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Abstract

Optimizing the allocation of units into treatment groups can help researchers improve the

precision of causal estimators and decrease costs when running factorial experiments. How-

ever, existing optimal allocation results typically assume a super-population model and that the

outcome data comes from a known family of distributions. Instead, we focus on randomization-

based causal inference for the finite-population setting, which does not require model spec-

ifications for the data or sampling assumptions. We propose exact theoretical solutions for

optimal allocation in 2K factorial experiments under complete randomization with A-, D- and

E-optimality criteria. We then extend this work to factorial designs with block randomization.

We also derive results for optimal allocations when using cost-based constraints. To connect

our theory to practice, we provide convenient integer-constrained programming solutions using

a greedy optimization approach to find integer optimal allocation solutions for both complete

and block randomization. The proposed methods are demonstrated using two real-life factorial

experiments conducted by social scientists.

1. Introduction

Randomized 2K factorial experiments are conducted to assess the marginal causal effects of K

factors, each with two levels, along with their interactions on a response of interest. The two levels

are often denoted as the “high level” and “low level” of the factor (Fisher 1935; Yates 1937). With

K factors, there are 2K unique treatment combinations to which units can be assigned. In the
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twentieth century, factorial designs have mostly been discussed in an industrial setting, whereas

in recent times, there has been a lot of interest in their application in the social, behavioral and

biomedical sciences and randomization-based inference from such designs (e.g., Branson et al. 2016;

Egami and Imai 2019).

Randomization-based inference is a useful methodology for drawing inference on causal ef-

fects of treatments in a finite population setting (e.g., Freedman 2006, 2008). A major advantage

of randomization-based inference is that it applies even if the experimental units are not ran-

domly sampled from a larger population, which is the case in most social science experiments

(Abadie et al. 2020; Olsen et al. 2013). The theory, methods, and applications of randomization-

based inference for two-level factorial experiments with a completely randomized treatment assign-

ment mechanism have been developed and discussed (e.g., Dasgupta et al. 2015; Lu 2016). Further,

randomization-based inference from experiments with more general factorial structures and com-

plex assignment mechanisms have been discussed in Mukerjee et al. (2018). Connections between

regression-based and randomization-based causal inference from factorial experiments have been

studied by Zhao and Ding (2021).

Despite the growing literature in this area, most of the recent research on randomization-based

inference of factorial experiments has been confined to the analysis side. On the design side, the

main focus has been on rerandomization (Branson et al. 2016; Li et al. 2020; Morgan and Rubin

2012), which generalizes the idea of blocking by pre-defining an acceptable criterion for random-

ization based on covariate balance between treatment groups. There have also been extensions

to fractional and incomplete factorial designs (Pashley and Bind 2022) and to the use of screening

steps (Shi et al. 2023). However, the distribution of the total number of experimental units into the

2K treatment groups has not received much attention. Balanced designs that assign equal number

of units to the treatment groups are often the default choice, but it is unclear whether they are the

“best” design under different conditions. One work that does discuss how to allocate units to opti-

mize precision of factorial estimators from the randomization-based perspective is Blackwell et al.

(2022). That work explores the advantages of Neyman-Allocation (Neyman 1934; Cochran 1977b)

by extending the two-stage adaptive design in Hahn et al. (2011) to multiple treatment designs.

Dai et al. (2023) similarly explores Neyman-Allocation but within sequential designs.

To motivate this problem, we consider an education experiment from Angrist et al. (2009),
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conducted to assess the causal effects of two different interventions, a student support program

(SSP) and a student fellowship program (SFP), on the academic performance of freshmen. This

is a 22 factorial experiment in which each unit (freshman) can receive only one of four treatment

combinations: control (neither of the two), SSP only, SFP only, and SFSP (both). The units were

divided into two blocks based on their sex. Table 1 shows the allocation of units within each block

to the four treatment combinations.

Table 1: Allocation of units to treatment combinations

Sex Control SFP SSP SFSP

Female 574 150 142 82
Male 432 100 108 68

Total 1006 250 250 150

Clearly, the design is unbalanced, with the highest number of units assigned to control and the

fewest to the treatment SFSP. Such an allocation, among other reasons, could be motivated by

the budget for experimentation. The question we investigate in this paper is the following: Under

what assumptions, conditions, and requirements will such an allocation be the best possible one

(in terms of being able to precisely answer scientific questions of interest)?

The problem of finding optimal designs in the context of model-based inference has been ex-

tensively studied in the twentieth century (see Atkinson et al. 2007, for example). In such set-

tings, optimal designs depend on a postulated outcome model, that may be linear or non-linear.

For example, for binary responses, optimal designs based on logistic models are likely to differ

from those based on probit models, and depend on unknown model parameters (Yang et al. 2012;

Yang and Mandal 2015; Yang et al. 2016). We aim to develop optimal designs that are tied to

model-free, randomization-based analysis for finite and super populations. In addition to being

robust to model assumptions, our approach works for continuous as well as binary outcomes as

long the finite-population estimand is well-defined.

This paper is organized as follows: The next section introduces basic notation and estimands

for factorial experiments using the potential outcomes framework. In Section 3 we derive optimal

allocations of theN units in a population to different treatment combinations under three commonly

used optimality criteria for a completely randomized design (CRD). In addition to theoretical results
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for exact optimal allocations, we also provide numerical algorithms for obtaining integer solutions.

In Section 4, we extend our results for CRDs to the setting of randomized block designs (RBDs).

In Section 5, we derive optimality results under cost constraints. Two different applications of the

proposed methodology, the motivating education experiment and an audit experiment conducted

to assess discrimination, are described in Section 6. We conclude with a discussion, including

opportunities for future work, in Section 7.

2. 2K factorial experiments under the potential outcomes framework

Here, we introduce some key definitions and notation from Dasgupta et al. (2015). Consider a 2K

experiment with N units, in which the levels of each of the K factors are denoted by 0 and 1. Each

treatment combination is of the form zj = (z1 . . . , zK), where zk ∈ {0, 1} for k ∈ 1, . . . ,K. There

are J = 2K treatment combinations arranged in lexicographic order 1, . . . , J , where treatment

combination zj is such that j = 2K−1z1 + 2K−2z2 + . . . + zK + 1. In other words, (z1 . . . zK) is a

binary representation of integer j − 1. Thus, for example, in a 22 experiment, the four treatment

combinations 00, 01, 10 and 11 are numbered as j = 1, 2, 3 and 4 respectively, and the 8th treatment

combination in a 24 experiment is 0111. We will just refer to the treatment combination by its

number (j) in notation below.

For i = 1, . . . , N , under the Stable Unit Treatment Value Assumption or SUTVA (Rubin 1980),

the ith unit has J = 2K potential outcomes Yi(1), . . . , Yi(J) corresponding to the J treatment

combinations z1, . . . , zJ . Let Yi denote the J × 1 vector of potential outcomes for unit i. For

unit i, the unit-level main effect of factor k = 1, . . . ,K is defined as the difference between the

averages of potential outcomes for unit i for which the levels of factor k are at levels 0 versus

1. Mathematically, it is a contrast of the form 2−(K−1)λT
kYi = 2−(K−1)

∑J
j=1 λjkYi(j), where

xT denotes the transpose of vector x, λk is a J × 1 column-vector with coefficient λjk such that

λjk = −1 if the level of factor k in jth treatment combination is 0, and λjk = 1 otherwise. For all

k = 1, . . . ,K, λk is a contrast vector, i.e.,
∑J

j=1 λjk = 0.

Proceeding along the lines of Dasgupta et al. (2015), for unit i, we can define
(
K
2

)
two-factor

interactions,
(
K
3

)
three-factor interactions, and finally one K-factor interaction as contrasts of the

form 2−(K−1)λTYi, where the contrast vector λ for any interaction can be derived by element-wise
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multiplication of the contrast vectors of the corresponding main effects λk, for factors involved in

the interaction. Denoting the J − 1 = 2K − 1 contrast vectors for the J − 1 unit-level factorial

effects τ1i, . . . , τJ−1,i by λ1, . . . ,λJ−1 respectively, we define the J × J matrix as

L = (λ0,λ1, . . . ,λJ−1), (1)

where λ0 is the J×1 vector with all elements equal to one. We note that L is an orthogonal matrix

with LLT = LTL = 2K−1IJ , where IJ denotes the identity matrix of order J . For i = 1, . . . , N , let

τi = (2τ0i, τ1i, . . . , τJ−1,i)
T, where τ0i denotes the average of all potential outcomes for unit i. The

linear transform between the vector of unit-level potential outcomes Yi and the vector of unit-level

factorial effects τi can be expressed as

τi = 2−(K−1)LTYi. (2)

Having defined unit-level factorial effects, we now move to their population-level counterparts.

Let Y = N−1
∑

i=1Yi and τ = N−1
∑

i=1 τi respectively denote the J × 1 vectors of average

potential outcomes and the average factorial effects. Then, averaging (2) over i = 1, . . . , N , the

vector of population-level factorial effects is given by

τ = 2−(K−1)LTY. (3)

Note that the first element of τ is twice the average of all potential outcomes.

In a CRD, a pre-assigned numbers of units, Nj , are randomly assigned to treatment j. The

experiment generates an N × 1 vector of observed outcomes data from which the vector of factorial

effects τ can be unbiasedly estimated. We examine the properties of τ̂ , the unbiased estimator of τ ,

with respect to its randomization distribution, and formulate the problem of optimally allocating

the N units to the J treatment combinations in Section 3.

