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Reconfigurable Beamforming for Automotive
Radar Sensing and Communication: A Deep
Reinforcement Learning Approach

Lifan Xu
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Abstraci—In this article, we present a novel low-cost,
dual-function radar-communication system that addresses
dynamic environments such as those arising in automo-
tive applications. The low cost is achieved by using a
sparse phased arrays equipped with quantized double-
phase shifters. The operation in dynamic environments is
achieved via a deep reinforcement learning (DRL) approach
that adaptively selects a small subset of transmit antennas
and adjusts the phase shifters such that the transmitted
energy is concentrated on the communication user and the
target of interest, while the interference to other radars is
reduced. The action space in the DRL approach increases
fast with the number of antennas and the number of bits
used in quantization, and as a result the complexity of the
design problem grows exponentially. To tackle the result-
ing curse of dimensionality in the action space, we adopt
the Wolpertinger strategy, which incorporates the nearest
neighborhood component to project the vast action space
into a smaller, more manageable space while maintaining
the desired performance. Numerical results demonstrate
the feasibility of our proposed method.

Index Terms—Adaptive beamforming, automotive radar,
deep reinforcement learning (DRL), dual -function radar-
communication (DFRC), sparse array.
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I. INTRODUCTION

S SELF-DRIVING technology advances, the integration
A of vehicle-to-everything (V2X) communication into au-
tomotive radar can help enhance road safety, alleviate traffic
congestion, and improve the driving experience. By enabling
vehicles to communicate with other vehicles, infrastructure,
pedestrians, and networks, V2X can facilitate the creation of a
more connected and intelligent transportation system [3], [4].
However, as radar becomes an integral part of automobiles
and the demand for communication functions increases, limited
spectrum resources may become a challenge. Thus, finding ways
for radar and communication functions to coexist in the same
band has been drawing a lot of attention [5], [6], [7], [8], [9],
[10]. Dual-function radar-communication (DFRC) systems are a
new type of technology that offers the radar and communication
functionalities out of a single platform and via the same wave-
form, thereby offering efficient spectrum use, reduced hardware
complexity, improved safety, higher accuracy, and new appli-
cation possibilities [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23]. DFRC systems are ideally suited for
autonomous driving vehicles. Unlike communication systems at
cellular base stations, automotive radars use a relatively small
number of antennas, and thus greatly benefit from sharing anten-
nas and waveform for both radar and communication functions.

Several key factors must be considered in the design of
automotive DFRC systems. First, for the possibility of mass
production, it is essential that these systems are cost-effective
while providing high angular resolutions. This requirement
makes sparse arrays with large apertures particularly attractive
because they offer a balanced tradeoff between performance and
cost [24]. To achieve low-cost hardware solutions, phase shifters
are designed to select discrete values from a predefined set,
limiting the design flexibility of transmit signals due to the con-
straints imposed by the phase shifters” degrees of freedom. For
instance, the Texas Instruments AWR2243 radar chipset utilizes
6-bit phase shifters [25]. Second, current automotive multi-input
multi-output (MIMO) radars use orthogonal waveforms, thus
spreading the transmit energy over the entire field of view (FOV)
[27], [28]. This may create problems, such as mutual interference
[26], [27] and ghost targets due to multipath wave propagation.
Third, automotive DFRC systems operate in highly dynamic
environments and must be capable of detecting targets with low
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radar cross-sections (RCSs), such as pedestrians and cyclists,
amidst stronger reflective objects, such as vehicles and light
poles. Current state-of-the-art systems heavily rely on MIMO
radar technology with static transmit parameters, including fixed
array geometries and nonadaptive orthogonal waveforms [27],
[28], which may not always provide optimal sensing perfor-
mance in dynamic automotive conditions.

To address the above-mentioned automotive DFRC system
challenges, in this article, we propose a low-cost, reconfigurable
adaptive beamforming scheme in automotive DFRC system to
enhance both sensing and communication performance while
suppressing mutual interference. Low-cost and low power im-
plementation is afforded via the use of sparse phased arrays
equipped with quantized double-phased shifters (DPSs). Inter-
ference suppression and detection of weak targets is achieved
through beamforming. Unlike the high cost of digital hardware
associated with MIMO radar, our approach uses a phased array
equipped with DPSs. The DPSs enable the design of flexible
beams that can suppress automotive radar mutual interference,
minimize the occurrence of ghost targets due to multipath, and
enhance the signal-to-noise ratio (SNR) of targets with low RCS
in the tracking phase. The introduction of DPSs opens up the
possibility of forming richer beams toward both communica-
tion user and target of interest [29], [30]. The use of sparse
phased arrays reduces hardware cost and power consumption.
By optimally designing the transmit array along with the beam-
forming weights, one can closely approximate the beampattern
performance of a full array. However, the high complexity of the
design problem remains a challenging bottleneck. Commonly
used optimization methods for beamformer optimization, such
as linear programming and alternative optimization [31], [32],
[331, [34], [35], [36] lead to daunting computational costs due to
the NP-hard nature of the problem given the selection of antennas
and quantized phase shifters. We propose a deep reinforcement
learning (DRL) approach as a feasible solution to adaptively
select the antennas and adjust the phase shifters to achieve beam-
forming performance in the automotive DFRC system. DRL al-
lows an agent to learn its optimal action through interaction with
its environment via trial-and-error [37]. However, the dimen-
sionality of the action space of the proposed automotive DFRC
system is huge, which may require a significant large training
process for DRL. To address this issue, we adopt the Wolper-
tinger’s strategy that encompasses the nearest neighborhood
component to project the daunting action space to a small size
space, thus significantly reducing the complexity of the training
process while maintaining the desired good performance.

We begin with a brief literature review of automotive DFRC,
sparse arrays, adaptive beamforming, and DRL.

A. Related Work on Automotive DFRC

Generally, DFRC systems can be categorized as radar-
centric, communication-centric, or based on a joint design ap-
proach. In radar-centric systems, communication information
is embedded in radar waveforms. For example, when using
amplitude-modulated signaling, the communication information
can be associated with the sidelobe amplitude of the transmitted
waveform [38]. In MIMO radar, communication symbols are

encoded into each of the orthogonal waveforms. Phase mod-
ulation can also be used to embed communication symbols
into the phase of transmitted chirps [39]. Radar-centric systems
achieve good sensing performance but their communication
rate is low. However, with frequency hopping [40], antenna
index modulation [41], [42], and sparse array configuration
techniques [32], their communication data rate can be further
increased. Communication-centric systems are optimized for
the communication function and use typical communication
signals, such as orthogonal frequency-division multiplexing, for
sensing [43], [44], [45]. Adaptive systems, capable of dynam-
ically adjusting their parameters to achieve a desired tradeoff
between the radar and communication subsystems, and tailored
to the specific requirements of the application have also been
proposed [41], [46], [47], [48].

