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Assessing Trust in Construction Al-Powered Collaborative
Robots Using Structural Equation Modeling

Newsha Emaminejad, S.M.ASCE"; Lisa Kath?; and Reza Akhavian, M.ASCE?

Abstract: This study aimed to investigate the key technical and psychological factors that impact the architecture, engineering, and
construction (AEC) professionals’ trust in collaborative robots (cobots) powered by artificial intelligence (AI). This study seeks to address
the critical knowledge gaps surrounding the establishment and reinforcement of trust among AEC professionals in their collaboration with
Al-powered cobots. In the context of the construction industry, where the complexities of tasks often necessitate human—robot teamwork,
understanding the technical and psychological factors influencing trust is paramount. Such trust dynamics play a pivotal role in determining
the effectiveness of human-robot collaboration on construction sites. This research employed a nationwide survey of 600 AEC industry
practitioners to shed light on these influential factors, providing valuable insights to calibrate trust levels and facilitate the seamless integration
of Al-powered cobots into the AEC industry. Additionally, it aimed to gather insights into opportunities for promoting the adoption, culti-
vation, and training of a skilled workforce to effectively leverage this technology. A structural equation modeling (SEM) analysis revealed
that safety and reliability are significant factors for the adoption of Al-powered cobots in construction. Fear of being replaced resulting from
the use of cobots can have a substantial effect on the mental health of the affected workers. A lower error rate in jobs involving cobots, safety
measurements, and security of data collected by cobots from jobsites significantly impact reliability, and the transparency of cobots’ inner
workings can benefit accuracy, robustness, security, privacy, and communication and result in higher levels of automation, all of which
demonstrated as contributors to trust. The study’s findings provide critical insights into the perceptions and experiences of AEC professionals
toward adoption of cobots in construction and help project teams determine the adoption approach that aligns with the company’s goals
workers’ welfare. DOI: 10.1061/JCCEES5.CPENG-5660. © 2024 American Society of Civil Engineers.
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intelligence.

Introduction

Traditional construction production methods rely heavily on human
workers, require substantial, arduous effort, and can pose safety and
health risks to workers due to exposure to demanding physical
work and dangerous substances. Instances of physical hazards
that can lead to injuries or long-term damage to the body include
being subjected to vibrations or loud noises, as well as exposure to
chemical hazards such as vapors, dust, or fumes (Kulkarni 2007).
Although the construction industry has attempted to improve
productivity by using powered hand tools and more recently pre-
fabrication, it is still lagging behind other industries in their em-
brace of automation (De Valence and Abbott 2015). Additionally,
the industry has been facing a labor shortage, which has further
slowed progress toward increased productivity (Bahr and Laszig
2021). According to the Associated Builders and Contractors,
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the construction industry will have to attract around 546,000 extra
workers in 2023, in addition to the regular hiring pace, to meet the
labor demand. This shortfall in workers is due to multiple factors,
including an aging workforce, a lack of interest among younger
generations to enter the industry, and immigration policies that limit
the availability of foreign workers (ABC 2023).

Therefore, the industry needs to improve productivity and con-
struction time while addressing workers’ safety concerns and cost
overruns. This can be achieved by developing new solutions to
carry out labor-intensive tasks using artificial intelligence (Al)
and robotics, thus freeing up workers to focus on more technical
jobs, reducing the risk of injuries caused by physical hazards and
exposure to harmful substances, improving productivity and effi-
ciency, and reducing labor costs (Baduge et al. 2022; Darko
et al. 2020; Javaid et al. 2021). To automate repetitive and linear
tasks such as bricklaying, demolishing, and welding, Al and ro-
botics have shown great promise in the execution phase of a project
(Manzoor et al. 2021; Saidi et al. 2016).

Studying collaborative robots, or cobots in the industrial appli-
cations is receiving increasing attention from both engineering and
social science research communities (Kluy and Roesler 2021).
Al-powered cobots are robots designed to collaborate alongside
human workers. They are equipped with varying levels of intelli-
gence offered by Al and sensors that enable them to autonomously
perceive and interpret their environment. The combination of this
perception and Al capabilities allows them to make informed
decisions and adapt to dynamic conditions without the need for
explicit human instructions. This autonomy enhances their ability
to work harmoniously with human counterparts in shared workspa-
ces (Meziane et al. 2017; Miiller et al. 2016). Construction tasks are
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often too complex for full automation, and robots require collabo-
ration with humans. Thus, cobots are gaining popularity in the AEC
industry and are expected to play a significant role in the future of
construction (Gambao et al. 2012).

However, the widespread adoption of cobot applications on con-
struction sites has been limited due to various factors, such as lack
of research, high initial costs, technical complexity, health and
safety concerns for human-robot collaboration, potential job dis-
placement, and non-compliance with building regulations (Gharbia
et al. 2020; Holder et al. 2016; Rosenberg et al. 2015). Further-
more, existing commercially available solutions for physically
demanding tasks such as automated masonry [FBR (FBR 2023),
material unit lift enhancer (MULE), and semi-automated mason
(SAM) (SAM 2023)] and multifunctional robots such as Baubot,
which can perform tasks such as milling, drilling, sanding, and
laser marking (Printstones, Vienna, Austria) (Printstones 2023) or
rebar laying and tying (Advanced Construction Robots 2023a, b)
may raise the concern of limiting the involvement of the human
worker in the loop, which exacerbates the concerns associated with
robots taking over workers jobs.

To address these unique aspects of the construction industry,
establishing trust between human workers and cobots is imperative.
The level of trust that humans have in cobots is a key consideration
that impacts the success and effectiveness of human-robot teams.
Insufficient trust can result in disuse, where individuals are unwill-
ing to use the cobots and do not recognize their abilities (Kok and
Soh 2020). Conversely, excessive trust can lead to overreliance on
the cobots, potentially causing failures in critical situations. There-
fore, it is essential to have a calibrated level of trust in cobots for
successful human-robot interaction at construction sites. This
study aims to investigate the technical and psychological factors
that may influence the establishment and reinforcement of trust
among AEC professionals when working with Al-powered cobots
to enable major future work on trust calibrations.

Research Background

The literature on the implementation of collaborative robots
(cobots) in the context of Industry 5.0 emphasizes the significance
of sociotechnical factors. Prassida and Asfari (2022) presented a
conceptual model grounded in the Unified Theory of Acceptance
and Use of Technology (UTAUT) and Sociotechnical Systems
theory (STS) to understand the acceptance of cobots in the manu-
facturing industry, which forms the basis of the Industry 5.0 by
adding the human edge to the Industry 4.0 phenomenon. Their
model underscores the importance of early human involvement,
considering elements such as safety and trust assurance, which
are discussed among the hypotheses of this research (Prassida and
Asfari 2022).

