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ABSTRACT Convolution and matched filtering are often used to detect a known signal in the presence
of noise. The probability of detection and probability of missed detection are well known and widely
used statistics. Oftentimes we are not only interested in the probability of detecting a signal but also
accurately estimatingwhen the signal occurred and the error statistics associatedwith that timemeasurement.
Accurately representing the timing error is important for geolocation schemes, such as Time of Arrival
(TOA) and Time Difference of Arrival (TDOA), as well as other applications. The Cramér Rao Lower
Bound (CRLB) and other, tighter, bounds have been calculated for the error variance on Time of Arrival
estimators. However, achieving these bounds requires an amount of interpolation be performed on the signal
of interest that may be greater than computational constraints allow. Furthermore, at low Signal to Noise
Ratios (SNRs), the probability distribution for the error is non-Gaussian and depends on the shape of the
signal of interest. In this paper we introduce a method of characterizing the localization accuracy of the
matched filtering operation when used to detect a discrete signal in AdditiveWhite Gaussian Noise (AWGN)
without additional interpolation. The actual localization accuracy depends on the shape of the signal that is
being detected. We develop a statistical method for analyzing the localization error probability mass function
for arbitrary signal shapes at any SNR. Finally, we use our proposed analysis method to calculate the error
probability mass functions for a few signals commonly used in detection scenarios. These illustrative results
serve as examples of the kinds of statistical results that can be generated using our proposed method. The
illustrative results demonstrate our method’s unique ability to calculate the non-Gaussian, and signal shape
dependent, error distribution at low Signal to Noise Ratios. The error variance calculated using the proposed
method is shown to closely track simulation results, deviating from the Cramér Rao Lower Bound at low
Signal to Noise Ratios.

INDEX TERMS Covariance matrices, delay estimation, digital measurements.

I. INTRODUCTION
Matched filtering is a frequently used signal processing
technique. It is commonly used as a solution to two
distinct classes of problems. The first class of problems is
determining whether or not a specific signal occurred in
a series of noisy sample measurements. This is known as
the detection problem. Matched filtering for signal detection
is well understood, with performance statistics documented
in multiple textbooks [1], [2], [3]. This class of problems
commonly pops up in communications systems and radar
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signal processing [4], [5], [6]. The second class of problems is
concerned with when a specific signal occurs.Wewill refer to
this class of problems as the localization problem. Its solution
is generally the time, or other x-axis variable, at which a
peak in the matched filter output occurs. There are methods
using interpolation which can estimate the time of arrival
of the signal to within less than a sample period. There are
also methods for handling cases involving interfering signals
with known statistics. The analysis of error probabilities
for the localization problem is not widely talked about or
publicized in contrast to detection problem error statistics.
Ronald Barker initially popularized this line of research
in 1953 with his paper titled ‘‘Group synchronization of
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Binary Digital Systems’’ by introducing Barker Codes which
have correlation properties ideal for signal detection and
localization [7]. Massey and others touched on the problem in
the 1970s while researching maximum likelihood techniques
for estimating the time of arrival of a known digital sequence
in a larger digital sequence plus Gaussian noise [8]. In
1982 Stein published a paper defining the time of arrival
error statistics for analog signals [9]. Stein’s paper lacks
a derivation, but remains the primary resource used when
characterizing localization errors.

The localization problem is of critical importance in
geolocation and remote sensing applications, where we are
interested in calculating accurate error bounds on the location
of a Radio Frequency (RF) emitter or receiver. In radar signal
processing, localization error relates to the range resolution,
which is an important performance metric. The localization
problem also comes up in physical layer communications
system design, where we must accurately locate the start of
a physical layer frame in order to correctly demodulate the
payload data. Research in this area has even been used to
give insight into messenger RNA transcription processes that
occur in cellular biology, where promoter regions must be
accurately localized in order for the transcription process to
be successful [10].

Remote sensing and geolocation systems translate Time
of Arrival estimates into distance measurements using the
known propagation speed of the transmitted signal. The
error bounds on these measurements dictate the accuracy
of the geolocation, and are typically translated into a 95%
confidence ellipse centered on the geolocation estimate. This
error ellipse is constructed using a calculated error variance
and the assumption that the error is Gaussian. The error
bounds are typically estimator error variances derived from
the Cramér Rao Lower Bound for the continuous time signal
case. It turns out that the Cramér Rao Lower Bound is a
good bound for time of arrival estimator variance of high
SNR continuous time signals. Other bounds, discussed later,
have been successfully developed for cases where the SNR is
lower. These methods were developed with continuous time
signals in mind, but come with a claim that these bounds
are also valid for discrete time signals if and only if you
have the ability to interpolate by an undefined and sufficient
amount. Furthermore, the assumption that the shape of the
error distribution is Gaussian is only valid for the high SNR
case, even on continuous time signals.

