Multibody System Dynamics
https://doi.org/10.1007/s11044-024-10012-6

METHODOLOGY |

()

Check for
updates

MBD-NODE: physics-informed data-driven modeling and
simulation of constrained multibody systems

Jingquan Wang' . Shu Wang' - Huzaifa Mustafa Unjhawala’ - Jinlong Wu' -

Dan Negrut'

Received: 30 December 2023 / Accepted: 28 June 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract

We describe a framework that can integrate prior physical information, e.g., the presence
of kinematic constraints, to support data-driven simulation in multibody dynamics. Un-
like other approaches, e.g., Fully Connected Neural Network (FCNN) or Recurrent Neu-
ral Network (RNN)-based methods, which are used to model the system states directly, the
proposed approach embraces a Neural Ordinary Differential Equation (NODE) paradigm,
which models the derivatives of the system states. A central part of the proposed methodol-
ogy is its capacity to learn the multibody system dynamics from prior physical knowledge
and constraints combined with data inputs. This learning process is facilitated by a con-
strained optimization approach, which ensures that physical laws and system constraints are
accounted for in the simulation process. The models, data, and code for this work are pub-
licly available as open source at https://github.com/uwsbel/sbel-reproducibility/tree/mas-
ter/2024/MNODE-code.

Keywords Multibody dynamics - Neural ODE - Constrained dynamics - Scientific machine
learning

1 Introduction

This contribution concerns the use of a data-driven approach to characterize the dynam-
ics of multibody systems. Recently, data-driven modeling methods have been developed to

X D. Negrut
negrut@wisc.edu

J. Wang
jwang2373 @wisc.edu

S. Wang
swang579 @wisc.edu

H.M. Unjhawala
unjhawala@wisc.edu

J. Wu
jinlong.wu@wisc.edu

Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University
Avenue, 53706, Madison, USA

Published online: 23 July 2024 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-024-10012-6&domain=pdf
https://github.com/uwsbel/sbel-reproducibility/tree/master/2024/MNODE-code
https://github.com/uwsbel/sbel-reproducibility/tree/master/2024/MNODE-code
mailto:negrut@wisc.edu
mailto:jwang2373@wisc.edu
mailto:swang579@wisc.edu
mailto:unjhawala@wisc.edu
mailto:jinlong.wu@wisc.edu

J.Wang et al.

characterize multibody dynamics systems based on neural networks. For instance, fully con-
nected neural networks (FCNNs) offer a straightforward way to model multibody dynamics,
mapping input parameters (potentially including time for nonautonomous systems) to state
values [11, 43]. FCNNs act as regressors or interpolators, predicting system states for any
given time and input parameter. The simplicity of the method allows us to quickly estimate
the state within the range of the training set. However, this approach requires expanding
the input dimension to accommodate, for instance, changes in initial conditions, leading to
an exponential increase in training data. An alternative method combines fixed-time incre-
ment techniques with principal component analysis (PCA) [20] to reduce training costs and
data requirements. This method outputs time instances at fixed steps and employs PCA for
dimensionality reduction. However, this results in discontinuous dynamics, limiting output
to discrete time steps. Another approach uses dual FCNNs, one modeling dynamics and
the other estimating errors, to enhance accuracy while reducing computational costs [25].
A limitation of FCNN is the strong assumption of independent and identically distributed
(i.i.d.) data [6] required by the approach, which limits its ability to generalize, particularly
in terms of extrapolation across time and phase space.

Time series-based approaches (e.g., LSTM [28]) have also been investigated for the data-
driven modeling of multibody dynamics systems. These methods learn to map historical
state values to future states, but they are inherently discrete and tied to specific time steps.
For example, RNNs have been directly employed for predicting subsequent states for a
drivetrain system [29] and a railway system [31]. The time-series approach works well for
systems with strong periodic patterns, a scenario in which the approach yields high accuracy.
RNNSs turned out to be challenged by systems with more parameters than just time (e.g.,
accounting of different initial conditions). To mitigate its shortcomings, a combination of
3D Convolutional Neural Network(3DCNN), FCNN, and RNN has been used for tracked-
vehicle system behavior prediction [54]. More examples using FCNNs and RNNs can be
found in the review paper [26].

Neural ordinary differential equations (NODEs), recently introduced in [7], provide a
framework that offers a more flexible data-driven approach to model continuous-time dy-
namics. Unlike traditional regression-based models, which assume a discretized time step
(which is often fixed a priori), NODE employs a continuous way of modeling an ordinary
differential equation (ODE) and allows flexible discretization in numerical simulations. This
makes NODE capable of dealing with data in various temporal resolutions and emulating
physical systems in continuous time. In terms of applications, NODE has seen good suc-
cess in engineering applications, such as chemical reactions [42, 48], turbulence modeling
[44], spintronic dynamics, [10], and vehicle dynamics problems [45]. Recent work has sig-
nificantly advanced our understanding of NODE-based approaches, providing analysis of
convergence [16], robustness [22], and generalization ability [5, 23, 55].

Conservation laws are important to be obeyed by the model used to characterize the re-
sponse of the system. Hamiltonian Neural Networks (HNNs) [21], inspired by Hamiltonian
mechanics, can factor in exact conservation laws by taking generalized positions and mo-
menta as inputs to model the Hamiltonian function of a system. However, an HNN requires
data in generalized coordinates with momentum, posing practical challenges, especially in
multibody dynamics (MBD) systems as it necessitates the transformation of complex, of-
ten high-dimensional system dynamics into a reduced set of generalized coordinates. This
transformation can be both computationally intensive and prone to inaccuracies, especially
when dealing with intricate mechanical systems involving multiple interacting components
whose dynamics is constrained through mechanical joints. In addition, even if an MBD sys-
tem is nondissipative, it can still represent a nonseparable Hamiltonian system, for which

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

the integration process is more complicated, often necessitating implicit methods. Various
follow-up works have expanded upon HNNs, addressing systems with dissipation [49, 56],
generative networks [51], graph neural networks [46], symplectic integration [8, 37, 40],
nonseparable Hamiltonian system [14], and the combination with probabilistic models [1].

To address the limitations of HNN, Lagrangian Neural Networks (LNNs) [12, 36] have
been proposed to leverage Lagrangian mechanics. LNN models the system Lagrangian, with
second-order state derivatives derived from the Euler—Lagrange equation. This approach
also conserves the total energy and applies to a broader range of problems. However, it is
computationally intensive and sometimes ill-posed due to its reliance on the inverse Hessian.
Subsequent works on LNNs have explored various aspects, such as including constraints
[17], extended use with graph neural networks [4], and model-based learning [24, 57].

In this study, our primary objective is to learn the dynamics of multibody systems from
system states data using a NODE-based approach. We also explore the process of incorpo-
rating prior physical information, such as kinematic constraints, into the numerical solution
through the use of a constrained optimization method in conjunction with standard NODE:s.
We compare the performance of the proposed approach with existing methodologies on var-
ious examples. Our contributions are as follows:

— We propose a method called Multibody NODE (MBD-NODE) by applying NODE to
the data-driven modeling of general MBD problems and establishing a methodology to
incorporate known physics and constraints in the model.

— We provide a comprehensive comparison of the performance of MBD-NODE with several
other methods that have been applied to MBD problems.

— We build a series of MBD test problems, providing an open-source code base consisting
of several data-driven modeling methods (FCNN, LSTM, HNN, LNN, MBD-NODE) and
curating a well-documented summary of their performances.

2 Methodology
2.1 Multibody system dynamics

MBD is used in many mechanical engineering applications to analyze systems composed of
interconnected bodies. Here we rely on the general form of the MBD problem [47], which
accounts for the presence of constraint equations using Lagrange multipliers in the equations

of motion:
M &' 1[q4 F.
Pl

where M represents the mass matrix, ®, is the constraint Jacobian matrix, q denotes the
vector of system states (generalized coordinates), denotes the acceleration vector of the
system, A represents the Lagrangian multipliers, F. is the combined vector of generalized
external forces and quadratic velocity terms, and . is the right-hand side of the kinematic
constraint equations at the acceleration level. In practice, the set of differential-algebraic
equations (DAE) in Eq. (1) can be numerically solved by several methods; see, for instance,

[2].

@ Springer

J.Wang et al.

2.2 Neural ordinary differential equations for multibody system dynamics
2.2.1 Neural ordinary differential equation (NODE)

NODE represents a class of deep learning models that train neural networks to approxi-
mate unknown vector fields in ordinary differential equations (ODEs) to characterize the
continuous-time evolution of system states. Given a hidden state z(¢), z € R":, at time 7, the
NODE is defined by the equation

du(r) _
o =/ @0).1 0), @

where f :R" x R* — R corresponds to a neural network parameterized by ©. For an
arbitrary time ¢ > 0, the state z(¢) can be obtained by solving an initial value problem (IVP)
through the forward integration:

2(t) = 2(0) + / F(0), 7 ©)dr = (@0, f.1), 3)
0

where ® denotes an ODE solver.

NODE [7, 58] provides an efficient approach of calibrating the unknown parameters ©@
based on some observation data z(#;), i = 1,2,...,n. Note that the time steps #; do not
have to be equidistant and thus we have flexibility in choosing numerical integrators for the
forward integration in Eq. (3).

2.2.2 Extensions of neural ordinary differential equation

In the modeling of dynamical systems, it is quite common for equations to include param-
eters that significantly influence the system behavior, such as the Reynolds number in the
Navier—Stokes equations or design parameters in MBD, e.g., lengths, masses, material prop-
erties. Enhancing NODEs to accommodate such variations would enable the simultaneous
learning of a wide range of dynamics. A practical way to achieve this augmentation is to
incorporate these parameters directly into the neural network inputs, known as PNODE,
which is suggested in [32]:

dz(t)
= f(z(), 1, n; O), “4)
dt
where & = (L1, U2, .- Un u)T € R+ is the parameter vector that can help better character-

ize the system, and f : R": x RT x R"* — R": is the neural network.

For the systems whose governing equations are second-order, we can use the second-
order neural ordinary differential equation (SONODE) [34, 39] to model them. Given an
augmented state Z(z) = (z(¢), z(¢))T, the SONODE is defined as

dZ(r))
d[- f(Z([)7 t7 ®)! (5)

where f :R?: x RT — R is a neural network parameterized by @.

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

2.2.3 Multibody dynamics NODE (MBD-NODE)

Based on the above PNODE and SONODE, we extend the approach to make the NODE
work with external inputs like external generalized forces, thus better fitting the MBD frame-
work. Given the set of generalized coordinates Z(z, u) = (z' (¢,),z (¢, u))" € R¥'z, the
MBD-NODE is defined as

% = f(Z(,), (), 1, p; ©), (©)
where
Z0, p) = (2" (0, p), 2" (0, p))")
are the initial values for the MBD,
zt,p) =), ..., 2")" eR™ ®)

are the generalized positions,
i, p) =@, p), ..., 2", p)" €R™ C))

are the generalized velocities;
u(t) = @' (@),...,u")" eR™ (10)

are n, external loads like force/torque applied to the MBD at time ¢ (note that time ¢ can be
included in the input u(¢)),

= (1, f2s ..oy) ER™ (11)
are problem-specific parameters, and
f . R2n; x R™ x R"™ —» RZHZ (12)

is the neural network parameterized by © with (2n; + n, + n,)-dimensional input. For the
forward pass to solve the initial value problem for Z(z, i), we can still use the integrator ®:

Z(t, p) =Z(0, M)+/ JZ(z,), u(z), t, pu; O)dt =P(ZO, p), f,u,1). 13)
0

For the backpass of the MBD-NODE, we can use the backpropagation or the adjoint
method to design the corresponding adjoint state based on the property of second-order
ODEs [34, 39]. We finally choose to use backpropagation, a step analyzed in detail in
Sect. 2.2.3, which touches on the construction of loss function and optimization.

