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ABSTRACT: The Fermi Large Area Telescope (Fermi-LAT) has been widely used to search
for Weakly Interacting Massive Particle (WIMP) dark matter signals due to its unparalleled
sensitivity in the GeV energy band. The leading constraints for WIMP by Fermi-LAT are
obtained from the analyses of dwarf spheroidal galaxies within the Local Group, which
are compelling targets for dark matter searches due to their relatively low astrophysical
backgrounds and high dark matter content. In the meantime, the search for heavy dark matter
with masses above TeV remains a compelling and relatively unexplored frontier. In this study,
we utilize 14-year Fermi-LAT data to search for dark matter annihilation and decay signals in
8 classical dwarf spheroidal galaxies within the Local Group. We consider secondary emission
caused by electromagnetic cascades of prompt gamma rays and electrons/positrons from dark
matter, which enables us to extend the search with Fermi-LAT to heavier dark matter cases.
We also update the dark matter subhalo model with informative priors respecting the fact
that they reside in subhalos of our Milky Way halo aiming to enhance the robustness of our
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results. We place constraints on dark matter annihilation cross section and decay lifetime for
dark matter masses ranging from 103 GeV to 10! GeV, where our limits are more stringent
than those obtained by many other high-energy gamma-ray instruments.

KEYWORDS: dark matter theory, dwarfs galaxies, gamma ray experiments

ARX1v EPRINT: 2401.15606


https://doi.org/10.48550/arXiv.2401.15606

Contents

1 Introduction 1
2 Subhalo model 2
3 Heavy dark matter model 6
4 Data analysis 7
5 Results and discussion 9
6 Summary 15
A Spatial templates 16

1 Introduction

The nature of dark matter (DM) remains a mystery. Cosmological observations have shaped
our understanding of the Universe, indicating that non-baryonic matter makes up approxi-
mately a quarter of the total energy density of the Universe [1, 2], thus giving rise to the
DM problem. In the realm of particle physics, various candidates have been proposed to
extend the Standard Model, and these candidates are currently under investigation through
a combination of collider experiments, direct detection experiments, and astrophysical or
cosmological observations (see refs. [3-5] for recent reviews). For example, the Weakly Inter-
acting Massive Particle (WIMP), which has long been a leading candidate, is already tightly
constrained from multiple aspects for masses below approximately m < O(100) GeV [6, 7].

In this article, we focus on DM heavier than WIMPs, with masses above approximately
1TeV. For such heavy DM, its relic abundance is not necessarily determined by thermal
freeze-out [8-18]. In this case, collider experiments face kinematic limitations in creation
processes, and the scattering rate with underground detectors decreases as the number
density of incoming DM particles decreases. For this reason, high-energy astrophysical
observation plays a crucial role because it provides a unique window for probing heavy
DM. Many of current constraints on the annihilation cross sections and lifetime of heavy
DM are based on observations of electromagnetic emission, which use various targets with
distinct advantages to probe DM include the diffuse gamma-ray background [19-27], galaxy
clusters [28-39], the Milky Way halo [40-47], and dwarf spheroidal galaxies (dSphs) [6, 48-62].
Multi-messenger approaches are also powerful, and other constraints on heavy DM include
those from charged cosmic rays [63-71], neutrinos [33, 43, 59, 69, 72-74], and the cosmic
microwave background (CMB) [75, 76]. Among these various indirect searches for heavy DM,
dSphs are promising targets. The kinematics of stars in dSphs, which are satellite galaxies in
subhalos of our Galaxy, indicate that they hold a huge amount of DM. However, the detailed
DM density profile of each target is still uncertain and this dominates the uncertainty of



the current limits for DM derived with dSphs. The nature of dSphs in subhalos that they
have experienced tidal disruption under the potential of the Milky Way makes it difficult
to obtain precise estimates.

One specific nature of heavy DM of m, 2 O(1)TeV is that the products from DM
annihilation/decay, i.e. such as prompt gamma rays and electrons/positrons, interact with
background photon fields and magnetic fields before reaching Earth. Prompt emission,
occurring on the scale of the DM mass, may cascade down to lower-energy levels through
electromagnetic cascades (e.g., refs. [20, 33]). In other words, heavy DM with much greater
masses can still leave its signature in the energy range of GeV or even lower. Therefore, heavy
DM can be probed by instruments like the Fermi Large Area Telescope (Fermi-LAT).