DFRC systems have significant advantages in autonomous
vehicle applications [17]. Deep neural networks have been intro-
duced in Zhang et al.’s work [49] for communication multiuser
demodulation and target tracking. In Ma et al.’s work [18],
frequency-modulated continuous-wave (FMCW) signals from
a selected subset of antennas are transmitted in a randomized
fashion. Index modulation is utilized to embed message through
the selection of carrier frequencies and antennas.

Sparse arrays have been widely adopted in automotive radar
systems to achieve a larger antenna array aperture by deploying
antenna elements placed in a nonuniform spacing pattern [24].
Beamforming has been proposed to achieve dual functions for
vehicle networks [50] with the fast beam tracking capability of a
road-side unit, and thus itis not applicable for systems on moving
vehicles. Recently, an integrated MIMO system is proposed
in Zhang et al.’s work [51] that performs target tracking and
downlink communications, while also receiving uplink signals
from other communication nodes to facilitate bidirectional com-
munications. Integration of sparse array configuration and wave-
form permutation was introduced in Wang et al.’s work [32] to
embed communication symbols effectively. Beamforming with
sparse arrays was considered in Wang et al.’s work [52] through
selective antenna positioning, ensuring that both radar and com-
munication functionalities are maintained. In Huang etal.’s work
[53], sparse array-based beamformers for DFRC systems were
designed by utilizing both amplitude and phase modulations to
encode information into the transmit beam patterns. In Huang
etal.’s work [34], an alternating direction method of multipliers
solver was developed to design sparse array beamforming that
accommodates multiple downlink users. More recently, a new
scheme is proposed in Zhang et al.’s work [54] to jointly develop
multiple beamformers that deliver communication information
via a common sparse array for integrated radar and communi-
cation systems. This approach enhances the applicability and
simplifies the hardware implementation by eliminating the need
for continual antenna switching. Nevertheless, the antenna selec-
tion problem is NP-hard, and the computational cost of relaxed
optimization algorithms is still extremely high.

B. Deep Reinforcement Learning

Machine learning techniques, including deep learning (DL)
and reinforcement learning (RL), have become powerful tools
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for solving beamforming matrix and antenna selection prob-
lems [55]. Among them, DL networks can be trained to select
antennas and determine phase shifters with alow computational
complexity, provided that alarge amount of training data is avail-
able. However, the applicability of DL algorithms in real-life
scenarios, such as for tracking noise and channel changes during
rapid vehicle movements, may still be limited due to inherent
biases in the dataset. RL algorithms, on the other hand, can
be trained by interacting with the environment and receiving
feedback in the form of rewards or penalties. This makes them
well suited for decision-making tasks in complex and dynamic
environments, such as target tracking using a massive MIMO
radar. However, RL faces a scaling dilemma when the goal is
to obtain an optimal beamforming matrix. To address this issue,
we adopt DRL to learn complex policies and representations
directly from raw data, such as online beamforming learning. Al-
though it is more computationally expensive than traditional RL,
DRL offers significant advantages in scalability, performance,
and data requirements [56], [57].

C. Motivation and Contributions

In this article, our system operates in tracking and searching
modes. In the searching mode, the system performs a quick
target perception. During the tracking mode, based on the per-
ception results, the sparse transmit array is optimized to carry
out adaptive transmit beamforming to enhance both radar sens-
ing and communication functionalities. This approach reduces
system costs and optimizes the target tracking performance,
while simultaneously suppressing interference toward victim
radars. Furthermore, by applying DRL, the system dynamically
adjusts the transmit parameters to achieve an optimal solution
through interactions with the environment. Our contributions are
as follows.

1) We propose a low-cost reconfigurable transmit beam-
forming scheme, incorporating joint antenna selection
and quantized double-phase shifters, to implement DFRC
systems for automotive applications. We optimize the
array configuration and the beamforming weights in order
to simultaneously form two beams, one toward the com-
munication receiver and the other one toward the target
searching direction, while creating nulling toward other
radars, allowing multiple radars to coexist and operate
simultaneously within the same frequency band.

2) We propose a DRL approach to adaptively select a sparse
subset of transmit antennas and adjust quantized double-
phase shifters to achieve optimal sparse transmit beam-
forming in the highly dynamic automotive scenarios.

3) We propose a DRL framework based on Wolpertinger’s
strategy to tackle the dimensionality curse within the
action space, a challenge linked to dynamic antenna
selection and adaptive beamforming when employing
quantized double-phase shifters. The proposed approach
integrates the strengths of both deep Q-network (DQN)
and deep deterministic policy gradient (DDPG) within
the actor—critic networks.
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The basic concept of DRL applied to automotive radar trans-
mit beamforming is described in Xu et al.’s work [1]. An
enhanced DRL algorithm along with preliminary simulation
results are presented in Xu et al.’s work [2]. The substantive
novel contributions of this article beyond [1], [2] include the de-
velopment of a comprehensive analysis of communication signal
loading, the development of improved transmit beamforming
algorithms based on optimization, a thorough numerical inves-
tigation including the comparison with a baseline optimization
approach, and an analysis of radar sensing outcomes.

D. Article’s Organization

The rest of this article is organized as follows. In Section 1II,
we describe the signal model of automotive radar for sensing and
communication and formulate the transmit beamforming design
exploiting sparse arrays and quantized double-phase shifters. In
Section I1I, we present a DRL-based optimization method for of
transmit beamforming. We validate our models and methods
with extensive numerical simulations in Section IV. Finally,
Section V concludes this article.

Throughout this article, upper case and lower case bold char-
acters denote matrices and vectors, respectively. Matrix vector-
ization operation is denoted by vec(-). The conjugate transpose
and transpose are denoted by (-)* and ()T, respectively. The
complex values set is C. The notations @ and ® denote the
Hadamard product and Kronecker product, respectively.

Il. SYSTEM MODEL

We consider a colocated phase-controlled FMCW automotive
DFRC system consisting of a reconfigurable unit uniform linear
transmit array, which means that the transmit array can be
adaptive corresponding to the scenario by enabling or disabling
antennas. The transmit array is used for both radar sensing
and communication functions (see Fig. 1). The communication
information is embedded in the transmitted waveform through
slow-time encoding or a hybrid of fast-time and slow-time
encoding.