Some of the other hypotheses tested in this research have also
been discussed in other prior studies. For example, Libert et al.
(2020) introduced a conceptual framework, connecting human re-
source management (HRM) practices, technology adoption, and
human-robot collaboration (HRC) determinants. They stressed
the need for commitment to change, change management, and
interdisciplinary work in cobot integration (Libert et al. 2020).
Oberc et al. (2019) highlighted the challenges of integrating cobots
into manufacturing and emphasized the lack of methodology and
simulation tools for assessing workplace readiness for robots
(Oberc et al. 2019). Bi et al. (2021) delved into the safety assurance
mechanisms of cobots in manufacturing and the importance of
HRC for enterprise competitiveness (Bi et al. 2021). Heo et al.
(2019) introduced a collision detection framework using deep
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learning to ensure the safety of human workers in real-time scenar-
ios. Malik and Bilberg (2019) developed an architecture for human—
robot collaboration in manufacturing based on team composition,
engagement, and safety dimensions, offering a unified taxonomy
for balanced automation (Malik and Bilberg 2019). Ogenyi et al.
(2019) conducted a survey on robotic systems for physical human—
robot collaboration (pHRC), emphasizing human factors, progress in
robot design, and the need for standardization and safety regulations
(Ogenyi et al. 2019).

These studies collectively offer valuable insights to practi-
tioners, policymakers, and researchers in enhancing the acceptance
and successful integration of cobots in various domains, spanning
safety, HRM practices, technology adoption, and human-robot col-
laboration (Kluy and Roesler 2021; Kok and Soh 2020; Meziane
et al. 2017; Miiller et al. 2016). However, not all the trust dimen-
sions in the HRC have been previously explored in the literature.
In addition, the current research landscape has primarily focused
on cobots within manufacturing, with limited attention to their
use in construction (Calitz et al. 2017; Gualtieri et al. 2021). Safety
remains a central concern, but other factors affecting worker trust
and adoption progress require exploration, particularly in the
unique context of construction.

The presented research aims to identify these factors and gather
practical insights by involving workers and end-users, whose per-
spectives are underrepresented. It is crucial to gain buy-in from
construction leaders and instill worker confidence in cobot reliabil-
ity because negative perceptions can hinder adoption. The study
recognizes that end-users possess practical expertise and their in-
clusion in decision-making positively impacts job satisfaction. Ad-
ditionally, key decision makers’ perspectives, including company
owners and leaders, are essential because cobots represent a sub-
stantial investment for construction firms. Therefore, in previous
steps of this research program, a comprehensive literature review
as well as interviews with AEC practitioners were conducted
(Emaminejad and Akhavian 2022, 2023; Emaminejad et al. 2021),
and several factors about gaining users’ trust in robots were iden-
tified. As shown in Fig. 1, a set of 13 factors influencing trust were
established.

Among these, seven were directly derived from the initial stage
of the current research, which involved a systematic literature
review (Emaminejad and Akhavian 2022, 2023; Emaminejad
et al. 2021). Subsequently, an additional six factors were defined
based on insights gathered from interviews conducted with con-
struction practitioners, constituting the second stage of the research
(Emaminejad and Akhavian 2022, 2023; Emaminejad et al. 2021).
These 13 factors are as follows:

1. Reliability: In the context of cobots, reliability refers to their
capacity to carry out their designated tasks consistently and
predictably without experiencing any malfunctions, failures,
or unexpected interruptions (Kluy and Roesler 2021).

2. Safety: In cobots, safety encompasses the process of designing
and deploying cobots to ensure the well-being and protection
of human workers who collaborate with them. Because cobots
are specifically designed to operate alongside humans, they
must incorporate essential safety measures that minimize the
risk of accidents, injuries, and damage to property (Askarpour
et al. 2019).

3. Transparency: In cobots, transparency pertains to their
capacity to offer feedback regarding their operations and per-
formance, enabling human workers to observe and compre-
hend the actions of the robot. This transparency ensures that
external observers can easily understand how the system gen-
erated its outcomes (Kluy and Roesler 2021).
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Fig. 1. Trust barriers in construction Al-powered collaborative robots: theoretical and practical perspectives.
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Robustness: In cobots, robustness refers to their capacity to
function efficiently and consistently across diverse conditions,
without being negatively impacted by variations in the envi-
ronment or task demands (Wang et al. 2021).

. Accuracy: In cobots, accuracy pertains to the capacity of these

robots to execute their designated tasks with exceptional pre-
cision and minimal margin of error (Rekleitis et al. 2002).
Privacy: In cobots, privacy refers to the protection of personal
information and data that may be collected or processed by
collaborative robots (Li and Zhang 2017).

. Security: For cobots, security entails safeguarding the cobot

and its related systems and construction workflows against
unauthorized access, malicious attacks, and other potential
security risks (Li and Zhang 2017).
Level of automation (LOA): In cobots, LOA pertains to the
extent to which cobots can independently carry out their as-
signed tasks, without requiring human intervention or control.
This level of automation is influenced by the complexity of the
tasks cobots can handle and their ability to adjust to dynamic
conditions or inputs (Michaelis et al. 2020).
Hands-on experience: In the context of cobots, hands-on
experience involves actively engaging workers with cobots in
real-world scenarios. This encompasses tasks such as program-
ming, operation, and maintenance across diverse construction
environments. Hands-on experience fosters a profound compre-
hension of cobots’ capabilities, constraints, and the wide range
of potential applications they offer.
Having general knowledge: Having general knowledge about
cobots involves possessing a basic understanding of cobots
and their applications, even without hands-on experience. This
includes being familiar with cobot features, components, and
capabilities, as well as their potential benefits and limitations
in various construction contexts. Several factors can influence
the acquisition of this knowledge:

a. Level of education: The educational background can shape

individuals’ understanding of cobots and provide a basis
for comprehending their principles and applications.

11.

b. Years of experience: The amount of time individuals’ have

spent working in the construction industry can contribute
to their exposure to cobots and related technologies.

c. Familiarity with relevant technologies: Being acquainted with

the technologies that enable cobots functionalities, can influ-
ence workers basic understanding of cobots.

d. Awareness about construction robotics: Being informed

about the current use of robots in construction contributes

to individuals’ knowledge of cobots potential in projects.
Training: In cobots, training involves participating in a struc-
tured program aimed at acquiring the skills to operate, pro-
gram, and maintain cobots in a safe and efficient manner.
The training curriculum generally encompasses key areas such
as safety protocols, cobot programming, operation and main-
tenance procedures, troubleshooting techniques, and fault
diagnosis. It often incorporates a blend of theoretical and prac-
tical instruction in simulated or real-world settings.

. Initiator approach of trust in cobots: This refers to the individ-

ual or group that takes the initial action to establish trust in
cobots within a specific context or environment. This initiator
can be a union, a company’s CEO, a manager, an engineer, or
any other person accountable for the implementation and
operation of these robots in a particular workplace or industry.

