,Ny).

4. Optimal allocation for factorial experiments with blocks

Consider a block-randomized 2% factorial design with H blocks. That is, units are pre-assigned
membership to one of h blocks based on some similarity metric (we do not consider how to form
blocks here). Let M}, denote the size of block h, h = 1,...,H. Also, let M}, ; be the number of

units in block h assigned to the treatment j (j = 1,...,J). Finally, let b;(h), i = 1,..., N be an
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indicator variable taking value 1 if unit ¢ belongs to block h and 0 otherwise. Treatment assignment
under a factorial RBD is equivalent to performing an independent CRD, as described in Section 3,
within each block.

The population average treatment effect 7 can be expressed as >, M7, /N, where 7, is the
block-level vector of factorial effects and its estimator T is a weighted average of 7}, an unbiased
estimator of 73, defined in the same way as in (4) for block h. Extending (5) by noting the
independence of the assignment to treatment across blocks, the covariance matrix of 7, in a factorial

RBD can thus be obtained as

2K N
~ 1 1 &7 1
VTh = Cov (‘Th) = 22(K—1) Mh] AJA] S%L,J — m Z bz(h) (TZ — Th) (Tz — Th)T, (8)
j=1 ’ i=1

where /N\j represents the transpose of row j of the model matrix L defined in (1) and S? ; denotes the
variance of all M}, potential outcomes for units in block A under treatment j with divisor Mj — 1.
The covariance matrix of 7 can then be expressed as Cov (>, My7/N). Because the block-level

treatment estimators 7, are independent across blocks, we have

ZH M2
h=1
2K H 2 H N
1 ~—~T M2 S; M? 1
= === > A\ —h O —hig bi(h) (1i — ) (1 — )T .
22(K~-1) = I [}; N2 Mh,j] hZ::l 2 My (M, —1) < (h) ( h) ( h)

Writing Sﬁlk]— = Zthl(M}%/N2)(S}2;j/Mh,j) and proceeding along similar lines as in Section 3,
we formulate a surrogate optimization problem to only optimize the first term, since the second
term in the equation above is not identifiable. Then, choosing M}, ;’s to optimize some functional

of Cov (T) is equivalent to optimizing a functional of the matrix

2K

~ ~~T

Vi = § A St = LT ApiL, (9)
j=1

where Ay = diag (Slzlk,h . vSﬁlk,J)'
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4.1. Exact optimal designs

The problem of finding an optimal design for RBDs can be formulated as minimization of an
appropriate functional 1/)(‘71)11() subject to the constraint E}'le My, j = My, for each h or equivalently
as ijl ph,; = 1 in terms of the proportions of units to be assigned to treatment combination j in
block h, pp, j = My, j/Mj,. While the A-optimality result is straightforward, finding exact D-optimal
and E-optimal solutions in the setting with blocks is difficult without imposing restrictions on the
potential outcomes. Before stating the optimality results, we first introduce two such restrictions

that generalize Condition 1 to a block setting.

Condition 3 (Within-block homoscedasticity, WBH). We call an N x J matrix of potential out-
comes in H blocks to be within-block homoscedastic (WBH) if within each block, all treatment

columns have the same variance, i.e., within block h, S,%j = S}%. forj=1,...,J.

Condition 4 (Between-block homoscedasticity, BBH). We call an N x J matrix of potential
outcomes in H blocks to be between-block homoscedastic (BBH) if for each treatment column j,

the variance of potential outcomes in each block is the same, i.e., S}ZL]— = S_%j for h=1,...,H and

j=1,...,J.
The following theorem now summarizes the optimality results for blocked designs.

Theorem 2. Let N units be distributed across H blocks such that there are Mj, units in block A
and N = Zle Mj,. Let each set of M), units be allocated to J treatment groups such that py, ;
proportion of the units are allocated to treatment j in block A, and let S,QL’ ; as defined in (8). Then,
optimal allocation of M} units to the J treatment groups on the basis of covariance matrix ‘N/le

under different optimality criteria can be summarized as follows.

(a) The A-optimal allocation is the same as the A-optimal CRD allocation within each block, i.e.,
Phj = Sh,j/(Z}'Izl Sp,;) for each h.
(b) If either (or both) of Conditions 3 (WBH) and 4 (BBH) hold, the D-optimal allocation is the

balanced assignment within each block, i.e., pp ; = 1/J for each h.

(c) If Condition 3 (WBH) holds, the E-optimal allocation is the balanced design within each block,

ie., ppj = 1/J for each h.
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Remark 4. Condition 2 for all N units implies both WBH and BBH. Consequently, by Theorem 2,
the D- and E-optimal allocation for strictly additive potential outcomes in randomized block designs

is a balanced assignment within each block.

Remark 5. The A-optimal allocation under WBH is balanced allocation within each block (same
as D- and E-optimal allocations). However, under BBH, the A-optimal allocation is different from
the D- and E-optimal allocations, and is proportional to the standard deviations of the treatments

S. j that is constant across blocks.

4.2. Computation of exact optimal designs for factorial RBDS using an integer

programming approach

As in the case of completely randomized factorial designs, whereas Theorem 2 provides results on
exact optimal designs in terms of proportions py, j, experimenters need integer solutions in terms of
Mj, ;’s in which additional constraints on the sample sizes assigned to specific treatment groups can
also be introduced. Further, Theorem 2 provides D- and E-optimal solutions only under specific
conditions like WBH and BBH. Thus, we discuss an integer programming approach to obtain
integer solutions for settings covered and not covered by Theorem 2.