A. Automotive Radar

Consider an FMCW automotive radar operating at a central
frequency f. with a bandwidth of B and a pulse duration time
of T'. This radar transmits a linear frequency ramp with a pulse
repetition interval T),. At the mth chirp, the corresponding
uncoded transmitted signal is given by [27]

I(m, t) = rect (%) 6]217()'&4_%.%;2), n

where ¢ is the fast-time with0 < ¢t < T'.

In MIMO radar, the transmitting antennas transmit mutually
orthogonal waveforms; this enables the receiving antenna to
extract the contribution of each transmitting antenna. Consider a
MIMO radar with Nt and N, that transmits orthogonal FMCW
waveforms. There are many ways to realize waveform orthog-
onality in an FMCW radar, such as time division, frequency
division, and code division [27].
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Fig. 1. Proposed automotive radar DFRC system diagram in the tracking mode.
By exploiting orthogonality, each receive antenna can extract mth chirp and is given b
yexp g g y p g y
the received signal corresponding to each transmitting antenna. i
en ponding g x(m, t) = z(m, t)e!?m fpp. (5)

After applying fast Fourier transform (FFT) to the fast-time
samples of each signal, a decoded data matrix is obtained, which
is then subjected to a slow-time FFT. This process results in a
range-Doppler spectrum for a specific transmit-receiver antenna
pair. To extract the angle information corresponding to the pair,
thresholding techniques, such as the constant false alarm rate
algorithm can be used. By following this process, the virtual
array steering vector a € CV7N% can be given by

K
a= Z ag [a:(0k) ® ar (k)] 2)

k=1
where a,(6;) = [1, ej(i?r/.k)tfg.sin(ﬂ;c), o ej(Zﬂ'/l)&'NTlsin(ﬂk)]T
anda,(6;) = [1, ,Sj(%r/l)dmsin(ﬂk)1 s ej(ﬁw/A)desin(ﬂk)]T de-

note the transmit and receive steering vectors, respectively. To
establish a common reference point, we define the first element
of each vector as the reference. Several classical techniques exist
for obtaining the angle spectrum from the steering vectors, in-
cluding digital beamforming and compressive sensing (CS) [27].

B. Automotive Radar Sensing and Communication
Design

A moving target-oriented DFRC system with a radar-centered
reconfigurable phased transmitting array isolates moving targets
from static targets such as buildings and trees through the
range-Doppler spectrum of the echo and ego vehicle speed. The
change of the estimated target parameters can guide the system
to automatically adjust the activation and deactivation of the
reconfigurable array and the corresponding beamforming vector.

1) Radar Transmit Beamforming: The radar transmit beam-
pattern is given by [59]

B(6) = a;’ (6)Way(6), 3)

where W € CN7*N7 jg the beamforming weight matrix com-
posed with quantized phase terms, expressed as

W = E [x(m, t)x" (m, t)] = farfik, @)

where E[-] denotes the statistical expectation, x(m,t) is the
transmit waveform vector for the Np transmit antennas at the

Here, ¢y, is the slow-time code at the mth chirp. To perform the
radar sensing function, the analog precoder fry is designed to
steer the mainlobe to the region of interest (ROI) of the radar.
frr is controlled by the phase shifters, which can be replaced
by the radar sensing beamformer w,., defined as

1

T

where w; € Dforalli € {1,...,Np}.

2) Communication Model: Assume that the communication
receiver has an array consisting of IV, elements, and the number
of independent propagation paths (L) is less than Nt because
millimeter wave channels have limited scattering [60]. In such
scenarios, the downlink channel matrix is denoted by Hy €
CNexN7 and can be expressed as follows:

Wy =

) ) ) T
[ejwu Jeden erwT}

(6)

NrN, &
H; = T;L Zﬁ!bc(gcl)af (0n),
=1

)

where 3; represents the complex path gain for the Ith path. In
addition, b.(f.) and a;(6;) denote the receive and transmit
array steering vectors of the [th path, respectively, for the com-
munication system. The angles of arrival and departure for the /th
path are denoted by ; and 6y, respectively. The received signal
at the communication receiver can be expressed as follows:

YC(m! t) = \/ﬁfﬂ(m, t— TCJejqudeRF + I'l('ﬂ, t)v (8)

where p denotes the average received power and 7. is the delay
between the radar transmitter and the communication receiver.

In the communication mode, fgry is replaced with a beam-
former w, defined as
1

VNt
where ; € Dforalli € {1,..., Nt}

On the receive end of the communication channel, the re-
ceived signal can also be represented as

Ye(m,t) = /pr(m,t — 7.)e’*™ hiymp + n(n,1).

) ) ) T
We [eJQ',e:’ﬂz,...,ejQ”T]

(€))

(10)
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In this equation, the lump channel information vector hyymp =
Hgfrr is present. To estimate the channel information hjump
for the full phase array, beam sounding techniques can be
employed, as described in the prior work [61], [62]. Accurate
synchronization of the signal delay between the sender and
the receiver is necessary to extract communication code from the
received. To achieve time synchronization, global positioning
system (GPS) technology or atomic clock technology can be
used [63], [64], [65]. For example, the pulse-per-second signals
from two GPS modules can achieve a synchronization accuracy
of 60 ns [66]. If the estimated channel H]ump matches to hyymp,
after passing through the mixer and the low-pass filter, the
received communication signal becomes

vy, =€el%m1 +n. (11)

The received reconstructed signal y. can be used to evaluate the
communication performance.

3) Communication Information Embedding: In the phased-
array beamforming mode, each chirp carries a communication
symbol from the binary phase-shift keying constellation, also
known as the slow-time coding method in this article. At the
receive end, the transmitted signal can be extracted using (11).
However, in automotive radar, the number of chirps is typically
limited to several hundreds in order to enable coherent process-
ing of the target object echo, which sets an upper bound on the
communication rate. To increase the communication capacity, a
hybrid-coded method can be adopted, which combines fast-time
and slow-time coding. In this coding scheme, the duration of
each chirp is divided into L short time periods, which are then
encoded as follows. The code sequence for N transmit antennas
at the mth chirp is given by

zc(m,t)

t—m(l—1/2)T,

L
_ j
= ?:1 el rect ( T

) e (fett 1 FE4nm)

(12)

where T; = T'/L represents the duration of a fast-time chirp.