. Communication: Communication with cobots entails the

capability for humans to engage with cobots through diverse
approaches, including voice commands, having two-way con-
versation, gestures, cobot size or shape, touchscreens, or alter-
native interfaces.

Factors 1-8 pertain to the cobot’s system and configurations,

9-12 refer to user’s perception, and 13 is related to the environ-
mental conditions. In addition to defining these trust factors, the
literature review and interviews informed several hypotheses about
them.

This paper describes the results of a nationwide survey to

determine their relevance and applicability in practical perspec-
tives (summarized in Fig. 2) through testing the following
hypotheses:
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Fig. 2. Proposed exploratory model.

H2

HI: The perceived reliability of cobots is significantly affected
by their safety value, including the reduction of potential harm and
the overall safety improvement compared with noncobot operations.

H2: The safety of cobots is significantly influenced by their
robustness and ability to perceive and understand the environment.

H3: Training directly influences the perception of safety
regarding cobots. In other words, well-trained individuals are ex-
pected to have a higher perception of safety regarding cobots com-
pared with those who have received less or no training.

H4: The level of automation in cobots has a direct impact on
how individuals perceive their safety. It suggests that as the level of
automation increases, individuals’ perception of safety regarding
cobots will also increase.

H5: Sufficient knowledge about cobots, their capabilities, and
limitations positively influences how they are embraced by workers
and organizations.

H6: Individuals who have firsthand experience of working
directly with cobots are more likely to embrace these robots com-
pared with those who have not interacted with them in this manner.

H7: The transparency of cobots’ inner workings and decision-
making processes plays a significant role in determining the accept-
able level of automation.

H7a: The level of transparency in the decision-making process
of cobots is significantly correlated to their communication capa-
bilities. When cobots have a transparent decision-making process,
they can effectively convey their actions and intentions to users,
resulting in clearer and more efficient communication.

H7b: The degree of transparency in the decision-making pro-
cess of cobots is correlated with their robustness. A more transpar-
ent decision-making process is expected to lead to a higher level
of robustness because it allows for better monitoring and under-
standing of the cobots’ actions, enabling them to adapt and handle
various situations more effectively.
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H7c: The transparency of the decision-making process in
cobots is correlated with their accuracy. When cobots’ decision-
making processes are transparent, their actions and outputs are
more aligned with the intended tasks, resulting in higher accuracy.

H7d and H7e: The transparency of the decision-making pro-
cess in cobots is significantly related to their privacy and security
measures. When the decision-making process is transparent, it is
easier to assess the privacy implications and security vulnerabilities
in cobots’ operations.

HS8: The communication style of cobots directly influences
workers’ understanding of training content and significantly im-
pacts the effectiveness of the received trainings.

HS8a and HS8b: The communication of cobots with users has a
significant correlation with privacy and security. A strong correla-
tion suggests that clear and informative communication fosters a
greater sense of trust and confidence in the privacy and security
practices implemented in cobots.

H9: The initiator’s approach has a direct effect on workers’
knowledge regarding cobots. The initiator’s efforts to disseminate
information, provide training, and raise awareness about cobots are
expected to result in a higher level of trust among workers regard-
ing these cobots.

HI0: The initiator’s approach has a direct effect on workers’
hands-on experience with cobots. By facilitating practical interac-
tions and opportunities to work directly with cobots, the initiator
can foster trust and confidence in these cobots among workers.

HI1: The level of accuracy exhibited by cobots directly influ-
ences their overall reliability. A higher degree of accuracy is
expected to result in a more reliable performance of cobots, as their
actions and outputs align closely with the intended tasks and
objectives.

Hlla: There is a positive correlation between the accuracy and
robustness of cobots. This means that when cobots are more precise
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in their actions and outputs, they are likely to exhibit a higher level
of adaptability in various operating conditions.

HI2: Ensuring a high level of privacy protection in cobots
directly influences their reliability. By safeguarding sensitive
data and user information, cobots are less susceptible to privacy
breaches and potential data manipulations that could compromise
their functioning.

HI2a: The security and privacy levels of data collected by
cobots from jobsites are significantly correlated.

HI3: The level of security measures implemented in cobots di-
rectly impacts their reliability. When cobots are equipped with ro-
bust security features, they are better protected against potential
cyber threats and unauthorized access.

The path diagram (Fig. 2) summarizes these hypotheses and ad-
heres to conventions regarding the representation and labeling of
variables. One-headed arrows signify hypothesized causal relation-
ships, pointing from the cause to the effect. When variables are only
correlated without assumed causal connections, a double-headed,
curved arrow is used.

It is important to account for residual error in predictions,
representing the impact of unmeasured predictors in the model.
In this research, structural equation modeling (SEM) was employed
as a powerful analytical tool to examine the complex relationships
among various factors in the context of applied science, particularly
in research areas involving complex and multifaceted constructs like
organizational psychology and social psychology (Baumgartner
and Weijters 2021). The utilization of SEM allowed for a deeper
understanding of how these factors influenced and interacted
with each other (Hoyle 2012). Through SEM, the intricate dynamics
between different variables were quantitatively assessed, offering
quantifiable insights into the strength and direction of relationships
between these variables. These variables (called latent) are theoreti-
cal constructs that cannot be directly measured but are believed
to influence attitudes and behaviors and are defined by multiple
observed variables (Hoyle 2012). These quantitative findings were
deemed valuable for identifying the most influential factors within
the studied context, enabling the development of targeted strategies
to enhance outcomes.

SEM also enabled a nuanced exploration of indirect effects and
the underlying mechanisms at play, providing a richer understand-
ing of the factors affecting the studied outcomes. In SEMs, these
error terms, referred to as disturbances, are depicted by arrows
(sometimes with dotted lines). These disturbances are identified
with numbered subscripts (e;, e,, e3, and so on) to indicate their
involvement in predicting values for specific variables (Reinard
2006).

Methodology

Procedure

To accomplish the goals outlined in the preceding section, this re-
search employed a Qualtrics (Tharp and Landrum 2017) survey to
individuals who met at least one of the following criteria: working
in the AEC sector, having relevant technology experience in the
AEC industry, or having conducted research related to the integra-
tion of intelligent cobots/robots in the AEC industry. The survey
was distributed using two methods: posting on LinkedIn and re-
cruiting participants through the Prolific survey panel (an online
participant platform) (Palan and Schitter 2018).

To recruit participants from the construction industry, a specific
selection process was employed via Prolific, filtering out individ-
uals whose professional background aligned with the research
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focus. In this process, Prolific confirmed that they had 483 potential
active participants who met the criteria. Additionally, a prescreen-
ing procedure was implemented by posing a question that asks
about the industry where the participant is involved in, by present-
ing AEC among choices such as healthcare, restaurants, and auto-
mobiles, to explicitly filter out non-AEC participants.