We can use the same algorithm in Figure 1 within each block to obtain the optimal inte-
ger solutions for A-optimality under the RBD by replacing the function f;(.) by fr (M ;) =
(M?/N?) (szl’ j /M, ;). For D- and E-optimality, we extend the greedy idea from the algorithm in Fig-
ure 2 with minor changes to the function f;(.). We take fy, (M}, ;) = log(Zle(M}%/Nz)(S}%,j/MhJ))
for D-optimality and fy, ;(My ;) = (M}%/N2)(S,2l7j/Mh7j) for E-optimality. The exact algorithms
taking the structure of the blocks into account are given in Supplementary Material D. The main
difference between the algorithm used in Section 3 and the one proposed here lies in the fact that
now we have to allocate the next best unit at iteration ¢ over an H x J matrix (M }(3)) with upper
bounds on row sums, rather than a vector (Nl(t), .. 7NL(]lt)) with an upper bound on the sum of the
elements, as in the case of the CRD. Note that, by Friedrich et al. (2015), the greedy algorithm
finds the correct solution in the case of A-optimality for the block design. It, however, does not
extend to the D- and E-optimality in the block case, due to nature of the objective functions.

We now conduct an empirical exploration of the performances of the greedy algorithm in terms

14



of its ability to find E-optimal solutions. Five different settings of 22 factorial designs in two blocks,
each corresponding to a specific type of potential outcome matrix, are considered. Each setting is
defined by the block sizes M7 and Ms, and the 4 x 2 matrix of variances Si ; as shown in columns
3 and 4 of Table 2, respectively.

The first setting considers blocks of equal sizes with potential outcomes satisfying Condition 2
(strict additivity), leading to an E-optimal design that is balanced within each block as per Re-
mark 4. The second setting considers equal block sizes with potential outcomes satisfying Condi-
tion 3 (WBH), leading to a balanced design by Theorem 2. In this setting and the previous one, the
exact optimal designs provide optimal integer solutions. This is not the case in the third setting,
which considers unequal block sizes with potential outcomes satisfying Condition 4 (BBH) but not
Condition 3 (WBH). Theorem 2 does not apply directly for E-optimality, but the greedy algorithm
identifies the unique true E-optimal allocation determined by the exhaustive search. The fourth
setting is similar the third case above, but is one where the exhaustive search provides multiple
solutions, identifying four different allocations, each of which is optimal. In this case, Theorem 2
does not apply directly and the greedy algorithm identifies one of these solutions. The fifth set-
ting neither satisfies Condition 3 (WBH) nor Condition 4 (BBH), and consequently Theorem 2
cannot provide an exact E-optimal solution. However, the greedy algorithm identifies one of the
two (identified through exhaustive search) true optimal integer allocations. A quick note on our
greedy algorithm is that, due to the nature of the algorithm in Figures 3 and 4 of Supplementary
Material D, ties are broken deterministically using minimum index when the greedy step returns
more than one solution. Thus, our greedy solutions will always achieve the same solution for a
given set of inputs without regard for the plurality of solutions (such as the ones in the fourth and
fifth setting above).

A similar exploration performed for the D-optimal allocation (shown in Supplementary Mate-
rial C) provides evidence that the greedy algorithm can identify the true optimal integer solution
when it is unique, and one of the true optimal solutions when multiple optimal integer solutions

exist.
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Block Exhaustive search

. . 2 .
S.No. | Case Size Variances (S} ;) E-optimal solution Greedy solution
(Mn)
1. | Baual blocks with equal | ryo] 11 1 1] [10 10 10 10 [10 10 10 10
variances 40 111 1] 10 10 10 10 10 10 10 10

Equal blocks with equal

2. variances for all treatments [40] [4 4 4 4] [10 10 10 10 [10 10 10 10
within block 140 | 11 1 1] 110 10 10 10 |10 10 10 10
Unequal blocks with equal | = _ _ i _ _ :

3. variances across blocks for 40 L2 3 4 4 8 12 16} 4 8 12 16
each treatment 120 11 2 3 4 2 4 6 8 2 4 6 8

(f4 8 11 17]7
Unequal blocks with equal o -~ _ 2 3 5 10| B _
4. variances but exact solution 40 L2 35 4 7 11 18] 4 7 11 18
is non-integer 120] 1 2 3 3 2 4 5 9 12 4 5 9
3 8 11 18]
3 3 5 9]
3 7 11 19
L3 4 5 8]]
5 Equal blocks with unequal 40 1 2 3 4 [ 163 12 12‘) 163} 6 9 12 13
. variances |:40:| |:4 3 2 1] - |:13 12 9 6
6 9 12 13
L[13 12 9 6

Table 2: Summary of Greedy algorithm solutions for E-optimality for H =2, K = 2

5. Optimal allocation driven by cost constraints

So far, we have considered optimality criteria that are based on the covariance matrix of the esti-
mated factorial effects, implicitly assuming that all treatment combinations are equally expensive
(with respect to cost and/or time). However, such assumptions may not be true in many practical
situations and cost constraints can play an important role in determining optimal allocation. Thus
it is worthwhile to explore solutions to optimal allocation under cost constraints.

We consider the optimal allocation for 2% factorial CRDs. Let the cost of assigning treatment
combination j to one unit be C; > 0, and the total available budget be C'. In the new optimization
problem, we replace the constraint »_ ; Nj = N in the original problem described in Section 3.1 by

the cost constraint ; CjN; < C. The new optimization problem is therefore:

H]{/i,nzb (\N/') subject to Z C;N; <C, (10)

! J
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where V = 25:1 Ji—’j;\]:\\;T and 1/1(\7) is a functional of V. A straightforward approach to incor-
porate this new constraint into our previous setting is to re-write the constraint as zj ]vj <C
where ﬁj = N;Cj; is the total cost for the suggested allocation to treatment arm j. Under this
one-to-one transformation N. i = C;Nj;, the optimization problem in (10) is equivalent to minimizing

the objective function over N; (Boyd and Vandenberghe 2004), and can be written as:

- T S2 . 7 Jo082 _ ¢
miny (V)] = miny LN\ = min ¢ — XN ],
N ( ) N ;::1 N; 7 N j=1 N;/C; 7

subject to ZNj <C.
J

Because the optimal solution of the above optimization problem is attained at y N ; = C, the
inequality constraint can be replaced by the equality constraint. Then, proceeding along the lines of
Theorem 1, one can obtain the cost for the optimal allocation to treatment arm j as N ;o< S; \ﬂCj),
Nj = (C/J and ﬁj o SJZC’j as the A-, D- and E- optimal solutions. These results are formalized in
terms of the optimal proportion of the budget allocated to each treatment arm, which can be used

to determine the number of units to assign to each treatment arm, in the theorem below.