C. Transmit Beamforming Exploiting Sparse Arrays and
Quantized Double-Phase Shifters

We present the transmit beamforming using sparse arrays with
quantized phase shifters. The combined application of transmit
beamforming and sparse arrays allows for a cost-efficient and ef-
fective system design. As shown in Fig. 1, the transmit antennas
are sparsely selected to form two distinct beams: one directed
toward the radar target and the other toward the communica-
tion user. Concurrently, a null is created in the directions of
the victim radars, functioning to significantly minimize mutual
interference.

1) Antenna Selection: In order to adapt different sparse
transmitting arrays in different scenarios, we designed a recon-
figurable sparse array based on the current radar scenario by
activating a subset of available transmit antennas, and keeping
the rest of the antennas inactive to reduce the power consumption
of the radar system and mutual coupling between the antennas.
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A selection matrix denoted as S = [u;, u,, ..., uy,. | is defined,
where each column vector u; represents the status of ith antenna.
The ith entry of u; is set to “1” if the antenna is activated, and
“0” otherwise. The length of the transmit array determines the
transmit beam’s width, meaning that a larger aperture size results
in a narrower beamwidth [67]. Therefore, we fix the first and the
last antennas of the array to maintain a consistent array aperture
and select M other antennas in-between, resulting in a total of
M + 2 antennas being activated. As a result, the trace of S,
denoted as tr(S), is M + 2. The first element of u; and the last
element of uy,. are set to “1,” while all other entries in u; and
uy,. are set to “0.”

2) Beam Synthesis via Double-Phase Shifters: In a full-
phase array DFRC system, radar sensing and communication
will share the same transmitter array. Therefore, in order to
achieve both functions, the radar sensing beamformer w,. and the
communication beamformer w, need to be merged as a single
beamformer w, and this is accomplished using double-phase
shifters. Its working principle relies on each antenna being
connected to a unique RF chain via two phase shifters. The
beamformer can synthesize two main beams, focusing the en-
ergy of the array on the respective directions of interest for the
two functions.

By connecting a pair of phase shifters to each antenna, we in-
troduce more degrees of freedom to shape the beampattern [29].
The hybrid transmit beamformer w is given as

W =Wy + W,
1
V};t

" 0o 1T
e1e?“Nr 4 el ”T]

1€ + e, 0172 + el .

; (13)

where ¢; € [0,1] and ¢; € [0, 1] with ¢ + ¢ = 1 are weight-
ing factors that balance radar sensing and communication
capabilities.

3) Beamforming Optimization Problem Formulation: In
practical applications, however, phase shifters usually apply
a limited number of phase shift angles due to complex
implementation and overhead challenges. At the same time,
in order to reduce the interference of transmitting antennas
to uninteresting targets, additional constraints need to be
introduced to improve the above-mentioned optimization
problem.

In this section, we delve into the intricate process of crafting a
highly optimized transmit beamformer, denoted by w, as well as
an antenna selection matrix, represented by S. To achieve both
radar sensing and communication functions simultaneously,
a common sparse array can be designed using two separate
beamformers, w, for radar and w,. for communication [52].
The objective of this design is to ensure that a certain level
of power is maintained toward both the radar targets and the
communication destination. Furthermore, the beamformer must
generate minimal interference toward other directions while
maintaining low peak sidelobe levels. In essence, the problem
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at hand can be formulated as
(w S a1,00,5)

st [wHSa(6,)| =p
\wHSa(Sc)| =m

|wHSa(6,)| < p1 +1,6,€0

V1@ + Y2 + Y3003

|wSa(6;)| < p2 + a2
W =Wy + O2W,
W, We. €D

6, —6,

o3

tr(S) = M + 2.

The coefficient of balance ; denotes the proportion of each part
in the cost function. The sensing direction, departure angle to the
communication user, discretized angle in the sidelobe region,
and direction of an uninterested target are represented by the
variables 6, 6., 6;, and 6;, respectively. Here, p; and p, quantify
the power assigned to the radar target and the communication
user, respectively. With © denoting the sidelobe region, p; and p;
quantify the peak sidelobe level of beampattern and interference
attenuation, respectively. To make the constraints feasible, we
introduce auxiliary variables «v; and a; to relax the constraints on
the specific level of peak sidelobe and interference attenuation,
and their minimum values are 0. Constraints w,. and w. force the
value of phase shifters within the range of quantitative values.
The parameter a3 is used to measure the deviation between the
ground truth #, and the actual main beam direction f. The last
constraint ensures that a total of M + 2 antennas are selected.
The joint optimization problem of transmit antenna selection
and beamforming with quantized phase shifters is NP hard.

4) Optimization-Based Solution: A simplified optimization
problem is developed to determine the optimal beamforming
weights by assuming that the selection matrix S of transmit
antennas is already obtained via DRL. Let f; denote the desired
reference beampattern including the mainlobe, sidelobe, and
null-space region constraints specified in problem (14). The new
beampattern synthesis problem is formulated as

(14)

min |ASw — f]

S.t. W=c W, + W,
(15)

In this problem, A = [a,(6;), a¢(62), - .., a, (0 )] € CN*K is
a dictionary matrix consisting of discretizing the entire ROI into
K discretized angles with a certain step. The weight vector w
comes from the quantized set D. The fixed sparsity antenna
distribution group sparse optimization (GSO) method is used to
solve the optimum beam vector w. The values of the obtained
phase shifters through GSO can achieve arbitrary high precision.
These values are then quantized to the closest values in the quan-
tized phase shifter set D. The quantization may result in a small
performance loss that will be seen in the numerical part. Further,

W, We €D,

when compared to the RL method, the GSO optimization method
lacks the ability to dynamically adjust the beamforming weights
when changes the target’s position changes due to the absence
of a feedback link.

5) Angle Finding Under Sparse Antenna Selection: In the
tracking mode, the transmit beamforming using sparse arrays
through antenna selection enhances the output SNR of both
sensing targets and communication users, while suppressing in-
terference to other automotive radars. For angle finding of radar
targets in the tracking mode, a separate receive antenna array
is required, which is decoupled from the transmit beamforming
design. However, in the sensing mode, the virtual array is synthe-
sized with MIMO radar technology and, therefore, the dynamic
sparse transmit antenna selection would impact the virtual array
beampattern. The challenge of sparse arrays is the high sidelobes
or potential grating lobes. High-resolution algorithms, such as
CS [68] and iterative adaptive approach (IAA) [69], [70], are of
great interest for angle finding, as they help to suppress the high
sidelobes. In addition, CS and IAA work with single snapshot.
To deal with potential grating lobes, usually angle unfolding
technique can be applied with overlapped subarrays [71].