Figures 1 and 2 show the discretized version of the forward pass for the MBD with and
without constraints. The constraint-related formulations are discussed in Sect. 2.2.3. Within
the MBD-NODE framework, the initial state of the system is processed using an ODE solver
evolving over a time span under the guidance of a neural network parameters. This neural
network is trained to determine the optimal parameters that best describe the system dynam-
ics. This continuous approach, in contrast to discrete-time models, often results in enhanced
flexibility, efficiency, and good generalization accuracy. Based on the notation used for the
definition of MBD-NODE in Eq. (6), we employ the corresponding three-layer neural net-
work architecture in Table 1; the activation function can be Tanh and ReLLU [41], and the
initialization strategy used is that of Xavier [19] and Kaiming [27].

@ Springer

J.Wang et al.

Fig.1 The discretized forward (Z +1 z +1)
n+1lr 4n
S

->< ODE Solver @
r 3

Z,Z,, Uy, -
pass for MBD-NODE for general (o Tn ”)

Black Box f (-, ©)

MBD

z,
(Zn+1) Zne1)

- ODE Solver @

* ZextntZingn > Zcomn

(Zn, 2p, 1) ==

Black Box f (-, ©®)

<

———— - - -

Fig. 2 The discretized forward pass for MBD-NODE for general MBD without hard constraints, which
means that the external force/torque can be directly added to the acceleration from the NODE that models
the internal acceleration without additional input channel for external force. Here Zeys 5, is the acceleration
caused by the external input, and Z;,; , is the internal acceleration predicted by MBD-NODE

Table1 MBD-NODE Architecture

Layer Number of neurons Activation function Initialization

Input Layer 2nz +ny +ny [Tanh,ReLU] [Xavier, Kaiming]
Hidden Layer 1 dwidth [Tanh,ReLU] [Xavier, Kaiming]
Hidden Layer 2 dwidth [Tanh,ReLU] [Xavier, Kaiming]
Output Layer 2n; - [Xavier, Kaiming]

2.2.4 Loss function and optimization without constraints

First, we discuss the loss function for the MBD without constraints. Without loss of gener-
ality, we assume there are no additional parameters p for notation simplicity. For a given
initial state Zy = (2o, Zp), assume that the next system state Z; = (z;, ;) is obtained with
the integrator @ used over a time interval Az, which can be one or several numerical inte-
gration time steps. The loss function used for the MBD-NODE describes the mean square
error (MSE) between the ground truth state and the predicted state:

L(®) = |®(Zo, f, AD) — Zy |3 = 12y — Zy 13 = 121, 21) — (21, 21) |13, (14)

where Z; = @r, EIT)T is the predicted state by integration with the derivatives from MBD-
NODE.

For a trajectory of states zg, Zi, . .., Zr, the common way [7] is to treat the first state as
an initial condition and all other states as targets, so the loss function can be defined as

T-1 T—1
L(©) =) |®(Zo, f, At) = Ziia 3= Y Ziy1 — Zip 3. (15)
i=0 i=0

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

The training phase is refining the neural network parameters, ensuring that the predicted
states mirror the true future states, which yields the optimization problem

O* =argmin L(O©). (16)
o

Similarly to most deep learning models, the parameter optimization of MBD-NODE
can be conducted by backpropagation via stochastic gradient descent (SGD). The key for
NODE-based frameworks is that the objective is to fit the entire trajectory, which necessi-
tates the storage of intermediate gradients through the integration of the whole trajectory by
backpropagation. This process needs a memory cost of O(NCL), where N represents the
number of time steps of the trajectory, C is the number of neural network calls per integra-
tion step, and L is the number of layers in the NODE. To solve this, adjoint methods [7] and
their adaptive enhancements [58] were implemented in the NODE-based model, achieving
gradient approximation with only O (L) memory costs. Further, specialized adjoint meth-
ods have been proposed for symplectic integrators [38] and SONODE [39], each tailored for
specific applications.

In practice, optimizing parameters to fit lengthy trajectories from highly nonlinear dy-
namics did not work well for our problems. To address this, we partition the long trajectory,
consisting of n states, into [n/w] + 1 shorter subtrajectories of length w. The training pro-
cess is then moved to these subtrajectories. Although this strategy makes the optimization
easier, it may slightly impair the neural network capacity for long-term prediction. In prac-
tice, we set w to be 1 for our numerical test, and we did not find the obvious loss of capacity
for long-term prediction. In this case, the loss function will be the sum of the loss of each
subtrajectory:

T-1

T-1
L(@) =) DX, f, At) = Zigi |3 =) I Ziv1 — Ziya|l3- (17)
i=0

i=0

The constant C, the number of neural network calls per integration step, depends on the
integrator used. For the Runge—Kutta 4th-order method, C = 4, because we need to evaluate
the acceleration at intermediate states during one step of integration, whereas C = 1 for the
forward Euler method. Also, for the implicit solvers, C is the same as their explicit version,
because in the training stage, we already have the next state.

Given these considerations, the memory cost for optimization via backpropagation
remains within acceptable limits. For the system subject to constraints (discussed in
Sect. 2.2.3), the adjoint method may not align with the used method. Upon reviewing re-
cent literature, we found no instances of the adjoint methods being applied to constrained
problems. Based on these, we finally choose backpropagation to optimize the neural net-
work. The main process for training the MBD-NODE without constraints is summarized in
the Algorithm 1 of Appendix A.

2.2.5 Loss function and optimization with constraints

For MBD problems, accounting for constraints in the evolution of a system is imperative.
These constraints capture not only physical design attributes (e.g., a spherical joint requires
two points to coincide), but also factor in conservation laws, e.g., energy, numerical Hamil-
tonian. Accounting for these constraints is important in MBD. However, integrating con-
straints within deep neural network models is still an open problem, and further research
and exploration are necessary.

@ Springer

J.Wang et al.

From a high vantage point, constraints fall into one of two categories. Holonomic con-
straints depend solely on the coordinates without involving the time derivatives of the latter
and can be represented as ¢ (z, t) = 0. Nonholonomic constraints, involving the time deriva-
tives of the coordinates and which cannot be time-integrated into a holonomic constraint,
are denoted as ¢ (z,z,t) =0.

Additionally, constraints can be categorized based on their temporal dependency. Scle-
ronomic constraints, or geometric constraints, do not explicitly depend on time and are ex-
pressed as ¢ (z) = 0. In contrast, rheonomic constraints, which depend on time, can also be
framed in the form ¢ (z, ¢) = 0.

In summary, using the same notation as in Sect. 2.2.3, the MBD constraints can be ex-
pressed in a generalized form ¢ (z, z, u,) = 0, and the optimization problem solved can be
posed as

ngn L(®) (18)
st.¢i(z,z,u, p) =0,Y(z,z,u, o) e R x R™ x R"* NQ,i=1,..,n,, (19)

where 2 is the area from the prior physical knowledge that the MBD should have con-
straints.

There are two common ways to handle hard constraints. One is to relax this hard con-
strained problem to a soft constraint problem by adding the constraints to the loss function
as a penalty term [15, 18, 33, 35]. The loss function then becomes

1(©)=L(©)+ > gi(i(z.2.u p), (20)

where g; represents the function for the ith constraint, typically comprising a quadratic and
a linear term, as is common in the well-known augmented Lagrangian method [15, 18, 35].
The primary advantage of this approach is its ease of implementation, requiring only the
addition of constraints as a regularization term. However, there are several drawbacks to it:
the optimization process may not always converge, and the use of regularization can often
diminish accuracy. Most critically, the constraints are applied exclusively within the phase
space of the training set, rendering them ineffective in domains beyond this phase space.

The alternative is to enforce the constraints in both the training and inference stages
without adding a constraint loss term. Based on a coordinates partition technique [53], we
denote the minimal (or independent) coordinates as Z* and the dependent coordinates as
ZP . Then the dependent coordinates can be obtained from the independent coordinates and
the prior knowledge of constraints:

7P =¢p=1(ZM, p), (21

where ¢! is defined as the inverse function that maps the value of minimal coordinates to
the dependent coordinates and typically does not have a closed form, yet it can be evaluated
given ZM . If the MBD system has n, generalized coordinates and 7. position constraints
(n, — n. = DOF), then we build the MBD-NODE only with the minimal coordinates Z" .
Depending on whether we have the ground truth data of the dependent coordinates Z?, the
training stage can be divided into two cases:

(1) If we have the complete information of the dependent coordinates Z?, then we can
first input the minimal state Z) to get the acceleration for integration for getting the minimal

Then we can solve the dependent state VA by solving the

: 7 M
state at the next time step Z 1

n+1°

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

Table 2 Summary of comparison of the methods. The compared methods are MBD-NODE, HNN, LNN,
LSTM, and FCNN

MBD-NODE HNN LNN LSTM FCNN

Works on energy-conserving system v v v

Works on general coordinates v v v v
‘Works on dissipative systems v v v
Works with constraints v

No need for second-order derivatives v v

Scalability for long time simulation v v v

Learn continuous dynamics v v v v

M
n+1

and dependent state 2£’+1 to get the full combined states Z, | = (Zﬁl , 2P)7 € R, By
the difference between the combined predicted state Zn+1 and the ground truth state Z,,,
we can optimize the MBD-NODE. A similar concept has been explored in [3, 13] for en-
forcing hard constraints within data-driven models. Beucler et al. [3] have approached this
by designing a constraint layer, whereas Daems et al. [13] encoded holonomic constraints
directly into the Euler-Lagrange equations. Our method can address more general nonholo-
nomic constraints. Given the initial state Z, and the ground truth state Z;, the corresponding

loss function for one data pair could be written as

constraint equation Z,?H = ¢>*1(fo+l, u,). We could use the minimal coordinates v/

L(®) = [(®(Z, f, A, ¢ (DY, f, AN — 7,113 -
=@M, ZDY — 2,13 = 1Z, — Z, %

(2) If we have access to only the minimal state information (ZnM) — for instance, if we prefer
not to expend effort in collecting data on dependent coordinates due to potential costs — then
we can construct and train the MBD-NODE using solely the minimal coordinates (Z*).
During the inference, we could use MBD-NODE to predict minimal states and then solve
all the states. In this case, the loss function could be written as

L(@®) = |DZY, f, Aty —ZM |2 = | ZY — 2|3 (23)

By solving the constraint equation in both the training (with dependent coordinates data)
and inference stage the hard constraints are satisfied in both phases. The algorithm for con-
straints equation-based optimization is summarized in Algorithm 2 (which utilizes depen-
dent coordinates data) and Algorithm 3 (which uses only minimal coordinates data), both
found in Appendix A.

2.2.6 Baseline models

Table 2 summarizes the models used in the numerical tests discussed in this paper along
with some of their salient attributes. Code for all of these methods is provided with this
contribution.

@ Springer

J.Wang et al.