In this work, we investigate annihilation and decay signatures of heavy DM in 8 classical
dSphs using 14-year Fermi-LAT data. These dSphs are nearby and their properties are
relatively well probed. The secondary gamma-ray emission resulting from electromagnetic
cascades of prompt gamma rays and electrons/positrons originating from heavy DM with
masses exceeding 1 TeV are calculated based on ref. [33] with the one-zone approximation.
We incorporate the spatial extension of the target dSphs which retain the features of tidal
interaction by constructing the emission template based on ref. [77]. By performing the profile
likelihood analysis, we constrain the annihilation cross section and decay lifetime of heavy DM.

The structure of the paper is as follows. In section 2, we describe the subhalo model for
dSphs. In section 3, we explain the expected signals from heavy DM, including electromagnetic
cascades in dSphs. We detail our data analysis in section 4. In section 5, we present and
discuss our results, and we conclude the paper in section 6.

2 Subhalo model

The challenge of precisely modeling the DM density distribution in dSphs is well-recognized,
and various models have been proposed in the literature (e.g. see refs. [78-81]). In this
work, we adopt the model proposed in ref. [77] which applies informative prior respecting the
fact that dSphs reside in subhalos of the Milky Way to improve the accuracy of parameter
estimates for the DM density profile.

The DM density distribution is described using the Navarro-Frenk-White (NFW) pro-
file [82] with truncation:

py(r) = { Pa (é)_l (1 * TLs>_2’ T (2.1)

0, T 2> Ty

The profile is characterized by two parameters, ps and rg, for the NFW model and the
truncation radius r;. Likelihood analysis of stellar kinematics data results in degenerate
constraints on the ps—rs plane. In this work, we consider the following 8 classical dSphs:
Carina [83], Draco [84, 85], Fornax [83], Leo I [86], Leo II [87], Sculptor [83], Sextans [83],
and Ursa Minor [85]. We exclude Sagittarius from our analysis, as observations indicate
that this dSph is currently undergoing disruption [88], which could introduce significant
uncertainty in the profile parameters. The distances and Galactic coordinates of these dSphs
are listed in table 1.



Name Distance l b

[kpc] [deg]  [deg]
Carina 105.0 &£ 6.0 260.11 -22.22
Draco 76.0 + 6.0 86.37 34.72

Fornax 147.0 &£ 12.0 237.10 -65.65
Leo I 254.0 £ 15.0 225.99 49.11
Leo II 233.0 £ 14.0 220.17 67.23
Sculptor 86.0 £ 6.0 287.54 -83.16
Sextans 86.0 = 4.0 243.50 42.27
Ursa Minor  76.0 + 3.0  104.97 44.80

Table 1. Distances and Galactic coordinates of 8 classical dSphs.

Since dSphs reside in subhalos of our Galaxy, they should experience tidal stripping
by the Milky Way, leading to the current diversity in their DM density profiles. We take
the Bayesian approach of ref. [77] to reduce the uncertainties in the ps, 75, and r,. The
prior distribution suitable for each target dSph is generated using the model for subhalo
evolutions [89]. The mass and the redshift distribution of accreting subhalos to the Milky
Way is evaluated using the Extended Press-Schechter model [90]. The tidal mass-loss rate
is evaluated at the pericenter of each accreted subhalo [91]. The evolution of the DM
density profile parameter is determined through the relationship derived in ref. [92], which
characterizes the evolution of the density profile parameters (ps,rs) as a function of the
mass ratio before and after the tidal-mass loss. The parameter of the fitting function are
calibrated against simulations. For the subhalo-satellite connection, we adopt the model of
ref. [93] with a threshold for the maximum circular velocity at accretion (Vpeak > 25 km/s)
and a velocity dispersion of o = 2.5 km/s as specified in eq. 2 of ref. [77]. These criteria
are particularly suitable for classical dSphs [94].