[ll. TRANSMIT BEAMFORMING DESIGN USING DRL

The transmit beamforming optimization problem is is com-
binatorial, and thus NP hard, requiring an exchaustive search
through a vast number of possible solutions. This means that
the time required to find a solution grows exponentially with
the size of the problem. To alleviate the optimization difficulties
caused by the size explosion, and considering the limited phase
tunability characteristics of practical phase shifters, we adopt a
framework based on DRL to dynamically activate or deactivate
antennas and tune the phase of each activated antennas. The
incorporation of DRL paves the way for intelligent, dynamic
decision-making that is responsive to changes in the system’s
environment.

A. Deep Reinforcement Learning

The problem of sparse array beamforming is to find the
optimal subarray set and the corresponding beamforming matrix
policy. RL utilizes the trail and reward loop to guide the agency
to an optimum solution, making it a powerful tool to solve our
beamforming problem in an intelligent way. RL is a type of
machine learning where an agent learns to make a sequence
of decisions in an environment in order to maximize a reward.
The goal of the agent is to learn a policy, which is a mapping
from states to actions that maximizes the expected cumulative
reward. The mathematical framework of RL can be defined by a
Markov decision process using a tuple (S, A, P, R, y), where S
is the set of possible states, A is the set of possible actions, P is
the state transition function, which specifies the probability of
transitioning from the current state s; to the next state s;+; when
taking action a, and R is the reward function, which specifies the
immediate reward obtained during the transition from state s,
to state s;;; when taking action a. In addition, +y is the discount
factor, which determines the importance of future rewards. The
goal of the agent is to learn a policy 7(a|s) that maximizes the
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expected cumulative reward [72], [73]

Gi =) ¥ Riyrs, (16)
k=1

where G is the discounted cumulative reward at time step t.
The policy is learned by updating the estimate of the value
function V;(s), which is the expected cumulative reward starting
from state s and following policy 7. This can be done using the
Bellman equation [73]

Vr(se)
ZZ m(als;) Z P(st+1]se, a)[R(st, a, se1)+yVa(se41)]-
acA 8t 1ES

(17

DRL is a type of RL that uses deep neural networks to
approximate the optimal policy or value function. This allows
the agent to learn more complex and abstract representations of
the state space, and enables it to generalize to unseen situations.
In DRL, the agent’s policy or value function is represented by a
deep neural network with weights . The network takes the state
s as input and outputs the action probabilities or value estimates.
The weights are updated using stochastic gradient descent to
minimize the loss function, which is usually the mean squared er-
ror between the predicted and the actual target values. Popularly
used algorithms used in DRL include Q-learning, state—action—
reward—state—action (SARSA), and actor—critic methods, which
are all based on the idea of using deep neural networks to
approximate the Q-function or policy.

The Q-function is the expected cumulative reward for taking
a certain action a in a certain state s, and following the optimal
policy thereafter [72], [73]. It is expressed mathematically as

Q" (st,a:) = E[Rey1 + ymaxqg,, Q" (st+1, @t 41)[st, at),

(18)

where a; 1 is the next action, and max,, Q*(st41,a¢41)is the
maximum expected cumulative reward under the optimal policy
in the next state.

The Q-learning algorithm updates the Q-function iteratively
using the following equation:

Q(st,ar) + Q(s¢,a1)

+ o [R; +ymax,,,, Q(st41,a:41) — Q(se,ar)], (19

where « is the learning rate, and the update is performed after
every action is taken by the agent.

SARSA is a similar algorithm that updates the Q-function
using the following equation:

Q(st, ) < Q(s¢,ar) +a [Ry +4Q(5¢41,0041) —Q (51, a4)] -
(20)

The update is performed after every action—state pair.
Actor—critic methods combine both the policy-based and
value-based approaches by training two neural networks: one to
approximate the policy and the other to approximate the value
function. The policy network is trained using the policy gradient
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method, while the value network is trained using temporal
difference learning or a variant thereof.

The DQN algorithm is a DRL algorithm that combines Q-
learning with a deep neural network to learn the Q-function
in high-dimensional state spaces. The key idea behind DQN is
to use a neural network to approximate the Q-function, which
allows the agent to learn a more accurate representation of the
optimal policy than traditional tabular methods. However, when
the action dimension is high, it becomes difficult to use DQN RL
to find the desired mapping policy. To overcome this challenge,
we use the Wolpertinger policy-based RL framework, which en-
ables us to implement training that is manageable on a timewise
basis. The Wolpertinger policy comprises three basic elements:
an action network, a K-nearest neighbor (KNN) map, and a critic
network. Together, these elements make up the Wolpertinger
policy. The DDPG is used to train the networks [74].

The actor network in DDPG selects an action by mapping
the current state of the environment to a continuous action
space. The output of the actor network is a vector of continuous
action values that can be scaled to fall within a specified range.
Mathematically, the actor network is represented as

a = Actor(s|6*), (21)

where #* contains the parameters of the actor network, and
Actor(-) is the function that maps the state to the action. The
action network in DDPG outputs a continuous action value,
which needs to be discretized before it can be used by the
critic network to estimate the Q value. To achieve this, the KNN
algorithm is used to select the K actions (a) in the quantization
interval D that are closest to the continuous action output of the
actor network.

In DDPG, the KNN network is used to select the best action
from the set of actions generated by the actor network. The
KNNs and their associated actions are stored in the KNN map
for use during training and testing. The distance metric d(a, a)
can be defined as the Euclidean distance

d(a,a) =|la —al[*. 22)
The K actions can be selected as [75]
K
a = argmind (a,a). 23)

acD

These K actions, along with the current state, are then used as
state-action pairs by the critic network to calculate the Q value.
The goal of critic network is to choose the corresponding action
to the maximum Q value, which can be given by

a = argmax Q(s, a|6?), (24)
acD
where 09 is the parameter set of the critic network.

During training, the actor network learns to maximize the
expected reward obtained by the agent. This is achieved by
adjusting the parameters of the actor network using the policy
gradient method. The policy gradient is computed using the
estimated value of the state—action pair, which is provided by the
critic network. The gradient of the expected reward with respect
to the parameters of the actor network, denoted by Vgx J, can
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be written as [74]

N
Voud % 3 VaQ(si, alt?) Vou Actor(s|o*), (25
i=1
where N is the batch size, s; is the ith state in the batch, a
is the action selected by the actor network, and Q(s;, a|f?)
is the estimated value of the state-action pair provided by the
critic network. The policy gradient is computed by taking the
gradient of the expected reward with respect to the parameters
of the actor network, 6*, and is used to update the actor network
during training.