Table3 Summary of the numerical examples and modeling methods

Test case Model A Model B Model C
Single Mass-Spring MBD-NODE HNN LNN
Single Mass-Spring-Damper MBD-NODE LSTM FCNN
Triple Mass-Spring-Damper MBD-NODE LSTM FCNN
Single Pendulum MBD-NODE LSTM FCNN
Double Pendulum MBD-NODE LST™M FCNN
Cart-pole MBD-NODE LSTM FCNN
Slider Crank MBD-NODE - -

Table4 Summary of the numerical errors for different models in various test cases. The detailed information
about the models is included in Table 3

Test case Error

Model A Model B Model C
Single Mass-Spring 1.3e-6 1.9e-2 9.le-6
Single Mass-Spring-Damper 8.6e-4 1.8e-2 9.9¢e-2
Triple Mass-Spring-Damper 8.2e-3 1.8e-1 4.2e-2
Single Pendulum 2.0e-3 3.4e-3 8.0e-1
Double Pendulum 2.0e-1 6.4e-1 2.2e0
Cart-pole 6.0e-5 3.2e-4 4.7e-2
Slider Crank 3.2e-2 - -

3 Numerical experiments

We study the performance of the methods in Table 2 with seven numerical examples, reflect-
ing method attributes such as energy conservation, energy dissipation, multiscale dynamics,
generalization to different parameters and external force, model-based control, chaotic dy-
namics, and constraint enforcement. One or more of these attributes often comes into play in
engineering applications that rely on MBD simulation. We use these numerical examples to
compare the performance of the proposed MBD-NODE methodology with state-of-the-art
data-driven modeling methods. The numerical examples and modeling methods are summa-
rized in Table 3. The model performance is evaluated via the MSE € defined as

N N
=2 (1= 20?) = 5 3 (1 = 3l + 12a 317, 24)

1= 1=

where i indicates the index of a test sample, z; and z; are the ground truth of the coordinate
and its time derivative, and Z; and 2,» denote the predicted results by a trained model. Here
|| - || corresponds to the standard vector 2-norm.

In Table 4, we summarize the MSE error made by each method on the test data of all
the numerical examples. Sections 3-3.4 present more detail about the setup of each test case
and the performance of our method in comparison to the others. The training costs for the
MBD-NODE, HNN, LNN, LSTM, and FCNN models with different integrators used for
each test case are recorded in Appendix A. Python code is provided publicly for all models
and all test cases for unfetter used and reproducibility studies [52].

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

Fig.3 Single mass-spring

system; k and m denote the

spring constant and the mass of k
the object, respectively. Only the

motion along the x-direction is

considered

3.1 Single mass-spring system

This system is relevant as it does not model viscous damping and serves as a numerical
example to evaluate the predictive attribute of the trained models on an energy-conserving
system [9, 21, 40]. Figure 3 illustrates the setup of the single mass-spring system. The equa-
tion of motion is formulated as

d’x k

=——x, 25

dr? m @5)
where x represents the displacement of the mass from its equilibrium position, k, the spring
constant, is set to 50 N/m, and m, the mass of the object, is set to 10 kg. The system Hamil-
tonian, which describes its total energy, is

p2

T(p) =2, (26)
V(g) = 1/2kq?, 27)
H(p,q)=T(p)+V(q), (28)

where ¢ is the generalized position, p is the generalized momentum, which, in this context,
is m x ¢, with ¢ being the generalized velocity, and T and V represent the kinetic and
potential energies.

We choose a time step of 0.01 s in both training and testing for the single mass-spring
system. The training data consists of a trajectory analytically solved over 300 time steps
with initial conditions xo = 1 m and vy = 0 m/s.

For this system, which possesses a separable Hamiltonian as shown in Eq. (28), the
MBD-NODE model employed the leapfrog method as the symplectic integrator of choice.
We also show the performance of MBD-NODE when used with the more common RK4
integrator. We also benchmark against the HNN and LNN methods (see Table 3 for a sum-
mary). The Hamiltonian-based methods used data in generalized coordinates, whereas the
others (including a numerical method) were tested using Cartesian coordinates. We also
provide a baseline test by numerically solving the system of ODEs in Eq. (25) with the
RK4 integrator. The specific configurations of each model, including the choice of coor-
dinate systems and integrators, are detailed in Table 5. Additionally, the hyperparameters
used for the neural network-based tests are summarized in Table 6. These settings and tests
were designed to evaluate the efficiency and accuracy of different modeling approaches and
integrators in predicting and understanding the dynamics of the single mass-spring system.

Figure 4 shows the dynamic response in terms of position x and velocity v for the test
data, and the MSE of each method is shown in Table 5. More specifically, Figs. 4 (a)—(d)
demonstrate the performance of the MBD-NODE model with the RK4 integrator and the
results obtained from a purely numerical solution using the RK4 method. The ground truth

@ Springer

J.Wang et al.

Table 5 Numerical tests with corresponding MSE for the single-mass spring system

Model Coordinate system Integrator MSE

MBD-NODE Generalized Leapfrog 1.3e-6
HNN Generalized RK4 2.0e-3
LNN Cartesian RK4 9.1e-6
Numerical Cartesian RK4 2.0e-3
MBD-NODE Cartesian RK4 9.2e-1

Table 6 Hyperparameters for the single mass-spring system

Hyperparameters Model

MBD-NODE; ¢ MBD-NODERk4 HNN LNN
No. of hidden layers 2 2 2 2
No. of nodes per hidden layer 256 256 256 256
Max. epochs 450 300 30,000 400
Initial learning rate le-3 le-3 le-3 le-4
Learning rate decay 0.99 0.98 0.98 0.98
Activation function Tanh Tanh Sigmoid,Tanh Softmax
Loss function MSE MSE MSE MSE
Optimizer Adam Adam Adam Adam

for comparison is obtained by analytically solving Eq. (25). We can see in Figs. 4 (c) and
(d) that the direct usage of the RK4 integrator provides results that gradually deviate from
the true system. This issue of gradually increased errors becomes more severe in the MBD-
NODE results with the RK4 integrator in Figs. 4 (a) and (b), highlighting their limitations
in accurately modeling Hamiltonian systems. In contrast, both the LNN and HNN models,
despite utilizing the RK4 integrator, demonstrate stable behavior in solving the mass-spring
system, as shown in Figs. 4 (g)—(j). The more stable simulations of these two models can
be attributed to the underlying equations of these models, which ensure energy conserva-
tion in the system. Notably, the HNN performance, as shown in Figs. 4 (i) and (j), show
a deviation from the expected trajectory around the 30-second mark, leading to a higher
MSE when compared to the MBD-NODE with the leapfrog integrator and the LNN model.
Among all the methods we studied, the MBD-NODE with the leapfrog integrator outper-
forms other models, achieving the lowest MSE of € = 1.3e-6, with detailed trajectories of x
and v presented in Figs. 4 (e) and (f).

Figure 5 presents the phase space trajectory and energy profile for the test set. It con-
firms the instability issues with the RK4 solver and the MBD-NODE model with the RK4
integrator, particularly in terms of energy drift accumulating over time. In comparison, both
the LNN and HNN models, as well as the MBD-NODE model with the leapfrog integra-
tor, demonstrate stable solutions without any noticeable energy drift. The results in Figs. 4
and 5 confirm the effectiveness of the MBD-NODE model with a symplectic integrator in
accurately learning the Hamiltonian structure of the system.

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

—— Ground truth ---- |D generalization =~ - OOD generalization
1.0 A
0.5 1
X 0.0
_051
_10 <
6 5 10 1‘5 Zb 2‘5 30 6 5 1‘0 1‘5 2’0 25 30
t t
(@) (b)
1.0 2]
0.5 A 1
X 0.0 > 041
-0.5 =14
-10 4 —21
0 5 10 15 20 25 30 0 B 10 15 20 25 30
t t
(c) (d)
1.0 24
0.5 14
> 0.0 > 04
-0.5 4 -1 1
-1.01 —27
6 é 1‘0 1’5 Zb 2‘5 30 6 5 1‘0 1‘5 2‘0 25 30
t t
(e) (f)
1.0 § 2]
0.5 14
X 0.0 > 04
-0.5 -1 A
-1.0 1 T _2 1 T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t t
()] (h)
1.0 4 2
0.5 1
x 0.0 > 041
—0.54 -1
-1.0 1 T T T T T T T 27 T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t t
(i) (1))

Fig. 4 Comparison of ¢ vs x (left column) and ¢ vs v (right column) for the different model and integrator
combinations (rows) for the single-mass-spring system. Notice that the dashed lines represent performance
on the training data set ¢ € [0, 3], after which the dotted lines represent performance on the testing data set
t €0, 30]. (a) and (b) are for the MBD-NODE with RK4, (c) and (d) are for the MBD-NODE with leapfrog
integrator, (e) and (f) are for the RK4 integrator, (g) and (h) are for the LNN, and (i) and (j) are for the HNN

@ Springer

J.Wang et al.

— Ground truth —— RK4 LNN
---- MNODE_RK4 - MNODE LF - HNN
40 4
i
i
21 38 4 h
T
|II
36 hH
1 i\
o ny
34 4 :'ll,‘l:.' ¢
|’, :I" ||'
s o w ni '|, y
32 4 ALy
PTAY
IRV
Iy
30 4 4y
-1 1 FRAYAL]
5 Py
Lty =
28 = l/\“ v —
A P
-2 N P
4 I ="
* rf)."";/.)'
0 5 0 15 20 25 30
t
(b)

Fig.5 (a) The phase space x vs v and (b) the system energy for the test data for the single mass-spring system

Fig.6 The single
mass-spring-damper system. The

setup is similar to the example in m
Fig. 3, except for the addition of

a damper with coefficient d

3.2 Single mass-spring-damper system

The second numerical test involves a single-mass-spring-damper system, as shown in Fig. 6.
Compared with the first numerical test, there is a damper between the mass and wall, which
causes the mass to slow down over time. It is important to note that the models designed
for energy-conserving systems, like the LNN and HNN, are generally not applicable for
dissipative systems without further modification. Therefore, we compare the performance
of our method to LSTM and FCNN models, which are commonly employed in multibody
dynamics problems.
The equation of motion for the single-mass-spring-damper system is given by:
d’x —k d dx
—=—Xx—-——, (29)
dt? m m dt
where x represents the displacement of the mass from its equilibrium position, m is the mass
of the object, set to 10 kg in this test, d is the damping coefficient, set to 2 Ns/m in this test,
and k is the coefficient of stiffness of the spring, set to 50 N/m.
We choose the time step as 0.01 s for both the training and testing. The training dataset
consists of a trajectory numerically solved by the RK4 solver for 300 time steps. In the test-
ing phase the models are tested by predicting the system state within the training range and

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

Table 7 Hyperparameters for the single mass-spring-damper system

Hyperparameters Model

MBD-NODE LSTM FCNN
No. of hidden layers 2 2 2
No. of nodes per hidden layer 256 256 256
Max. epochs 350 400 600
Initial learning rate le-3 Se-4 Se-4
Learning rate decay 0.98 0.98 0.98
Activation function Tanh Sigmoid,Tanh Tanh
Loss function MSE MSE MSE
Optimizer Adam Adam Adam

extrapolation to predict system behavior for additional 100 time steps. The initial condition
for this problem is x = 1 m, v = 0 m/s. Note that the system is no longer a Hamiltonian
system, so we use Cartesian coordinates for all the methods. The hyperparameters used for
each model are summarized in Table 7.