We model the angular extension of the target dSphs by assuming the median values of
Ps, T's, and ry obtained from the simulations. To further restrict the angular extension of
the dSphs, we use the radii of the outermost stars [79] in the target dSphs. Specifically, we
calculate the angular extension #5 of each dSph up to

O = sin~ 1 (ra/d,), (2.2)
where d. is the comoving distance of the dSph and
raA = min(rt’ Tmax)- (23)

The hierarchy between the estimated r; and the observed radius of the outermost member
star depends on the target dSph. So we introduce the quantity ra for obtaining conservative
J-factors. We calculate the J-factors of the dSphs for annihilation/decay (J*™/J4¢) up
to A as follows,

0

JH(OA) = 277/ ® §in0do dlpi(r;ps,rs), (2.4)
0 Lo.s
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Figure 1. Corner plot [95] representing the distribution of ps, rs, and 7, for Draco, using the model
proposed in ref. [77]. In the histograms, the median value and the 1-sigma percentile of the parameters
are indicated by dashed vertical lines. The red stars represent the median values of the parameters.
Here 7max of Draco is indicated by the blue solid line on the histogram of 7. Reproduced from [95].
CC BY 4.0.

and
0

JdeC(GA) = 27T/ ° sin 6d6 dlpy (13 ps,Ts). (2.5)
0 lo.s

In figure 1, the corner plot of ps, rs, and r; parameters for Draco, obtained from the
calculation based on the model proposed in ref. [77], is shown as example. The figure
presents the 2-dimensional density plots between every pair of parameters, accompanied
by 1-dimensional histograms for each parameter. In the histograms, the median value and
the 1-sigma percentile of the parameters are indicated by dashed vertical lines. Figure 2
shows the histograms for J2"(Ax) (left panel) and J9¢(A5) (right panel) of Draco, which
are calculated based on the values of ps, rs, and 0a obtained from the simulations. The

median values of ps, s, and r; for the 8 target dSphs are listed in table 2. Additionally,
table 2 provides rmax, Oa, J(04), and J9(0,) for the target dSphs.



logyo J*™ = 18.811)22 logy J9¢ = 18.721039

| — ] . T
I I 1o
I I
o I
103 F o1 {1 103k 3
g B ] ]
ol
o1
o1
B
, B ,
. B - i _
10 o 11 ] 10 o ]
i B ] i
B
B
B
B
1L B _ 1L _
107 B 1 107 ]
. o ] g
o
B
| 1l 1 1 1
18 19 20 17 18 19
1og1o J*™ (Oa; ps, 7s) [GeV? em™ st log,o J9(0a; ps, 7s) [GeV ecm™2 s1]

Figure 2. Histograms for J*%(f5) and J49¢(fa) for Draco. In the histograms, the median value
and the 1-sigma percentile of the parameters are indicated by dashed vertical lines.

Name Ps Ts T Tmax Oa  logio J*™(0a) logio J4(0a)

[Mg pc3]  [kpc] [kpc] [kpc] [deg] [GeVZ em™ st] [GeV cm™2 st]
Carina  0.127920 0.357045 1.2071:97 2294089 70  18.0279:24 17.6970:35
Draco  0.0679:02 0.82+19% 45171449 1877072 141 18817022 18.72+9-39
Fornax  0.05709% 0.9670%5 5.821957 6.277252 227 18.237017 18.46 1031
Leol  0.05%32% 0.86709; 4.9771%30 1.957570 044  17.7370:02 17.6970:23
Leo I 0.0679:82 0.6270%% 2.86771%% 0.8270% 0.20  17.567010 17.2270-22
Sculptor ~ 0.0670%L 0.807199 43271075 9267+110 178 18.651019 18.67+933
Sextans  0.097036 0.477035 1.93+30%8 254*L1l 198 18.351022 18.171048
Ursa Minor 0.067031 0.817097 4.2111%:56 1581093 119 18.73702 18.621024

Table 2. Halo properties of 8 classical dSphs based on the Bayesian analysis adopting prior distribution
using the Extended Press-Schechter model [89].



3 Heavy dark matter model

We calculate the DM annihilation and decay spectra using HDMspectra [96]. Ref. [96] achieves
the matching between the scale of the DM mass (up to the Planck scale) and that below the
electroweak scale. Ref. [96] also includes hadronization calculation and matches with the
Pythia [97]. In the scheme, the electroweak corrections are properly implemented. In this
work, we consider DM masses m, ranging from 103 GeV to 10! GeV. We assume the DM
particles annihilate or decay into a pair of Standard Model particles with a 100% branching
ratio. We consider 6 annihilation/decay channels: bb, up~, 777, Z°Z°, W+W~, and h°h°.