Remark 1 (A super population perspective). While the finite-population perspective does not de-

pend on any hypothetical data generating process for the outcomes, alternative approaches assume

that the potential outcomes are drawn from a, possibly hypothetical, super population. Assum-

ing that Y1, . . . ,YN are independent and identically distributed random vectors with E[Yi] = µ,
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factorial effects at a super population level are defined as

τSP = 2−(K−1)LTµ.

Ding et al. (2017) discussed the conceptual and mathematical connections between finite- and

super-population inference, showing that while the same estimator commonly used to estimate τ

unbiasedly is also an unbiased estimator of τSP, its sampling variances under the two perspectives

are different.

3. Optimal designs for completely randomized experiments

In a randomized experiment with Nj units assigned to treatment combination j ∈ {1, . . . , J}, only

one of the J potential outcomes is observed for unit i. This observed outcome is yi = Yi(Ti) for

i = 1, . . . , N , where Ti is the random treatment assignment variable for unit i taking value j if unit

i receives treatment j. In a CRD, the joint probability distribution of (T1, . . . , TN ) is

P [(T1, . . . , TN ) = (t1, . . . , tN )] =





(N1! . . . NJ !) /N ! if
∑N

i=1 1{ti=j} = Nj for j = 1, . . . , J,

0 otherwise,

where 1{A} denotes the indicator random variable for set A. Let y(j) = N−1
j

∑N
i=1 1{ti=j}Yi(j)

denote the average response for treatment j. Let y denote the vector (y(1), y(2), . . . , y(J))T of

observed averages. Substituting y in place of Y in (3), we can unbiasedly estimate the vector of

factorial effects as

τ̂ = 2−(K−1)LTy. (4)

Lu (2016) derived sampling properties of the estimator τ̂ with respect to its randomization

distribution for the general case of unequal N1, . . . , NJ . Lu showed that τ̂ is an unbiased estimator

of τ , and has the following finite-population covariance matrix:

Vτ = Var (τ̂ ) =
1

22(K−1)

2K∑

j=1

S2
j

Nj

λ̃jλ̃j

T − 1

N(N − 1)

N∑

i=1

(τi − τ ) (τi − τ )T , (5)
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where λ̃j represents the transpose of row j of the model matrix L defined in (1), τi denotes the

vector of unit-level factorial effects given by (2), τ the vector of population-level factorial effects

given by (3), and

S2
j =

1

N − 1

N∑

i=1

(
Yi(j)− Y (j)

)2
(6)

the variance of all N potential outcomes for treatment j with divisor N − 1, where Y (j) =

N−1
∑N

i=1 Yi(j).

In the spirit of classical optimal designs (Atkinson et al. 2007), we can define a design optimality

criterion as a functional of the matrix Vτ defined in (5). For example, the D-optimality criterion,

which aims to minimize the determinant of the covariance matrix, or the A-optimality criterion,

which aims to minimize the trace of the covariance matrix, or the E-optimality criterion which aims

to minimize the maximum eigenvalue of the covariance matrix, can be considered. However, the

second term 1/(N(N−1))
∑N

i=1 (τi − τ ) (τi − τ )T, which is a measure of heterogeneity of treatment

effects, cannot be estimated from observed data, because none of the unit-level treatment effects

τi are estimable without additional assumptions due to the missing potential outcomes. Because

1/(N(N−1))
∑N

i=1 (τi − τ ) (τi − τ )T is positive semi-definite, the first term of (5) can be considered

an upper bound of Vτ , which is attained under specific restrictions on the potential outcomes (e.g.,

treatment effect homogeneity). Thus, we propose optimizing a functional of the first term of (5),

which in turn is equivalent to optimizing a functional of the positive definite matrix

Ṽ =

J∑

j=1

S2
j

Nj
λ̃jλ̃j

T
= LTAL,

instead, where A = diag(S2
1/N1, . . . , S

2
J/NJ).

Another justification for using a functional of the matrix Ṽ as an optimality criterion comes

from the super-population perspective mentioned in Section 1. Ding et al. (2017) showed that

the estimator τ̂ defined earlier is also an unbiased estimator of the super-population estimand

τSP. Further, extending their argument for a single factor with two levels to the case of 2K

factorial designs, if V 2
j = Var[Yi(j)], j = 1, . . . , J , then a variance decomposition yields the following
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sampling variance of τ̂

VarSP (τ̂ ) =
1

22(K−1)

2K∑

j=1

V 2
j

Nj

λ̃jλ̃j

T
=

1

22(K−1)

2K∑

j=1

E(S2
j )

Nj

λ̃jλ̃j

T
,

where VarSP denotes variance over the random sampling from the super population and random

assignment, and V 2
j = E(S2

j ) represents expectation of S2
j with respect to the distribution of the

potential outcomes in the super population. This connection provides further motivation for the

form of our optimization, but we focus on the finite-population setting going forward.

3.1. Exact optimal designs

The problem of finding an optimal design can be formulated as minimization of an appropriate

functional ψ(Ṽ) subject to the constraint
∑J

j=1Nj = N or equivalently as
∑J

j=1 pj = 1 in terms

of the proportions of units pj = Nj/N to be assigned to treatment combination j. As discussed

earlier, we consider three widely used functionals in optimal design literature: the D-optimality

criterion where ψ(Ṽ) =
∣∣∣Ṽ

∣∣∣ and |.| refers to the determinant, the A-optimality criterion where

ψ(Ṽ) = tr
(
Ṽ
)
, and the E-optimality criterion where ψ(Ṽ) = max{ν1, . . . , νJ} and ν1, . . . , νJ are

the eigenvalues of Ṽ. The following theorem, proved in Supplementary Material A, summarizes

these optimality results.

Theorem 1. Let N units be allocated to J treatment groups such that pj = Nj/N proportion of

units receive treatment j. Then, the optimal allocation of N units to J treatment groups on the

basis of covariance matrix Ṽ under

(a) A-optimality is proportional to the finite-population standard deviations of potential out-

comes in the corresponding treatment groups, i.e., pj = Sj/(
∑

j Sj).

(b) D-optimality is balanced assignment to all J treatment groups, i.e., pj = 1/J .

(c) E-optimality is proportional to the finite-population variances of potential outcomes in the

corresponding treatment groups, i.e., pj = S2
j /(

∑
j S

2
j ).

Remark 2. The optimality results in Theorem 1 are similar in spirit to the determination of

optimal sample sizes in stratified survey sampling (Cochran 1977a, Ch. 5). The A-optimality result
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is the same as the Neyman-Allocation discussed in Blackwell et al. (2022), who motivate its use as

reducing the identifiable portion of the finite-population variance of classical factorial estimators.

Derivations of the A- and D- optimal designs are straightforward and use the Lagrangian multiplier-

based optimization technique. The proof of the E-optimality result uses the idea of perturbing the

eigenvalues of a scaled identity matrix to show that the E-optimal design is indeed characterized

by equal eigenvalues of the matrix Ṽ.

Remark 3. In order to implement the results of Theorem 1, researchers need to “guess” the

variances S2
j , j = 1, . . . , J and substitute them into the expressions for pj. This is similar to the

application of optimal designs in non-linear models, where optimal designs are actually “locally

optimal” (Chernoff 1953). It is often a common practice to conduct pilot studies to obtain some

preliminary estimates of the S2
j ’s, as done in finite-population survey sampling.

We now introduce two conditions associated with the matrix of potential outcomes under which

Theorem 1 can be further simplified.

Condition 1 (Homoscedasticity). We call an N × J matrix of potential outcomes homoscedastic

if each column has the same variance i.e., S2
j = S2 for j = 1, . . . , J .

Condition 2 (Strict additivity). Following Dasgupta et al. (2015), we call an N × J matrix of

potential outcomes strictly additive if Yi(j)− Yi(j̃) = τ(j, j̃) for all j 6= j̃ ∈ {1, 2, . . . , J}. Potential

outcomes satisfying this condition also satisfy Condition 1.

The following corollary of Theorem 1 is straightforward but useful:

Corollary 1. If the matrix of potential outcomes satisfies Condition 1, then the A-, D- and E-

optimal designs are all balanced designs with pj = 1/J for j = 1, . . . , J . Further, under Condition 2,

optimizations based on Ṽ and Vτ are equivalent.

While Theorem 1 provides results on exact optimal designs in terms of proportions pj , experi-

menters need integer solutions in terms of Nj’s satisfying
∑

j Nj = N . For example, while the exact

D-optimal design is balanced, N is not necessarily a multiple of 2K , and the result does not provide

a D-optimal allocation of, say, 69 units to the 8 treatment combinations in a 23 factorial experi-

ment. Thus we need approximate integer solutions to the optimization problem in which additional
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constraints on the sample sizes assigned to specific treatment groups can also be introduced. Next,

we discuss an integer programming approach to obtain such solutions.

3.2. Computation of exact optimal designs using an integer programming ap-

proach

Many sources in the integer programming literature address constrained optimization under integer

space constraints (e.g. see Nemhauser and Wolsey 1988; Schrijver 1998; Khan 1995; Sofi et al.