Figure 7 presents the position x and velocity v for all the trained models. In the first 300
time steps, which correspond to the training range, all three models exhibit accurate predic-
tions, indicating an effective training process. However, differences in model performance
start to show up in the testing regime (i.e., t > 3). More specifically, Figs. 7(a) and (b) show
that the MBD-NODE gives a reasonable prediction that closely matches the ground truth
with the lowest MSE of € = 8.6e-4, which demonstrates its predictive capability.

On the other hand, the LSTM predictions tend to just replicate historical data patterns
(see Figs. 7 (c) and (d)), rather than learning and adapting to the underlying dynamics of
the system. This limitation makes LSTM fail to correctly capture the decay of energy for an
energy-dissipative system. The FCNN model struggles with extrapolation as well, mainly
because the good extrapolation performance of FCNN heavily relies on the closeness of
training and testing data in their distributions. This limitation of FCNN leads to errors in the
extrapolation task of this example, resulting in the largest MSE of € = 9.9e-2 as shown in
Figs. 7 (e) and (f).

More insights into the system dynamics are provided by the phase space trajectories
illustrated in Fig. 8. The predictions of the MBD-NODE, as depicted in Fig. 8 (a), are closely
aligned with the observed behavior of the system. In contrast, the LSTM trajectory, shown
in Fig. 8 (b), exhibits stagnation and fails to reflect the system eventual halt. The FCNN
performance, presented in Fig. 8 (c), is lacking during the extrapolation test — it merely
yields predictions in the tangent direction, resulting in a significant divergence from the
anticipated trajectory.

3.3 Multiscale triple mass-spring-damper system

This system, shown in Fig. 9, has three masses. The largest mass is 100 times larger than
the smallest one. The main purpose of this example is to gauge method performance on
multiscale systems. The equations of motion for the triple mass-spring-damper system are

@ Springer

J.Wang et al.

—— Ground truth ---- |D generalization =~ - OOD generalization

1.04

0.5

-0.5

1.0 4

0.5

-0.5 -

00 05 1.0 15 20 25 30 35 4.0 00 05 10 15 20 25 30 35 4.0

00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
t t
(e) ()

Fig. 7 Comparison of ¢ vs x (left column) and ¢ vs v (right column) for different models (rows) for the
single-mass-spring-damper system. Notice that the dashed lines represent performance on the training data
set ¢ € [0, 3], after which the dotted lines represent performance on the testing data set. (a) and (b) are for the
MBD-NODE with MSE ¢ = 8.6e-4; (c¢) and (d) are for the LSTM with MSE € = 1.8e-2, and (e) and (f) are
for the FCNN with MSE € = 9.9e-2

as follows:

d2x1 k1 dl k2 d2

T Rt — (1 —v) + — (2 —x1) + — (2 — V1),
1t my my mi mi

d*x k d k d

m = tmex) = v+)ty —v). (0)
t my my my my

d2X3 k3 d3

o _m_s(X3 —X2) — m—3(v3 —),

where x;, x,, x3 are the positions of the masses, respectively, m 1, m,, m3 are the masses of
the object with values of 100 kg, 10 kg, and 1 kg, respectively, d;, d», d; are the damping
coefficients, each set to 2 Ns/m, and k;, k;, k3 are the spring stiffness values, all set to
50 N/m.

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

—— Ground truth ---- ID generalization =~ -
2.0
15
101
05
L 00
-0.5
—101
~1.5
-2.0
—05 00 05 10 —05 00 10 05 00 05 10
X X X
(a) (b) ©

Fig.8 The phase space x vs v for the single mass spring damper system. Dashed lines represent performance
on the training data, and the dotted lines on the test data. (a) is for the MBD-NODE, (b) is for the LSTM, and

(c) is for the FCNN

ki ko

IRRRR]
o] e

ks

IRRRA]
s

=X

Fig.9 Triple mass-spring-damper system. The setup is similar to the example in Fig. 3, except for the addition

of two more masses, springs, and dampers

Table 8 Hyperparameters for the triple mass-spring-damper system

Hyperparameters Model

MBD-NODE LSTM FCNN
No. of hidden layers 2 2 2
No. of nodes per hidden layer 256 256 256
Max. epochs 350 400 600
Initial learning rate 6e-4 Se-4 Se-4
Learning rate decay 0.98 0.98 0.98
Activation function Tanh Sigmoid,Tanh Tanh
Loss function MSE MSE MSE
Optimizer Adam Adam Adam

For the numerical settings of the triple mass-spring-damper system, we choose the time
step as 0.01 s for both training and testing. The training dataset has a trajectory numerically
computed by the RK4 solver for 300 time steps. The initial conditions are set as x; = 1,
X, =2, x3 =3, v; = v, = v3 = 0 (all units are SI). The models are tested by extrapolating for
100 more time steps. The hyperparameters used for the models are summarized in Table 8.

Figure 10 presents the position x and velocity v of the triple mass-spring-damper system
during training and testing. In terms of accuracy, the MBD-NODE outperforms other models
with an MSE € = 8.2e-3. More specifically, the MBD-NODE and LSTM models provide

@ Springer

J.Wang et al.

— Ground truth ---- ID generalization - OOD generalization
3]
5]
1
><
ol
-1
34
5]
14
x
o]
ad
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
t t
(c) (d)
N
5]
14
x
ol
]

00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
t t
(e) (f)
Fig. 10 Comparison of ¢ vs x (left column) and ¢ vs v (right column) for the different models (rows) for the
triple-mass-spring-damper system. Notice that the dashed lines represent performance on the training data
set ¢ € [0, 3], after which the dotted lines represent performance on the testing data set. (a) and (b) are for the

MBD-NODE with MSE € = 8.2e-3, (c) and (d) are for the LSTM with MSE € = 1.8e-2, and (e) and (f) are
for the FCNN with MSE € = 4.2¢-2

accurate results in the range of training data (i.e., t < 3), whereas the results of FCNN
model show small oscillation mainly due to the multiscale setting of the dynamics shown
in Fig. 10 (e). In the testing data (i.e., ¢ > 3) the performance of trained models starts to
differ more. The MBD-NODE can still give a reasonable prediction for the triple mass-
spring-damper system shown in Figs. 10 (a) and (b), although the predicted trajectories
slowly deviate from the true ones, mainly because of the accumulation of numerical errors.
On the other hand, the LSTM tends to replicate some of the historical patterns. The testing
performance of the FCNN model is more reasonable than the LSTM model in this example
but still less satisfactory compared with the MBD-NODE model.

The trajectory for the triple mass-spring-damper system for the test set is shown in
Fig. 11. We can see that for the MBD-NODE, the trajectory of the first body shown in Fig. 11
(a) has some mismatch with the ground truth. This is caused by the multiscale property that
the first mass has the largest mass, which leads to the slightest change in the position x and
velocity v, whereas the MBD-NODE learns the dynamics from the difference between the

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

—— Ground truth ---- ID generalization =~ - OOD generalization
14
04
>
-1 4
24
X
(b) (c)
1
04
>]
2
D¢
(d)
0.0 -
-0.2 o
-0.4
> >
-0.6 1
-0.8
24
-1.0
-10 -05 00 05 10
X X X
(9) (h) ()

Fig. 11 The phase space trajectories for the triple mass-spring-damper system. The left, middle, and right
columns correspond to the first, second, and third masses. Dashed lines represent performance on the training
data, and the dotted lines on the test data. (a), (b), and (c) are for the MBD-NODE. (d), (e), and (f) are for the
LSTM, and (g), (h), and (i) are for the FCNN

state at two nearby times. So the largest mass will contribute the least to the loss, which
causes the MBD-NODE to learn the dynamics of the first body inadequately. The numerical
integration error also accumulates during the inference, which makes the error larger. For
LSTM, we can more clearly see that its prediction trends converge to the historical data,
which does not work well during OOD generalization. For FCNN, we note the oscillation
for the first body in ID generalization, and for the OOD generalization, which leads to a
lackluster predictive performance.

3.4 Damped single pendulum

In this section, we test the MBD-NODE ability to generalization on different initial condi-
tions and external forces using the damped single pendulum as shown in Fig. 12. The equa-
tion of motion (31) for a damped single pendulum, including the gravitational and damping

@ Springer

J.Wang et al.

Fig. 12 Single pendulum system

————— ---rz
L
0
m
4
Y
Table9 Hyperparameters for the single pendulum system
Hyperparameters Model
MBD-NODE LSTM FCNN

No. of layers 2 2 2
No. of nodes per hidden layer 256 256 256
Max. epochs 400 400 600
Initial learning rate 6e-4 Se-4 Se-4
Learning rate decay 0.98 0.98 0.98
Activation function Tanh Sigmoid,Tanh Tanh
Loss function MSE MSE MSE
Optimizer Adam Adam Adam
forces, can be represented as the second-order ODE

.. g . c .

0(t) + —=sin(0(t)) + —06(t) =0, 31)

L mL

where 6(¢) is the angular displacement as a function of time, g is the acceleration due to
gravity and external force, L = 1 m is the length of the pendulum, ¢ = 0.1 Ns/m is the
damping coefficient, and m = 1 kg is the mass of the pendulum bob.

Initially, we examine a scenario where the pendulum is released from its lowest point
with initial angular velocity w = 7. We employ various models to predict the trajectory of
the pendulum using identical training and testing datasets. In practice, the midpoint method
is utilized to solve the ODE (31), adopting a time step of 0.01 seconds. The dataset for
training spans the initial 3 seconds, whereas the testing dataset covers the subsequent 1
second. The hyperparameters applied across the models are detailed in Table 9.

Figs. 13 and 14 present the dynamics response and phase space of the single pendulum
system during the ID generalization and OOD generalization. The MBD-NODE outper-
forms other models with an MSE € = 2.0e-3. Although LSTM has a small MSE € = 3.4e-3,
it tends to replicate some of the historical patterns and fails to capture the damping effect for
OOD generalization. The FCNN model has a larger MSE € = 8.0e-1, associated with the
lackluster OOD generalization ability of the FCNN model.

Beyond the first setting, we test MBD-NODE ability to generalize under varying ini-
tial conditions and external forces. Importantly, we use the MBD-NODE trained in the first
setting directly without adding new training data — a significant challenge for OOD gen-
eralization. FCNNs and LSTMs are not suitable for handling time-varying external forces.

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

—— Ground truth ---- |D generalization =~ - 0OOD generlization
1.0 4 3
2 4
0.5
1d
X 00 > o0
14
-0.5
4
—1.0 1 T T T T T T T T T =31 T T T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0 0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0
t t
(@) (b)
1.0 4 3
2
0.5
14
X 00 > 0
1]
-0.5
]
—1.0 1 31 T T T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0
t
(d)
1.0 4
5
0.5
X 00 > 0
-0.5 -2 1
L0 ; . — : - . . ; . : - . : - T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
3 t
(e) (f)

Fig. 13 Comparison of ¢ vs x (left column) and ¢ vs v (right column) for the different models (rows) for the
single pendulum system. Notice the dashed lines represent performance on the training data set ¢ € [0, 3],
after which the dotted lines represent performance on the testing data set. (a) and (b) are for the MBD-NODE
with MSE € = 2.0e-3, (c¢) and (d) are for the LSTM with MSE € = 3.4e-3, and (e) and (f) are for the FCNN
with MSE € = 8.0e-1

They can only work with different parameters that do not change with respect to time. For
FCNNs, accommodating changes in initial conditions would require a larger model, addi-
tional data, and retraining. Therefore we only test MBD-NODE in this setting. Additionally,
MBD-NODE nature allows us to directly calculate acceleration from external forces and
incorporate it, simplifying integration with gravity as shown in Fig. 2.