The energy fluxes of generated gamma rays, E,QYCD%gen)(E,Y,QA), from DM annihila-
tion/decay processes in the dSphs are:

B3 (E,,6,) (3.1)

_ Eﬁd—S” y { ngr% X J(fA), for annihilation,
dE, Trrgmy % Jd(g,), for decay,
where dS,/dE., is the gamma-ray spectra from DM annihilation/decay before accounting
for electromagnetic cascades [20], (ov) is the velocity-averaged cross section and 7, is the
life time of the decaying DM. The redshift dependence does not appear because of the
proximity of the dSphs.

The spectra of generated gamma rays should be modified through electromagnetic
cascades. We follow ref. [33] to calculate the cascade emission, approximating a galaxy to be
a single zone. Details of electron-positron pair creation, synchrotron and inverse-Compton
emission processes are considered. We solve the kinetic equation describing the evolution of
the coupled system of photons and electrons [20, 33]. For the magnetic field in target dSphs,
we assume B = 1 uG as a fiducial value, while photons from the CMB [98] are taken as
the background photon field for inverse-Compton emission. We also consider the infrared
(IR) and optical radiation fields in dSphs, which are expected to be comparable to those
in the clusters of galaxies [99, 100]. Therefore, as an approximation, we include the low-IR
extragalactic background light model in ref. [101] with 10 times enhancement to account
for contributions from the stellar populations in the dSphs as in refs. [33, 39]. We ignore
the spatial diffusion because high-energy electrons/positrons lose their energies faster than
they diffuse out in a galaxy. For the cascade calculation, we assume an escaping distance
of the gamma rays at the ryax of the dSphs. This distance best represents the scale of the
magnetic fields of the dSphs. As a result, the expected gamma-ray energy fluxes at Earth,
E3<I>W (Ey,0), from DM annihilation/decay processes in the dSphs are expressed as:

E20.(E,,0,)

_ E’%@ y SS;T:%( X JA (g, ), for annihilation, | (32)
dE, 47rT>l<mx x J49¢(9,), for decay,
where dG,/dE, is the gamma-ray spectrum expected at Earth, which includes both atten-
uation and cascade components.

Figure 3 displays dG~/dE, (in solid lines) originating from DM annihilation using our
benchmark parameters. The benchmark model assumes B = 1 uG. It also includes the CMB

and the extragalactic background light with 10 times enhancement. We present the spectra
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Figure 3. Gamma-ray spectra for annihilation of 3 DM masses: m, = 103 GeV (blue), 10" GeV
(orange), and 10* GeV (green). Solid lines show the expected spectra at Earth with electromag-
netic cascades considered, while dashed lines show the generated spectra before accounting for the
electromagnetic cascades. The steep decline seen in the gamma-ray spectra corresponds to the
kinematical cutoff by the DM mass. The gray bands indicate the energy range of the Fermi-LAT
(100 MeV — 1TeV).

for the bb channel in the left panel and the gt p~ channel in the right panel, considering
three DM masses: m, = 103 GeV, 107 GeV, and 10! GeV (as shown respectively in blue,
orange and green). The spectra are normalized for a single annihilation/decay event and
are shown in (E,/my)%dG,/d(E,/m,) so that they are approximately the same level. The
total fluxes from the target dSphs are determined by eq. (3.2) and are suppressed when m,,
increases. The gray bands in figure 3 indicate the energy range of Fermi-LAT (100 MeV
~ 1TeV). For heavy DM masses (e.g., m, = 107 GeV and m, = 10! GeV), the primary
gamma-ray signals (which peak around m, ) are beyond the reach of Fermi-LAT. However,
secondary emission extends to lower energies and still have sizable contributions to the Ferms
energy range. In figure 3, we also use dashed lines to show the generated spectra before
accounting for the electromagnetic cascades.

4 Data analysis

We use the public software fermipy [102] to select the Fermi-LAT data, generate model
templates convolved with the instrument response function, and perform the likelihood
analysis. We select P8R3_SOURCE events (with both FRONT and BACK types) in 14-year Fermi-
LAT data (from Aug 4 2008 to Aug 4 2022) with energies from 100 MeV to 1TeV. This
event class provides an intermediate photon selection and is most suitable for moderately
extended sources. We apply the standard quality filter DATAQUAL>0&&LATCONFIG==1 and
limit the maximum zentith angle to 90°. For each dSph, the region of interest (ROI) is
a 10° x 10° squire centering the dSph. The data are binned into 0.1° x 0.1° pixels and
logarithmic energy bins with 5 bins per decade.