2020). We adopt the methods proposed in Friedrich et al. (2015) that are designed for settings very

similar to the ones we consider. Friedrich et al. (2015) consider the following integer programming

problem:

min
N1,...,NJ

f(N1, . . . , NJ ) s.t.





∑J
j=1Nj = N,

lj ≤ Nj ≤ uj , ∀j = 1, 2, . . . , J,

Nj ∈ Z
J
+, ∀j = 1, 2, . . . , J.

(7)

where, Z+ is the set of positive integers, (lj , uj) are the lower and upper bound constraints on

Nj and f : RJ
+ → R is a convex function. If f(N1, . . . , NJ) is separable (i.e., can be expressed as

∑J
j=1 fj(Nj)) then the greedy algorithm in Figure 1 finds the globally optimal integer solution of the

minimization problem given in (7) under some regularity conditions that we show in Supplementary

Material B.

From the proof of Theorem 1 in Supplementary Material A, it follows that the A-optimality

and D-optimality criteria can respectively be expressed as
∑J

j=1(S
2
j /Nj) and

∑J
j=1(log S

2
j /Nj).

In Supplementary Material B, we show that the conditions for global convergence of the greedy

algorithm are met and thus, convergence to the true integer optimal solution in the cases of A- and

D-optimality are guaranteed if this algorithm is used. Hence, substitution of S2
j /Nj and log S2

j /Nj

for fj(Nj) in the algorithm described in Figure 1 leads to optimal integer solutions for the A-

optimality criterion and the D-optimality criterion, respectively. In our implementation of this

algorithm, we take lj = 2 for j = 1, . . . , J to guarantee at least two units are assigned to each

treatment combination, allowing variance estimation within each treatment group.

We provide a modified greedy algorithm described in Figure 2 for solving the E-optimality

problem since the optimization problem cannot be written in a separable form as in A- or D-
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Figure 1: Greedy algorithm for separable functions

1. Set I ← {1, ..., J}.

2. Let t = 0. Initialize N
(t)
j ← lj for j = 1, . . . , J .

3. While (
∑J

j=1N
(t)
j 6= N & I 6= φ) do

• for all (j ∈ I), δj ← fj(N
(t)
j + 1)− fj(N

(t)
j )

• choose J ← argminj∈I δj

• j∗ ← minJ
• if N

(t)
j∗ +1 ≤ uj∗ , then N

(t+1)
j∗ ← N

(t)
j∗ +1, t ← t+1

else I ← I \ {j∗}

4. Return optimal (N1, . . . , NJ).

optimality criterion above. In this algorithm we take fj(Nj) = S2
j /Nj and lj = 2. In Section

4.2, the ability of this greedy algorithm to find E-optimal solutions is demonstrated empirically for

blocked designs, discussed next.

Figure 2: Greedy algorithm for E-optimality

1. Set I ← {1, ..., J}.

2. Let t = 0. Initialize N
(t)
j ← lj for j = 1, . . . , J .

3. While (
∑J

j=1N
(t)
j 6= N & I 6= φ) do

• choose J ← argmaxj∈I fj(N
(t)
j )

• j∗ ← minJ
• if N

(t)
j∗ +1 ≤ uj∗ , then N

(t+1)
j∗ ← N

(t)
j∗ +1, t ← t+1

else I ← I \ {j∗}

4. Return optimal (N1, . . . , NJ).

4. Optimal allocation for factorial experiments with blocks

Consider a block-randomized 2K factorial design with H blocks. That is, units are pre-assigned

membership to one of h blocks based on some similarity metric (we do not consider how to form

blocks here). Let Mh denote the size of block h, h = 1, . . . ,H. Also, let Mh,j be the number of

units in block h assigned to the treatment j (j = 1, . . . , J). Finally, let bi(h), i = 1, . . . , N be an
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indicator variable taking value 1 if unit i belongs to block h and 0 otherwise. Treatment assignment

under a factorial RBD is equivalent to performing an independent CRD, as described in Section 3,

within each block.

The population average treatment effect τ can be expressed as
∑

hMhτh/N , where τh is the

block-level vector of factorial effects and its estimator τ̂ is a weighted average of τ̂h, an unbiased

estimator of τh defined in the same way as in (4) for block h. Extending (5) by noting the

independence of the assignment to treatment across blocks, the covariance matrix of τ̂h in a factorial

RBD can thus be obtained as

Vτh
= Cov (τ̂h) =

1

22(K−1)

2K∑

j=1

1

Mh,j

λ̃jλ̃j

T
S2
h,j −

1

Mh(Mh − 1)

N∑

i=1

bi(h) (τi − τh) (τi − τh)
T , (8)

where λ̃j represents the transpose of row j of the model matrix L defined in (1) and S2
h,j denotes the

variance of all Mh potential outcomes for units in block h under treatment j with divisor Mh − 1.

The covariance matrix of τ̂ can then be expressed as Cov (
∑

hMhτ̂h/N). Because the block-level

treatment estimators τ̂h are independent across blocks, we have

Cov (τ̂ ) =
H∑

h=1

M2
h

N2
Vτh

=
1

22(K−1)

2K∑

j=1

λ̃jλ̃j

T

[
H∑

h=1

M2
h

N2

S2
h,j

Mh,j

]
−

H∑

h=1

M2
h

N2

1

Mh(Mh − 1)

N∑

i=1

bi(h) (τi − τh) (τi − τh)
T .

Writing S2
blk,j =

∑H
h=1(M

2
h/N

2)(S2
h,j/Mh,j) and proceeding along similar lines as in Section 3,

we formulate a surrogate optimization problem to only optimize the first term, since the second

term in the equation above is not identifiable. Then, choosing Mh,j’s to optimize some functional

of Cov (τ̂ ) is equivalent to optimizing a functional of the matrix

Ṽblk =

2K∑

j=1

λ̃jλ̃j

T
S2
blk,j = LTAblkL, (9)

where Ablk = diag
(
S2
blk,1, . . . , S

2
blk,J

)
.
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4.1. Exact optimal designs

The problem of finding an optimal design for RBDs can be formulated as minimization of an

appropriate functional ψ(Ṽblk) subject to the constraint
∑J

j=1Mh,j = Mh for each h or equivalently

as
∑J

j=1 ph,j = 1 in terms of the proportions of units to be assigned to treatment combination j in

block h, ph,j = Mh,j/Mh. While the A-optimality result is straightforward, finding exact D-optimal

and E-optimal solutions in the setting with blocks is difficult without imposing restrictions on the

potential outcomes. Before stating the optimality results, we first introduce two such restrictions

that generalize Condition 1 to a block setting.

Condition 3 (Within-block homoscedasticity, WBH). We call an N × J matrix of potential out-

comes in H blocks to be within-block homoscedastic (WBH) if within each block, all treatment

columns have the same variance, i.e., within block h, S2
h,j = S2

h· for j = 1, . . . , J .

Condition 4 (Between-block homoscedasticity, BBH). We call an N × J matrix of potential

outcomes in H blocks to be between-block homoscedastic (BBH) if for each treatment column j,

the variance of potential outcomes in each block is the same, i.e., S2
h,j = S2

·,j for h = 1, . . . ,H and

j = 1, . . . , J .

The following theorem now summarizes the optimality results for blocked designs.

Theorem 2. Let N units be distributed across H blocks such that there are Mh units in block h

and N =
∑H

h=1Mh. Let each set of Mh units be allocated to J treatment groups such that ph,j

proportion of the units are allocated to treatment j in block h, and let S2
h,j as defined in (8). Then,

optimal allocation of Mh units to the J treatment groups on the basis of covariance matrix Ṽblk

under different optimality criteria can be summarized as follows.

(a) The A-optimal allocation is the same as the A-optimal CRD allocation within each block, i.e.,

ph,j = Sh,j/(
∑J

j=1 Sh,j) for each h.

(b) If either (or both) of Conditions 3 (WBH) and 4 (BBH) hold, the D-optimal allocation is the

balanced assignment within each block, i.e., ph,j = 1/J for each h.

(c) If Condition 3 (WBH) holds, the E-optimal allocation is the balanced design within each block,

i.e., ph,j = 1/J for each h.
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Remark 4. Condition 2 for all N units implies both WBH and BBH. Consequently, by Theorem 2,

the D- and E-optimal allocation for strictly additive potential outcomes in randomized block designs

is a balanced assignment within each block.

Remark 5. The A-optimal allocation under WBH is balanced allocation within each block (same

as D- and E-optimal allocations). However, under BBH, the A-optimal allocation is different from

the D- and E-optimal allocations, and is proportional to the standard deviations of the treatments

S·,j that is constant across blocks.

4.2. Computation of exact optimal designs for factorial RBDS using an integer

programming approach

As in the case of completely randomized factorial designs, whereas Theorem 2 provides results on

exact optimal designs in terms of proportions ph,j, experimenters need integer solutions in terms of

Mh,j’s in which additional constraints on the sample sizes assigned to specific treatment groups can

also be introduced. Further, Theorem 2 provides D- and E-optimal solutions only under specific

conditions like WBH and BBH. Thus, we discuss an integer programming approach to obtain

integer solutions for settings covered and not covered by Theorem 2.