Theorem 3. Let C' be total budget for the whole experiment and the cost of allocating one
experimental unit to treatment j be C; > 0. Let m; = C;N;/C denote the proportion of the total

budget assigned to treatment j with ) ;<L Then, the

(a) A-optimal cost-based allocation to the J treatment groups on the basis of covariance matrix
Viis mj = ($;VC5)/ (2, 5V ).
(b) D-optimal cost-based allocation to the J treatment groups on the basis of covariance matrix
Vismj=1/J.
(¢) E-optimal cost-based allocation to the J treatment groups on the basis of covariance matrix
Vis mj = (S707)/(32; 57C5).
Remark 6. Theorem 3 can be extended to the case of block designs along the lines of Theorem 2.

Remark 7. If for j =1,...,J, the costs C; in Theorem 3 are the same and equal to Cy, then the
constraint Zj CjN; < C reduces to Zj N; < N where N = C/Cy. Also, m; = CoN;/C = p;. Thus
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the optimization problem becomes the same as the one in Theorem 1, making it a special case of

Theorem 3.

We use an example to demonstrate the applicability of Theorem 3. Consider a 22 factorial
design, with C' = 100, per unit cost vector (C1,...,Cy) = (0.1,4,4,9). This set up represents many
common scenarios where treatment arm 1 represents the control group 00 and involves a per-unit
cost that is negligible compared to the ones with at least one active treatment. On the other
hand, treatment arm 4 has both treatments at active level and involves the highest cost. Table 3
shows the A-, D- and E- optimal proportions of total cost 7;’s for two different vectors of variances
(S%,...,5%7). In one setting, we take the vector as (1,1,1,1) and in another, set it to (1,2,3,4).
For the sake of completeness, we also add a column of equal cost (1,1,1,1), under which the p;’s of
Theorem 1 and 7;’s of Theorem 3 become identical, as explained in Remark 7. Thus, the optimal
allocations in the first column of Table 3 can also be derived from Theorem 1 with N = C = 100.

Table 3: Optimal 7;’s under cost constraints obtained from Theorem 3

Variance | Type of Cost vector (Cy,...,Cy)
Vector | Optimality (1,1,1,1) | (0.1,4,4,9)

A (0.250,0.250,0.250,0.250) | (0.043,0.273,0.273,0.410)

(1,1,1,1) D (0.250,0.250,0.250,0.250) | (0.250,0.250,0.250,0.250)
E (0.250,0.250,0.250,0.250) | (0.006,0.234,0.234,0.526)
A (0.163,0.230,0.282,0.325) | (0.025,0.224.0.275,0.476)

(1,2,3.4) D (0.250,0.250,0.250,0.250) | (0.250,0.250,0.250,0.250)
E (0.100,0.200,0.300,0.400) | (0.002,0.143,0.214,0.642)

One can obtain the number of units N;’s the A-, D- and E-optimal allocations of N;’s by
substituting the optimal 7;s from Theorem 3 into N; = (Cw;)/C;. However, rounding these
optimal N;’s into nearest integers may lead to violation of the constraint Zj C;N; < C. To
avoid such possibilities, one can consider the optimal values of |(C7;)/C;]| as approximate integer
solutions, where |x| denotes the largest integer contained in x.

Researchers may decide to impose an additional constraint on the optimization problem (11)
that forces the sum of IN;’s to be exactly equal to a predetermined N. Such a problem would give
optimal allocation under fixed NV, unlike Theorem 3. However, imposing this additional constraint
may force the set of feasible solutions to the optimization problem to be empty. For example,
suppose for all j, Cj > C/N. Then, ), C;N; > 3 ;(C/N)Nj;, which exceeds the allowable cost C

if the restriction Zj N; = N is imposed. Thus, additional conditions are necessary to guarantee

18



that the feasible set is non-empty. Obtaining closed-form solutions under such conditions may not

be straightforward and one may need to rely on numerical methods to obtain such solutions.

6. Applications in real experiments

In this section, we demonstrate applications of the results and algorithms developed to two real-
life experiments. First, we re-visit the education example from Angrist et al. (2009) described in
Section 1. Second, we discuss a pilot audit experiment reported in Libgober (2020) conducted to
identify how perceptions of race, gender and affluence affect access to lawyers, and demonstrate

how the proposed methodology can be used to design follow-up experiments in similar populations.

6.1. Education experiment

In the experiment described in Angrist et al. (2009), the authors use a CRD to allocate the N =
1656 units to the 22 treatments. Theorem 1 can directly inform us of the optimal allocation without
costs, but there is more structure that we can exploit. For instance, there are potentially two blocks
of experimental units or subjects representing female (block 1) and male (block 2) students, with
block sizes M7 = 948 and My = 708, which can be used to improve their design. Theorem 2 will
give us the optimal designs in this case.

Assuming that there is no prior information about the variances of potential outcomes (GPAs
after year 1), we assume that the variances are equal within and across blocks (Conditions 3 and 4).
Then, optimal allocations under both CRD and RBD, from Theorem 1 and Theorem 2 respectively,
are shown in Tables 4 and 5.