The expected photon count uf] from the i-th pixel and j-th energy bin in the k-th dSph is
ulf = sfj(A]mx) + bfj()\), (4.1)

where sfj and bfj are respectively the signal and the background counts from the i-th pixel
and j-th energy bin in the k-th dSph. The signal sfj is determined by the DM model under
consideration (including the subhalo model and electromagnetic cascades, see section 2 and 3)
and depends on the amplitude parameter A (which is (ov) for annihilation and 1/7, for decay)
for given m,. We generate the DM spatial templates using the CLUMPY package [103-105],
assuming the Navarro-Frenk-White profile [82] with truncation. See appendix A for the
details of the DM halo templates before they are convolved with the Fermi-LAT Point Spread
Function (PSF). The background bfj includes all astrophysical emissions in the ROI and A
are the nuisance parameters for the background model. For the background components,
we consider the Galactic diffuse emission,! the isotropic diffuse emission,? and the resolved
point sources in the 4FGL-DR4 catalog. The nuisance parameters include the normalization
and spectral parameters of the Galactic and isotropic diffuse emissions and the point sources
within 5° from the dSphs. We also include point sources within a 20° x 20° region centering
the target dSph with their parameters fixed to the 4FGL values.

We adopt a joint Poisson likelihood function over all pixel ¢ and energy bin j for the
k-th dSph, which is

n?j e*,u,fj (0)

k(o
) =111 1 )nk'! (4.2)
T g )
Here, nf] and ufj(a) are the observed and predicted photon counts at pixel 7 and energy
bin j for the k-th dSph, respectively. In the meanwhile, 8 = {A, A} combine the DM and
nuisance parameters.
We use profile likelihood method [106] to derive constraints on A. The test statistics (T'S)

for any A is defined as

TS(A) = —2log <£A(C/(lé)5\)> ) (4.3)

where 6 are the best-fitting parameters that maximize the likelihood function and X are
the nuisance parameters that maximize the likelihood function for given A. The likelihood
function £(6) can be the likelihood function £¥(@) of the k-th dSph when we put constraints
from individual dSphs. Otherwise, we can use the total likelihood function of 8 dSphs, which is

clowlg) =T £5o), (4.4)
k

to put constraints on A from stacking 8 dSphs. In either case, the 95% confidence level (CL)
limit on A is set by finding a TS = 2.71.

1gll_iem_v07 .fits.
2iso_P8R3_SOURCE_V3_v1l.txt.



5 Results and discussion

In figure 4, we present the 95% CL upper limits on heavy DM annihilation cross section ({ov))
from Draco for the bb (left panel) and utp~ (right panel) channels. We consider two scenarios:
constraints derived with (solid blue lines) and without (dashed blue lines) electromagnetic
cascades. Without cascades, constraints for m, > 10% GeV with Fermi-LAT data are weaker
than those in the literature [107-109]. The constraints are improved with Fermi-LAT by
taking the cascade into consideration and in this work, we derive novel constraints for m, up
to 10" GeV. For the bb channel, constraints with and without electromagnetic cascades are
nearly identical at m, ~ 103 GeV, indicating that the constraints are primarily determined
by the prompt gamma-ray emission around the WIMP mass scale. Constraints with cascades
become stronger than those without cascades as m, increases because electromagnetic cascades
dominate the signal in the Fermi-LAT energy range. In the case of the p*u~ channel, the
annihilation is dominantly leptonic, and prompt gamma rays arise from final-state radiation.
Therefore, the constraints get tighter by almost two orders of magnitude at m, 2 103 GeV
by analyzing with the cascade contribution. Overall, the constraints on the annihilation
cross section (ov) decrease as m,, increases, as the annihilation rate is proportional to 1/ mi.
The feature at m, ~ 107 — 10° GeV originates from the transition of the dominant processes
of the secondary emission in the energy range of this analysis, from an inverse-Compton
emission-dominated region to a synchrotron emission-dominated region. This change is more
significant for the u*p~ channel (again due to its being dominantly leptonic), leading to a
peak in the constraints around 10° GeV. In figure 4, we also show limits with VERITAS [107]
(dash dotted lines), MAGIC [108] (dotted lines) and HAWC [109] (dashed lines) constraints
on the same dSph for comparison. To make the comparisons consistent, we rescale their
constraints based on the J-factor used in this work, as listed in table 2. We acknowledge
that the linear scaling of the constraints ignores the discrepancies in the DM density profiles
and PSFs of different instruments. Nonetheless, we anticipate these effects to be minor. Our
constraints with cascades are notably stronger than the constraints from those high-energy
instruments in both channels. However, without cascades, our results are suppressed by
VERITAS and MAGIC for m, 2 10* GeV. In figure 4, we also show the thermal cross section
up to my ~ 200 TeV [16, 47] and the partial wave unitarity bound for point-like particle DM
assuming the relative velocity v ~ 2 X 107° in the dSphs [47].