In the DDPG algorithm, the target actor and target critic
networks are copies of the original actor and critic networks,
respectively, but with separate sets of parameters [74]. These
target networks are used to generate the target actions and target
Q-values that are needed for updating the original networks. The
update rule for the target actor network parameters is given by

0" = (1 — )" + no*, (26)

where 6#' is the set of parameters for the target actor network
and 7 is the update rate parameter that controls the rate at which
the target network parameters are updated. Typically, n is set to
a small value such as 0.001. Similarly, the update rule for the
target critic network parameters is given by

09" = (1—n)o? +no?, @7)
where 62" is the set of parameters for the target critic net-
work. During training, the original actor and critic networks
are updated using the gradient descent algorithm based on the
loss function. However, the target networks are not updated
directly. Rather, their parameters are updated slowly to match the
parameters of the original networks. This introduces a lagging
between the generation of the target actions and Q-values and
the update of the original networks, which can help to improve
the stability and convergence of the learning process.

The critic network is trained using a temporal difference
method [74]. The objective is to minimize the difference between
the estimated value and the actual value of the state—action pair

L(69)=E|(ris1 +1+7Q(si+1, ai1169) = Q(si, il )],
(28)

where s; 1 is the state at time ¢ + 1 and a; is the action taken
at time ¢ + 1.

B. Beamforming Design With DRL

In this section, we describe in detail how to use Wolpertinger
policy-based RL framework to optimize transmission beam-
forming for both radar sensing and communication functions
and to avoid interference to specific targets, as shown in (14),
and specific functions of function blocks in Fig. 1.

1) Action Space: We consider a scenario where we must
select M + 2 antennas from a pool of N; antennas, and both
ends have fixed antennas. The number of potential solutions
for this scenario is @ = C}\f _,. Phased array antenna systems
utilize quantized phase shifters, which enable multiple antennas

to direct the transmission or reception of a signal by adjusting
each antenna’s output phase. This technique allows the signal
to be steered in a desired direction without requiring physical
movement of the antenna. Each antenna in a subphase array
is connected to two g-bit quantized phase shifters, which have
a value range of (—m,m). To obtain the optimal value of w,
we must optimize the phase of the phase shifters and the sparse
transmit array geometry. The dimension of the phase adjustment
iS RQ_qu(M—Z) )

2) State: Once an action is taken from the action space, the
state vector s changes and includes the current status of the
transmit array phase shifters. At the :th iteration, the state is
represented as sT = [wy, wy, . .., war42)i, Where each element
corresponds to the status of a specific phase shifter. The acti-
vation or deactivation of a phase shifter represents a change of
one element and is considered as an action taken from the action
space.

3) Hold and Go: After the transmit antenna array emits
power, the receive array processes the received echo signal.
Subsequently, the moving targets within the ROI are analyzed,
and relevant parameters, such as distance, Doppler, and angle,
are extracted. These parameter values are then transmitted to
the module, where they are dynamically adjusted based on the
parameter estimation results obtained from the receive array. In
the hold stage, only one set of phase shifters is explored instead of
two, and a prebeamforming check is performed before inputting
two phase shifters with the desired phase. The columns of
the beamformer recorder matrix W .. = [wy(6,), W.(6.)] form
the respective beams in the target and communication receiver
directions. The fused beamformer w = 0.5w () + 0.5w.(6,.)
is obtained, assuming ¢; = e = \/5/2. To determine whether
the phase of double-phase shifters should be changed, a set of
flags fj is used. It consists of two flag bits. The one-time trigger
flag bit f4; detects the dimension of matrix W, and once the
dimension satisfies the two columns, the holding phase ends and
external environment interaction begins. Another flag bit f;,
indicates whether W .. changes and, if so, updates the reward.

4) Environment Interaction: The feedback component of RL
is critical, making it superior to other machine learning methods
for control applications. In the design of beamforming, radar
sensing beam feedback consists of two components. First, the
self-detection of beam directivity using the fusion beamforming
vector w allows the agent’s behavior to be adjusted by observ-
ing deviations between the obtained target and the set target
through beampattern transformation. Second, the range-Doppler
spectrum constructed from radar sensing echoes provides feed-
back to compare deviations with expectations and adjust the
agent’s actions. Similarly, interactive feedback for communi-
cation beamforming has two components. The first component
is feedback for deviations in fusion weighting in the direction
of the target, and the second component adjusts the agent’s
actions based on feedback from the communication channel.
For the interaction of targets that need to avoid interference, the
corresponding position of null in the transmit beampattern is fed
back simultaneously and immediately.

5) Reward: We design a comprehensive reward system that
dynamically evaluates the actions chosen by the agent. This
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system guides the agent toward selecting the most appropriate
action to maximize its rewards. The rewards are based on three
evaluations: radar sensing, communication, and interference
reduction. Together, these evaluations enable the agent to make
informed decisions. Assume that the ROI for radar sensing
covers an angle of —fro1/2 to fro1/2, and the 3 dB beamwidth
is determined by the formula Ay = 2arcsin(1.4A/(w D)), where
D is the physical aperture size of the transmit antenna array.
The area beyond the first nulls of the mainlobe is referred to as
the sidelobe region. At each update, the difference between the
maximum level of the mainlobe peak max(Pror,;) and the peak
sidelobe level max(PSL;) is denoted by &; = max(Pror,:) —
max(PSL;). The main beam deviation is calculated using the
values of £ and d,. to ensure that the main beam is directed toward
directions while minimizing the peak sidelobe level. The reward
is given by

1, if &> & and dp, < dpiy
i = —1, if § <& 1 and dr, > dpig (29
0 other cases.

¥

To evaluate communication performance, the received gain is
usually represented by the expression g, = |Hw|2. Assuming
that the channel parameters have been estimated, the communi-
cation reward can be expressed as follows:

L, if gei > gei
Tei = 0, if gei = gei1
—1, if gei < Gei1-

(30)

This dynamic gain will be reported to the automotive radar by
the communication user through an uplink channel.

To prevent interference with other automotive radar systems,
it is important that the synthesized beamformer produces a null
in the direction of departure ¢;. The level of attenuation can
be calculated using the formula p = |[wH a(6;)|, where w is
the weight vector and a(f;) is the array response vector in the
direction #;. The reward for minimizing interference at the ¢th
update can be given by

I, if p; <pi
0, if p; =p;iy
=1, if p; > pi1.

(3D

Tp; =

The final triple reward r; at the ¢th update is expressed as

T, = A-ITN' + lg"'cg + lSrpii (32)

where A, A2, and A3 represent the respective weights trading off
between the radar and communication functions, and interfer-
ence attenuation.