We can use the same algorithm in Figure 1 within each block to obtain the optimal inte-

ger solutions for A-optimality under the RBD by replacing the function fj(.) by fh,j(Mh,j) =

(M2
h/N

2)(S2
h,j/Mh,j). For D- and E-optimality, we extend the greedy idea from the algorithm in Fig-

ure 2 with minor changes to the function fj(.). We take fh,j(Mh,j) = log(
∑H

h=1(M
2
h/N

2)(S2
h,j/Mh,j))

for D-optimality and fh,j(Mh,j) = (M2
h/N

2)(S2
h,j/Mh,j) for E-optimality. The exact algorithms

taking the structure of the blocks into account are given in Supplementary Material D. The main

difference between the algorithm used in Section 3 and the one proposed here lies in the fact that

now we have to allocate the next best unit at iteration t over an H ×J matrix ((M
(t)
h,j)) with upper

bounds on row sums, rather than a vector (N
(t)
1 , . . . , N

(t)
J ) with an upper bound on the sum of the

elements, as in the case of the CRD. Note that, by Friedrich et al. (2015), the greedy algorithm

finds the correct solution in the case of A-optimality for the block design. It, however, does not

extend to the D- and E-optimality in the block case, due to nature of the objective functions.

We now conduct an empirical exploration of the performances of the greedy algorithm in terms
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of its ability to find E-optimal solutions. Five different settings of 22 factorial designs in two blocks,

each corresponding to a specific type of potential outcome matrix, are considered. Each setting is

defined by the block sizes M1 and M2, and the 4× 2 matrix of variances S2
h,j as shown in columns

3 and 4 of Table 2, respectively.

The first setting considers blocks of equal sizes with potential outcomes satisfying Condition 2

(strict additivity), leading to an E-optimal design that is balanced within each block as per Re-

mark 4. The second setting considers equal block sizes with potential outcomes satisfying Condi-

tion 3 (WBH), leading to a balanced design by Theorem 2. In this setting and the previous one, the

exact optimal designs provide optimal integer solutions. This is not the case in the third setting,

which considers unequal block sizes with potential outcomes satisfying Condition 4 (BBH) but not

Condition 3 (WBH). Theorem 2 does not apply directly for E-optimality, but the greedy algorithm

identifies the unique true E-optimal allocation determined by the exhaustive search. The fourth

setting is similar the third case above, but is one where the exhaustive search provides multiple

solutions, identifying four different allocations, each of which is optimal. In this case, Theorem 2

does not apply directly and the greedy algorithm identifies one of these solutions. The fifth set-

ting neither satisfies Condition 3 (WBH) nor Condition 4 (BBH), and consequently Theorem 2

cannot provide an exact E-optimal solution. However, the greedy algorithm identifies one of the

two (identified through exhaustive search) true optimal integer allocations. A quick note on our

greedy algorithm is that, due to the nature of the algorithm in Figures 3 and 4 of Supplementary

Material D, ties are broken deterministically using minimum index when the greedy step returns

more than one solution. Thus, our greedy solutions will always achieve the same solution for a

given set of inputs without regard for the plurality of solutions (such as the ones in the fourth and

fifth setting above).

A similar exploration performed for the D-optimal allocation (shown in Supplementary Mate-

rial C) provides evidence that the greedy algorithm can identify the true optimal integer solution

when it is unique, and one of the true optimal solutions when multiple optimal integer solutions

exist.
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S.No. Case
Block
Size
(Mh)

Variances (S2

h,j)
Exhaustive search
E-optimal solution

Greedy solution

1.
Equal blocks with equal
variances

[

40
40

] [

1 1 1 1
1 1 1 1

] [

10 10 10 10
10 10 10 10

] [

10 10 10 10
10 10 10 10

]

2.
Equal blocks with equal
variances for all treatments
within block

[

40
40

] [

4 4 4 4
1 1 1 1

] [

10 10 10 10
10 10 10 10

] [

10 10 10 10
10 10 10 10

]

3.
Unequal blocks with equal
variances across blocks for
each treatment

[

40
20

] [

1 2 3 4
1 2 3 4

] [

4 8 12 16
2 4 6 8

] [

4 8 12 16
2 4 6 8

]

4.
Unequal blocks with equal
variances but exact solution
is non-integer

[

40
20

] [

1 2 3 5
1 2 3 5

]





























[

4 8 11 17
2 3 5 10

]

[

4 7 11 18
2 4 5 9

]

[

3 8 11 18
3 3 5 9

]

[

3 7 11 19
3 4 5 8

]





























[

4 7 11 18
2 4 5 9

]

5.
Equal blocks with unequal
variances

[

40
40

] [

1 2 3 4
4 3 2 1

]









[

6 10 11 13
13 11 10 6

]

[

6 9 12 13
13 12 9 6

]









[

6 9 12 13
13 12 9 6

]

Table 2: Summary of Greedy algorithm solutions for E-optimality for H = 2,K = 2

5. Optimal allocation driven by cost constraints

So far, we have considered optimality criteria that are based on the covariance matrix of the esti-

mated factorial effects, implicitly assuming that all treatment combinations are equally expensive

(with respect to cost and/or time). However, such assumptions may not be true in many practical

situations and cost constraints can play an important role in determining optimal allocation. Thus

it is worthwhile to explore solutions to optimal allocation under cost constraints.

We consider the optimal allocation for 2K factorial CRDs. Let the cost of assigning treatment

combination j to one unit be Cj > 0, and the total available budget be C. In the new optimization

problem, we replace the constraint
∑

j Nj = N in the original problem described in Section 3.1 by

the cost constraint
∑

j CjNj ≤ C. The new optimization problem is therefore:

min
Nj

ψ
(
Ṽ
)
subject to

∑

j

CjNj ≤ C, (10)
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where Ṽ =
∑J

j=1

S2

j

Nj
λ̃jλ̃j

T
and ψ(Ṽ) is a functional of Ṽ. A straightforward approach to incor-

porate this new constraint into our previous setting is to re-write the constraint as
∑

j Ñj ≤ C

where Ñj = NjCj is the total cost for the suggested allocation to treatment arm j. Under this

one-to-one transformation Ñj = CjNj, the optimization problem in (10) is equivalent to minimizing

the objective function over Ñj (Boyd and Vandenberghe 2004), and can be written as:

min
Ñj

ψ
(
Ṽ
)

= min
Ñj

ψ




J∑

j=1

S2
j

Nj
λ̃jλ̃j

T


 = min

Ñj

ψ




J∑

j=1

S2
j

Ñj/Cj

λ̃jλ̃j

T


 ,

subject to
∑

j

Ñj ≤ C.

Because the optimal solution of the above optimization problem is attained at
∑

j Ñj = C, the

inequality constraint can be replaced by the equality constraint. Then, proceeding along the lines of

Theorem 1, one can obtain the cost for the optimal allocation to treatment arm j as Ñj ∝ Sj

√
(Cj),

Ñj = C/J and Ñj ∝ S2
jCj as the A-, D- and E- optimal solutions. These results are formalized in

terms of the optimal proportion of the budget allocated to each treatment arm, which can be used

to determine the number of units to assign to each treatment arm, in the theorem below.

Theorem 3. Let C be total budget for the whole experiment and the cost of allocating one

experimental unit to treatment j be Cj > 0. Let πj = CjNj/C denote the proportion of the total

budget assigned to treatment j with
∑

j πj ≤ 1. Then, the

(a) A-optimal cost-based allocation to the J treatment groups on the basis of covariance matrix

Ṽ is πj = (Sj

√
Cj)/(

∑
j Sj

√
Cj).

(b) D-optimal cost-based allocation to the J treatment groups on the basis of covariance matrix

Ṽ is πj = 1/J .

(c) E-optimal cost-based allocation to the J treatment groups on the basis of covariance matrix

Ṽ is πj = (S2
jCj)/(

∑
j S

2
jCj).

Remark 6. Theorem 3 can be extended to the case of block designs along the lines of Theorem 2.

Remark 7. If for j = 1, . . . , J , the costs Cj in Theorem 3 are the same and equal to C0, then the

constraint
∑

j CjNj ≤ C reduces to
∑

j Nj ≤ N where N = C/C0. Also, πj = C0Nj/C ≡ pj . Thus
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the optimization problem becomes the same as the one in Theorem 1, making it a special case of

Theorem 3.

We use an example to demonstrate the applicability of Theorem 3. Consider a 22 factorial

design, with C = 100, per unit cost vector (C1, . . . , C4) = (0.1, 4, 4, 9). This set up represents many

common scenarios where treatment arm 1 represents the control group 00 and involves a per-unit

cost that is negligible compared to the ones with at least one active treatment. On the other

hand, treatment arm 4 has both treatments at active level and involves the highest cost. Table 3

shows the A-, D- and E- optimal proportions of total cost πj’s for two different vectors of variances

(S2
1 , . . . , S

2
4). In one setting, we take the vector as (1, 1, 1, 1) and in another, set it to (1, 2, 3, 4).

For the sake of completeness, we also add a column of equal cost (1, 1, 1, 1), under which the pj’s of

Theorem 1 and πj ’s of Theorem 3 become identical, as explained in Remark 7. Thus, the optimal

allocations in the first column of Table 3 can also be derived from Theorem 1 with N = C = 100.