Fig. 15 presents the dynamics response of the single pendulum system with four differ-
ent unseen initial conditions given in four quadrants. Because the MBD-NODE learns the
dynamics related to the range of the phase space covered in the training set and does so
independently of the initial condition, MBD-NODE yields a reasonable prediction for any
of the four different initial conditions. Fig. 16 presents the dynamics response of the single
pendulum system with random external force. Here we sample the external force from the
normal distribution F ~ A/(0, 25) and apply it to the single pendulum at every time step. We
predict 300 time steps for the single pendulum with random excitation. Because the force
will push the pendulum to unseen state space, this is a good test to probe the MBD-NODE

@ Springer

J.Wang et al.

—— Ground truth ---- ID generalization =~ - OO0D generlization
3 1 3
24 24
1 14
> o > 0
1 iy
]
24
_3
3
—]’.,0 —(5.5 OjO 015 110 —i.O —0‘,5 O.IO 0j5 1:0 —1‘.0 —OI.S 0.‘0 015 le
X X X
(a) (b) (c)

Fig. 14 The phase space trajectories for the single pendulum system. Dashed lines represent performance on
the training data and the dotted lines on the test data. (a) is for the MBD-NODE, (b) is for the LSTM, and (c)
is for the FCNN

—— Ground truth ---- 00D generalization
349
34
24
24
14
14
o 01 D o
1
\ -1
2 -
-3 -3+
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
6 6
34 31
24 21
14 14
‘© o ‘© o
-1+ -1 4
24 =2
-3 4= . - - - B - - - -3+ - - - - - - -
-1.00 -0.75 -0.50 —-0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
6 6

Fig. 15 The prediction trajectory 6 vs w plot for the single pendulum by MBD-NODE with different
initializations. (a): (6(0), w(0)) = (1,0); (b): (6(0), w(0)) = (—0.2,3); (c): (6(0), w(0)) = (—1,0); (d):
(0(0), w(0)) = (=0.5, -2.5)

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

—— Ground truth ---- 00D generalization
1.0 1
0.5
D o0
-0.5
-1.01 T T T T T ¥ T
0.0 0.5 1.0 15 2.0 2.5 3.0
t
3
24
1
o 97
1
oy
3
0.0 0.5 10 15 2.0 25 30
t
15 4
—— External Force
10 4
5
w o [
-5 |
104
~15 4
0.0 05 10 15 2.0 25 30
t

Fig. 16 The dynamics response plot for ¢ vs 0, ¢ vs w plot, and the value of random force applied to the
single pendulum

OOD generalization ability. MBD-NODE can continue to give an accurate prediction for the
single pendulum system under random external force.

3.5 Double pendulum

To gauge the performance of our model on chaotic systems, we study the double pendulum
system (see Fig. 17) as a numerical example. This pendulum system has two masses m
and m,, lengths /; and /5, and two angles ¢; = 6, and g, = 6,. The generalized momenta
corresponding to these angles are py, and py,, which needs to be calculated by using the
Lagrangian. The Hamiltonian H for this system is given by

H(q1, 92, po,» Po,) =T (q1,q2, Ps,» Po,) + V(q1, q2), (32)

where T is the kinetic energy, and V is the potential energy. For the double pendulum
system, the kinetic energy 7' and potential energy U are given by

1 o 1 . . .
T= Em,lf@f +3m (1367 + 1305 + 2111,6,6; cos(6) — 6)) , (33)

@ Springer

J.Wang et al.

Fig. 177 Double pendulum

U =—mglicos(8)) —myg (I, cos(0y) + [, cos(6,)) . (34

The Hamiltonian H can be expressed in terms of g1, g2, ps,, and py, as

2 2
P, p
H(q1, g2, pe,» Ps,) = 5>+ e 5 +malily cos(q1 — q2) pe, ps,
2myly 2mol; (35)

—m gl cos(gr) —mag (1 cos(qy) + 1> cos(q2)) .

The gradients of the Hamiltonian, V,H and V,H, can be used to derive the Hamilton
equations of motion:

) oH
Gi = —, (36)
ape,
. oH
o = ——. (37)
9q;
The specific Hamilton equations of motion for the double pendulum system are
= 2121791 — 11 pe, C.Oi(gl —02) 7 (38)
lllz [m1 + mj sin (91 — 92)]
b, = —mals pe, 0205(91 —62) .+2(ml + m2)l1 pe, (39)
molil5 [m1 + my sin“ (6 — 92)]
Po, = —(my +ma)glysinf; — hy + hysin[2(6 — 62)], (40)
Do, = —maglrsin6y + hy — hysin[2(6, — 6,)], 41

where

e mﬂ%pél + (m; + mz)lfpgz — 2malyly py, po, cos(6 — 02) “2)
2=)
2212 [my + mysin(6; — 6)]

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

Table 10 Hyperparameters for the double pendulum system

Hyperparameters Model

MBD-NODE LSTM FCNN
No. of hidden layers 2 2 2
No. of nodes per hidden layer 256 256 256
Max. epochs 450 400 600
Initial learning rate le-3 Se-4 Se-4
Learning rate decay 0.98 0.98 0.99
Activation function Tanh Sigmoid,Tanh Tanh
Loss function MSE MSE MSE
Optimizer Adam Adam Adam

he— Do, Do, Sin(0; — 62)
1=) .
Lily [my + mysin®(6; — 65)]

(43)

The double pendulum system is defined as follows: the rod lengths L = L, = 1 m,
the concentrated masses m; = m, = 1 kg, the gravitational acceleration g = 9.81 m/s?, tne
initial angular displacement of the first mass 6;(0) = 37”, the initial angular velocity of the
first mass 6 (0) = 0, the initial angular displacement of the second mass 6,(0) = 37”, and the
initial angular velocity of the second mass 6,(0) = 0. We set the time step as 0.01 s for both
training and testing. The training dataset has a trajectory numerically computed via RK4
for 300 time steps. The models are tested by extrapolating for 100 more time steps. The
hyperparameters used for the models are summarized in Table 10.

Figure 18 shows the dynamic response of the different methods for a double pendu-
lum. We can observe that all three models can give good predictions in the range of the
training set. In the extrapolation range the three models gradually diverge. The challenge
for integrator-based methods like MBD-NODE is particularly pronounced due to the in-
herently chaotic nature of the double pendulum system, which tends to amplify integration
errors rapidly, leading to significant discrepancies. For a discussion about the limitations
of numerical integration methods like the Runge—Kutta and integration-based neural net-
works like Physics-Informed Neural Networks (PINN), the reader is referred to [50]. For
the double pendulum problem, these two approaches give large divergence for small initial
perturbation. Despite this, the MBD-NODE outperforms the two other models with an MSE
of € =2.0e-1.

The phase space trajectories obtained by the three models are shown in Fig. 19. We can
observe that the MBD-NODE model overall outperforms the other two models in the testing
data regime. Although there are noticeable differences between the prediction and ground
truth for the MBD-NODE model, it is still trying to capture the patterns of ground truth in
the testing regime, especially for the second mass. On the contrary, the LSTM model tends
to replicate the historical trajectories as shown in Figs. 19 (c) and (d). For example, the
FCNN fails to demonstrate predictive attributes outside the training regime.

3.6 Cart-pole system
In this section, we consider the cart-pole system, which is a classical benchmark problem in

control theory. As shown in Fig. 20, the system consists of a cart that can move horizontally
along a frictionless track and a pendulum that is attached to the cart. The pendulum is free

@ Springer

J.Wang et al.

-2 4

00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40

0.0 0.5 10 15 20 25 30 35 4.0 00 05 1.0 15 20 25 30 35 4.0

t t
() (d)
2 5.0
2.5 1
14
0.0
0
® S -2.5
-1 -5.0
-15
—2 T T T T T T T T T T T T T T T T T T
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
t t
(e) (f)

Fig.18 Comparison of ¢ vs 6 (left column) and ¢ vs w (right column) for different models (rows) of the double
pendulum system. Notice that the dashed lines represent performance on the training data set ¢ € [0, 3], after
which the dotted lines represent performance on the testing data set. (a) and (b) are for the MBD-NODE with
MSE € = 2.0e-1, (c) and (d) are for the LSTM with MSE € = 6.4e-1, and (e) and (f) are for the FCNN with
MSE € =2.2e+0

to rotate about its pivot point. The system state is described by the position of the cart x, the
velocity of the cart v, the angle of the pendulum 6, and the angular velocity of the pendulum
. The equations of motion for the cart-pole system are given by the following second-order
nonlinear ODE:s:

mi*§ 4+ ml cos 0% — mglsind =0,
.) (44)
mlcos06 + (M + m)X — ml6?sin6 = u,

where M = 1 kg is the mass of the cart, and m = 1 kg is the mass of the pole, / = 0.5 m is
the length of the pole, and u is the external force horizontally applied to the cart with unit N.
We first consider the case in which the cart-pole system is set to an initial position, and then
we let the system evolve without any external force being applied. The initial conditions are

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

—— Ground truth ---- |D generalization = - OOD generalization

5.0 1
2.51
0.0
3 —2.5 1
-5.0 4
-7.5

T T

T T T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 15 -20 -15 -10 -05 0.0 0.5 1.0 15

6
(c) (d)
4 5.0
2.5
2
0.0
0
3 3 g
-2 _5.0 4
4] -7.5 1
-10 05 0.0 05 10 15 20 -15 -10 -05 00 05 10 15 20
6 [°]
(e) ()

Fig. 19 The phase space trajectories for the double pendulum system. The left and right columns correspond
to the first and second masses, respectively. Dashed lines represent performance on the training data, and the
dotted lines on the test data. (a) and (b) are for the MBD-NODE, (c) and (d) are for the LSTM, and (e) and
(f) are for the FCNN

Fig.20 The cart-pole system Y

set as

x(0)=1, v(0)=0, 0(0):%, w(0)=0. (45)

@ Springer

J.Wang et al.

—— Ground truth ---- |ID generalization =~ - 00D generalization

7.5 A

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

t t
(a) (b)

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

Fig.21 Comparison of 7 vs z (left colum) and ¢ vs z (right column) for different models (rows) of the cart-pole
system. The dashed lines represent the ID generation, and the dotted lines represent the OOD generalization.
(a) and (b) are for the MBD-NODE with MSE o = 6.0e-5, (c) and (d) are for the LSTM with o = 3.2e-4,
and (e) and (f) are for the FCNN with 0 =4.7¢-2

The system is simulated using the midpoint method with a time step of 0.005 s. We gen-
erate the training data by simulating the system for 400 time steps and the testing data by
simulating the system for 100 time steps. As shown in Figs. 21 and 22, the MBD-NODE
can accurately predict the system dynamics with o = 6.0e-5. Because this case is a periodic
system that time series data can fully describe, the LSTM model can also provide accurate
predictions with o = 3.0e-4. However, the FCNN model still gives lackluster OOD general-
ization performance with o = 4.7e-2. The hyperparameters for each model are summarized
in Table 11.