The work in this paper is motivated by a need to accurately
characterize error statistics associated with signal Time of
Arrival (TOA) estimates when the amount of interpolating
used to perform the estimation is set at a fixed value or
zero. The authors were unable to find work addressing this
need in the current literature. The goal of this paper is to
introduce a statistical model for the error distributions under
the constraint of a discrete sampling interval, which is often
true in real systems. This work will enable more accurate
error bounds to be calculated for geolocations performed
within the low SNR and discrete sampling constraint.

In section II we start by summarizing Stein’s method
which is commonly used to calculate localization error
statistics. Then, in section III, we propose a new method
for calculating localization errors in discrete time. The
method we propose is derived directly from convolution
fundamentals. Our work focuses on the specific scenario of a
waveform in additive white Gaussian noise. We also address
some practical considerations for evaluating the previously
defined system. In section IVwe discuss the boundary effects,
how they distort our results, and how to compensate for
them. Next, we briefly show how our model can be expanded
to evaluate time difference of arrival errors in section V.
Finally, in section VI we compare error probabilities for three
common waveforms and present some illustrative results.
Additional background on the matched filtering process is
given in the appendix of this paper.

II. BACKGROUND
There are two publications that have addressed the signal
localization accuracy problem in detail. Both publications
focus on the continuous time solution, and arrive at similar
results.

In ‘‘Algorithms for Ambiguity Function Processing,’’
Seymour Stein states the following formula for calculating
the standard deviation of Time Difference of Arrival (TDOA)
measurements [9].

σ =
1
β

1
√
BTγ

(1)

TDOA is a generalized case where two signals that have
both been corrupted with noise are convolved with each
other in order to estimate a relative time offset. This scenario
typically occurs when we need to measure the time offset
between the same signal received at two spatially diverse
receivers in order to aid in the geolocating the emitter. B is
the noise equivalent bandwidth at the receiver input, and is
assumed to be the same for both receivers. β is the root mean
squared (RMS) radian frequency defined by (2) and T is the
signal duration. γ is the effective input SNR.

β = 2π

[∫
∞

−∞
f 2Ws(f )df∫
Ws(f )df

] 1
2

(2)

Ws(f ) = |x(f )|2 is the signal power spectral density,
as shaped by the receiver and defined to have zero centroid.

The effective input SNR is defined by

1
γ

=
1
2

[
1
γ1

+
1
γ2

+
1

γ1γ2

]
(3)

where γ1 and γ2 are the SNRs for the respective receivers,
within the noise equivalent bandwidth B.

The equation Stein introduced above is generalized for
dealing with two noisy signals. He claims there is a 3 dB
gain when one of the signals is clean. This should be directly
derivable from (3). The shape of the distribution is not
obvious, but, in practice, it is assumed to be Gaussian with
zero mean.
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Robert McDonough touches on the time of arrival problem
in his book titled ‘‘Detection of Signals inNoise’’ on page 410
[11]. He establishes that this variance calculation introduced
by Stein is the Cramér Rao Lower Bound (CRLB) for time of
arrival estimation. Furthermore, it is easily achievable using
any one of a variety of techniques, including convolution,
provided there is sufficiently high SNR.

Var(τ̂ − τ ) ≥
1

BTβ2γ
(4)

Stein and McDonough’s work is with regard to continuous
time signals. However, it has been shown to also be
accurate for discrete time signals when adequate interpolation
techniques are employed. This is the current state of the art
for the vast majority of TOA error estimating systems.

The CRLB is a small error bound, and is not achievable
for cases involving larger errors. The above formulas are said
to hold true only at SNRs above 10dB, where there is low
probability of spurious noise on the autocorrelation sidelobes
exceeding a detection threshold [9]. Within this restriction,
the errors in localizing the signal are due to output noise
perturbations on the main lobe. Alternatives to the CRLB
exist which provide a more accurate bound for the large error
cases. The Barankin Bound and Ziv-Zakai Bound specifically
have been used to calculate more accurate lower limits on
the variance of time of arrival estimators in low SNR [12],
[13], [14]. The Barankin Bound in particular, is the tightest
bound possible on maximum likelihood estimators, and does
converge to the CRLB at higher SNRs. The disadvantage
with these methods is that they are difficult to calculate
and have no closed form solution. However, some work
has been done to approximate these bounds with piecewise
functions of SNR under certain signal assumptions [13], [14].
As an example, (5) shows a piecewise approximation of the
Ziv-Zakai bound on TOA estimator variance for narrowband
signals [13].