Figure 5 displays the 95% CL lower limits on heavy DM lifetime (7,). Similar to the
annihilation case, the inclusion of the electromagnetic cascades significantly improves the
constraints for heavy m,, particularly for the u™u~ channel starting from m, ~ 103 GeV.
Unlike the annihilation case, constraints on the lifetime 7 are only mildly weakened with
increasing m, from 102 GeV, as the decay rate is proportional to 1/ my. Synchrotron emission
also tightens the constraints on 7 for m, > 107 — 10° GeV.

We present a complete set of constraints on heavy DM annihilation cross section and
decay lifetime in figure 6 and figure 7, respectively. These constraints encompass six annihila-
tion/decay channels and are derived from 8 classical dSphs. Among these dSphs, Draco stands
out as the most stringent individual constraint for both annihilation and decay cases due to
its substantial J-factors. The structures in constraints for m, 2 107 — 10° GeV, attributed
to synchrotron emission, are a consistent feature across all dSphs and channels. This effect



_ + -
10_15 T XX Iﬁ bbl T 10715 T XX él /.1; u T
10716 | ,l 10716 -
10_17 _/ 10_17 _/,
1078 E _1078p
W 10719F L, 10797
ma 10-20 - ma 10-20| K
O, 10—21 L - O, 10721 =~
= 1072‘2 '&"‘;'/ Draco w/ cascades ] B 10_2? :;/ Draco w/ cascades i
~ 1072} == Draco w/o cascades 7] ~ 10723} — = Draco w/o cascades 7
10~ —-' VERITAS (2023) - 1024 —-' VERITAS (2023) -~
o5l e MAGIC (2022) i —25L e MAGIC (2022)
10 Thermal (ov) 10 Thermal (ov)
L2 = == IHAWC (20Il8) | R IHAWC (20I18) |
10° 10° 107 10° 10" 10° 10> 107 10° 10"
my, [GeV] my [GeV]
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Figure 6. 95% CL upper limits on the annihilation cross section (ov) for 6 channels and 8 dSphs.
We also include the limits from stacking 8 dSphs (dashed lines).

is more pronounced for channels involving leptons, such as u™p~ and 7777, In addition to
individual dSph constraints, we also include constraints derived from stacking all 8 dSphs,
as described in the section 4. We observe slightly improved limits from stacking 8 dSphs
compared to the strongest limits from individual dSphs. The stacking limits are most likely
driven by Draco, which has the largest J-factors among the target dSphs.

As a baseline of the analysis, we have assumed that dSphs are extended sources, and their
DM halos follow the NFW density profile with truncation. A recent study [110] investigated
the impact of considering the extension of dSphs when searching for DM signals with Fermi-
LAT. They found that modeling dSphs as extended sources weakened the annihilation
constraints by a factor of approximately 2, depending on the specific dSph and channel
under consideration. To explore this effect, we treat the dSphs as point sources and repeat
the data analysis for the bb channel. We make the assumption that the J-factors of the
dSphs in the point-source approximation are equal to the J*(f5) and J9(A) as presented
in table 2 for the extended cases, which corresponds to an aggressive assumption for the
point-source hypothesis. Figure 8 shows the ratios of the constraints on (ov) (left panel) and
1/7y (right panel) between the extended and point-source analyses for the bb channel. We
observe that the constraints are generally weakened in the extended analysis. The ratios for
the annihilation (ov) vary from approximately 1 to 2, depending on the target dSph and
mass m,. The range of ratios for 1/7, is more variable, ranging from around 1 to nearly 9.
The weakening effect is more pronounced for DM decay since the extended signal for DM
decay is less concentrated at the center of the dSphs, as demonstrated in the 2D templates in
appendix A. Our results are qualitatively consistent with the findings of ref. [110].
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main results. The dash-dotted lines consider an alternative magnetic field strength with B = 10 uG.