Table 4: A-, D- & E-optimal allocations under CRD assuming Condition 1

Treatment combination
00 01 10 11
N=1656 | 414 | 414 | 414 | 414

Table 5: A-, D- & E-optimal allocations under RBD assuming Conditions 3 & 4

Block Treatment combination

Block size 00 01 10 11
1 M, =948 | 237 | 237 | 237 | 237
2 My =708 | 177 | 177 | 177 | 177
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Now let us consider a hypothetical situation where the number of units N is not prespecified,
but there is a budget constraint that depends on the costs associated with the four treatment
combinations in this experiment. The treatment combinations 01 (SFP but not SSP) and 10 (SSP
but not SFP), each involve cost associated with one of two programs. Angrist et al. (2009) report
about $5,000 for individual students that were allocated to treatment 10 (SSP). Per unit cost for
treatment combination 01(SFP) is not mentioned but if we assume a similar cost as with SSP, then,
we can infer that the cost to allocate a student to the treatment combination 11 (SFSP) would be
the sum total of the individual costs ($10,000). The control, representing the treatment combination
00, is possibly the cheapest to allocate units to, because it would involve only administrative cost,
which we assume to be $500. Then under the original allocation (1106, 250, 250, 150) in the actual
experiment as shown in Table 1, the cost of the experiment would be approximately $4.5 million.
Assuming this amount to be our budget constraint C, the A-, D- and E-optimal allocations for two
different variance vectors obtained from Theorem 3 are shown in Table 6. The first row shows the
allocation of the proportions 7;’s of the total budget to the four treatment arms, and the second

shows the corresponding approximate integer solution for N; as |C;/C;].

Table 6: Optimal allocations (7; and N; = [Cr;/C;]) with cost vector (500,5000,5000,10000) and
total budget of C' = $4.5 million

Variance vector Type of Treatment combination
(S%,...,5%) Optimality 00 01 10 11
A m; | 0.085 | 0.268 | 0.268 | 0.379
N; | 762 241 241 170
(1,1,1,1) D m; | 025 | 0.25 | 0.25 | 0.25
N; | 2250 | 225 225 112
E m; | 0.024 | 0.244 | 0.244 | 0.488
N; | 219 219 219 219
A m; | 0.062 | 0.275 | 0.275 | 0.389
N; | 553 247 247 174
(1,2,2,2) D m; | 025 | 0.25 | 0.25 | 0.25
N; | 2250 | 225 225 112
E m; | 0.012 | 0.245 | 0.245 | 0.494
N; | 111 222 222 222

6.2. Audit experiment

Libgober (2020) reported an audit study in which the experimental units were 96 lawyers ran-

domly selected from lawyers in California with a certification in criminal law. Each lawyer in the

20



experiment received an email about a routine ‘driving under influence’ (DUI) case (a very com-
mon criminal matter). The email template suggested that the person sending the email was (i)
either white or black (with a racially distinctive name being used to influence perceived race), (ii)
either female or male (again cued via the email sender’s name), and (iii) either relatively affluent
or relatively lower-income description of client’s earnings. Thus, this experiment had a 23 factorial
structure. The response was recorded as a binary outcome taking value 1 if there was a response to
the email and 0 otherwise. The experiment was replicated with 96 additional lawyers after a certain
period of time. The estimated variances s? for j = 1,...,8 treatment groups for the individual

replicates and their pooled values are shown in Table 7.

Table 7: Estimated variances for different treatment groups

Experiment | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
Replicate I | 0.15 | 0.15 | 0.15 | 0.20 | 0.27 | 0.15 | 0.27 | 0.27
Replicate IT | 0.27 | 0.24 | 0.20 | 0.20 | 0.20 | 0.27 | 0.27 | 0.15

Pooled 0.21 | 0.20 | 0.18 | 0.20 | 0.23 | 0.21 | 0.27 | 0.21

If another completely randomized experiment is planned with lawyers selected from a similar
pool with a sample size of 192, then based on the pooled estimated variances shown in Table 7, we

can apply Theorem 1 to obtain the optimal designs given in Table 8.

Table 8: Optimal allocations for future CRD

Optimality | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
A 24 | 23 | 22 23 | 256 | 24 | 27 | 24
D 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24
E 24 | 22 | 20 | 22 | 26 | 24 | 30 | 24

Now assume for illustration that (contrary to fact) instead of two replicates, the original ex-
periment was conducted in two blocks, each block representing one type of lawyer (e.g., criminal
and divorce), and suppose we want to obtain optimal allocations within each block for a future
experiment. Further suppose that the variance estimates in row j of Table 7 represent estimates of
the variances 5}2% j in block j = 1,2 and block 2 respectively. Then, we can directly use part (a) of
Theorem 2 to derive the A-optimal design. However, neither WBH or BBH appear to hold, and we
cannot apply parts (b) and (c) of Theorem 2. Conveniently, we can obtain the D- and E-optimal

designs using the greedy search algorithm proposed in Section 4.2.
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Table 9: Optimal allocations for future RBD

Optimality | Block | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
A I 11 11 10 12 14 10 14 14

II 13 13 12 11 11 13 13 10

D I 11 11 12 13 13 10 12 14

II 13 13 13 12 11 13 11 10

E I 10 10 10 12 15 10 16 13

II 13 12 10 11 12 13 15 10

7. Discussion

In this paper, we consider optimal allocations of a finite population of experimental units to different
treatment combinations of a 2% factorial experiment under the potential outcomes model. Rather
than invoking the standard assumption in the mainstream optimal design literature that outcome
data comes from a known family of distributions, our work revolves around randomization-based
causal inference for the finite-population setting. We find that for 2% factorial designs with a
completely randomized treatment assignment mechanism, D-optimal solutions are always balanced
designs, while A- and E-optimal solutions are proportional to finite-population standard deviations
and finite-population variances of the treatment groups, respectively. For blocked designs, our
solution does not admit a closed form for D- or E-optimality without imposing specific restrictions
on the potential outcomes, but the A-optimal allocation is equivalent to finding the A-optimal
solution within each block. Convenient integer-constrained programming solutions using a greedy
optimization approach to find integer optimal allocation solutions for both complete and block
randomization are proposed. Optimal allocations are also derived under cost constraints.