Subjects

To determine the necessary sample size for conducting an SEM
analysis, this study relied on proven approaches in the literature.
For example, the online statistics calculator developed by Daniel
Soper was employed to estimate the sample size needed for the
required SEM analysis. This calculator takes into account factors
such as the expected effect size, desired statistical power level, the
number of latent variables, the number of observed variables, and
the probability level (Soper 2023).

Also, a power analysis was carried out to calculate the minimum
sample size needed to detect the anticipated effect size of 0.3, with a
desired statistical power level of 0.8, a probability level of 0.05, and
considering the study’s 13 latent variables and 80 observed varia-
bles (detailed calculations are available upon request from the cor-
responding author). The selection of an expected effect size of 0.3
is a common and well-accepted practice in research design (Hoyle
2012). It strikes a balance between being large enough to detect
practical significance and small enough to maintain statistical
power. This choice ensures that the study is designed to identify
meaningful relationships between variables while avoiding the risk
of overlooking potentially important effects. The results indicated
that a minimum of 204 participants would be needed to detect the
effect, and at least 225 participants would be necessary for model
structure testing. Therefore, a total of 300 participants were chosen
to perform each of the two SEM analyses. This also aligns with the
sample size used in prior successful studies on trust toward tech-
nology integration in construction (Joshi 2005; Son et al. 2012).

Those who completed the survey via the Prolific survey panel
received compensation of $12 per hour, whereas participants who
joined through other channels had a chance to win a $100 gift card.
The incentive amounts were chosen carefully: insufficient incen-
tives could lead to low participation and disinterested participants,
leading to a biased sample. On the other hand, excessive incentives
might attract individuals primarily motivated by the reward rather
than a genuine interest in the study’s topic (Deutskens et al. 2004).
The research was approved by San Diego State University’s Institu-
tional Review Board (IRB protocol HS-2022-0258) for adhering to
ethical guidelines.

Measurement

The survey (full survey available upon request from the corre-
sponding author) started with five multiple-choice demographic
questions. Afterward, participants were given the opportunity to
watch a short video demonstrating seven construction cobots in ac-
tion, aimed at improving their understanding of what cobots are and
how they might be used in the construction industry. To ensure
clarity and consistency in conveying the definitions and concepts
related to this study, a table was included in the informed consent
form presented to the participants, defining essential terms, such
as “robot,” “intelligent robot,” “Al” “cobot,” and “Al-powered
cobots.”

Following that, there were 28 Likert-scale questions to gauge
participants’ opinions about factors that might have impact on their
level of trust in cobots. Additionally, three rank-order questions
were included to assess preferences for the situations in which
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cobots are more likely be embraced. In the final section of the sur-
vey, participants were requested to rate their assessment of various
attributes such as safety, reliability, inner-workings transparency,
security, privacy, robustness, and accuracy on a scale of 1 =
Strongly Disagree to 5 = Strongly Agree for seven different cobot
applications. The survey questions can be found in the Supplemen-
tal Materials.

The questions with varying response scales have been normal-
ized or standardized for consistency. Regarding the preference
questions, each question has been disaggregated into separate ob-
served variables, with labels assigned based on their positions in the
ranking. For instance, for Question P1, participants were asked to
arrange five options in their preferred order. The options in the first
place were assigned a score of five, second place received a score of
four, third place was given a score of three, fourth place received a
score of two, and fifth place got a score of one. Similarly, to mit-
igate the impact of outliers, for Questions P2 and P3 with three
options (instead of five) the options in first place were scored as
five, second place as three, and third place as one. This conversion
facilitates a more standardized and quantifiable assessment of par-
ticipants’ preferences.

The questions concerning the level of education and years of
experience in the construction industry were also scored using
a standardized scale (Questions D2 and D4 in Table S1). For the
level of education, the options “High school or below,” “Two-year
college,” “Four-year college,” “Master’s degree,” and “Doctorate”
were converted to scores of one, two, three, four, and five,
respectively.

Similarly, for years of experience in the construction industry,
the options “1-5,” “6-10,” “11-15,” “16-20,” and “More than 20”
were converted to scores of one, two, three, four, and five, respec-
tively. Regarding Question D5, the scoring process was as follows:
If participants selected all three options, their response was con-
verted to a score of five. If they chose robots along with either
drones or unmanned machinery, their response was converted to
a score of four. Choosing only robots resulted in a score of three.
Opting for drones, unmanned machinery, or both led to a score
of two. Lastly, responses indicating “none” or “others” were as-
signed a score of one. This scoring approach was implemented be-
cause the research emphasizes robotics, and therefore, responses
involving robots, were given higher scores to reflect the focus
on this aspect.

However, converting categorical values to numerical ones may
raise a concern, given that SEM relies on regression, which is
founded on the assumption of normality. As cited by Bollen
(1989), early studies indicated that Pearson correlations may tend
to have underestimated the strength of association for continuous
constructs underlying categorical variables, potentially leading to
parameter estimate attenuation. The Shapiro-Wilk tests were con-
ducted to assess the normality of these converted variables. For the
“Edu” variable, although the test suggested a marginal departure
from normality (p-value = 0.065), the W value of 0.975 indicated
proximity to a normal distribution, particularly with a larger sample
size. Both the “Exp” and “Tech” variables exhibited no significant
evidence of departure from normality, with W values of 0.9551 and
0.9998 and p-values of 0.112 and 0.234, respectively.

A descriptive analysis was conducted on seven demonstrated
cobot applications in AEC projects. The rationale for selecting
these cobots for the survey was based on their common and familiar
use cases in the construction industry. In other words, the function-
alities of these seven cobots were available for demonstration to
participants at the time when this research was under way. The
research team believed that such demonstrations were essential
to ensure participants had a comprehensive understanding of the
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study’s focus, the varying levels of automation, and the unique as-

pects they represent. These robots are as follows:

e The HRP-5P humanoid (National Institute of Advanced Indus-
trial Science and Technology, Hokkaido, Japan) robot special-
izes in heavy labor and autonomous operations in hazardous
areas, focusing on gypsum board installation (Humanoid Robot
Prototype HRP-5P).

e The SAM100 (semiautomated mason) (Construction Robotics,
Victor, New York) lays bricks at an impressive rate, enhancing
worker safety and efficiency.

* TyBot (TyBot, Allison Park, Pennsylvania), an automated steel-
tying robot, employs computer vision for rapid installation on
construction sites.

e The robust Husqvarna DXR 305 (Husqvarna group, Stockholm,
Sweden) demolition robot precisely handles demanding tasks in
both industrial and construction settings.

* Boston Dynamics’ Spot robot (Boston Dynamics, Waltham,
Massachusetts) autonomously navigates construction sites, cap-
turing comprehensive 360° images for project documentation.

e Okibo’s autonomous wall plastering technology (Okibo, Petah
Tikva, Isracl) combines Al, three-dimensional (3D) scanners,
and sensors to efficiently apply coatings on walls.