The pseudocode of DRL-based automotive DFRC using
Wolpertinger policy is given by Algorithm 1.

C. Computational Complexity Analysis

The action space in the DRL system grows exponentially with
the increasing number of antennas and quantized phase values,
which can make the computational cost of exploring and learning
the optimal policy prohibitively high. To address this challenge,
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Algorithm 1: DRL-Based Automotive Radar DFRC Sys-
tem.

Initialize networks with corresponding parameters.
HOLD = TRUE, f41 =0; fa2 = 0.

Initialize §, =0, dro =1, g0 =0, po = 1.

Initial sample a random beamforming vector w,; as
initial state s; and record action a;.

5: fori=1toT do

6 Receive proto-action @; from actor network.

7:  Action embedding g(a;) through KNN mapping.
8-

Ll

: while HOLD do

9: Update W ..
10: fa1 = column(W,..).
11: if f41 == 2 then
12: HOLD = FALSE.
13: Execute action w; passed from critic network.
14: Calculate reward and update state s; | = a;.
15: Update &i, dr1, ge1 and py.
16: end if

17: end while
18: Update W..;.
19: if W..; # Wi then

20: Execute action w; passed from critic network.
21: Calculate reward and update state s; 1 = a;.
22: Update &;, dyri, gei and p;.

23: Update all networks.

24: end if

25: _end for

the KNN block is introduced to ensure that the computational
cost of the entire system remains tractable at each state. The
Wolpertinger policy scales linearly with the number of selected
actions, k. According to Lemma 1 in Dulac-Arnold et al.’s work
[76], the expected value of the maximum of the k closest actions
is

E 11]13ku(5, a)|s,a| = Q(s,a) +b—p*(c—b)
iel,...,
2b 1 — pkt!
k+1 1—p °
Given a, each nearby action has a probability p of being sub-
optimal or faulty, resulting in a value lower than Q(s,a) —c.
The values of the other actions are uniformly distributed within
the interval [Q(s,a) — b, Q(s,d) + b], where b < c. The mi-

nus part —p*(c —b) — kz—fll—_]% lowers the expected value

to below Q(s,a) + b, with changes governed by O(p*) and
O (RL_H) This significantly reduces the expected value, but
the diminishing returns become apparent as k increases. For
applications with low dimensionality, using 5% or 10% of the
maximum number of actions performs similarly to that using
the full action set .4. However, even when considering 5%
of a large set .4, the number of actions to evaluate at each
step remains considerable. Fortunately, when the action space
dimension is large, a single lookup is sufficient. For example, in

Dulac-Arnold et al.’s work [76], with an action space dimension
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TABLE |

RADAR PARAMETERS
Parameters Values
Carrier frequency, fe 77 GHz
Maximum detection range, Rmax 200 m
Maximum detection velocity, Vipax 230 km/h
Bandwidth, B 150 MHz
Pulse duration, Ty 7.3 us
Sampling frequency, fs 54.648 MHz
Number of chirps, M 512

of n =20, using k = 1 ensures the convergence of the DRL.
In our system, we use a single look-up k£ = 1 to expedite the
action—critic process. Specifically, given an a, we only evaluate
the nearest action in .4. This approach is low-cost, efficient, and
effectively addresses the curse of dimensionality in the action
space.

The computational complexity of the proposal DRL-based
beamforming approach can be analyzed in terms of the number
of neural networks parameters that need to be stored C¥, addi-
tions C** and multiplications C* . The actor and critical networks
have a similar structure, which takes the input dimension N, and
passes it through two hidden layers with the number of neurons
denoting as N; and N,. The softplus and tanh functions are
used for the first and second hidden layers separately, and a batch
norm is implemented from layer to layer. Bias are assigned to the
hidden layers and the output layer. The computation complexity
of the proposed DRL is considered from the parameters to be
stored CT, the addition operation C*, and the multiplication
CM  The activation function cost is considered as addition, and
the cost of the batch norm is counted to multiplication. Taking
the actor-network as an example, the bundle of computation
complexity is given by

CP = N;Ny + N\N; + NoNg + Ny + N, + N,
CM = NoN; + N\ Ny + NaNg + Ny + N,
C# = N,Ni + NiN, + N;N, +2(N; + N, + N,,).

Considering the target and evaluation networks of actor-critic
networks, the total complexity is C = 4(CY +CM + C4).

IV. NUMERICAL RESULTS

We carry out numerical simulations to evaluate the perfor-
mance of the proposed DRL assisted automotive DFRC sys-
tem. An FMCW MIMO radar with phase-modulated slow-time
waveforms features 15 transmit and 15 receive antennas with a
half wavelength inter element spacing and its setting is given in
Table I. The normalized spatial frequency of the half FOV of the
array is set to 0.7, which corresponds to a half angle of the ROI,
denoted by fro1/2, of 44.2°. The 3 dB beamwidth, denoted by
Ay,is 0.119, which corresponds to a half angle, denoted by Ag,
of 6.81°.

To enable radar sensing and communication for specific pur-
poses, the first crucial step is to estimate the target parameters
within the radar’s FOV using the searching mode. In this mode,
following data processing, the resulting data spectrum can be

Amplitude (dB)
2

-100 -
50

Angle (Degree)

0 10 20 30 40 50 60
Range (m)

(b)

Fig.2. Estimated target parameters in the searching mode. (a) Range-
Doppler spectrum. (b) Range-angle spectrum. The red x denotes the
actual positions of the targets.

TABLE Il
HYPERPARAMETERS FOR TRAINING

Parameter Value
Models Actor-net [ Critic-net
Replay buffer 4096 4096
Mimibatch 128 128
Learning rate 0.001 0.001
Decay 0.001 0.001

visualized in Fig. 2. There are three objects in the FOV of the
radar, including a tracking target with range vy = 25 m, v; =
—20 m/s, 8, = —23.6°, a communication user with r, = 25 m,
vy = 10 m/s, , = —5.7°, and a potential interference radar with
r3 = 20 m, v3 = 35 m/s, and f; = 14.4°. The reflection coeffi-
cients of the three objects are normalized to o; = a3 = 1.0, and
az = 0.3 and are assumed to be unchanged during the processing
interval. The input SNR is set to 0 dB.

For the learning model, we use the hyperparameters, as
described in Table II. All networks are trained on a Lambda
machine with an Intel Core i9-10920X CPU and four Nvidia
Quadro RTX 6000 GPUs.