While there is a large literature on model-based optimal designs, to the best of our knowledge,
such designs have had very limited development for randomization-based inference for finite pop-
ulations. The ideas explored and results developed in this paper exploit the connection between
finite-population sampling and experimental design. This recondite connection has recently been
emphasized, explored, and utilized in various contexts by several researchers in causal inference, as
discussed in Mukerjee et al. (2018). This article attempts to further strengthen the bridge between
finite-population survey sampling and experimental design by utilizing ideas from proportional and
optimal allocation for stratified sampling in the context of optimal designs. While the optimal so-

lutions are derived for a finite-population setting, they are readily applicable to a super-population
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setting without making any assumptions about the probability distribution of the outcome variable.

A question that practitioners may ask is, which optimal design should be chosen for a given
experiment? The answer would depend on the research goal of the experimenter. As our results have
shown, strong assumptions like strict additivity lead to equivalence of A-, D- and E- optimal designs.
However, under treatment effect heterogeneity, different criteria will lead to different allocations.
Both A- and D-optimality criteria are associated with quality of estimated causal effects - whereas
A-optimality minimizes the average variance of estimators, the D-optimality criterion minimizes
the volume of the confidence ellipsoid around the parameters. Some researchers (e.g., Jones et al.
2021) have argued that in model-based settings, A-optimal designs exhibit better performance than
D-optimal designs when the objective is screening of active effects from inactive ones. On the other
hand, when the goal is to draw the most precise inference on the vector of estimated causal effects,
D-optimal design may be a better choice. The goal of the E-optimal design is to minimize the
maximum variance of all possible normalized linear combinations of estimated treatment effects.
Thus the E-optimal design is useful when a large number of linear combinations of factorial effects
are of interest. The E-optimal allocation, being a minimax strategy, is likely to provide a more
conservative solution to the inference problem, but as shown by some researchers (e.g., Wong 1994)
in other contexts, the E-optimal solution may be less sensitive to incorrect prior information or
assumptions about potential outcomes in comparison to A- and D-optimal designs. However, more
investigation is required along these lines in the randomization-based setting.

The work presented in this paper can be extended in several directions. One limitation of
the proposed approach lies is the fact that the correlation among the potential outcomes under
different treatment combinations is unidentifiable from the data, forcing us to ignore one term
in the covariance matrix of estimated factorial effects while formulating the optimization prob-
lem. Basse and Airoldi (2018) proposed a model-based approach to overcome this problem in
two-armed experiments, in which information on the correlation among the outcomes is available
pre-intervention. Such an idea may be extended to the setting of factorial experiments.

Also, a natural extension of the randomization-based framework of causal inference is the
Bayesian framework, in which the potential outcomes are assumed to follow a hierarchical proba-
bilistic model containing hyperparameters with assumed prior distributions. The Bayesian frame-

work proposed in Dasgupta et al. (2015) for drawing both super-population and finite-population
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causal inference from 2% factorial designs can be utilized to obtain Bayesian optimal deigns ac-
cording to different criteria proposed in literature (e.g., Chaloner and Verdinelli 1995).

Another setting that has gained a lot of attention in recent times is when SUTVA is violated,
for example, in the presence of interference between units. Extending the proposed results to such
settings is a challenging, yet rewarding problem.

Finally, in certain situations, it is possible that instead of the traditional factorial effects defined
by (3), the experimenter is interested in other contrasts of the treatment means or more general
factorial effects. One such natural choice of contrast is one that compares the outcome of the control
group with the average of all other groups that have at least one treatment. Optimal allocations

under such a reformulated optimization problem would be an interesting problem to study.
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Supplementary Material

for
“Optimal allocation of sample size for randomization-based

inference from 2% factorial designs”

Supplementary Material A Proof of results

Proof of Theorem 1:

We first state and prove a lemma about the matrix V.
Lemma 1. The matrix V has .J non-zero eigenvalues .J(52/Ny), ..., J(S%/Ny).

Proof: Note that V can be written as (ﬁ_lLT) (JA) <\/j_1L). Because the rows of /(J)"'L
form an orthonormal basis of vectors in R”, the above expression is a spectral decomposition of V.

Thus, the eigenvalues of V are its diagonal elements J(S2/Ny), ..., J(S%/Ny). O

Now we prove the three parts of Theorem 1.

Part (a): Because the trace of a matrix is the sum of its eigenvalues, from Lemma 1, it follows that

tr(V) =J ijl(SJZ /Nj). The problem of minimizing tr(V) can be expressed as:

J J
minimize Z(SJZ/NJ) subject to Z N; =N
j=1 Jj=1
This constrained optimization problem can be obtained using the method of Lagrange multi-

pliers, by solving

J J
min ZSJZ/NJ'—I—/\ ZNj_N ,
j=1 j=1
where A is a Lagrangian multiplier. Taking partial derivative of the objective function with respect

to N, and setting it to zero, we get —S?/Nj2 + A = 0, which implies N; = Sj/\/X. Solving for the
constraint ijl N; = N, we get,
ZJ—l Sj N
VA= 2 o N =8 | ———— | =pjxS;. O
>4 S

J
N j=14J



Part (b): Because the determinant of a matrix is the product of the eigenvalues, from Lemma 1, we
have |V| = J7 H}]:l(SJQ- /Nj). The problem of minimizing the determinant can thus be equivalently

expressed as
J

J
minimize Z log(S]Z/Nj) subject to Z N;j =N.
j=1 j=1

Taking partial derivative of the objective function with respect to IN; and setting it to zero, we get
—(S2/NZ?)(N;j/S7) + A = =1/N;j + A = 0. It is straightforward to see that the optimal solution is
N; = N/J or equivalently p; =1/J for j=1,...,J. 0O

Part (c): Let (NP,..., NT) denote the allocation vector of a design D . Also, let the .J eigenvalues
of V for design D be 1/1D e ,V}), and I/(Dl) <...< 1/8) denote the ordered eigenvalues. We will
show that the design D* in which N;D* = (NSJQ)/ <Z}-}:1 5]2) for j = 1,...,J is the E-optimal
design. From Lemma 1, design D* can be characterized as a design in which all eigenvalues
are equal to J (Z;}:l 5]2) /N = vP". Recall the definition of E-optimality of minimizing the
maximum eigenvalue of the design matrix. Thus, it suffices to show that any design in which all
eigenvalues of V are not equal cannot be E-optimal because the solution D* with all eigenvalues
equal to J (Z;}:l S]2> /N is the only solution with all eigenvalues equal in the feasible space of the
optimization problem.