Furthermore, we consider the case that the cart-pole system is set to the initial position
(45), and then we apply the external force u to the cart to balance the pole and keep the cart-
pole system at the origin point. In general control theory, model predictive control (MPC)
is a popular method for solving this kind of control problem by linearizing the nonlinear
system dynamics and solving a quadratic convex optimization problem over a finite time
horizon at each time step. Specifically, for a linearized system dynamics z = Az + Bu, the

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

—— Ground truth ---- ID generalization =~ - OO0D generalization
44
2 51
> 0 I o
-2 s |
—4 1 T T T T T T T T ¥ T T T T
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1 2 3 4 -1 6
X 6
(a) (b)
44
54
5]
> 0 3 0
-2 1 _5 1
=4 1 T T T T T T T T T T T T T
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1 2 3 4 5 6
X 6
(c) (d)

> 0 I o
Y
54
—4 1 T T T T T T T T T T T T T
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 100 1 2 3 4 5 6
X 6
(e) (f)

Fig.22 The phase space x vs v (left Column) and 6 vs 6 (right column) of the cart-pole system. The dashed
line represents the ID generation, and the dotted line represents the ODD generalization. (a) and (b) are for
the MBD-NODE, (c) and (d) are for the LSTM, and (e) and (f) are for the FCNN

optimization problem can be formulated as a convex optimization problem as follows [30]:

N-1

muinszTsz +ukTRuk (46)
k=0

S.t.zgr1 = Azg + Buy, k=0,1,...,N—1, 47)
weZ, urelU, k=0,1,....,N—1, (48)

where zx = (6, Xk, @i, V) is the state of the system at time step k, N = 50 is the time
horizon for optimization, u; is the control input at time step k, Q and R are the weighting
matrices, which are set to the identity matrix, and Z and U are the constraints for the state
and control input, respectively.

@ Springer

J.Wang et al.

Table 11 Hyperparameters for the cart-pole system

Hyperparameters Model

MBD-NODE LSTM FCNN
No. of hidden layers 2 2 2
No. of nodes per hidden layer 256 256 256
Max. epochs 450 400 600
Initial learning rate le-3 Se-4 Se-4
Learning rate decay 0.98 0.98 0.99
Activation function Tanh Sigmoid,Tanh Tanh
Loss function MSE MSE MSE
Optimizer Adam Adam Adam

For the cart-pole system, the matrix A and B can be easily derived from the system
dynamics Eq. (44) by the first-order Taylor series approximation, which are:

0 01 0 0
0 0 0 1 0
A= | gy , B= e (49)
g(j\/-[:,—lg) 00 0 _lM_l
—m 0 0 0 L

As a high-accuracy and differentiable model, the MBD-NODE can be used to directly lin-
earize the system dynamics by calculating the Jacobian matrix of the well-trained MBD-
NODE. In this case, MBD-NODE captures the system dynamics by learning the map
f 6k, xi, i, vi, u) to the angular acceleration 6, and the acceleration ¥;. In practice, the
Jacobian matrix can be calculated by automatic differentiation, which is used to replace
the matrix A and B in the MPC optimization problem. To get the well-trained MBD-
NODE, we train the model with 10° uniformly sampling data points in the range of
6k, Xk, 0, v, u) € [0,2m] x [—1.5, 1.5] x [8, 8] x [—4, 4] x [—10, 30] for the state space
and the control input. We limit our analysis to the MBD-NODE model as FCNN and LSTM
models cannot work with time-evolving external input.

Fig. 23 shows the trajectories and the obtained control input for the MPC methods and
the MBD-NODE-based MPC method. We can see that the MBD-NODE-based MPC can
provide high-accuracy control input and trajectory as the analytic equation of motion-based
MPC, which also shows MBD-NODE'’s strong ability to capture the system dynamics.

3.7 Slider-Crank mechanism

We assessed MBD-NODE’s capacity for long-term, high-accuracy predictions using the
slider-crank mechanism (Fig. 24). The test involved generating predictions for up to 10,000
time steps (100 s), while encompassing generalization to arbitrary external forces and
torques applied to both the slider and crank. We did not include LSTM and FCNN models
in the comparison as their inherent structure does not readily accommodate the represen-
tation of system dynamics with variable external forces and torques. Additionally, LSTM
and FCNN models face challenges in long-term prediction. Their training data requirements
and computational costs scale linearly with the time horizon, whereas MBD-NODE’s per-
formance depends on the phase space and external inputs, not directly on the time horizon.
Previous FCNN- and LSTM-based approaches in related work [11, 20, 25, 54] typically

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

— MPC ---- MNODE MPC
0.5 4
i \/
0.0 4
0'0 0'2 0:4 0.6 0:8 1.‘0
t
(@)
> 11 /\
o L T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
t
(b)
o]
3
1
0'0 0’2 0:4 0'6 0:8 1.'0
t
(c)
5
>
o]
0'0 0:2 0‘4 O'G 0:8 1.‘0
t
(d)
20
>
o]
0.‘0 0?2 0j4 0'6 0j8 1.‘0
t
(e)

Fig. 23 The trajectory and control input for the MPC methods and the MBD-NODE-based MPC method.

(a): the 6 vs t; (b): the x vs t; (c): the w vs ¢. (d): the v vs t; (e): the u vs ¢

Fig.24 The slider-crank system

@ Springer

J.Wang et al.

Table 12 Hyperparameters for the slider-crank mechanism

Hyperparameters Model
MBD-NODE LSTM FCNN

No. of hidden layers 2 - -
No. of nodes per hidden layer 256 - -
Max. epochs 500 - -
Initial learning rate le-3 - -
Learning rate decay 0.98 - -
Activation function Tanh - -
Loss function MSE - -
Optimizer Adam - -

demonstrate short-term prediction capabilities, limited to durations of several seconds or
hundreds of time steps.

We formulate the slider-crank mechanism as a three-body problem with hard constraints
as follows:

1. The crank is connected to ground with a revolute joint with mass m; = 3 kg, moment
of inertia I; = 4 kgm?. The center of mass of the crank in the global reference frame is
(x1, y1,61), and the length of the crank is / =2 m.

2. The rod is connected to the crank with a revolute joint with mass m, = 6 kg, moment
of inertia I, = 32 kgm?. The center of mass of the rod in the global reference frame is
expressed as (x2, y2, 6»), and the length of the connecting rod is r =4 m.

3. The slider is connected to the rod with a revolute joint and constrained to move horizon-
tally with mass m3 = 1 kg and moment of inertia I; = 1 kgm?. The center of mass of the
slider in the global reference frame is (x3, y3, 83).

The generalized coordinates g = (x1, y1, 61, X2, ¥2, 02, X3, y3, 03) are used to describe the
system dynamics. Given ¢, ¢ and some values of the external force/torque (F, T) at a time
point, we seek to produce the generalized acceleration ¢, i.e., we have a total of 9-2 =18
system states and 2 external inputs to describe the system dynamics. Because the slider-
crank mechanism is a one-DOF system, we take the minimum coordinates as (6, 6;) with
the external input (F, T); these four variables fully determine the system dynamics. All
other coordinates are treated as dependent coordinates. The detailed formulation is given in
Appendix A.

For the training part, we uniformly sampled 107 data points as (6;, 6y, F, T)e[0,2m] x
[—4,4] x [—10,10] x [—10, 10] providing the training data. The training used the hy-
perparameters shown in Table 12. In the testing part, we set the initial condition to be
(61,6;) = (1,1), the simulation time step as 0.01 s, and the external force and torque
(F,T) ~ U[-10,10] x U[—10, 10] sampled from uniform distribution are applied to the
system for each time step; note that there is no requirement for smoothness in F and T,
although if one is present, which would only help. We run the prediction for 10,000 steps
(100 s) to test the MBD-NODE long-time prediction ability.

Fig. 25 shows the dynamics response of the minimal coordinates (6, él) under the exter-
nal force and torque. MBD-NODE accurately predicts the system dynamics for the random
external force and torque in the predefined range. Figure 26 shows the dynamics response of
the dependent coordinates calculated from the minimal coordinates (6, 6;) under the same
external force and torque. With the combination of Figs. 26 and 25, we can see that the

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

—— Ground truth ---- ID generalization
6
4
fea]
24
oA
0 20 40 60 80 100
t
(a)
1.4 1
1.2+
.@ 10
0.8
0.6
0 2‘0 4b 6‘0 8b 100
t
(b)
10 4 ——
External force
54 "
w o-
s 4
~10
0 20 40 60 80 100
t
(c)
10 1 -
External torque
5 Y =
~ 0

-10 4

t
(d)
Fig. 25 The dynamics response of the slider-crank mechanism under the external force and torque. (a): the

01 vs t; (b): the 61 vs t; (c): the applied external force F vs t; and (d): the applied external torque 7' vs ¢

MBD-NODE provides good-accuracy, long-time prediction for all states. We do not show
the coordinates (ys, 63, 63) because they are zeros for all time.

4 Conclusions

Drawing on the NODE methodology, this work introduces MBD-NODE, a method for
the data-driven modeling of MBD problems. The performance of MBD-NODE is com-
pared against that of several state-of-the-art data-driven modeling methods by means of

seven numerical examples that display attributes encountered in common real-life systems,

@ Springer

J.Wang et al.

—— Ground truth ---- |ID generalization
11 1
< 0 x 0
=i -1
0 20 40 60 80 100 0 20 40 60 80 100
t t
(a) (b)
14 1
>0 s, 0
-1
= |
0 20 40 60 80 100 0 20 40 60 80 100
t t
(c) (d)
4 2
R 2 > 0
0 -2
0 20 40 60 80 100 0 20 40 60 80 100
t t
(e) (f)
1 1
S o Q0
-1
= |
0 20 40 60 80 100 0 20 40 60 80 100
t t
(9) (h)
0.5
05
S 004 &S o0
05 -0.5
0 20 40 60 80 100 0 20 40 60 80 100
t. t.
(i) ()
6 2
< 4 % 0
5 -2
0 20 40 60 80 100 0 20 40 60 80 100
E t
(k) (0]

Fig.26 The dynamics response of the slider-crank mechanism under the external force and torque for 10,000
time steps. (a): the x| vs 7; (b): the x| vs ; (c): the y; vs £; (d): the y1 vs t; (e): the xp vs t; (f): the xp vs £;
(g): the yp vs t; (h): the yp vs 1; (i): the 67 vs 1; (j): the 6, vs ¢; (k): the x3 vs 7; and (1): the X3 vs ¢

e.g., energy conservation (single mass-spring system), energy dissipation (single mass-
spring-damper system), multiscale dynamics (triple mass-spring-damper system), gener-
alization to different parameters (single pendulum system), MPC-based control problem
(cart-pole system), chaotic behavior (double pendulum system), and presence of con-
straints with long time prediction (slider-crank mechanism). The results demonstrate an

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

overall superior performance of the proposed MBD-NODE method in the following as-
pects:

1. Generalization Capability: MBD-NODE demonstrates superior accuracy in both in-
distribution (ID) and out-of-distribution (OOD) scenarios, a significant advantage
over the ID-focused generalization typically observed with FCNN and LSTM mod-
els.

2. Model-Based Control Application: The structure of MBD-NODE, mapping system states
and external inputs to accelerations, combined with its high generalization accuracy,
makes it suitable for model-based control challenges, as demonstrated in the cart-pole
control problem.