* ERO Concrete Recycling Robot (Atlas Copco, Nacka, Sweden)
contributes to sustainable construction by safely demolishing
concrete buildings for recycling, reducing waste in the process.
The purpose was to determine whether the approach to estab-

lishing trust should vary depending on the specific cobot applica-
tion. The analysis also aimed to identify which dimensions are
perceived as more crucial from the participants’ perspective in
overall cobot trust. It is worth mentioning that the standard errors
for all attributes in each cobots were implied a similar level of con-
sensus among the participants in their expectations. The relatively
low standard error (~0.03) suggests a high level of agreement
among the participants regarding the cobots’ attributes.

A thorough examination of the data was conducted to handle
missing data and outliers; however, given that the survey solely
consisted of Likert scale questions (ranging from 1 = Strongly
Disagree to 5 = Strongly Agree) and multiple-choice questions,
no outliers were detected, and the potential problem of missing data
was mitigated by enforcing completion of all survey questions. The
responses were filtered based on the response duration, excluding
those below 10 min, in order to look for insufficient effort respond-
ing or people who were just picking answers to try to get their
money as quickly as possible. Additionally, the email addresses
were screened, and surveys were excluded where participants se-
lected the same rating (e.g., three) for all questions.

Reliability pertains to the consistency of results obtained from a
measurement instrument, whereas validity relates to how accurately
a measure or instrument assesses the intended construct. Table 1
presents the results of various indices, including construct reliabil-
ity (CR), average variance extracted (AVE), maximum shared
squared variance (MSV), and average shared squared variance
(ASYV), along with their acceptable ranges. It is demonstrated in
the table that all the measures fall within the acceptable range, in-
dicating satisfactory reliability and validity.

The researchers employed SEM, a statistical technique that en-
ables researchers to investigate and test hypotheses concerning the
connections between observed and unobserved (i.e., latent) varia-
bles (Gerow et al. 2011). Unlike other statistical approaches that
focus on a single dependent variable and a set of independent var-
iables, SEM permits the modeling of intricate relationships be-
tween latent (unobserved) and observed variables (Hoyle 2012).
Latent variables are theoretical constructs that cannot be directly
measured but are believed to influence attitudes and behaviors
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Table 1. Reliability and validity assessment

Model
Exploratory Confirmatory
Latent variable CR AVE MSV ASV CR AVE MSV ASV
Knowledge 0.922 0.646 0.591 0.117 0.843 0.745 0.614 0.137
LOA 0.710 0.678 0.082 0.010 0.712 0.891 0.136 0.021
Transparency 0.885 0.786 0.743 0.157 0.928 0.732 0.705 0.145
Communication 0.741 0.535 0.255 0.052 0.758 0.659 0.284 0.089
Initiator 0.703 1.658 0.931 0.145 0.701 0.597 0.469 0.121
Privacy 0.708 0.624 0.443 0.163 0.721 0.652 0.471 0.134
Robustness 0.910 0.709 0.637 0.104 0.848 0.508 0.352 0.096
Experience 1.678 3.397 0.931 0.169 1.017 0.932 0.904 0.166
Security 0.828 0.580 0.511 0.102 0.830 0.564 0.552 0.098
Accuracy 1.014 1.039 0.937 0.104 1.027 0.767 0.716 0.115
Acceptable range >0.7 >0.5 <AVE <AVE >0.7 >0.5 <AVE <AVE

and are defined by multiple observed variables (Sardeshmukh and
Vandenberg 2017). SEM is a valuable tool, particularly in research
areas involving complex and multifaceted constructs, like psychol-
ogy (Baumgartner and Weijters 2021).

To evaluate the validity of the measurement constructs in the
model, a confirmatory factor analysis (CFA) was performed. CFA
is a statistical technique within structural equation modeling that
examines the extent to which a group of observed variables (indica-
tors) effectively measures a set of latent variables (factors) that are
presumed to exist based on theory or previous studies (Wang and
Wang 2019). The outcomes of the CFA provide insights into
whether the items truly capture the same underlying construct.
After conducting the CFA, any observed variables with a factor
loading below 0.5 were omitted from the analysis. Specifically, five
observed variables from Question P1, with factor loadings approx-
imately around 0.2, were excluded from further consideration in the
analysis.

Results

Demographic Results

Figs. 3(a and b) provide insights into the distribution of job posi-
tions and education levels of participants in the AEC industry. The
Prolific group is primarily composed of foremen and laborers, with
a majority having completed high school or earned bachelor’s de-
grees. In contrast, the LinkedIn group includes a higher proportion
of higher-level managers, company leaders, and academic individ-
uals, with more participants holding graduate degrees. Figs. 3(c
and d) offer information about participants’ work experience in
the AEC industry and their familiarity with industry-related tech-
nologies. Both groups, LinkedIn and Prolific, exhibit similar work
experience patterns. However, LinkedIn participants demonstrate a
higher level of familiarity with robots. When asked whether they
had encountered such technologies in their projects, the results
show that robots are not yet widely utilized in construction. Among
Prolific participants, 18% chose “other,” whereas 16% indicated
“none.” Some mentioned limited use of laser scanners and building
information modeling (BIM).

Descriptive Analyses

These results (Table 2) indicate the participants’ perceptions and
attitudes toward adopting Al-powered cobots in the construction
industry. On average, the participants indicated moderate aware-
ness of cobots (Item 1), but relatively few had direct experience
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with robots in construction projects (Item 2). The participants’ per-
ceptions and attitudes toward adopting Al-powered cobots in the
construction industry were evident from their responses. Trust
emerged as a crucial factor, showing strong agreement among
participants (Item 3). Additionally, peer recommendations held sig-
nificant weight in embracing Al-powered cobots, closely followed
by company recommendations (Items 4 and 5). Union recommen-
dations seemed to have a slightly lower impact in comparison
(Item 6).

On average, participants highly valued direct experience with
the cobot, emphasizing hands-on interaction (Item 8). They also
stressed the importance of transparency in the cobot’s decision-
making process and appreciated understanding this process, while
valuing recommendations from those who had worked directly
with the cobot (Items 7, 9, and 10). Participants had a neutral per-
ception of the cobot’s physical appearance (Item 11), showing
moderate interest in two-way conversations (Item 12), but a mixed
response to a humanoid appearance (Items 13 and 16). Participants
displayed a modest preference for smaller cobots, while variability
in responses suggests varying opinions (Item 14). They also gen-
erally expressed reservations about trusting Al-powered cobots,
indicating some safety concerns without extreme mistrust, because
responses showed variability (Item 15). Regarding trust in cobot
autonomy, participants were somewhat hesitant to fully trust
autonomous cobots (Item 17) and they preferred cobots to be under
human supervision (Item 18). Participants on average rated the
importance of the cost of purchasing and maintaining the cobot
as significant for adoption (Item 20). They also on average, highly
valued responsive and responsible customer support services
(Item 21).