We will proceed by proof by contradiction. Assume that a design D for which all eigenvalues

of V are not equal is E-optimal, i.e.,
D D
I/(J) é V(J), (11)
for any design D.
Let M denote the set of m > 1 equal maximum eigenvalues of V for design D (m =1 indicate

a unique maximum and because not all eigenvalues are equal we must have m < J). Then for any

j1 € M and any jo ¢ M, I/E > I/j’z. Construct a new design D’ by perturbing only the allocations



for all treatments j; € M and one specific jo ¢ M as follows:

B AD
g2 2iem Ny + N,

NP for all j; € M
2 2
J1 J1 Zje/v( Sj + Sjg
D nD
N-D, _ 52 ZjEM Nj + Nj2
- 2 2
J2 J2 Zje/v( Sj + Sj2
NP = NP forj¢ MU{j}. O

: : : D D’ D’ D :
Using Lemma 1, after a little algebra, it follows that vj > v; = v > vy for all j1 € M.

Also, for all j ¢ M U {ja2}, VE > V? = I/jD/. Consequently Vg) > ug), and contradicts (11).

Proof of Theorem 2:

We need the following lemma regarding the eigenvalues of the covariance matrix ‘~/blk defined

in (9) under a blocked design:
Lemma 2. The matrix ‘~/blk has J non-zero eigenvalues J Sﬁlhl, vy d Sﬁlh g

~ -1 -1
Proof: Along the same lines as Lemma 1, note that V4, can written as (\/j LT) (JAp) (\/j L).
Because the rows of \/(J)"'L forms an orthonormal basis of vectors in R’, the above expres-
sion is a spectral decomposition of ‘N/blk. Thus, the eigenvalues of ‘Nfblk are its diagonal elements

Jsglk,l, . JS%H(, 5O

Now we prove the three parts of the main theorem.
Part (a): We can proceed very similarly to the proof of Theorem 1(a). Because the trace of a
matrix is the sum of its eigenvalues, using Lemma 2, tr(f/iolk) =J 23-]:1 SZ ;- The problem of

minimizing tr(Vjy) can be expressed as

J J
minimizez Sl%lk,j subject tOZMh,j =My forh=1,..., H.
j=1 j=1

We can again solve this using the method of Lagrange multipliers,




where A\, are Lagrangian multipliers. Taking partial derivative of the objective function with respect

to Mj, ; and setting it to zero, we get — %2 M2 - + A, = 0, which implies
My Sh;
th] = A - °
N

Solving for the constraint 25:1 My, ; = My, we get,

J
1 5h; S ; Sh.j
/)\ — Z]—l hv] MhJ Mh h] ph,] — %

Part (b): Because the determinant of a matrix is the product of the eigenvalues, from Lemma 2,

we have

J
\/ J 2
Vi=J H Shik,j
The problem of minimizing the determinant can thus be equivalently expressed as

J J
minimize Z log(SglkJ) subject to Z Mp,; = My,
=1 =1

To prove the special cases, we use the Lagrangian multiplier based optimization approach as in

(a). So, we need to solve

H J
min Z log Sblkj Z ZM
h

7=1 =1 7=1

= min Zlog (Z N Mh]> +Z)\h ZMh,j—Mh )
j=1

h=1 j=1

where )\, are Lagrangian multipliers.

Taking the derivative with respect to Mj, ; and setting equal to 0, we have

-1
0= MhM (ZMk > + A (12)

Under special case (i), WBH: variances of potential outcomes are the same within



each block (such that Sizw- = S}%’. forall j=1,...,J).

Substitution of S,QL’ ;= 5,2%, into (12) yields

s2 H g2 \ !
0= MhM2 (Z kMk7]> +An

7.7 k=1

After a little algebra, we get

Sh A
Mh,j = Mh\/—A;}.le where Cj = (Z MgM—k’]> (13)
k=1 ’

Now, summing over j in (13) and applying the second constraint 25:1 My, j = M}, we have:

J

J TS, Sp. M,
Mhzth,jZZMh\/%Cj: i%\—hhzcj

J=1 J=1 J=1

-1

J
Z Cj (14)
j=1

Thus, substituting (14) in (13),

Mh,j = Mhit]cj = Mhéj where 5]' = ch

j=1Cj =16

Substituting this back into definition of ¢; in (13) gives us,

H S]% —1 H S]% —1 H —1
o 2 "k, _ ke 5 2

o -1
— \/570( where o = J (Z M;,S? > is a constant
k=1
Ve

= 7Ja
Zj:l €
2

o
= ¢j = ——— = 3, a constant free of j.

J
Zj:l €

Thus, 6; = ¢j/ > ;¢;=1/J and My ; = My/J and pp; =1/J. O



Under special case (ii), BBH: variances are the same across blocks for each treatment
(such that S,zl’j = S%j forall h=1,... H).