σ 2
=



D2/12 SNR ≤ SNR1
12π

W 3TSNR
SNR1 < SNR ≤ SNR2

Threshold SNR2 < SNR ≤ SNR3
π

WTω2SNR
SNR > SNR3

(5)

The specific SNR boundaries for each region and the
variable definitions are explained in detail in the cited
paper [13].

More recent research has been conducted with the goal of
developing methods of estimation with errors approaching
these lower bounds. Research in this area focuses on
developing more sophisticated estimators, usually based
on the simple correlation technique studied in this paper,
which reduce error variance for a specific application or
set of assumptions. The method of evaluation is repeated
simulations with error variance being the only metric of
interest [15], [16].

All of the methods mentioned above deal with estimating
the time of arrival for continuous time signals or discrete

time signals where there are no limits to the amount of inter-
polation we can perform on the signal. More significantly,
these methods only give a lower bound on the variance of an
estimator, and say nothing about what the error probability
distributions may look like. In the rest of this paper we
introduce a method of analysis which addresses both of these
problems.

III. STATISTICAL MODEL
In this section we develop a statistical model to aid us in
calculating the probability mass function for localization
error in the presence of additive Gaussian noise. We define a
jointly Gaussian system using twomatrices: a Toeplitz matrix
and a Difference matrix. Then, we integrate over a region
of that probability density function to get the probability
for a given index. We build a probability mass function by
repeating this process for all indices in the valid range.

Before explaining the model, there are a few assumptions
that wewant to explicitly lay out. (1)We are limiting the range
of possible peaks to the full region of convolution. (2) No
interference signals are present. (3) Noise samples are Gaus-
sian, zero-mean, independent, and identically distributed.
(4) Potential peak values are restricted to integer index values.
No interpolation between samples is utilized for peak finding.
The model can easily be expanded in order to relax the last
two constraints, as will be shown in more detail in future
work.

A. TOEPLITZ MATRIX STRUCTURE
The purpose of the Toeplitz matrix is to model convolution
with a filter. Here, HT is the Toeplitz matrix and h =

[h0, h1, · · · , hN ] is the vector of filter taps which is the
conjugate of the vector, x, in the case of matched filtering.
If our signal x has length N and our filter h is of lengthM ,

then the Toeplitz matrix should have dimensions N +M − 1
by N + 2M − 2. The sequence, x, should be zero padded
on both ends by M − 1 so that its total length becomes N +

2M−2. Then y = HT x will be the expected full length of the
convolution output, N +M − 1.
Below is an example Toeplitx matrix, HT , for the case

where h is of length 3. A much larger Toeplitz matrix is
depicted in Fig. 1.

h0 h1 h2 0 0 0 0
0 h0 h1 h2 0 0 0
0 0 h0 h1 h2 0 0
0 0 0 h0 h1 h2 0
0 0 0 0 h0 h1 h2

 (6)

The Toeplitz matrix can be used to calculate a convolution
output, y, for an input vector, x.

y = HT x (7)

The output for a Gaussian noise vector input can be
calculated in a similar manner. This defines a jointly Gaussian
system.

nT = HT n (8)

VOLUME 11, 2023 109597



C. Hall, I. Djordjevic: Discrete Time Signal Localization Accuracy in Gaussian Noise

FIGURE 1. Example toeplitz matrix structure for a chirp signal.

The covariance matrix for this jointly Gaussian system is
given as

C1 = σ 2
nHT IH

T
T = σ 2

nHTH
T
T . (9)

B. DIFFERENCE MATRIX STRUCTURE
The goal here is to measure the probability that one sample of
the convolution output is greater than all of the other samples
of the convolution output. To do this, we can generate a
difference matrix as shown by (9).

HD =

−1 1 0 0
−1 0 1 0
−1 0 0 1

 (10)

The dimensions of the difference matrix should be N +

M − 2 by N + M − 1 where N is the length of x and M
is the length of h. When we multiply our convolution output
vector, y, by this difference matrix,HD, the resulting vector is
all negative if the sample in question is the peak. If not, then
at least one element of the resulting vector will be positive.

Since this and the Toeplitz step are linear operations,
we can define a jointly Gaussian distribution for the output
vector by a covariance matrix and a mean vector, as shown in
(10-12).