Table 3: Optimal πj’s under cost constraints obtained from Theorem 3

Variance Type of Cost vector (C1, . . . , C4)
Vector Optimality (1, 1, 1, 1) (0.1, 4, 4, 9)

A (0.250,0.250,0.250,0.250) (0.043,0.273,0.273,0.410)
(1,1,1,1) D (0.250,0.250,0.250,0.250) (0.250,0.250,0.250,0.250)

E (0.250,0.250,0.250,0.250) (0.006,0.234,0.234,0.526)

A (0.163,0.230,0.282,0.325) (0.025,0.224.0.275,0.476)
(1,2,3,4) D (0.250,0.250,0.250,0.250) (0.250,0.250,0.250,0.250)

E (0.100,0.200,0.300,0.400) (0.002,0.143,0.214,0.642)

One can obtain the number of units Nj ’s the A-, D- and E-optimal allocations of Nj’s by

substituting the optimal πjs from Theorem 3 into Nj = (Cπj)/Cj . However, rounding these

optimal Nj’s into nearest integers may lead to violation of the constraint
∑

j CjNj ≤ C. To

avoid such possibilities, one can consider the optimal values of ⌊(Cπj)/Cj⌋ as approximate integer

solutions, where ⌊x⌋ denotes the largest integer contained in x.

Researchers may decide to impose an additional constraint on the optimization problem (11)

that forces the sum of Nj’s to be exactly equal to a predetermined N . Such a problem would give

optimal allocation under fixed N , unlike Theorem 3. However, imposing this additional constraint

may force the set of feasible solutions to the optimization problem to be empty. For example,

suppose for all j, Cj > C/N . Then,
∑

j CjNj >
∑

j(C/N)Nj , which exceeds the allowable cost C

if the restriction
∑

j Nj = N is imposed. Thus, additional conditions are necessary to guarantee
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that the feasible set is non-empty. Obtaining closed-form solutions under such conditions may not

be straightforward and one may need to rely on numerical methods to obtain such solutions.

6. Applications in real experiments

In this section, we demonstrate applications of the results and algorithms developed to two real-

life experiments. First, we re-visit the education example from Angrist et al. (2009) described in

Section 1. Second, we discuss a pilot audit experiment reported in Libgober (2020) conducted to

identify how perceptions of race, gender and affluence affect access to lawyers, and demonstrate

how the proposed methodology can be used to design follow-up experiments in similar populations.

6.1. Education experiment

In the experiment described in Angrist et al. (2009), the authors use a CRD to allocate the N =

1656 units to the 22 treatments. Theorem 1 can directly inform us of the optimal allocation without

costs, but there is more structure that we can exploit. For instance, there are potentially two blocks

of experimental units or subjects representing female (block 1) and male (block 2) students, with

block sizes M1 = 948 and M2 = 708, which can be used to improve their design. Theorem 2 will

give us the optimal designs in this case.

Assuming that there is no prior information about the variances of potential outcomes (GPAs

after year 1), we assume that the variances are equal within and across blocks (Conditions 3 and 4).

Then, optimal allocations under both CRD and RBD, from Theorem 1 and Theorem 2 respectively,

are shown in Tables 4 and 5.

Table 4: A-, D- & E-optimal allocations under CRD assuming Condition 1

Treatment combination
00 01 10 11

N= 1656 414 414 414 414

Table 5: A-, D- & E-optimal allocations under RBD assuming Conditions 3 & 4

Block Treatment combination
Block size 00 01 10 11
1 M1 = 948 237 237 237 237
2 M2 = 708 177 177 177 177
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Now let us consider a hypothetical situation where the number of units N is not prespecified,

but there is a budget constraint that depends on the costs associated with the four treatment

combinations in this experiment. The treatment combinations 01 (SFP but not SSP) and 10 (SSP

but not SFP), each involve cost associated with one of two programs. Angrist et al. (2009) report

about $5,000 for individual students that were allocated to treatment 10 (SSP). Per unit cost for

treatment combination 01(SFP) is not mentioned but if we assume a similar cost as with SSP, then,

we can infer that the cost to allocate a student to the treatment combination 11 (SFSP) would be

the sum total of the individual costs ($10,000). The control, representing the treatment combination

00, is possibly the cheapest to allocate units to, because it would involve only administrative cost,

which we assume to be $500. Then under the original allocation (1106, 250, 250, 150) in the actual

experiment as shown in Table 1, the cost of the experiment would be approximately $4.5 million.

Assuming this amount to be our budget constraint C, the A-, D- and E-optimal allocations for two

different variance vectors obtained from Theorem 3 are shown in Table 6. The first row shows the

allocation of the proportions πj’s of the total budget to the four treatment arms, and the second

shows the corresponding approximate integer solution for Nj as ⌊Cπj/Cj⌋.

Table 6: Optimal allocations (πj and Nj = ⌊Cπj/Cj⌋) with cost vector (500,5000,5000,10000) and
total budget of C = $4.5 million

Variance vector Type of Treatment combination
(S2

1
, . . . , S2

4
) Optimality 00 01 10 11

A πj 0.085 0.268 0.268 0.379
Nj 762 241 241 170

(1,1,1,1) D πj 0.25 0.25 0.25 0.25
Nj 2250 225 225 112

E πj 0.024 0.244 0.244 0.488
Nj 219 219 219 219

A πj 0.062 0.275 0.275 0.389
Nj 553 247 247 174

(1,2,2,2) D πj 0.25 0.25 0.25 0.25
Nj 2250 225 225 112

E πj 0.012 0.245 0.245 0.494
Nj 111 222 222 222

6.2. Audit experiment

Libgober (2020) reported an audit study in which the experimental units were 96 lawyers ran-

domly selected from lawyers in California with a certification in criminal law. Each lawyer in the
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experiment received an email about a routine ‘driving under influence’ (DUI) case (a very com-

mon criminal matter). The email template suggested that the person sending the email was (i)

either white or black (with a racially distinctive name being used to influence perceived race), (ii)

either female or male (again cued via the email sender’s name), and (iii) either relatively affluent

or relatively lower-income description of client’s earnings. Thus, this experiment had a 23 factorial

structure. The response was recorded as a binary outcome taking value 1 if there was a response to

the email and 0 otherwise. The experiment was replicated with 96 additional lawyers after a certain

period of time. The estimated variances s2j for j = 1, . . . , 8 treatment groups for the individual

replicates and their pooled values are shown in Table 7.

Table 7: Estimated variances for different treatment groups

Experiment 000 001 010 011 100 101 110 111
Replicate I 0.15 0.15 0.15 0.20 0.27 0.15 0.27 0.27
Replicate II 0.27 0.24 0.20 0.20 0.20 0.27 0.27 0.15

Pooled 0.21 0.20 0.18 0.20 0.23 0.21 0.27 0.21

If another completely randomized experiment is planned with lawyers selected from a similar

pool with a sample size of 192, then based on the pooled estimated variances shown in Table 7, we

can apply Theorem 1 to obtain the optimal designs given in Table 8.

Table 8: Optimal allocations for future CRD

Optimality 000 001 010 011 100 101 110 111
A 24 23 22 23 25 24 27 24
D 24 24 24 24 24 24 24 24
E 24 22 20 22 26 24 30 24

Now assume for illustration that (contrary to fact) instead of two replicates, the original ex-

periment was conducted in two blocks, each block representing one type of lawyer (e.g., criminal

and divorce), and suppose we want to obtain optimal allocations within each block for a future

experiment. Further suppose that the variance estimates in row j of Table 7 represent estimates of

the variances S2
h,j in block j = 1, 2 and block 2 respectively. Then, we can directly use part (a) of

Theorem 2 to derive the A-optimal design. However, neither WBH or BBH appear to hold, and we

cannot apply parts (b) and (c) of Theorem 2. Conveniently, we can obtain the D- and E-optimal

designs using the greedy search algorithm proposed in Section 4.2.
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Table 9: Optimal allocations for future RBD

Optimality Block 000 001 010 011 100 101 110 111
A I 11 11 10 12 14 10 14 14

II 13 13 12 11 11 13 13 10
D I 11 11 12 13 13 10 12 14

II 13 13 13 12 11 13 11 10
E I 10 10 10 12 15 10 16 13

II 13 12 10 11 12 13 15 10

7. Discussion

In this paper, we consider optimal allocations of a finite population of experimental units to different

treatment combinations of a 2K factorial experiment under the potential outcomes model. Rather

than invoking the standard assumption in the mainstream optimal design literature that outcome

data comes from a known family of distributions, our work revolves around randomization-based

causal inference for the finite-population setting. We find that for 2K factorial designs with a

completely randomized treatment assignment mechanism, D-optimal solutions are always balanced

designs, while A- and E-optimal solutions are proportional to finite-population standard deviations

and finite-population variances of the treatment groups, respectively. For blocked designs, our

solution does not admit a closed form for D- or E-optimality without imposing specific restrictions

on the potential outcomes, but the A-optimal allocation is equivalent to finding the A-optimal

solution within each block. Convenient integer-constrained programming solutions using a greedy

optimization approach to find integer optimal allocation solutions for both complete and block

randomization are proposed. Optimal allocations are also derived under cost constraints.

While there is a large literature on model-based optimal designs, to the best of our knowledge,

such designs have had very limited development for randomization-based inference for finite pop-

ulations. The ideas explored and results developed in this paper exploit the connection between

finite-population sampling and experimental design. This recondite connection has recently been

emphasized, explored, and utilized in various contexts by several researchers in causal inference, as

discussed in Mukerjee et al. (2018). This article attempts to further strengthen the bridge between

finite-population survey sampling and experimental design by utilizing ideas from proportional and

optimal allocation for stratified sampling in the context of optimal designs. While the optimal so-

lutions are derived for a finite-population setting, they are readily applicable to a super-population
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setting without making any assumptions about the probability distribution of the outcome variable.