Substituting S,%J = S_%j in (12), we get,

-1
7] <Z MkJ) + )\h

H -1 H -1
M, M} M, M?
= M ;i = — g = ——¢; wherec; = E —n 15
h.j /_)\h \J <k:1 MkJ /)\h J ) Pt Mk,j ( )

Now, summing over j and applying the second constraint Z;-Izl Mj, ; yields:

T

My=S "M, =S Zhe =

h ~ h,j ~ \/— ~
M, My

—Vm Yo

ﬁ\

Proceeding similarly as in the proof of the previous part, we can show that §; = ¢;/ (Z paye ¢j) =

1/J for all j=1,...,J and hence My, ; = My, /J and py j =1/J. O

Part (c): Recall from Section 4, Sglk,j = Ethl(Mh/N)Q(S}QLJ/Mh,j).

We need the following lemmas to prove the theorem.

Lemma 3. For any » > 0 and J > 1, §; > —r such that Z;}:léj:Oand 0; #0Vi=1,2,...,J,

Proof. Let j* = argming g ;. Then,

e when §; >0 and j # j*, (r+6;) < (r+d;) = 1/(r+67) > 1/(r+6;) = —6;/(r+6;) <
=05/ (r + ;)

e when §; <0, (r+67) > (r+6;) = 1/(r+67) <1/(r+d;) = —6;/(r+0;) < —6;/(r+6;)
e when (5]' =0, —(5]/(7‘4-(5;() = —(5j/(7’+(5j)

e when j :j*, —5]'/(7'-1—5;) = —5j/(7‘+5j)



Thus, it holds that,

J J

Then,

-5 — >0
S5 T S e
A\ - rr+5 - r(r+9d;+)  r(r+max;d-)

O

Lemma 4. Given integers M, for h = 1,..., H, let M, ; denote any allocation of Mj, into J > 1
groups such that Zj My j = My, Let ap, > 0, for h € {1,..., H}, be fixed. Then,

" a a
3 h h
max >
y P Mh
7D Mag 5 ()

That is, the allocation that minimizes max; Zthl an/My,j is My ; = My/J.

Proof. For each h =1,..., H, using an argument similar to the one in the proof of Theorem 1, we
can write for h=1,..., H,
a a
max o Mh
J hv] Jh

Suppose there exists an allocation Mh,j = M/J + 5? that maximizes max; ZhH_l an/Mp_j,

where for each h, 357 such that 5;-‘ # 0. Then, Z;-Izl Mh,j =M, = E}] 15;‘ =0Vh=1,...,H.



Further, by our assumption on Mhm

H H H H
a a a a a a
maxz “h gg Mh — maXE Ah _Mh §O<:>maxg Mih_vh <0

J My, ; b J M, ., M j (M 4 gh) 0
h=1 »J h=1 J h=1 »J J h=1 J J J

d a a

h h h h

<:>maxg 6-<O(Wheree.:7__)
] J — J Mh h Mh
J h=1 ( J +%%) 7

h=1
H
- ZZE?SO
7j=1h=1
H J 1 1
< zzzah§£:<EzZ;1jgﬁs——zgz> S()
h=1 j=1 77 j 7

which is a contradiction by taking r = M}, /J and §; = 5? for each h in Lemma 3.

Thus, we have that,

ap, > ap,
max E E -
e A A
O

Under special case, WBH: variances of potential outcomes are the same within each
block (such that S}QLJ = Sf%,- for all j=1,...,J).
We have, Slglk,j = Zle(Mh/N)2(5i7_/Mh7j). We can rewrite this equation as Sl?lk,j = an/Mp,
where aj, = (Mh/N)zS?h_ does not depend on j.
By Lemma 4, we get max; Zthl ap/Mp; > J >, an/Mp.

We immediately see that for M i = M /J, the left hand side of the inequality attains the lower
bound, which is minimax. Hence, pj, ;=1 /J for each treatment j within block h, a balanced design

within each block. O
Supplementary Material B Conditions for Greedy Algorithm from Friedrich et al.
(2015)

Theorem 3.2 of Friedrich et al. (2015) have the following conditions to be satisfied for global con-

vergence of the greedy algorithm to the true optimum. We restate the theorem here for reference.



Theorem 3.2 (Friedrich et al. (2015)). The globally optimal integer solution of the problem

N; >0Vj, > N; < p(A) VA C E}

min {f(Nl,...,NJ)
jeEA

(N1,--,Nj)

is found by a Greedy algorithm if
1. E is a finite set,
2. ¢ :2F — 7. is submodular, monotone and satisfies ¢(¢) = 0,

3. f: ]Rf — R is separable and convex with continuous components.

In the case of a CRD, we can identify the following in the theorem above:
o E={1,2,..J} (finite)
o Ac {{0},{1},...{J}.{1,2},..{1,...,J}} =2F
o o(A) =min(}_;c4(uj — ), N =3 5cpl))

e f(Ni,...,Ny) defined as in Section 3, >, S?/Nj for A-optimality and }_; log(SJZ/Nj) for
D-optimality respectively (separable and convex) and each continuous in their individual

components, i.e., f;(N;) are continuous in N; (1/x and log(1/z) is continuous in z for z € R%).

Condition 1 is already satisfied as noted above. Condition 3 is straightforward since all our real-
valued objective functions are convex and finite-dimensional and hence separable. Thus, it suffices
to show that Condition 2 above in Theorem 3.2 is satisfied in our case for the submodular set

function ¢(.). Again, we give the definition of a submodular function as in Friedrich et al. (2015).

Definition (Submodular function). ¢ : 2F — Z, is submodular if

P(XNY)+p(XUY)<o(X)+ ), VX, Y CFE

Thus, in the case of a CRD, take A to be defined as above, then g(A4) = >, 4(u; — 1),
h(A) = N—3_;c4l; as corresponding set functions for the following argument. Linear set functions
are always submodular as can be quickly shown: g(X UY) =37, (uj — ;) + D ey (uj — 1j) —

9



Y jexny (U — 1) = g(X) +g(Y) — g(X NY). Similarly for h, (X UY) = (N =37 ,cxu;) + (N —
diey i) — (N =2 cxny uj) = h(X)+h(Y)—h(XNY). Submodularity of our ¢(.) function follows
directly from Friedrich et al. (2015) as min(g, h) is submodular if g, h are submodular and g — h
is monotone. g is submodular and monotone (defined as VT, S C E, st. T C S = f(T) < f(95))
because u; —1l; > 0, Vj € J . And, h is submodular. Finally, (9—h)(A) = ZjeA uj— N is monotone

since g — h is linear in A.

