
Towards Model-Size Agnostic, Compute-Free,
Memorization-based Inference of Deep Learning

Davide Giacomini1, Maeesha Binte Hashem1, Jeremiah Suarez2, and Amit Ranjan Trivedi1

1AEON Lab, University of Illinois at Chicago (UIC), Chicago, IL, USA, 2Illinois Mathematics and Science

Academy, IL, USA.

Abstract—The rapid advancement of deep neural networks has
significantly improved various tasks, such as image and speech
recognition. However, as the complexity of these models increases,
so does the computational cost and the number of parameters,
making it difficult to deploy them on resource-constrained de-
vices. This paper proposes a novel memorization-based inference
(MBI) that is compute-free and only requires lookups. Specifically,
our work capitalizes on the inference mechanism of the recurrent
attention model (RAM), where only a small window of input
domain (glimpse) is processed in a one-time step, and the outputs
from multiple glimpses are combined through a hidden vector
to determine the overall classification output of the problem.
By leveraging the low-dimensionality of glimpse, our inference
procedure stores key-value pairs comprising of glimpse location,
patch vector, etc. in a table. The computations are obviated
during inference by utilizing the table to read out key-value
pairs and performing compute-free inference by memorization.
By exploiting Bayesian optimization and clustering, the necessary
lookups are reduced, and accuracy is improved. We also present
in-memory computing circuits to quickly look up the matching
key vector to an input query. Compared to competitive compute-
in-memory (CIM) approaches, MBI improves energy efficiency
by ∼2.7× than multilayer perceptions (MLP)-CIM and by ∼83×
than ResNet20-CIM for MNIST character recognition.

Index Terms—Deep neural network; edge computing

I. INTRODUCTION

Ultra-low-power edge inference of deep neural networks

(DNNs) has revolutionized many application spaces, enabling

edge devices to perform complex data-driven inference and

real-time decision-making with minimal energy consumption.

The edge inference of DNNs has opened up new avenues

for applications such as wearables, smart homes, Internet-of-

Things (IoT), cyber-physical systems, and many more [1].

By performing most computations at the data source, edge

inference also helps mitigate privacy and security concerns

by keeping sensitive information on local devices rather than

transmitting it to remote servers. Additionally, edge computing

helps to reduce network congestion and lowers carbon foot-

print by minimizing the need for data to be transmitted over

long distances.

DNNs are increasingly utilized in applications like au-

tonomous insect-scale drones [2], robotic surgery [3], and cog-

nitive assistants. However, improving their predictive capacity

in complex signal spaces requires increasing the number of

trainable parameters and network depth. For instance, GPT

models have achieved remarkable performance but require

enormous parameters, ranging from 175 billion in GPT-3 to

100 trillion in GPT-4. Edge-friendly models like MobileNetV2

In
p
u
t

L
ay

er

O
u
tp

u
t

L
ay

er

Traditional Inference: Layer-by-layer feature computations

��Computations/storage grows with depth and model size

Memorization-based Inference: Lookup through a

dictionary ��Model Size Agnostic. Constant storage/time

Fig. 1: Memorization-based Inference (MBI) vs. Traditional
Inference: We propose a novel memorization-based inference (MBI)
that is compute-free and only requires lookups for inference. While,
under traditional inference, storage/computing costs increase propor-
tionally to the number of layers and depth of DNN, MBI is agnostic
to the model size and complexity.

[4], ResNet50 [5], and EfficientNet-B0 [6] offer some effi-

ciency, but still demand significant computational resources.

Limited resources on edge devices pose challenges in handling

the growing complexity of deep learning models.

Fundamentally, there could be two ways to perform in-

ferential computations [Fig. 1]. The first approach involves

processing all necessary arithmetics through modules, such as

multipliers, adders, shifters, and other components, to obtain

the resultant output. The second approach involves memoriza-
tion where the resultant output is precomputed and memorized

at all possible input combinations and thereafter retrieved

during inference, obviating the need for any computations.

Notably, the second approach becomes increasingly attractive

as the workload of inferential computations increases. With

the phenomenal growth of DNN model sizes and the number

of model parameters reaching billions and trillions, the second

approach might also be more memory-efficient by only storing

a lookup table (LUT) of input-output (key-value) combinations

than the DNN model parameters themselves.

In this work, we pay closer attention to the above model-size

agnostic memorization-based inference, i.e., MBI of DNNs to

explore pathways for disruptive enhancement of edge infer-

ence. Specifically, our work makes the following contributions:

• We introduce a novel memorization-based inference (MBI),

which involves distilling a pre-trained model into a LUT

to perform inference without requiring intensive arithmetics

such as multiplications or additions. Instead, the inference

180

2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems
(VLSID)

DOI 10.1109/VLSID60093.2024.00036

20
24

 3
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 V
LS

I D
es

ig
n

an
d

20
24

 2
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
m

be
dd

ed
 S

ys
te

m
s (

V
LS

ID
) |

 9
79

-8
-3

50
3-

84
40

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
V

LS
ID

60
09

3.
20

24
.0

00
36

979-8-3503-8440-6/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on August 29,2024 at 00:06:33 UTC from IEEE Xplore. Restrictions apply.