A. Performance Under Antenna Selection

We choose 12 antennas from 15 antennas to form the final
transmission array, as shown in Fig. 3. There are 455 possible
selection schemes. Each antenna is connected to a 3-bit quanti-
zation double-phase shifter.

The antenna selection process is depicted in Fig. 3(a) and (b).
In addition, Fig. 4 shows the average reward attained during
the training process. After approximately 60 epochs, the net-
work intelligently adjusts the phases to steer the main beam to
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Fig. 3. (a) Transmit array configuration in the initial phase. (b) Transmit
array configuration after optimization.
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Fig. 5. (a) Transmit beamforming in the initial phase. (b) Transmit

beamforming after optimization with DRL and GSO, where ground truth
directions are indicated in red dash lines.

the ROI based on the current observation state. In the 100th
episode, the tracking target, the communication target, and the
direction that requires nulling change. At this time, the reward
drops sharply due to the loss of target. However, the perception
information updates the hold and go module, and, therefore,
RL is able to quickly adjust the transmit beamforming and
reconfigure antenna locations. Fig. 5(a) illustrates that at the
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Fig. 6. DRL optimized transmit beamforming in sparse phased array
with quantized phase shifters under different assigned power coeffi-
cients to radar radiation.

outset of the iterative optimization, two beams are generated
in the directions of the radar target and the communication
receiver, but with a high sidelobe level in the undesired di-
rection. After optimization, the sidelobe level is substantially
reduced, effectively attenuating the interference to the specific
automotive radar. Compared with DRL-optimized and GSO-
optimized transmit beamforming in Fig. 5, it can be seen that
the energy of communication and tracking direction optimized
by DRL is more balanced and the sidelobes are reduced. Fig. 6
explores the impact of power allocation coefficients. Initially, the
radar radiation power coefficient ¢; for the ROI was set to 0.1.
Subsequently, the power was increased to ¢; = 0.5. Notably,
power coefficients serve as effective tools for regulating the
radiation pattern through the assignment of power to distinct
functions.

B. Sensing Performance Evaluation

In phase array mode, once the emission beampattern of the
fully phased array has been determined by the DRL, further
adjustments can be made based on the interaction of the radar
echo spectrum with the DRL agent. As depicted in the Fig. 7,
after receiving the energy radiated by the antenna array, the
radar’s receiving antenna array processes the echo from the tar-
get. Because of the directionality of the transmitted beampattern,
the echo of the target of no interest with a higher reflection
coefficient is reduced and the communication target with a
lower reflection coefficient is enhanced. Simultaneously, the
range-angle spectrum shows that the target in the null position
can no longer stand out in the spectrum, unlike in Fig. 2(b). In
addition, due to the characteristics of the phase-controlled array,
the angle resolution is also compromised relative to the MIMO
radar mode.

C. Communication Performance Evaluation

We assess the performance of the communication function by
evaluating the bit error rate (BER).

Fig. 8 illustrates the BER variation trend with respect to the
input SNR for two coding modes, where the number of chirps
is set to M = 512, the number of receive antennas at the user
end is set to 1, and the hybrid coding mode employs L = 400
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Fig. 7. Target parameters estimation in phased array sensing mode.
(a) Range-Doppler spectrum. (b) Range-angle spectrum. The red mark
» denotes the actual positions of the targets.
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Fig. 8. BER versus SNR with binary phase-coded communication
symbol along slow-time (a) and hybrid (b).

time samples. Monte Carlo simulations were run for 10 000
rounds at each SNR scenario. As seen in the plot, when the input
SNR exceeds 10 dB, the BER drops to 10-%. Hybrid coding
exhibits enhanced transmission efficiency compared to slow-
time coding.
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Fig. 9. Transmit beamforming of a uniform phased array with quan-
tized phase shifters.

D. Comparison With Optimization Methods

The comparison between the proposed and traditional opti-
mization methods is of a significant value, and we select the
modified beampattern synthesis method of relaxation optimiza-
tion as the baseline method [77].

In the case of optimizing the beam vector of a ULA array,
Fig. 9 shows the optimized beam vector of a ULA array, where
one can see that both the DRL and traditional optimization
methods achieve the desired beampattern. The positions of the
two mainlobes appear in the preset directions. However, due
to the quantization requirements, the mainlobe may have a
slight deviation, which falls within the control range of as.
While the deepest position of the DRL-optimized null may
slightly differ from the expected direction, it still ensures the
lowest possible transmission power in the direction of the de-
sired target. The optimal phase values yielded by the GSO
algorithm have arbitrary high precision. These high precision
phase values are quantized to the nearest discretized phase
values. The phase quantization results in a small performance
loss as compared with the DRL solution. In the optimization of
the sparse transmission array w, as illustrated in Fig. 5, both
the DRL method and the traditional optimization method can
accurately align the transmission mainlobe’s direction with the
radar sensing target and communication receiver. However, the
DRL method has a better beampattern synthesis performance
compared to the optimization method, while both approaches
can effectively regulate the radiation power in the null direc-
tion. Overall, the results indicate that the DRL method out-
performs the relaxed optimization method in terms of sidelobe
control.

V. CONCLUSION

We presented an innovative DRL framework, inspired by
the Wolpertinger’s strategy, for the development of intelligent
automotive radar DFRC systems. This framework is designed
to optimize antenna distribution and accurately calibrate the
quantized phase of low-bit double-phase shifters. Unlike tra-
ditional single phase shifters, the use of double-phase shifters in
the proposed system allows for concurrent tracking of targets,
enhancing communication capabilities, and reducing interfer-
ence in undesired directions. This approach is particularly adept
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at navigating high-dimensional action spaces without requiring
exhaustive action searches. In terms of communication with
objects, both slow-time coding and hybrid coding methods have
shown promising results. However, hybrid coding stands out
in improving communication reliability. The proposed method
surpasses the conventional relaxed optimization technique in
effectively tuning the transmission matrix. It aligns the main-
lobes precisely with the directions of radar sensing and commu-
nication users, while concurrently pointing nulls to the victim
radars. Simulation results validated the feasibility and efficiency
of our proposed approach, marking a significant advancement
in automotive radar DFRC systems. While DRIL-based recon-
figurable beamforming for automotive radar sensing and com-
munication is promising, several challenges remain. One critical
area for improvement is enhancing the robustness of DRL-based
beamforming systems against environmental variations, such as
multipath reflections caused by surrounding objects. Another
key challenge lies in achieving real-time processing and compu-
tational efficiency when implementing DRIL.-based beamform-
ing on automotive radar hardware with limited computational
resources.
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