Supplementary Material C Empirical evidence of greedy algorithm for D-optimality
in RBD

Following from Section 4, we show the performance of the greedy algorithms for finding D-optimal
solutions empirically.

Five different settings of 22 factorial designs in two blocks, each corresponding to a specific type
of potential outcome matrix, are considered. Each setting is defined by the block sizes My and M,
and the 4 x 2 matrix of variances Sizh ; as shown in columns 3 and 4 of Table 10, respectively.

The first setting considers blocks of equal sizes with potential outcomes satisfying Condition 2
(strict additivity), leading to a D-optimal design that is balanced within each block as per Re-
mark 4. The second setting considers equal block sizes with potential outcomes satisfying Condi-
tion 3 (WBH). The third setting considers unequal block sizes with potential outcomes satisfying
Condition 4 (BBH) but not Condition 3 (WBH). Note that, in the above cases, the exact solution
as given by Theorem 2 is indeed an integer solution, due to the choice of M} and J. The fourth
setting is similar to the third case above, but is one where Theorem 2 provides an exact solution
that is not an integer solution. An exhaustive search leads to identification of six different alloca-
tions, each of which is optimal. In this case, the greedy algorithm identifies one of these solutions.
The fifth setting satisfies neither Condition 3 (WBH) nor Condition 4 (BBH), and consequently
Theorem 2 cannot provide an exact D-optimal solution. However, the greedy algorithm identifies

the true optimal integer allocation (where truth is identified through exhaustive search).

10



Block Exhaustive search

. . 2 .
S.No. | Case ?Jl\z;) Variances (S} ;) E-optimal solution Greedy solution
R

1. | Eaual blocks with equal | rq] 1 1 1 1] [10 10 10 10] [10 10 10 10]
variances 140 | 11 1 1] |10 10 10 10| |10 10 10 10|
Equal blocks with equal o -~ _ -~ _ _ _
2. variances for all treatments 40 4 4 4 4 1010 10 10 1010 10 10
within block 140 | 11 1 1] 110 10 10 10| |10 10 10 10|
Unequal blocks with equal | = _ _ i _ : _ ;
3. variances across blocks for 40 123 4 1010 10 10 1010 10 10
20 1 2 3 4 5 5 5 5 5 5 5 5

each treatment R L | L ] L i

[10 10 10 10]

Unequal blocks with equal [10 10 10 10
4. variances but exact solution {40}

. ¥ 20 -
is non-integer 10 10 10 10

10 10 10 10]
10 10 10 10]

(10 10 10 10
|7 7 8 8]

1 2 3 4 7 10 11 12
4 3 2 1 7T 6 4 3

Equal blocks with unequal {40

7 10 11 12
variances 20

7T 6 4 3

Table 10: Summary of Greedy algorithm solutions for D-optimality for H = 2, K = 2

Supplementary Material D Greedy Algorithm for RBD

Using the methods in Section 3.2, we can use the same algorithm in Figure 1 to obtain the
optimal integer solutions for the A-optimality case under block design by taking fp, ;(My ;) =
(M?/N 2)(5,2% ;/Mp,j). The exact algorithm taking the structure of the blocks into account is given
in Figure 3.

For D- and E-optimality, we extend the greedy idea from the previous parts and provide the
algorithm in Figure 3 and 4. For D-optimality, take f, ;(M}, ;) = log(Zle(M}%/Nz)(S}%’j/Mh’j)).
For E-optimality, take fj, j(M}, ;) = (M}%/N2)(S}2L7j/Mh,j).
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Figure 3: Greedy algorithm for A- & D-optimality

1 ... J
1. Set I «

U I,
2. I < vec(I)

3. Inmitialize My, j <l j for j=1,...,J,h=1,... H.

. While (5L, 327 My # N & I # ¢) do
e for cach (h € {1,....,H})
— for (j € I[h,]), Onj < fij(Mpj + 1) = fn;(Mh,;)
e For A-optimality:
— for each (h € {1,..., H})
(i) choose j* «— minargmin;c i, On,j-

(ii) if (Mh,j* < th’*), then Mh,j* — Mh,j* +1,
else I[h,j*] + NA

e For D-optimality:

W

— choose (h*, j*) « argming, jyc; 6p ;. If non-unique, choose minimum index.
— if (ZJ Mh*,j < M;:)
(i) if (Mp« j« < upj= and I[h*, j*] # NA), then My« j« <= M-p, j« + 1, else
I[h*, j*] + NA
else I[h*,] <+ NA
o I «+ vec(I[lis.na(I)])

5. Return optimal (M 1,...,Mmy,7).
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Figure 4: Greedy algorithm for E-optimality in the Block Case

1 ... J
1. Set I «

U I,
2. I < vec(I)

3. Inmitialize My, j <=l j for j=1,...,J,h=1,...,. H.

. While (372, Z;-Izl My # N & I # ¢) do
e for cach (h € {1,.... H})
— for (j € I[h,]), Onj < fnj(Mnj +1) = fnj(Mn;)

e choose j* + min argmin ey gy Zthl fh.j

W

e choose h* - minargmingcgy . gy On,j+
o if (32, My~ ; < My)
— if (Mp« j+ < upj+ and I[h*,5*] # NA), then Mp« j« < M-p j« + 1, else
Ih*,5*] < NA
else I[h*,] + NA
o [} < wvec(I]lis.na(l)])

5. Return optimal (M 1,...,Mpy,7).
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