C2 = HDC1HT
D = σ 2

nHDHTH
T
T H

T
D (11)

µ = HDHT x (12)

p ∼ N (µ,C2) (13)

Then, we integrate over a region of the probability density
function to get a probability:

P =

∫ 0

−∞

∫ 0

−∞

· · ·

∫ 0

−∞

p(x1, x2, · · · , xN )dx1dx2dxN . (14)

P is the probability that sample zero of our convolution
output is the peak. By doing a horizontal roll of theHDmatrix,
we can evaluate the probability of other samples being the
peak of the convolution output. Stepping through each of the
roll increments will give us the complete Probability Mass
Function for the convolution peak index.

Alan Genz discovered a computationally efficient numer-
ical method for approximating integrals over these kinds of
jointly Gaussian Probability Density Functions (PDFs) [17].
The Scipy python module contains a python wrapper around
the original Fortran implementation of this method [18].

scipy.stat.mvn.mvnun(lower, upper, means,
covar, [maxpts, abseps, releps])

The function takes in arguments for the upper and lower
bounds to integrate over. We want to integrate from minus
infinity to zero. Since we can’t actually provide negative
infinity as a lower bound, we must choose a lower bound
that is adequately small as to approximate negative infinity.
We can accomplish this by iteratively testing lower and lower
numbers until the difference in integration results becomes
negligible. This works because we expect the tails of a jointly
Gaussian distribution to tend towards zero.
Alternatively, Monte Carlo methods can give reasonable

approximations as well. We found this to be slower than
the Alan Genz method when implemented in Python.
More sophisticated Monte Carlo methods and numerical
approximation methods have recently been developed for
calculating multivariate Gaussian probabilities, which could
greatly improve the computation time, but these methods
were not explored [19], [20].
For additive noise drawn from non-Gaussian distributions,

the analysis can get a lot more complicated. In general, the
weighted sum of two random variables does not have the
same distribution as its parts. Although you can still carry
out the calculations for the covariance matrix and the mean
vector, the resulting distribution is not necessarily sufficiently
defined by these two quantities.
Assuming the noise is drawn from a distribution which has

well defined weighted sum properties, the model we have
introduced can still work. Care must be taken to correctly
propagate any additional distribution parameters through the
linear system. Then Monte-Carlo methods would probably
need to be used in order to integrate over the resulting
Probability Density Function.

IV. BOUNDARY EFFECTS
When we calculate the full convolution, we encounter
boundary effects. The probability of an index at the edges
being the peak is artificially high compared to the rest of
the signal. In fact, if we only feed zero mean Gaussian noise
vectors as signals into the system, we still encounter these
edge effects where we would expect every index to be equally
probable.
The cause of these edge effects stems from the fact that

every time we advance the convolution window, most of
the signal samples do not change. This has an averaging
effect where if one signal sample makes a correlation index
particularly strong then the neighboring correlation indices
will also be strong. The peak index probability gets spread
across these neighboring correlation indices. The extent of
the spreading is dependent on the filter length.
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FIGURE 2. Extended convolution size to remove boundary effects.

At the boundaries of the convolved sequence this phe-
nomenon cannot occur to the same extent. The probabilities
can only be spread across the indices on one side, and this
results in artificially high probabilities at the edges of the
convolution range.

Technically these results are correct for the constraints
we have set for ourselves. But these high edge probabilities
would not exist if the signal to be detected existed within a
longer noise vector, as is typically the case.

We can calculate the true peak index probability mass
function without edge effects by applying our previously
describedmethod over an extended region, as shown in Fig. 2.
This region will still have the edge effects, but they will be
outside of the subregion we actually care about. Then we can
pick out the subregion and normalize it to sum to one. The
new shape of our Toeplitz matrix will be N + 3M − 3 by
N + 4M − 4 and the dimensions of the difference matrix will
be N + 3M − 4 by N + 3M − 3.

For the remainder of this paper our results will be
calculated using this extension technique to remove edge
effects.

V. TIME DIFFERENCE OF ARRIVAL
Measuring the Time Difference of Arrival (TDOA) of two
signals generally means convolving two noisy signals with
each other in order to estimate their relative time offset.