Finally, we investigate the impact of varying magnetic fields in the dSphs. The magnetic
field strength could alter the results since the dominant secondary process in the Fermi energy
range is affected by the energy partition between the background magnetic field and photon
field. Ref. [111] has shown that the magnetic field in dSphs are usually less than a few uG
and can reach values as high as ~ 10 pG. In our fiducial model, we assume a magnetic field
strength of B = 1 uG. The energy density of the magnetic field strength in this range is
similar to that of the CMB. More specifically, a magnetic field with B = 3.24 ;G has the same
energy density of the CMB [112]. Varying magnetic field in this range is important as the
energy losses of the inverse-Compton and synchrotron processes are comparable. Therefore,
we test B = 10 uG to reflect an extreme case and consider systematics coming from the
magnetic field variation within a galaxy. Figure 9 displays the expected gamma-ray spectra
at Earth for the bb channel in the left panel and the putp~ channel in the right panel for
three DM masses, similar to figure 3. The solid lines correspond to B =1 uG, the fiducial
value for the main results, while the dash-dotted lines represent an alternative magnetic field
strength of B = 10 uG. Figure 10 compares the constraints on (ov) between B =1 uG and
B =10 uG for the bb (left panel) and utp~ (right panel) channels. Generally, an increase
in the magnetic field reduces the inverse-Compton emission and increases the synchrotron
emission. Therefore, constraints with B = 10 uG are weaker than those with B =1 uG for
my S 10" — 10® GeV in which the inverse-Compton emission is more important than the
synchrotron emission in the LAT energy range, and vice versa. In most cases, the constraints
change by less than one order of magnitude, depending on m,. In figure 11, we make the
same comparison for constraints on 7,. Once again, changing B from 1 ;G to 10 G alters
the constraints by at most one order of magnitude.
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6 Summary

We used 14 years of Fermi-LAT data to search for gamma-ray signals from heavy DM with
my 2 103 GeV in 8 classical dSphs, and constrained the annihilation cross section and decay
lifetime. In particular, we incorporated the effects of electromagnetic cascades to better
probe DM heavier than 1 TeV together with the spatial extension of target dSphs considering
their cosmological evolution under the gravitational potential of the Milky Way. We also
quantified the impacts of the spatial extension and the magnetic field strength, and found
that resulting systematic uncertainties are less than one order of magnitude. We showed that
our dSph constraints from the LAT non-detection of gamma-ray signals with electromagnetic
cascades surpass not only those without cascades but also the limits derived from very
high-energy gamma-ray facilities such as VERITAS, MAGIC and HAWC. Our findings
offer valuable complementary constraints on heavy DM, in conjunction with observations of
high-energy gamma rays (e.g., from galaxy clusters [33, 39] and the Milky Way halo [44]),
cosmic rays [69, 71], and neutrinos [20, 73].

We demonstrated that incorporating the electromagnetic cascades reinforces the dSph
search for heavy DM by Fermi-LAT. Future observations of gamma rays and neutrinos will
also benefit from accounting for such effects [113]. Meanwhile, it is crucial to consider the
cosmological evolution of dSphs in the Milky Way to accurately estimate their J-factors
and spatial extensions, which will enable us to establish more reliable constraints [114] or
possibly even detection [115] in the future.
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Note added. While we are finalizing this paper, ref. [116] of a close research interest
appeared. The major difference is the treatment of the source extension. Also, the model
for the diffusion is different from each other.

A Spatial templates

In our data analysis, we model dSphs as extended sources. The spatial template is determined
by median values of ps and r, as described in section 2. We use the CLUMPY package to
calculate the differential J-factors 2Z5-(Q2) and d‘é?;C (Q) over the ROIs of dSphs.

Figure 12 shows the templates for d{;;m (Q) for 8 target dSphs, before they are convolved
with the Fermi-LAT PSF. We calculate == (2) up to the f for each dSph (see table 2),

while figure 13 shows the templates for d‘é?;C (Q). In the case of annihilation, the DM signals

are highly concentrated at the centers of the dSphs. However, in the case of decay, the DM
signals are less concentrated and more diffuse, evenly distributed.

Carina Fornax Leo

Figure 12. d{gn () for 8 dSphs.
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