Similarly, on average, participants showed a strong inclination
to embrace cobots that included a training package (Item 22).
Participants on average rate the desire for cobots leading to up-
skilled workers moderately high (Item 23). Recommendations from
well-established construction companies were also considered im-
portant, with participants expressing a relatively high rating for this
factor (Item 24). The majority of participants (77.66%) ranked
“Real-world hands-on” training as their top choice, indicating a
strong preference for practical, hands-on experience with the cobots
in real-world settings. “Demonstration videos” were ranked second
by 35.58% of participants, suggesting that visual demonstrations
and instructional videos are also valued as effective training meth-
ods. Meanwhile, “Simulations (e.g., games)” was the second
choice for 50.39% of participants, indicating a preference for in-
teractive and gamified training experiences. Participants on average
considered having global/national standards for implementing
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Fig. 3. Distribution of (a) different job positions; (b) different education levels; (c) duration of the participants’ work experience; and (d) percentage of
each technology being seen utilized in construction projects by participants.

cobots as essential, and emphasized the importance of advanced
privacy and security systems (Items 25 and 26). The majority of
them believed that the cobot’s ability to perceive the environment
impacted their level of trust (Item 27). However, most of them in-
dicated that if they encountered problems or errors during hands-on
experience, they were less likely to trust and rely on cobots for
future tasks (Item 28).

Exploratory Model

The proposed model (Fig. 2) was tested using a randomly selected
300 participants from the overall sample, which included a total
of 600 participants. Fig. 4 illustrates the results of the proposed
model test. The standardized regression coefficients or path coef-
ficient for each path are represented by the numbers on the arrows,
which reflect both the magnitude and direction of the relationships
between the variables. There are many indices for determining
whether the data fit the model, and it is important to consider multi-
ple fit indices rather than relying on a single index. In the next para-
graph, recommended cutoffs are described and the results for the
exploratory model test for the current study will be indicated in
parentheses.

The minimum discrepancy divided by its degrees of freedom
(CMIN/df) should typically be below 3 (2.38). The goodness-of-
fit index (GFI) is often considered acceptable when around 0.90
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or higher (0.75), and the adjusted goodness-of-fit index (AGFI)
is expected to fall within the range of 0.85 or higher (0.78). The
root-mean square error of approximation (RMSEA) is generally
considered acceptable when below 0.08 (0.06). Incremental fit in-
dices, such as the comparative fit index (CFI), incremental fit index
(IFI), Tucker-Lewis index (TLI), and the relative fit index (RFI), are
considered indicative of a good fit when above 0.90 (CFI 0.87, IFI
0.87, TLI 0.86, and RFI 0.73). Parsimonious fit indices, such as the
normed fit index (NFI), the parsimonious normed fit index (PNFI),
and the parsimonious comparative fit index (PCFI), should ideally
be around 0.50 or higher (NFI 0.75, PNFI 0.53, and PCFI 0.65)
(Hair et al. 2009).

Because all incremental fit indices, GFI, and AGFI scores were
below the acceptable threshold, it was concluded that the proposed
model did not fit well. Consequently, the exploratory model was
revised in an attempt to achieve a better fit. The modification in-
dices were employed to incorporate these relationships, but only
those that had a logical basis and were supported by prior research
and interview data were included. This means that the added cor-
relations were in line with existing literature and interview findings,
as suggested by Cho et al. (2009).

The results indicated that hypotheses H4, H6, H7, HS8, H7b, and
H7c¢ were rejected due to their respective p-values being 0.649,
0.212, 0.079, 0.058, 0.611, and 0.145. These findings suggest that
there were no significant effects or correlations observed for these
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Table 2. Descriptive analysis for the seven demonstrated cobots

Trust factors

Cobot Descriptive statistics Safety Reliability Transparency Security Privacy Robustness Accuracy

HRP-5P Mean 4.0544 4.0177 3.5063 3.8342 3.7418 3.9127 4.1063
Standard error 0.0371 0.0341 0.0381 0.0372 0.0373 0.0348 0.0333

Median 4 4 4 4 4 4 4

Mode 5 5 4 4 4 4 5
SD 1.0432 0.9591 1.0701 1.0448 1.0497 0.9769 0.9372
SAM100 Mean 4.0051 4.0177 3.6051 3.7367 3.6759 3.8152 4.0987
Standard error 0.0368 0.0341 0.0372 0.0379 0.0383 0.0370 0.0324

Median 4 4 4 4 4 4 4

Mode 5 5 4 4 3 4 5
SD 1.0330 0.9591 1.0445 1.0652 1.0757 1.0398 0.9120
TYBOT Mean 3.9570 3.9544 3.5709 3.7266 3.6620 3.8203 4.1152
Standard error 0.0368 0.0353 0.0384 0.0385 0.0397 0.0361 0.0321

Median 4 4 4 4 4 4 4

Mode 5 4 4 4 3 4 5
SD 1.0334 0.9920 1.0796 1.0816 1.1172 1.0148 0.9010
DXR-305 Mean 3.9481 3.9823 3.6443 3.7253 3.6810 3.9342 4.0709
Standard error 0.0378 0.0343 0.0378 0.0375 0.0386 0.0357 0.0323

Median 4 4 4 4 4 4 4

Mode 5 4 4 4 4 5 5
SD 1.0638 0.9630 1.0615 1.0545 1.0843 1.0035 0.9077
Spot Mean 3.9519 3.9405 3.4810 3.7570 3.7392 3.8823 4.0443
Standard error 0.0369 0.0352 0.0395 0.0385 0.0385 0.0365 0.0335

Median 4 4 3 4 4 4 4

Mode 5 5 3 5 4 4 5
SD 1.0368 0.9906 1.1106 1.0818 1.0835 1.0257 0.9402
Okibo Mean 3.9253 3.9747 3.5722 3.6797 3.7013 3.8886 4.0848
Standard error 0.0373 0.0353 0.0383 0.0388 0.0380 0.0352 0.0326

Median 4 4 4 4 4 4 4

Mode 5 5 4 4 4 4 5
SD 1.0492 0.9914 1.0771 1.0903 1.0677 0.9880 0.9155
ERO Mean 3.9190 3.9367 3.5873 3.7253 3.6519 3.9165 4.0835
Standard error 0.0390 0.0353 0.0384 0.0372 0.0386 0.0350 0.0319

Median 4 4 4 4 4 4 4

Mode 5 5 3 4 3 4 5
SD 1.0955 0.9935 1.0795 1.0461 1.0841 0.9843 0.8953

Note: SD = standard deviation.

hypotheses. Following the utilization of the modification indices
and further exploration of the literature, a few additional hypoth-
eses were incorporated into the model:

HI4: Maintaining a high level of privacy in cobot operations
directly influences their safety.