(s1 + n1) ∗ (s2 + n2)

= (s1 ∗ s2) + (s1 ∗ n2) + (s2 ∗ n1) + (n1 ∗ n2) (15)

The first term above is deterministic. Themiddle two terms
are jointly Gaussian. The last term is not jointly Gaussian but
also not dependent on the input signal at all. The statistics
for this term are constant across the valid convolution region,
so we can ignore it completely. The jointly Gaussian system
generated from the middle two terms can be described as

y = HD
[
HT1 HT2

] [
S2
S1

]
(16)

where HT1 and HT2 are the Toeplitz matrices generated from
the signals S1 and S2 respectively. The two Toeplitz matrices
are concatenated together as shown in the equation above.
If S1 and S2 are of different lengths, the longer sequence

dictates the size for both Toeplitz matrices and the amount
of zero padding required on both sequences.

The mean, µ, of the system is calculated by replacing the
right hand term with [

S2
0

]
(17)

which yields the convolution term (S1 ∗ S2). The covariance
matrix can then be calculated in the same way as before.

VI. ILLUSTRATIVE RESULTS
In this section we provide examples demonstrating the kinds
of metrics our proposed analytical method can produce.
We have purposely selected our results in order to clearly
demonstrate the non-Gaussian nature of the time of arrival
error distribution as well as the strong dependence on signal
shape and filter shape when SNR is low. These features
are not considered in prior research which deals almost
exclusively in high SNR cases where these effects are
negligible.

We have chosen three signal waveforms and calculated
their localization error statistics using the methods we
proposed and discussed above. Fig. 3 shows the three
waveforms. The first waveform is a boxcar, chosen for
its simplicity and popularity as a test signal. The second
waveform is the length 13 Barker Code. Barker Codes are
engineered to have a max autocorrelation sidelobe value of 1,
making them ideal for localization tasks. The third waveform
is a linear chirp, which sweeps through the full range of digital
frequencies from 0 to π and is 128 samples long.

Fig. 4 shows the autocorrelation functions for each of the
three test signals. The autocorrelation of a waveform gives
us a general idea of how well we will be able to localize the
signal using a matched filter. An ideal signal for localization
will have an autocorrelation function with a strong center
peak and low sidelobes. In the presence of noise, those
sidelobes pose a risk of rising above the center peak and
inducing localization errors. Therefor we want the sidelibe
levels to be low relative to the center peak in order to reduce
the probability of such errors occurring.

Figs. 5 through 7 show the time of arrival estimator error
Probability Mass Functions for each of the test signals.

Fig. 8 shows the estimator variance with respect to SNR
for a length 20 boxcar. Both the simulation and model results
are compared against Stein’s method, which represents the
Cramér Rao Lower Bound (CRLB) [9]. At very low SNR
the estimator variance approaches a limit at the variance
of a uniform distribution, n2−1

12 , over the valid region we
have defined. Stein’s equation does not make the same valid
region assumption and therefore does not have an artificial
upper limit on the variance. It is necessary to emphasize
that Stein’s equation and other lower bounds mentioned
previously are for a slightly different problem with a different
set of assumptions and therefore are not directly comparable
to our results. We have included this result purely for the sake
of emphasizing those differences.
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FIGURE 3. Three test signals: (a) Boxcar (b) Barker code (c) Chirp.

FIGURE 4. Autocorrelation functions for the three test signals: (a) Boxcar
(b) Barker code (c) Chirp.

FIGURE 5. Boxcar length 20 at −15 dB SNR.

At higher SNR, the variance from our method closely
tracks the CRLB and then dips down below the CRLB to zero.
In this high SNR region, the noise will effectively never be
able to add up enough to force an error of even one whole
sample. In continuous time, the error continually decreases
and can be calculated well below an assumed sample period.
At lower SNR there is a significant gap between the CRLB,

FIGURE 6. Length 13 Barker Code at −15 dB SNR.

FIGURE 7. Length 64 chirp signal at −25 dB SNR.

FIGURE 8. Estimator variance for a length 20 boxcar.

given by Stein’s equation, and the time of arrival estimator
variance given by our model.

When we attempt to localize a signal using a mismatched
filter, we can get some interesting effects as shown in Fig. 9.
The center of the convolution region has depressed proba-
bilities due to the cross correlations between each sample
and its neighbors. The elevated peaks in the Probability
Mass Function occur at indices which also experience this
cross correlation, but their neighboring indices don’t compete

109600 VOLUME 11, 2023



C. Hall, I. Djordjevic: Discrete Time Signal Localization Accuracy in Gaussian Noise

FIGURE 9. Length 4 boxcar and length 10 boxcar convolution at 0 dB SNR.