3. Efficiency in Data Usage and Time Independence: Unlike FCNN, MBD-NODE inte-
gration-based learning does not require extensive time-dependent data, enabling accurate
long-term dynamics predictions with less data, as demonstrated in the slider-crank prob-
lem.

4. Independence from Second-Order Derivative Data: MBD-NODE can predict second-
order derivatives based on position and velocity data alone, avoiding the need for direct
second-order derivative data required by FCNN and LSTM.

For reproducibility studies, we provided the open-source code base of MBD-NODE,
which includes all the numerical examples and all the trained models used in this study
[52]. To the best of our knowledge, this represents the first time mechanical system mod-
els, and machine learning models are made publicly and unrestrictedly available for re-
producibility studies and further research purposes. This can serve as a benchmark testbed
for the future development of data-driven modeling methods for multibody dynamics prob-
lems.

5 Limitations and future work

The proposed model has several limitations that remain to be addressed in the future. Firstly,
although the extrapolation capabilities of MBD-NODE have been tested on several prob-
lems in this work and have shown superior performance compared to traditional models
like LSTM and FCNN, additional testing will paint a better picture in relation to the out-
of-distribution performance of MBD-NODE. Secondly, although MBD-NODE is efficient
in terms of data usage and does not rely on second-order derivative data, as detailed in
this contribution, other competing methods come with less computational costs. A study to
gauge the MBD-NODE trade-off between computational cost and quality of results would
be justified and insightful.

Future work should also focus on optimizing the training process to reduce the MBD-
NODE computational costs. Another area for improvement is extending MBD-NODE to
work with flexible multibody system dynamics problems. Exploring these directions stands
to enhance the practical applicability of MBD-NODE and contribute to its broader adop-
tion.

@ Springer

J.Wang et al.

Appendix A: Algorithms for training the MNODE

Algorithm 1 The training algorithm for MBD without constraints
Initialize: Randomly initialized MNODE f (-, ®); choose integrator &
Input: Ground truth trajectories 7 = {Z;}]_, with parameters g and external inputs u,
optimizer and its settings
for eachepoche=1,2,..., E do
for each time stepi =0,1,...,7 — 1 do
Prepare input state Z; and target state Z;
Forward pass by integrator ® and f(.,®) get the predicted state Z,-H =
®(Z;, f, Ar)
Compute loss L = [|Z; 1 — Zi 1|12
Backpropagate the loss to compute gradients VgL
Update the parameters using optimizer: ® = Optimizer(®, VgL)

Decay the learning rate using exponential schedule
Output: Trained MBD f (-, @%)

Algorithm 2 The training algorithm for MBD with constraints equation-based optimization
and dependent coordinates data
Initialize: Randomly initialized MNODE f (-, ®). Choose integrator ®, identify con-
straint equation ¢ and the map ¢! from the independent/minimal coordinates to the
dependent coordinates.
Input: Ground truth trajectories 7 = {Z;}’_,, optimizer and its settings.
for eachepoche=1,2,..., E do

for each time stepi =0,1,...,7 —1do
Prepare input state Z; = (ZM,Z®)" € R*: and target state Z;; =
(ZY,, I8)" e R

Forward pass the minimal coordinates ZM to f(-, ®) with integrator ® and get
the predicted minimal coordinates at next time step Zﬁl = CD(ZZM , f, At)

Recover the dependent coordinates Zﬁr | using the independent coordinates Z%rl
with ¢!
~ Combine the minimal and dependent coordinates to get the full coordinates
Zi, = (Z%»l’ ZiR+1)T

Compute loss L = [|Z;4 — Z,-H ||§

Backpropagate the loss to compute gradients VgL

Update the parameters using optimizer: ® = Optimizer(®, VgL)

Decay the learning rate using exponential schedule

Output: Trained MBD f(-, ®*)

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

Algorithm 3 The training algorithm for MBD; presence of constraints handled by using
minimal/independent coordinates; kinematic constraints used to recover the dependent ones
Initialize: Randomly initialized MNODE f (-, ®) ; choose integrator ®; uses pior knowl-
edge of constraint equation ¢ and the minimal coordinates.
Input: Ground truth minimal coordinates trajectories 7 = {ZM}’_, optimizer and its
settings.
for eachepoche=1,2,..., E do
for each time stepi =0,1,...,7 — 1 do
Prepare input state Z;" and target state Z;7 |
Forward pass the minimal coordinates ZlM to f(-, ®) with integrator ® and to get

O(ZY, f, Ar)

the predicted minimal coordinates at next time step Vi

i+l =
Compute loss L = | Z¥ | — Z1 |3
Backpropagate the loss to compute gradients VgL
Update the parameters using optimizer: ® = Optimizer(®, VgL)
Decay the learning rate using exponential schedule

Output: Trained MBD f (-, ©%)

@ Springer

J.Wang et al.

Appendix B: Training time cost for different models and integrators

Table 13 Time cost for training the models with different integrators. Here the FEI represents the 1st-
order forward Euler, LF2 represents the 2nd-order Leapfrog method, MP2 represents the 2nd-order midpoint
method, RK4 represents the 4th-order Runge—Kutta method, YS4 represents the 4th-order Yoshida method,
and FK6 represents the 6th-order Fukushima method. Please note that compared with the MNODE and LNN,
the second-order derivative data is provided to the HNN

Test case Model Integrator Time cost (s)
Single Mass Spring MNODE LF2 507.73
MNODE YS4 874.05
MNODE FK6 1461.52
HNN RK4 218.02
LNN RK4 988.45
Single Mass Spring Damper MNODE FE1 316.86
MNODE MP2 518.09
MNODE RK4 1254.13
FCNN - 220.13
LSTM - 500.63
Triple Mass Spring Damper MNODE FE1 358.55
MNODE MP2 608.55
MNODE RK4 915.68
FCNN - 214.13
LSTM - 460.33
Single Pendulum MNODE FE1 250.52
MNODE MP2 276.12
MNODE RK4 838.37
FCNN - 210.18
LSTM - 348.36
Double Pendulum MNODE FE1 253.34
MNODE MP2 368.75
MNODE RK4 854.06
FCNN - 176.51
LSTM - 402.62
Cart-pole MNODE FE1 255.80
MNODE MP2 285.04
MNODE RK4 776.08
FCNN - 214.26
LSTM - 358.14

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

Appendix C: The detail formulation of the equation of motion for the
slider-crank mechanism

Following the setting mentioned in Sect. 3.4, the equation of motion for the slider-crank
mechanism can be formulated as follows:
The mass matrix M € R**? is

M; 0343 O3x3
M=|033 M 033 |, (50)
03x3 O3x3 M3

where

m 0 0 300

Mi=| 0 m O0|=|0 3 0f,
0 0 I 0 0 4
m, 0 O 6 0 O

My=| 0 my, O0|=|0 6 0|,
0 0 L 0 0 32
my 0 O 1 00

MgZ 0 ns 0 =10 1 0
0 0 5L 0 0 1

The states of the slider-crank mechanism (xy, yy, 01, X2, y2, 62, x3, y3, 03) follows the follow-
ing constraints ® : R® — R?® on the position:

x1 — cos(6y)

y1 — sin(6;)
x1 + cos(6) — xo + 2cos(6,)
y1 + sin(0y) — y> + 2sin(6s)

(b(q) - X2+ZCOS(92) — X3 (51)
Y2 +2sin(62) — y3
Y3
L 03 J
We also have the following constraints ®, € R®* on the velocit:
1 0 sin(6) 0 0 0 0 0 07
0 1 —cos@) O 0 0 0 0 0
1 0 —sin@) —1 0 —=2sin(@,) O 0 0
{0 1 cos@) 0 —1 2cos(6) 0 0 O
@y = 0 0 0 1 0 —2sin6,) -1 0 O (52)
0 0 0 0 1 2cos(6;) 0o -1 0
0 0 0 0 0 0 0 1 0
L0 0 0 0 0 0 0 0 1]
The vector F, € R® from external forces is
Fel
Fo=|Fa |, (53)
FeS

@ Springer

J.Wang et al.

where

(=)

=)

F
Fs=1|0]|eR.
0

We can rearrange the constraint equations on the acceleration:

¥ + 6, sin(6)) + 6 cos(6;) = 0, (54a)
1 — 6 cos(6y) + 67 sin(6,) =0, (54b)
¥ — 6y sin(0;) — 67 cos(6)) — ¥, — 26, sin(6;) — 262 cos(6,) =0, (54¢)
1 + 6 cos(6)) — 62 sin(6;) — §, + 26, cos(6,) — 267 sin(6,) =0, (54d)
¥, — 26, sin(6;) — 267 cos(6,) — X3 =0, (54e)
§, + 26, cos(6;) — 263 sin(6,) — 3 =0, (54f)
63 =0, (542
G; =0 (54h)
to get the y,. as
—912 cos(6;)
—607 sin(6;)

62 cos(6y) + 263 cos(6,)
67 sin(6,) + 267 sin(6,)
262 cos(6y)

267 sin(6,)

0
0

Finally, we plug the above equations into Eq. (1) to get the equation of motion for the slider-
crank mechanism.

Author contributions J.W.(Jingquan Wang) wrote the main manuscript text. S.W. and H.U. prepared figures
1,2,3,6,9,12,15. S.W.,, H.U., J.W.(Jinlong Wu), and D.N. helped polish the manuscript. All authors reviewed
the manuscript.

Funding This work was carried out in part with support from National Science Foundation project
CMMI2153855.

Data Availability No datasets were generated or analysed during the current study.

@ Springer

MBD-NODE: physics-informed data-driven modeling and simulation...

Declarations

Competing interests The authors declare no competing interests.

References

14.

15.

16.

17.

19.

20.

21.

. Bacsa, K., Lai, Z., Liu, W., Todd, M., Chatzi, E.: Symplectic encoders for physics-constrained variational

dynamics inference. Sci. Rep. 13(1), 2643 (2023)

. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multi-

body systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2007)

. Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., Gentine, P.: Enforcing analytic constraints in neural

networks emulating physical systems. Phys. Rev. Lett. 126(9), 098302 (2021)

. Bhattoo, R., Ranu, S., Krishnan, N.A.: Learning the dynamics of particle-based systems with Lagrangian

graph neural networks. Mach. Learn.: Sci. Technol. 4(1), 015003 (2023)

. Bishnoi, S., Bhattoo, R., Ranu, S., Krishnan, N.M.: Enhancing the inductive biases of graph neural ODE

for modeling dynamical systems (2022). arXiv preprint arXiv:2209.10740

. Borovykh, A., Oosterlee, C.W., Bohté, S.M.: Generalization in fully-connected neural networks for time

series forecasting. J. Comput. Sci. 36, 101020 (2019)

. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In:

Advances in Neural Information Processing Systems, vol. 31 (2018)

. Chen, Z., Zhang, J., Arjovsky, M., Bottou, L.: Symplectic recurrent neural networks (2020)
. Chen, Y., Matsubara, T., Yaguchi, T.: Neural symplectic form: learning Hamiltonian equations on general

coordinate systems. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural
Information Processing Systems (2021)

. Chen, X., Araujo, F.A., Riou, M., Torrejon, J., Ravelosona, D., Kang, W., Zhao, W., Grollier, J., Querlioz,

D.: Forecasting the outcome of spintronic experiments with neural ordinary differential equations. Nat.
Commun. 13(1), 1016 (2022)