HI15: The level of security measures implemented in cobots has
a direct impact on their safety.

H16: The reliability of cobots has a direct impact on the level
of automation that can be achieved. More reliable cobots are better
equipped to perform tasks consistently and accurately, enabling
higher levels of automation with increased confidence in their
capabilities.

HI7: The level of experience with cobots directly influences
the degree of automation that individuals and organizations are
willing to implement. Greater experience and familiarity with
cobots lead to increased trust in their abilities, which, in turn,
facilitates higher levels of automation.

H7f: There is a significant correlation between the initiator of
cobot usage and the level of transparency provided in the cobots’
operations. A transparent approach to cobot functionalities, guided
by the initiator’s initiatives, is expected to contribute to better
understanding and acceptance of cobots by users and organizations.
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HS8c: There is a significant correlation between the communi-
cation style of cobots and the effectiveness of training sessions. It
suggests that effective and clear communication between cobots
and users during training enhances the learning experience and im-
proves the overall effectiveness of the training process.

HS8d: There is a significant correlation between the communi-
cation style of cobots and the party responsible for initiating their
usage.

HI1b: There is a significant correlation between the accuracy
of cobots and the effectiveness of training provided to users. It sug-
gests that cobots with higher accuracy are more likely to facilitate
successful and impactful training sessions for users.

Confirmatory Model

The revised model (Fig. 5) was tested using the remaining 300
participants from the overall sample. This validation process
aimed to verify the relationships and assumptions proposed in
the model using an independent set of data. Fig. 6 illustrates
the results of the proposed model test. Again, the recommenda-
tions for fit indices are described subsequently, with observed
values in parentheses. The minimum discrepancy divided by its
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degrees of freedom (CMIN/df) should typically be below 3 (2.20).
GFI is often considered acceptable when around 0.90 or higher
(0.84), and the AGFI is expected to fall within the range of
0.85 or higher (0.82). The RMSEA is generally considered accept-
able when below 0.08 (0.05). Incremental fit indices, such as CFI,
IFI, TLI, and RFI, are considered indicative of a good fit when
above 0.90 (CFI 0.90, IFI 0.93, TLI 0.91, and RFI 0.83). Parsi-
monious fit indices, such as NFI, PNFI, and PCFI, should ideally
be around 0.50 or higher (NFI 0.84, PNFI 0.82, and PCFI 0.84)
(Hair et al. 2009). Although the GFI and AGFI are still below the
acceptable range, the incremental fit indices are largely above the
recommended value, indicating the data fit the model reason-
ably well.
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Perceptions about Seven Construction Cobots in
Action

Table 2 presents the descriptive statistics on the survey participants’
perceptions about these cobots. Across the seven cobots, different
attributes seemed to hold varying levels of importance. HRP-5P
and SAM100 prioritize safety and accuracy, with reliability also
valued highly. Transparency received lower ratings for both. TyBot
values accuracy the most, followed by reliability, but safety re-
ceived a slightly lower rating. For DXR-305, robustness and trans-
parency are crucial, whereas safety and security received slightly
lower ratings. Spot values safety and accuracy but rated transpar-
ency and privacy lower. Robustness and accuracy are highly
valued by Okibo, while safety and security received relatively
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lower ratings. ERO places significant importance on robustness and
accuracy, but safety, reliability, and privacy received lower ratings.
The cobot type and application likely influence the perceived im-
portance of different attributes. For example, safety and accuracy
are consistently considered major factors in building trust, whereas
the effects of attributes such as robustness, privacy, and security are
not as significant.

Conclusion

The study’s findings revealed several significant factors that influ-
ence trusting cobots by construction workers. Specifically, this
study highlighted the role of perceived safety and reliability of
Al-powered cobots toward establishing trust. Training and robust-
ness were identified as key direct contributors to safety perceptions,
indicating that providing workers with adequate training and ensur-
ing that cobots can effectively perceive their environment will fo-
ster a sense of safety and confidence in their operation. The study
also emphasized the importance of proper communication between
workers and cobots, which positively affected accuracy, robustness,
security, privacy, and the level of automation in the conducted
analysis.

Additionally, the research highlighted the role of initiators in
influencing trust, with their knowledge and experience impacting
users’ understanding and perceptions of cobots. Recommendations
from peers, companies, and individuals who have worked with co-
bots were also proven influential in shaping their trust. Participants
showed some hesitancy in fully trusting fully autonomous cobots,
preferring them to operate under human supervision. The results
underscored the importance of perceived reliability in gaining trust
in cobots, with factors like accuracy and security playing crucial
roles. The cost of purchasing and maintaining cobots, along with
the availability of responsive customer support and training pack-
ages, were also significant factors impacting willingness to adopt
the technology.

Transparency was also found to be significant in building trust,
but its importance varied across different cobot applications.
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Participants placed a high importance on trust in cobots, emphasiz-
ing the need for transparent decision-making processes and the
value of hands-on experience with the technology. Privacy and
security were ranked as essential factors, emphasizing the need
for robust measures to safeguard data and ensure a reliable and
trustworthy cobot system. The study revealed that direct experience
and hands-on involvement with cobots positively influenced trust,
leading to increased knowledge and confidence in their capabilities.
The provision of comprehensive training, particularly through sim-
ulations and real-world experiences, was seen as essential for
encouraging cobot acceptance and adoption.

In conclusion, this research provides valuable insights into the
multifaceted factors that contribute to trust in Al-powered cobots
within the construction industry. By understanding and addressing
these factors, stakeholders can create a conducive environment for
successful cobot integration, fostering user confidence and maxi-
mizing the potential benefits of this advanced technology.

Discussion

Perceived Safety and Reliability

Safety and reliability are foundational for establishing trust in co-
bots. Users must have confidence in the safety measures and the
reliability of these machines. Effective training programs and ro-
bustness in cobot performance are essential for ensuring safe
and dependable operation. For practitioners, this means prioritizing
comprehensive safety training for their workforce and investing in
cobots with advanced sensory capabilities to enhance safety per-
ceptions. Policymakers should develop regulations that emphasize
safety standards and support the creation of standardized training
programs. Researchers can explore the interplay between safety
culture within construction companies and trust development, as
well as the influence of safety measures on projects of varying
complexity.

Effective Communication
Effective communication between workers and cobots is integral
in building trust. Communication positively impacts accuracy,
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Fig. 6. Confirmatory model results.

robustness, security, privacy, and the level of automation, all of
which contribute to trust. Practitioners should encourage open
channels of communication between human workers and cobots
to foster mutual understanding. Policymakers can promote guide-
lines for transparent communication practices in cobot deployment.
Researchers have an opportunity to study the long-term effects of
communication strategies on trust development, exploring how ef-
fective communication can be sustained and improved over time.