A question that practitioners may ask is, which optimal design should be chosen for a given

experiment? The answer would depend on the research goal of the experimenter. As our results have

shown, strong assumptions like strict additivity lead to equivalence of A-, D- and E- optimal designs.

However, under treatment effect heterogeneity, different criteria will lead to different allocations.

Both A- and D-optimality criteria are associated with quality of estimated causal effects - whereas

A-optimality minimizes the average variance of estimators, the D-optimality criterion minimizes

the volume of the confidence ellipsoid around the parameters. Some researchers (e.g., Jones et al.

2021) have argued that in model-based settings, A-optimal designs exhibit better performance than

D-optimal designs when the objective is screening of active effects from inactive ones. On the other

hand, when the goal is to draw the most precise inference on the vector of estimated causal effects,

D-optimal design may be a better choice. The goal of the E-optimal design is to minimize the

maximum variance of all possible normalized linear combinations of estimated treatment effects.

Thus the E-optimal design is useful when a large number of linear combinations of factorial effects

are of interest. The E-optimal allocation, being a minimax strategy, is likely to provide a more

conservative solution to the inference problem, but as shown by some researchers (e.g., Wong 1994)

in other contexts, the E-optimal solution may be less sensitive to incorrect prior information or

assumptions about potential outcomes in comparison to A- and D-optimal designs. However, more

investigation is required along these lines in the randomization-based setting.

The work presented in this paper can be extended in several directions. One limitation of

the proposed approach lies is the fact that the correlation among the potential outcomes under

different treatment combinations is unidentifiable from the data, forcing us to ignore one term

in the covariance matrix of estimated factorial effects while formulating the optimization prob-

lem. Basse and Airoldi (2018) proposed a model-based approach to overcome this problem in

two-armed experiments, in which information on the correlation among the outcomes is available

pre-intervention. Such an idea may be extended to the setting of factorial experiments.

Also, a natural extension of the randomization-based framework of causal inference is the

Bayesian framework, in which the potential outcomes are assumed to follow a hierarchical proba-

bilistic model containing hyperparameters with assumed prior distributions. The Bayesian frame-

work proposed in Dasgupta et al. (2015) for drawing both super-population and finite-population
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causal inference from 2K factorial designs can be utilized to obtain Bayesian optimal deigns ac-

cording to different criteria proposed in literature (e.g., Chaloner and Verdinelli 1995).

Another setting that has gained a lot of attention in recent times is when SUTVA is violated,

for example, in the presence of interference between units. Extending the proposed results to such

settings is a challenging, yet rewarding problem.

Finally, in certain situations, it is possible that instead of the traditional factorial effects defined

by (3), the experimenter is interested in other contrasts of the treatment means or more general

factorial effects. One such natural choice of contrast is one that compares the outcome of the control

group with the average of all other groups that have at least one treatment. Optimal allocations

under such a reformulated optimization problem would be an interesting problem to study.
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Supplementary Material

for

“Optimal allocation of sample size for randomization-based

inference from 2K factorial designs”

Supplementary Material A Proof of results

Proof of Theorem 1:

We first state and prove a lemma about the matrix Ṽ .

Lemma 1. The matrix Ṽ has J non-zero eigenvalues J(S2
1/N1), . . . , J(S

2
J/NJ ).

Proof: Note that Ṽ can be written as
(√

J
−1

LT
)
(JA)

(√
J
−1

L
)
. Because the rows of

√
(J)−1L

form an orthonormal basis of vectors in R
J , the above expression is a spectral decomposition of Ṽ .

Thus, the eigenvalues of Ṽ are its diagonal elements J(S2
1/N1), . . . , J(S

2
J/NJ ).

Now we prove the three parts of Theorem 1.

Part (a): Because the trace of a matrix is the sum of its eigenvalues, from Lemma 1, it follows that

tr(Ṽ ) = J
∑J

j=1(S
2
j /Nj). The problem of minimizing tr(Ṽ ) can be expressed as:

minimize
J∑

j=1

(S2
j /Nj) subject to

J∑

j=1

Nj = N

This constrained optimization problem can be obtained using the method of Lagrange multi-

pliers, by solving

min




J∑

j=1

S2
j /Nj + λ




J∑

j=1

Nj −N




 ,

where λ is a Lagrangian multiplier. Taking partial derivative of the objective function with respect

to Nj and setting it to zero, we get −S2
j /N

2
j + λ = 0, which implies Nj = Sj/

√
λ. Solving for the

constraint
∑J

j=1Nj = N , we get,

√
λ =

∑J
j=1 Sj

N
⇒ Nj = Sj

(
N

∑J
j=1 Sj

)
⇒ pj ∝ Sj.

1



Part (b): Because the determinant of a matrix is the product of the eigenvalues, from Lemma 1, we

have |Ṽ | = JJ
∏J

j=1(S
2
j /Nj). The problem of minimizing the determinant can thus be equivalently

expressed as

minimize

J∑

j=1

log(S2
j /Nj) subject to

J∑

j=1

Nj = N.

Taking partial derivative of the objective function with respect to Nj and setting it to zero, we get

−(S2
j /N

2
j )(Nj/S

2
j ) + λ = −1/Nj + λ = 0. It is straightforward to see that the optimal solution is

Nj = N/J or equivalently pj = 1/J for j = 1, . . . , J .

Part (c): Let (ND
1 , . . . , ND

J ) denote the allocation vector of a design D . Also, let the J eigenvalues

of Ṽ for design D be νD1 , . . . , νDJ , and νD(1) ≤ . . . ≤ νD(J) denote the ordered eigenvalues. We will

show that the design D∗ in which ND∗

j = (NS2
j )/

(∑J
j=1 S

2
j

)
for j = 1, . . . , J is the E-optimal

design. From Lemma 1, design D∗ can be characterized as a design in which all eigenvalues

are equal to J
(∑J

j=1 S
2
j

)
/N = νD

∗

. Recall the definition of E-optimality of minimizing the

maximum eigenvalue of the design matrix. Thus, it suffices to show that any design in which all

eigenvalues of Ṽ are not equal cannot be E-optimal because the solution D∗ with all eigenvalues

equal to J
(∑J

j=1 S
2
j

)
/N is the only solution with all eigenvalues equal in the feasible space of the

optimization problem.

We will proceed by proof by contradiction. Assume that a design D̃ for which all eigenvalues

of Ṽ are not equal is E-optimal, i.e.,

νD̃(J) ≤ νD(J), (11)

for any design D.

Let M denote the set of m ≥ 1 equal maximum eigenvalues of Ṽ for design D̃ (m = 1 indicate

a unique maximum and because not all eigenvalues are equal we must have m < J). Then for any

j1 ∈ M and any j2 /∈ M, νD̃j1 > νD̃j2 . Construct a new design D′ by perturbing only the allocations

2



for all treatments j1 ∈ M and one specific j2 /∈ M as follows:

ND′

j1
= S2

j1

∑
j∈MN D̃

j +N D̃
j2∑

j∈M S2
j + S2

j2

for all j1 ∈ M

ND′

j2
= S2

j2

∑
j∈MN D̃

j +N D̃
j2∑

j∈M S2
j + S2

j2

ND′

j = N D̃
j , for j /∈ M∪ {j2}.

Using Lemma 1, after a little algebra, it follows that νD̃j1 > νD
′

j1
= νD

′

j2
> νD̃j2 for all j1 ∈ M.

Also, for all j /∈ M∪ {j2}, νD̃j1 > νD̃j = νD
′

j . Consequently νD̃(J) > νD
′

(J), and contradicts (11).

Proof of Theorem 2:

We need the following lemma regarding the eigenvalues of the covariance matrix Ṽblk defined

in (9) under a blocked design:

Lemma 2. The matrix Ṽblk has J non-zero eigenvalues JS2
blk,1, . . . , JS

2
blk,J .

Proof: Along the same lines as Lemma 1, note that Ṽblk can written as
(√

J
−1

LT
)
(JAblk)

(√
J
−1

L
)
.

Because the rows of
√

(J)−1L forms an orthonormal basis of vectors in R
J , the above expres-

sion is a spectral decomposition of Ṽblk. Thus, the eigenvalues of Ṽblk are its diagonal elements

JS2
blk,1, . . . , JS

2
blk,J .

Now we prove the three parts of the main theorem.

Part (a): We can proceed very similarly to the proof of Theorem 1(a). Because the trace of a

matrix is the sum of its eigenvalues, using Lemma 2, tr(Ṽblk) = J
∑J

j=1 S
2
blk,j . The problem of

minimizing tr(Ṽblk) can be expressed as

minimize
J∑

j=1

S2
blk,j subject to

J∑

j=1

Mh,j = Mh for h = 1, . . . ,H.

We can again solve this using the method of Lagrange multipliers,

min




J∑

j=1

S2
blk,j +

H∑

h=1

λh




J∑

j=1

Mh,j −Mh




 = min




J∑

j=1

H∑

h=1

M2
h

N2

S2
h,j

Mh,j

+

H∑

h=1

λh




J∑

j=1

Mh,j −Mh




 ,

3



where λh are Lagrangian multipliers. Taking partial derivative of the objective function with respect

to Mh,j and setting it to zero, we get −M2

h

N2

S2

h,j

M2

h,j

+ λh = 0, which implies

Mh,j =
Mh

N

Sh,j√
λh

.