. Choi, H.S., An, J., Han, S., Kim, J.G., Jung, J.Y., Choi, J., Orzechowski, G., Mikkola, A., Choi, J.H.:

Data-driven simulation for general-purpose multibody dynamics using deep neural networks. Multibody
Syst. Dyn. 51(4), 419-454 (2021)

. Cranmer, M.D., Greydanus, S., Hoyer, S., Battaglia, P.W., Spergel, D.N., Ho, S.: Lagrangian neural

networks (2020). CoRR arXiv:2003.04630

. Daems, R., Taets, J., Crevecoeur, G., et al.: Keycld: learning constrained Lagrangian dynamics in key-

point coordinates from images (2022). arXiv preprint arXiv:2206.11030

DiPietro, D.M., Xiong, S., Zhu, B.: Sparse symplectically integrated neural networks. In: Advances in
Neural Information Processing Systems, vol. 34 (2020)

Djeumou, F., Neary, C., Goubault, E., Putot, S., Topcu, U.: Neural networks with physics-informed archi-
tectures and constraints for dynamical systems modeling. In: Firoozi, R., Mehr, N., Yel, E., Antonova, R.,
Bohg, J., Schwager, M., Kochenderfer, M. (eds.) Proceedings of the 4th Annual Learning for Dynamics
and Control Conference. Proceedings of Machine Learning Research, vol. 168, pp. 263-277 (2022)
Finlay, C., Jacobsen, J.-H., Nurbekyan, L., Oberman, A.: How to train your neural ODE: the world of Ja-
cobian and kinetic regularization. In: Daumé, H.III, Singh, A. (eds.) Proceedings of the 37th International
Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 3154-3164
(2020)

Finzi, M., Wang, K.A., Wilson, A.G.: Simplifying Hamiltonian and Lagrangian neural networks via
explicit constraints. Adv. Neural Inf. Process. Syst. 33, 13880-13889 (2020)

. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of

Boundary-Value Problems. Elsevier, Amsterdam (2000)

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In:
Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy 13—15 May 2010. Proceedings of Machine
Learning Research, vol. 9, pp. 249-256 (2010). PMLR. Chia Laguna Resort, Sardinia, Italy, 13—15 May
2010

Go, M.S., Han, S., Lim, J.H., Kim, J.G.: An efficient fixed-time increment-based data-driven simulation
for general multibody dynamics using deep neural networks. In: Engineering with Computers (2023)
Greydanus, S., Dzamba, M., Yosinski, J.: Hamiltonian neural networks. In: Advances in Neural Infor-
mation Processing Systems, vol. 32 (2019)

@ Springer

http://arxiv.org/abs/2209.10740
http://arxiv.org/abs/2003.04630
http://arxiv.org/abs/2206.11030

J.Wang et al.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

Grunbacher, S., Hasani, R., Lechner, M., Cyranka, J., Smolka, S.A., Grosu, R.: On the verification of
neural ODEs with stochastic guarantees. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 35, pp. 11525-11535 (2021)

Gruver, N., Finzi, M., Stanton, S., Wilson, A.G.: Deconstructing the inductive biases of Hamiltonian
neural networks (2022). arXiv preprint arXiv:2202.04836

Gupta, J.K., Menda, K., Manchester, Z., Kochenderfer, M.J.: A general framework for structured learning
of mechanical systems (2019). CoRR arXiv:1902.08705

Han, S., Choi, H.-S., Choi, J., Choi, J.H., Kim, J.-G.: A DNN-based data-driven modeling employ-
ing coarse sample data for real-time flexible multibody dynamics simulations. Comput. Methods Appl.
Mech. Eng. 373, 113480 (2021)

Hashemi, A., Orzechowski, G., Mikkola, A., McPhee, J.: Multibody dynamics and control using machine
learning. Multibody Syst. Dyn. 58, 1-35 (2023)

He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance
on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 1026-1034 (2015)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735-1780 (1997)
Koutsoupakis, J., Giagopoulos, D.: Drivetrain response prediction using Al-based surrogate and multi-
body dynamics model. Machines 11(5), 514 (2023)

Kouvaritakis, B., Cannon, M.: Model Predictive Control, vol. 38, pp. 13-56. Springer, Switzerland
(2016)

Kraft, S., Causse, J., Martinez, A.: Black-box modelling of nonlinear railway vehicle dynamics for track
geometry assessment using neural networks. Int. J. Veh. Mech. and Mobil. 57(9), 1241-1270 (2019)
Lee, K., Parish, E.J.: Parameterized neural ordinary differential equations: applications to computational
physics problems. Proc. R. Soc. A 477(2253), 20210162 (2021)

Lim, Y.H., Kasim, M.E.: Unifying physical systems’ inductive biases in neural ODE using dynamics
constraints. In: ICML 2022 2nd Al for Science Workshop (2022)

Liu, G.-H., Chen, T., Theodorou, E.: Second-order neural ODE optimizer. Adv. Neural Inf. Process. Syst.
34, 25267-25279 (2021)

Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., Johnson, S.G.: Physics-informed neural networks
with hard constraints for inverse design. SIAM J. Sci. Comput. 43(6), B1105-B1132 (2021)

Lutter, M., Ritter, C., Peters, J.: Deep Lagrangian networks: using physics as model prior for deep learn-
ing. In: International Conference on Learning Representations (ICLR 2019) (2019). OpenReview.net
Marco, D., Méhats, F.: Symplectic learning for Hamiltonian neural networks. J. Comput. Phys. 494,
112495 (2023)

Matsubara, T., Miyatake, Y., Yaguchi, T.: Symplectic adjoint method for exact gradient of neural ODE
with minimal memory. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W. (eds.)
Advances in Neural Information Processing Systems, vol. 34, pp. 20772-20784. Curran Associates, Red
Hook (2021)

Norcliffe, A., Bodnar, C., Day, B., Simidjievski, N., Li6, P.: On second order behaviour in augmented
neural odes. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F,, Lin, H. (eds.) Advances in Neural
Information Processing Systems, vol. 33, pp. 5911-5921. Curran Associates, Red Hook (2020)

Noren, H., Eidnes, S., Celledoni, E.: Learning dynamical systems from noisy data with inverse-explicit
integrators (2023)

Nwankpa, C., [jomah, W.L., Gachagan, A., Marshall, S.: Activation functions: comparison of trends in
practice and research for deep learning (2018). arXiv:1811.03378

Owoyele, O., Pal, P.: ChemNODE: a neural ordinary differential equations framework for efficient chem-
ical kinetic solvers. Energy AI'7, 100118 (2022)

Pan, Y., Nie, X., Li, Z., Gu, S.: Data-driven vehicle modeling of longitudinal dynamics based on a
multibody model and deep neural networks. Measurement 180, 109541 (2021)

Portwood, G.D., Mitra, P.P., Ribeiro, M.D., Nguyen, T.M., Nadiga, B.T., Saenz, J.A., Chertkov, M., Garg,
A., Anandkumar, A., Dengel, A., et al.: Turbulence forecasting via neural ode (2019). arXiv preprint
arXiv:1911.05180

Quaglino, A., Gallieri, M., Masci, J., Koutnik, J.: SNODE: spectral discretization of neural ODEs for
system identification. In: International Conference on Learning Representations (2019)
Sanchez-Gonzalez, A., Bapst, V., Cranmer, K., Battaglia, P.: Hamiltonian graph networks with ODE
integrators (2019). arXiv preprint arXiv:1909.12790

Shabana, A.A.: Dynamics of Multibody Systems. Cambridge university press, Cambridge (2020)
Sorourifar, F., Peng, Y., Castillo, I., Bui, L., Venegas, J., Paulson, J.A.: Physics-enhanced neural ordinary
differential equations: application to industrial chemical reaction systems. Ind. Eng. Chem. Res. 62(38),
15563-15577 (2023)

@ Springer

http://arxiv.org/abs/2202.04836
http://arxiv.org/abs/1902.08705
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1911.05180
http://arxiv.org/abs/1909.12790

MBD-NODE: physics-informed data-driven modeling and simulation...

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Sosanya, A., Greydanus, S.: Dissipative Hamiltonian neural networks: learning dissipative and conser-
vative dynamics separately (2022). arXiv:2201.10085

Steger, S., Rohrhofer, FM., Geiger, B.: How PINNSs cheat: predicting chaotic motion of a double pendu-
lum. In: The Symbiosis of Deep Learning and Differential Equations II @ the 36th Neural Information
Processing Systems (NeurIPS) Conference (2022)

Toth, P,, Rezende, D.J., Jaegle, A., Racaniere, S., Botev, A., Higgins, I.: Hamiltonian generative net-
works. In: International Conference on Learning Representations (2019)

Wang, J., Wang, S., Unjhawala, H., Wu, J., Negrut, D.: Models, scripts, and meta-data: physics-
informed data-driven modeling and simulation of constrained multibody systems (2024). https://github.
com/uwsbel/sbel-reproducibility/tree/master/2024/MNODE-code

Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of
constrained dynamic systems. J. Mech. Des. 104, 247-255 (1982)

Ye, Y., Huang, P., Sun, Y., Mbsnet, D.S.: A deep learning model for multibody dynamics simulation and
its application to a vehicle-track system. Mech. Syst. Signal Process. 157, 107716 (2021)

Zhang, H., Gao, X., Unterman, J., Arodz, T.: Approximation capabilities of neural ODEs and invertible
residual networks. In: Daumé, H.III, Singh, A. (eds.) Proceedings of the 37th International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 11086—11095 (2020)
Zhong, Y.D., Dey, B., Chakraborty, A.: Dissipative symODEN: encoding Hamiltonian dynamics with
dissipation and control into deep learning. In: ICLR 2020 Workshop on Integration of Deep Neural
Models and Differential Equations (2019)

Zhong, Y.D., Dey, B., Chakraborty, A.: Extending Lagrangian and Hamiltonian neural networks with
differentiable contact models. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W.
(eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 21910-21922. Curran Asso-
ciates, Red Hook (2021)

Zhuang, J., Dvornek, N., Li, X., Tatikonda, S., Papademetris, X., Duncan, J.: Adaptive checkpoint adjoint
method for gradient estimation in neural ODE. In: Daumé, H.III, Singh, A. (eds.) Proceedings of the 37th
International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119,
pp. 11639-11649 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a pub-
lishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

@ Springer

http://arxiv.org/abs/2201.10085
https://github.com/uwsbel/sbel-reproducibility/tree/master/2024/MNODE-code
https://github.com/uwsbel/sbel-reproducibility/tree/master/2024/MNODE-code

	MBD-NODE: physics-informed data-driven modeling and simulation of constrained multibody systems
	Abstract
	Introduction
	Methodology
	Multibody system dynamics
	Neural ordinary differential equations for multibody system dynamics
	Neural ordinary differential equation (NODE)
	Extensions of neural ordinary differential equation
	Multibody dynamics NODE (MBD-NODE)
	Loss function and optimization without constraints
	Loss function and optimization with constraints
	Baseline models

	Numerical experiments
	Single mass-spring system
	Single mass-spring-damper system
	Multiscale triple mass-spring-damper system
	Damped single pendulum
	Double pendulum
	Cart-pole system
	Slider-Crank mechanism

	Conclusions
	Limitations and future work
	Appendix A: Algorithms for training the MNODE
	Appendix B: Training time cost for different models and integrators
	Appendix C: The detail formulation of the equation of motion for the slider-crank mech- anism
	References