Role of Initiators

Initiators, individuals with prior experience and peer recommenda-
tions, play a significant role in shaping trust perceptions among
users. They act as bridges between the technology and the
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workforce, influencing trust development. For practitioners, active
engagement with initiators is key to facilitating knowledge sharing
and addressing concerns. Policymakers can support mentorship
programs and peer support networks to enhance the role of initia-
tors in the workplace. Researchers can delve into the dynamics of
initiator influence in more depth, examining how initiators shape
perceptions, their credibility, and how their role evolves over time.

Transparency

Transparency in decision-making processes and hands-on experi-
ence with cobots is vital in trust-building. For practitioners, foster-
ing a culture of transparency in cobot deployment is crucial.
Policymakers should tailor transparency regulations to different
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cobot applications to ensure the right level of transparency is main-
tained. Researchers can investigate how transparency impacts trust
in diverse cobot contexts, helping to refine transparency practices.

Privacy and Security

Privacy and security measures are essential for trust-building,
emphasizing the need for robust data protection. Practitioners must
prioritize data security and implement robust privacy measures.
Policymakers should develop and enforce data protection regula-
tions to safeguard sensitive information in cobot use. Researchers
can examine the effectiveness of privacy and security measures
in enhancing trust, studying how these measures impact user
confidence.

Direct Experience and Training

Hands-on involvement with cobots and comprehensive training
positively influences trust. Practitioners should invest in continuous
training initiatives, providing opportunities for direct cobot expe-
rience. Policy makers can promote standardized and accessible
training programs to ensure that workers at all levels of expertise
can benefit. Researchers should explore the long-term effects of
training on trust development, focusing on how training impacts
worker competence and user confidence over time.

Cost and Support

The cost of cobots, along with the availability of customer support
and training, impact willingness to adopt the technology. Practi-
tioners should consider cost-effective cobot solutions and ensure
robust customer support to address user needs. Policymakers
should support initiatives that make cobots more affordable and
enhance the support infrastructure. Researchers can investigate
the cost-effectiveness of cobot adoption and its impact on trust,
helping to identify cost-effective solutions for the construction
industry.

Limitations

Although this study represents an important endeavor to explore the
factors influencing the adoption of cobots in construction from a
trust-building perspective, it does have certain limitations. First,
although attempts have been made to involve a diverse range of
construction practitioners, such as project laborers, foremen, engi-
neers, managers, and leadership, it is important to examine the dis-
tinct viewpoints of each group individually. The introduction of
cobots into construction projects can have diverse implications
for these stakeholders, and conducting separate analyses of their
perspectives can help identify specific challenges or concerns.
Therefore, it is vital to investigate the unique outlooks of these vari-
ous parties in order to gain a comprehensive understanding of the
impact of cobots in the construction industry. Understanding the
similarities among and differences between these groups will help
establish a better understanding of the generalizability of these
results.

Second, there was no empirical study conducted by researchers
to assess trust in cobots in either controlled experimental environ-
ments or real-world field settings where a cobot is deployed.
Therefore, conducting real-world investigations to examine the
trust dimensions identified in this research, as well as those vali-
dated through interviews and surveys, would provide additional
confirmation regarding the reliability and validity of the research
findings. Most specifically, experimental studies would help estab-
lish the true causal directions among our variables and would
reduce concerns about endogeneity bias (Antonakis et al. 2014).
Our models imply that one factor causes another, but the study
design does not support strong conclusions with regards to the
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directionality of these relationships. Most often, the relationships
are found to be more complex, including reciprocal causality.
Ideally, not only would future research include experiments, but
they would also include the examination of these factors over time.
The workplace is dynamic, and the development (or decay) of trust
is especially so. A study of this type only provides a snapshot of
what is going on at a single moment in time.

Third, the level of trust can be influenced by the type and size of
construction projects. The type of project determines the complex-
ity and range of tasks that cobots are expected to perform. In
smaller construction projects, cobots may handle simpler respon-
sibilities like material transportation or basic assembly. Conversely,
larger projects may require cobots to engage in more intricate ac-
tivities such as welding, cutting, and drilling. The complexity of
these tasks can impact workers’ trust in cobots because they may
be hesitant to rely on them for more demanding duties. In smaller
projects, the presence of a cobot may disrupt the workflow and
draw more attention, leading to increased wariness and reduced
trust from workers. However, in larger projects with multiple work-
ers and machinery, cobots may integrate more smoothly into the
workflow and be more widely accepted.

Additionally, the project size can influence the extent of training
and supervision provided to workers collaborating with cobots.
Smaller projects may prioritize less training and supervision, which
could increase the risk of accidents and errors, thus diminishing
workers’ confidence in the safety of cobots. Conversely, larger
projects may emphasize comprehensive training and supervision
to minimize risks, thereby enhancing overall trust in cobots.

Finally, although our model includes a large number of varia-
bles, it is possible that some important variables have been omitted.
We based this model on a literature review and input from subject
matter experts, but there may be factors that we overlooked. Omit-
ted variables can lead to endogeneity bias (Antonakis et al. 2014),
and conducting experimental studies, as well as staying alert to the
potential for omitted variables, can help reduce/eliminate this bias,
leading to better estimates of true relationships among variables.

Future Work

Besides addressing the limitations outlined previously, the future
directions of this work encompasses specific research efforts that
currently pursued by the research team. Measurement of specific
trust factors can be accomplished using physiological data col-
lected from workers who are involved in construction robotics ac-
tivities. Furthermore, future research can explore the factors that
affect overtrust and undertrust to establish procedural requirements
that result in proper trust calibration. Pilot or case study projects
that incorporate real or simulated cobots and actively working with
Al-powered cobots can better help in understanding the system
(i.e., cobot), user, and environmental characteristic that influence
trust. This approach allows for a more comprehensive assessment
of the worker—robot collaboration requirements, considering fac-
tors such as potential malfunctions or the need for maintenance that
may arise over time. Furthermore, long-term utilization of cobots
enables a more precise and realistic evaluation of their capabilities.
Hence, the authors suggest longitudinal experiments that allow for
long-term worker—robot interaction tests.

Finally, the study did not differentiate between diverse profes-
sional roles and experience levels within the ACE industry in
collecting opinions and perceptions. Although the research inten-
tionally targeted a diverse population of the industry in a uniform
fashion to capture the heterogeneity of the data and diversity of the
workforce, future research could evaluate and model the percep-
tions and acceptance of cobots separately among various ACE
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professional groups, including frontline workers, managers, and
individuals new to the field. Such an approach would offer a more
nuanced understanding of the unique requirements and challenges
faced by each group, thereby enabling more tailored and effective
implementation strategies for Al-driven collaborative robots in
real-world ACE projects. This avenue of investigation represents
an important next step in advancing the understanding of technol-
ogy adoption in the ACE sector.
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