Solving for the constraint
∑J

j=1Mh,j = Mh, we get,

√
λh =

∑J
j=1 Sh,j

N
⇒ Mh,j = Mh

Sh,j∑J
j=1 Sh,j

⇒ ph,j =
Sh,j∑J
j=1 Sh,j

.

Part (b): Because the determinant of a matrix is the product of the eigenvalues, from Lemma 2,

we have

|Ṽ | = JJ
J∏

j=1

S2
blk,j .

The problem of minimizing the determinant can thus be equivalently expressed as

minimize
J∑

j=1

log(S2
blk,j) subject to

J∑

j=1

Mh,j = Mh .

To prove the special cases, we use the Lagrangian multiplier based optimization approach as in

(a). So, we need to solve

min




J∑

j=1

log(S2
blk,j) +

H∑

h=1

λh




J∑

j=1

Mh,j −Mh






= min




J∑

j=1

log

(
H∑

h=1

M2
h

N2

S2
h,j

Mh,j

)
+

H∑

h=1

λh




J∑

j=1

Mh,j −Mh




 ,

where λh are Lagrangian multipliers.

Taking the derivative with respect to Mh,j and setting equal to 0, we have

0 = −M2
h

S2
h,j

M2
h,j

(
H∑

k=1

M2
k

S2
k,j

Mk,j

)−1

+ λh . (12)

Under special case (i), WBH: variances of potential outcomes are the same within

4



each block (such that S2
h,j = S2

h,· for all j = 1, . . . , J).

Substitution of S2
h,j = S2

h,· into (12) yields

0 = −M2
h

S2
h,·

M2
h,j

(
H∑

k=1

M2
k

S2
k,j

Mk,j

)−1

+ λh.

After a little algebra, we get

Mh,j = Mh

Sh,·√
λh

cj where cj =

√√√√
(

H∑

k=1

M2
k

S2
k,·

Mk,j

)−1

(13)

Now, summing over j in (13) and applying the second constraint
∑J

j=1Mh,j = Mh we have:

Mh =

J∑

j=1

Mh,j =

J∑

j=1

Mh

Sh,·√
λh

cj =
Sh,·Mh√

λh

J∑

j=1

cj

⇒ Sh,·√
λh

=




J∑

j=1

cj




−1

(14)

Thus, substituting (14) in (13),

Mh,j = Mh

cj∑J
j=1 cj

= Mhδj where δj =
cj∑J
j=1 cj

.

Substituting this back into definition of cj in (13) gives us,

cj =

√√√√
(

H∑

k=1

M2
k

S2
k,·

Mkδj

)−1

=

√√√√
(

H∑

k=1

Mk

S2
k,·

δj

)−1

=
√

δj

√√√√
(

H∑

k=1

MkS
2
k,·

)−1

=
√

δjα where α =

√√√√
(

H∑

k=1

MkS
2
k,·

)−1

is a constant

=

√
cj√∑J
j=1 cj

α

=⇒ cj =
α2

∑J
j=1 cj

= β, a constant free of j.

Thus, δj = cj/
∑

j cj = 1/J and Mh,j = Mh/J and ph,j = 1/J .

5



Under special case (ii), BBH: variances are the same across blocks for each treatment

(such that S2
h,j = S2

·,j for all h = 1, . . . ,H).

Substituting S2
h,j = S2

·,j in (12), we get,

0 = − M2
h

M2
h,j

(
H∑

k=1

M2
k

Mk,j

)−1

+ λh

=⇒ Mh,j =
Mh√
λh

√√√√
(

H∑

k=1

M2
k

Mk,j

)−1

=
Mh√
λh

cj where cj =

√√√√
(

H∑

k=1

M2
k

Mk,j

)−1

(15)

Now, summing over j and applying the second constraint
∑J

j=1Mh,j yields:

Mh =

J∑

j=1

Mh,j =

J∑

j=1

Mh√
λh

cj =
Mh√
λh

J∑

j=1

cj

=⇒ Mh√
λh

=
Mh∑J
j=1 cj

.

Proceeding similarly as in the proof of the previous part, we can show that δj = cj/(
∑J

j=1 cj) =

1/J for all j = 1, . . . , J and hence Mh,j = Mh/J and ph,j = 1/J .

Part (c): Recall from Section 4, S2
blk,j =

∑H
h=1(Mh/N)2(S2

h,j/Mh,j).

We need the following lemmas to prove the theorem.

Lemma 3. For any r > 0 and J > 1, δj > −r such that
∑J

j=1 δj = 0 and δj 6= 0 ∀j = 1, 2, . . . , J ,

∑

j

(
1

r + δj
− 1

r

)
> 0

Proof. Let j∗ = argminδj>0 δj. Then,

• when δj > 0 and j 6= j∗, (r+ δ∗j ) < (r+ δj) =⇒ 1/(r+ δ∗j ) > 1/(r+ δj) =⇒ −δj/(r+ δ∗j ) <

−δj/(r + δj)

• when δj < 0, (r+δ∗j ) > (r+δj) =⇒ 1/(r+δ∗j ) < 1/(r+δj) =⇒ −δj/(r+δ∗j ) < −δj/(r+δj)

• when δj = 0, −δj/(r + δ∗j ) = −δj/(r + δj)

• when j = j∗, −δj/(r + δ∗j ) = −δj/(r + δj)

6



Thus, it holds that,

∑

j

−δj
r + δj

>
∑

j

−δj
r + δj∗

Then,

∑

j

(
1

r + δj
− 1

r

)
=

∑

j

−δj
r(r + δj)

>
∑

j

−δj
r(r + δj∗)

=
−∑

j δj

r(r +maxj δj∗)
= 0

Lemma 4. Given integers Mh for h = 1, . . . ,H, let Mh,j denote any allocation of Mh into J > 1

groups such that
∑

j Mh,j = Mh. Let ah > 0, for h ∈ {1, . . . ,H}, be fixed. Then,

max
j

H∑

h=1

ah
Mh,j

≥
∑

h

ah

(Mh

J
)
.

That is, the allocation that minimizes maxj
∑H

h=1 ah/Mh,j is Mh,j = Mh/J .

Proof. For each h = 1, . . . ,H, using an argument similar to the one in the proof of Theorem 1, we

can write for h = 1, . . . ,H,

max
j

ah
Mh,j

≥ ah
Mh

J

Suppose there exists an allocation M̃h,j = Mh/J + δhj that maximizes maxj
∑H

h=1 ah/Mh,j ,

where for each h, ∃j such that δhj 6= 0. Then,
∑J

j=1 M̃h,j = Mh =⇒ ∑J
j=1 δ

h
j = 0 ∀h = 1, . . . ,H.

7



Further, by our assumption on M̃h,j,

max
j

H∑

h=1

ah

M̃h,j

≤
H∑

h=1

ah
Mh

J

⇐⇒ max
j

H∑

h=1

(
ah

M̃h,j

− ah
Mh

J

)
≤ 0 ⇐⇒ max

j

H∑

h=1

(
ah

(Mh

J
+ δhj )

− ah
Mh

J

)
≤ 0

⇐⇒ max
j

H∑

h=1

ǫhj ≤ 0 (where ǫhj =
ah

(Mh

J
+ δhj )

− ah
Mh

J

)

⇐⇒
H∑

h=1

ǫhj ≤ 0 ∀j

=⇒
J∑

j=1

H∑

h=1

ǫhj ≤ 0

⇐⇒
H∑

h=1

ah

J∑

j=1

(
1

(Mh

J
+ δhj )

− 1
Mh

J

)
≤ 0

which is a contradiction by taking r = Mh/J and δj = δhj for each h in Lemma 3.

Thus, we have that,

max
j

∑

h

ah
Mh,j

≥
∑

h

ah
Mh

J

Under special case, WBH: variances of potential outcomes are the same within each

block (such that S2
h,j = S2

h,· for all j = 1, . . . , J).

We have, S2
blk,j =

∑H
h=1(Mh/N)2(S2

h,./Mh,j). We can rewrite this equation as S2
blk,j =

∑H
h=1 ah/Mh,j

where ah = (Mh/N)2S2
h,. does not depend on j.

By Lemma 4, we get maxj
∑H

h=1 ah/Mh,j ≥ J
∑

h ah/Mh.

We immediately see that for M∗
h,j = Mh/J , the left hand side of the inequality attains the lower

bound, which is minimax. Hence, p∗h,j = 1/J for each treatment j within block h, a balanced design

within each block.

Supplementary Material B Conditions for Greedy Algorithm from Friedrich et al.

(2015)

Theorem 3.2 of Friedrich et al. (2015) have the following conditions to be satisfied for global con-

vergence of the greedy algorithm to the true optimum. We restate the theorem here for reference.

8



Theorem 3.2 (Friedrich et al. (2015)). The globally optimal integer solution of the problem

min
(N1,...,NJ )

{
f(N1, . . . , NJ)

∣∣∣∣ Nj ≥ 0 ∀j,
∑

j∈A

Nj ≤ ϕ(A) ∀A ⊂ E

}
,

is found by a Greedy algorithm if

1. E is a finite set,

2. ϕ : 2E → Z+ is submodular, monotone and satisfies ϕ(φ) = 0,

3. f : RE
+ → R is separable and convex with continuous components.