FIGURE 10. Comparison of probability mass functions for the TDOA and
TOA scenarios for a length 20 boxcar at -15 dB.

as much because the shorter signal’s window is falling off
the edge of the longer signal. This effect is similar to the
boundary effects described in section IV, but in this case they
would still occur even if the signal existed within an infinitely
long noise vector.

Fig. 10 shows how the error distributions can differ
between the TOA scenario and TDOA scenario, for the
same signal shape. Convolving two noisy signals will always
result in a more error prone peak estimate, and higher
estimator variance, than convolving a noisy signal with a
clean template. However, no major differences in the general
shape of the error distribution exist between the two cases.

VII. CONCLUSION
In this paper, we explored methods for calculating the
statistics of localization errors when using convolution to
detect a discrete time signal in Gaussian noise.We introduced
Stein’s equations which are the current preferred method for
calculating the error variance. Stein’s methods are great when
iterative interpolation methods can be employed and if the
SNR is sufficiently high, but do not hold true otherwise.
At low SNRs, the localization statistics become heavily
dependent on the shape of the detected signal and the shape
of the filter.

We developed a linear model for the difference between
any one signal autocorrelation index and all other autocorre-
lation indices.We used that model to define a jointly Gaussian
system [21]. Using existing numerical integration methods,
we were able to calculate the probability that any one
convolution index is the peak output [17]. We then developed
an extended method for calculating the same statistics in
the case where both the detected signal and the filter have
Gaussian noise added to them, as is true when taking TDOA
measurements.

Lastly, we showed some examples of Probability Mass
Functions for localization error. These plots were generated
for three commonly used signal types: a boxcar, a barker
code, and a chirp signal. These plots clearly show that the
localization error is not Gaussian and depends on the shape
of our signal of interest.

The posted results are for a case where the signals
are critically sampled and not interpolated, such that the
additive noise is independent and identically distributed.
Oversampling or interpolation of the signal can be taken into
account at the beginning of the introduced model. After all,
an interpolated signal is just another signal. However, care
must be taken to incorporate the true noise covariance matrix
at the start of the model. The assumption of independent and
identically distributed noise would no longer hold true in this
case.

The methods presented in this paper are directly applicable
to TOA and TDOA geolocation as well as remote sensing in
general. The current prevailing method of generating error
probability bounds is to calculate a 95 percent certainty
ellipse based on error that is Gaussian distribed and variance
given by Stein’s equation, irrespective of the shape of the
signal to be detected.

The approach we have taken in this research is unique
because we are not simply trying to calculate a tighter
lower bound on Time of Arrival estimator variance. Instead
we focus on the actual estimator variance and distribution
for a specific, but very common, case in which the
previously published lower bound methods do not apply. The
distinguishing characteristic of the case we have outlined
is a limited ability to interpolate the given signal when
peak finding. Additionally, our proposed model allows
us to calculate a probability distribution for the error
in addition to the error variance, which is not available
using previously discussed lower bound methods. These
probability distributions are particularly interesting at low
SNRs, as shown in our illustrative results. The introduced
method enables the calculation of more well defined error
bounds on geolocations of low SNR signals.

APPENDIX A CONVOLUTION AND MATCHED FILTERING
The convolution operation is defined by the following
equation.

y[τ ] =
∑

x[n]h[τ − n] (18)
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If h[n] = x∗[τ − n] then h[n] is a matched filter. Matched
filtering is a common technique for detecting complex signals
as well as purely real signals. It is the optimal signal detection
method for a known and deterministic signal in Additive
White Gaussian Noise (AWGN).

It is common practice to normalize the filter, h[n], to have
unit energy. This is done by muliplying h[n] by a constant
1

√
Eh

where Eh =
∑
h2[n]. If we are filtering additive white

Gaussian noise, the output will be Gaussian noise of the same
power as the input.

We will be assuming all signals are digital and critically
sampled such that the additive Gaussian noise samples are
uncorrelated.

σ 2
= var

(∑
h[n]σ 2

n

)
= σ 2

n

∑
h2[n] (19)

where
∑
h2[n] = 1

The output of the matched filter at a time when its matched
signal occurs is as follows:

y =
∑

x[n] ∗ h[n] = (x0h0 + x1h1 + . . .) (20)

=
1

√
Ex

∑
x2[n] (21)

The power of the output at that instant, y2, would then be
Ex . This gives us a Signal to Noise Ratio (SNR) at the output
of thematched filter of Ex

σ 2
n
at the timewhen thematched signal

is present. It can be shown that this SNR result holds true even
when the matched filter is not normalized to unit energy.
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