In the case of a CRD, we can identify the following in the theorem above:

• E = {1, 2, ..J} (finite)

• A ∈ {{∅}, {1}, ..., {J}, {1, 2}, .., {1, ..., J}} = 2E

• ϕ(A) = min(
∑

j∈A(uj − lj), N −∑
j∈E lj)

• f(N1, . . . , NJ) defined as in Section 3,
∑

j S
2
j /Nj for A-optimality and

∑
j log(S

2
j /Nj) for

D-optimality respectively (separable and convex) and each continuous in their individual

components, i.e., fj(Nj) are continuous inNj (1/x and log(1/x) is continuous in x for x ∈ R
E
+).

Condition 1 is already satisfied as noted above. Condition 3 is straightforward since all our real-

valued objective functions are convex and finite-dimensional and hence separable. Thus, it suffices

to show that Condition 2 above in Theorem 3.2 is satisfied in our case for the submodular set

function ϕ(.). Again, we give the definition of a submodular function as in Friedrich et al. (2015).

Definition (Submodular function). ϕ : 2E → Z+ is submodular if

ϕ(X ∩ Y ) + ϕ(X ∪ Y ) ≤ ϕ(X) + ϕ(Y ), ∀X,Y ⊂ E

Thus, in the case of a CRD, take A to be defined as above, then g(A) =
∑

j∈A(uj − lj),

h(A) = N−∑
j∈A lj as corresponding set functions for the following argument. Linear set functions

are always submodular as can be quickly shown: g(X ∪ Y ) =
∑

j∈X(uj − lj) +
∑

j∈Y (uj − lj) −

9



∑
j∈X∩Y (uj − lj) = g(X) + g(Y )− g(X ∩ Y ). Similarly for h, h(X ∪ Y ) = (N −∑

j∈X uj) + (N −
∑

j∈Y uj)−(N−∑
j∈X∩Y uj) = h(X)+h(Y )−h(X∩Y ). Submodularity of our φ(.) function follows

directly from Friedrich et al. (2015) as min(g, h) is submodular if g, h are submodular and g − h

is monotone. g is submodular and monotone (defined as ∀T, S ⊂ E, s.t. T ⊂ S ⇒ f(T ) ≤ f(S))

because uj−lj > 0, ∀j ∈ J . And, h is submodular. Finally, (g−h)(A) =
∑

j∈A uj−N is monotone

since g − h is linear in A.

Supplementary Material C Empirical evidence of greedy algorithm for D-optimality

in RBD

Following from Section 4, we show the performance of the greedy algorithms for finding D-optimal

solutions empirically.

Five different settings of 22 factorial designs in two blocks, each corresponding to a specific type

of potential outcome matrix, are considered. Each setting is defined by the block sizes M1 and M2,

and the 4× 2 matrix of variances S2
h,j as shown in columns 3 and 4 of Table 10, respectively.

The first setting considers blocks of equal sizes with potential outcomes satisfying Condition 2

(strict additivity), leading to a D-optimal design that is balanced within each block as per Re-

mark 4. The second setting considers equal block sizes with potential outcomes satisfying Condi-

tion 3 (WBH). The third setting considers unequal block sizes with potential outcomes satisfying

Condition 4 (BBH) but not Condition 3 (WBH). Note that, in the above cases, the exact solution

as given by Theorem 2 is indeed an integer solution, due to the choice of Mh and J . The fourth

setting is similar to the third case above, but is one where Theorem 2 provides an exact solution

that is not an integer solution. An exhaustive search leads to identification of six different alloca-

tions, each of which is optimal. In this case, the greedy algorithm identifies one of these solutions.

The fifth setting satisfies neither Condition 3 (WBH) nor Condition 4 (BBH), and consequently

Theorem 2 cannot provide an exact D-optimal solution. However, the greedy algorithm identifies

the true optimal integer allocation (where truth is identified through exhaustive search).
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S.No. Case
Block
Size
(Mh)

Variances (S2

h,j)
Exhaustive search
E-optimal solution

Greedy solution

1.
Equal blocks with equal
variances

[

40
40

] [

1 1 1 1
1 1 1 1

] [

10 10 10 10
10 10 10 10

] [

10 10 10 10
10 10 10 10

]

2.
Equal blocks with equal
variances for all treatments
within block

[

40
40

] [

4 4 4 4
1 1 1 1

] [

10 10 10 10
10 10 10 10

] [

10 10 10 10
10 10 10 10

]

3.
Unequal blocks with equal
variances across blocks for
each treatment

[

40
20

] [

1 2 3 4
1 2 3 4

] [

10 10 10 10
5 5 5 5

] [

10 10 10 10
5 5 5 5

]

4.
Unequal blocks with equal
variances but exact solution
is non-integer

[

40
20

] [

1 2 3 5
1 2 3 5

]

















































[

10 10 10 10
8 8 7 7

]

[

10 10 10 10
8 7 8 7

]

[

10 10 10 10
7 8 8 7

]

[

10 10 10 10
8 7 7 8

]

[

10 10 10 10
7 8 7 8

]

[

10 10 10 10
7 7 8 8

]

















































[

10 10 10 10
8 7 8 7

]

5.
Equal blocks with unequal
variances

[

40
20

] [

1 2 3 4
4 3 2 1

] [

7 10 11 12
7 6 4 3

] [

7 10 11 12
7 6 4 3

]

Table 10: Summary of Greedy algorithm solutions for D-optimality for H = 2,K = 2

Supplementary Material D Greedy Algorithm for RBD

Using the methods in Section 3.2, we can use the same algorithm in Figure 1 to obtain the

optimal integer solutions for the A-optimality case under block design by taking fh,j(Mh,j) =

(M2
h/N

2)(S2
h,j/Mh,j). The exact algorithm taking the structure of the blocks into account is given

in Figure 3.

For D- and E-optimality, we extend the greedy idea from the previous parts and provide the

algorithm in Figure 3 and 4. For D-optimality, take fh,j(Mh,j) = log(
∑H

h=1(M
2
h/N

2)(S2
h,j/Mh,j)).

For E-optimality, take fh,j(Mh,j) = (M2
h/N

2)(S2
h,j/Mh,j).
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Figure 3: Greedy algorithm for A- & D-optimality

1. Set I ←



1 ... J

...
1 ... J



H×J

2. I1 ← vec(I)

3. Initialize Mh,j ← lh,j for j = 1, . . . , J, h = 1, ...,H.

4. While (
∑H

h=1

∑J
j=1Mh,j 6= N & I1 6= φ) do

• for each (h ∈ {1, ...,H})
– for (j ∈ I[h, ]), δh,j ← fh,j(Mh,j + 1)− fh,j(Mh,j)

• For A-optimality:

– for each (h ∈ {1, ...,H})
(i) choose j∗ ← min argminj∈I[h,] δh,j.

(ii) if (Mh,j∗ < uh,j∗), then Mh,j∗ ← Mh,j∗ + 1,
else I[h, j∗] ← NA

• For D-optimality:

– choose (h∗, j∗) ← argmin(h,j)∈I δh,j. If non-unique, choose minimum index.

– if (
∑

j Mh∗,j < M∗
h)

(i) if (Mh∗,j∗ < uh,j∗ and I[h∗, j∗] 6= NA), then Mh∗,j∗ ← M∗h,j∗ + 1, else
I[h∗, j∗] ← NA

else I[h∗, ] ← NA

• I1 ← vec(I[!is.na(I)])

5. Return optimal (M1,1, . . . ,MH,J).
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Figure 4: Greedy algorithm for E-optimality in the Block Case

1. Set I ←



1 ... J

...
1 ... J



H×J

2. I1 ← vec(I)

3. Initialize Mh,j ← lh,j for j = 1, . . . , J, h = 1, ...,H.

4. While (
∑H

h=1

∑J
j=1Mh,j 6= N & I1 6= φ) do

• for each (h ∈ {1, ...,H})
– for (j ∈ I[h, ]), δh,j ← fh,j(Mh,j + 1)− fh,j(Mh,j)

• choose j∗ ← min argminj∈{1,...,J}
∑H

h=1 fh,j

• choose h∗ ← min argminh∈{1,...,H} δh,j∗

• if (
∑

j Mh∗,j < M∗
h)

– if (Mh∗,j∗ < uh,j∗ and I[h∗, j∗] 6= NA), then Mh∗,j∗ ← M∗h,j∗ + 1, else
I[h∗, j∗] ← NA

else I[h∗, ] ← NA

• I1 ← vec(I[!is.na(I)])

5. Return optimal (M1,1, . . . ,MH,J).

13


	Introduction
	2K factorial experiments under the potential outcomes framework
	Optimal designs for completely randomized experiments
	Exact optimal designs
	Computation of exact optimal designs using an integer programming approach

	Optimal allocation for factorial experiments with blocks
	Exact optimal designs
	Computation of exact optimal designs for factorial RBDS using an integer programming approach

	Optimal allocation driven by cost constraints
	Applications in real experiments
	Education experiment
	Audit experiment

	Discussion
	Supplementary Material Proof of results
	Supplementary Material Conditions for Greedy Algorithm from FRIEDRICH20151
	Supplementary Material Empirical evidence of greedy algorithm for D-optimality in RBD
	Supplementary Material Greedy Algorithm for RBD