Extracted patches
from glimpse

at

It

Input Image Updated
Hidden

State (ht)

Previous
Hidden
State (ht-1)

Location sampling
network

Action prediction RAM Architecture of Predictive Network

Training
Set

Lookup Table Distillation

ValueNew Location (lt+1)

New Hidden (ht+1)

Action (at)

Key

Location (lt)

Hidden State (ht)

Patch Vector (Pt)

Sampling Random
Episodes of Glimpse →

Patch → Hidden State →

Action, New Hidden State,

and New Location

Extract
Glimpse Patch

Memorization-based
Inference

Prediction

Key Value

Fig. 2: Overview of memorization-based inference (MBI): To minimize the size of LUTs for memorization, we capitalize on recurrent
attention model (RAM) architecture of neural network inference where only a low-dimensional glimpse of input is processed in one time-step.
Our approach distills LUT from RAM architecture. During inference, only a sequence of key-value readouts from LUTs is necessary.

process is compute-free, relying only on a sequence of key-

value lookups on the distilled LUT for a given input query.

• To improve the scalability of MBI, we demonstrate a

novel framework combining recurrent attention mechanisms,

Bayesian optimization-based optimal distance metric search,

hierarchical clustering, and in-memory determination of the

closest entry to an input. Recurrent attention mechanisms are

leveraged to minimize the size of LUTs. Bayesian optimiza-

tion of distance metrics improves prediction accuracy with

incomplete tables. Hierarchical clustering minimizes the table

size for each lookup. Finally, in-memory determination of the

closest key to the input query improves the speed.

• We characterize MBI for character recognition on the MNIST

dataset under extremely low precision. The hidden state

vector is quantized to one bit and the input patch vector to two

bits. Specifically, we demonstrated a mixed-memorization-
based inference where most low-complexity images are

processed through memorization and fewer high-complexity

images require full processing of traditional machine learn-

ing. Compared to competitive compute-in-memory (CIM)

approaches, MBI improves energy efficiency by ∼2.7×
than multilayer perceptions (MLP)-CIM and by ∼83× than

ResNet20-CIM for MNIST character recognition.

Sec. II introduces the opportunities and challenges for MBI.

Sec. III details various components of the inference method-

ology and presents simulation results. Sec. IV concludes.

II. MODEL-SIZE AGNOSTIC, COMPUTE-FREE,

MEMORIZATION-BASED INFERENCE (MBI)

A. Opportunities and Challenges of Lookup-Only Inference
Our approach is focused on developing an inference

methodology that can make predictive workloads independent

of the number of layers and model parameters. This would

allow for complex predictions to be made within a constant
time and memory budget. In Fig. 2, our MBI approach ac-

complishes this by distilling the model’s predictions on query

inputs into a key-value LUT, which requires only searching a

matching key to query to make predictions, thereby avoiding

intermediate feature extractions.

Despite the potential for constant time/storage predictions,

independent of the predictive model’s architecture and param-

eters, naive memorization of even simpler prediction tasks

results in extremely large LUT sizes that cannot be practically

synthesized, stored, or inferred. For instance, consider char-

acter recognition on the MNIST dataset, where each image is

28×28 pixels [7]. Even if we consider a 2-bit representation of

each pixel value in character images, a binarized vector repre-

senting the input image would be 2×28×28 = 1568 bits long,

requiring a complete table with 1.04e+333 number of rows

for all possible inputs! As the bit precision of input images

(such as 8 bits per pixel) or the size of input images (such

as 224×224 for cropped ImageNet images) increases, the size

of memorization tables becomes even more exorbitant. Thus,

although the potential benefits of constant time and memory

predictions are evident under MBI, naive memorization is

infeasible even on simpler predictive tasks.

B. Proposed Methodology for Memorization-based Inference
Our methodology employs several techniques to enhance

the feasibility of constant time/storage-bound MBI. Fig. 2

presents the overview of the proposed methodology. Details

on various components will be presented in the subsequent

section. Primarily, we leverage the recurrent attention model

(RAM) architecture of neural networks, introduced in [8],

where a recurrent neural network is integrated with attention

mechanisms. The attention mechanism of RAM allows the

network to assign different weights to different parts of the

input so that it can selectively attend only to the most salient

information of the input. The RAM is designed to learn to

focus its attention on only a low-dimensional glimpse of

the input image. In Fig. 2, for MBI, the RAM architecture

minimizes the operating input dimension in each time-step

(such as to only 3×3), thus enabling a significant reduction in

the necessary LUT to make the inference scheme feasible.

Secondly, we rely on incomplete tables for MBI where only

the closest match, instead of an exact match, to an input

query vector is required to determine the readout. The LUT

size for MBI need not span the entire input space; instead, it

can just be a subset of the input space. For example, under

the LUT size budget of N rows, the input space can be

181

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on August 29,2024 at 00:06:33 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 3: Hyperparameter and quantization space explorations of RAM architecture for MBI: For character recognition on MNIST,
(a) accuracy at the varying number of glimpses, patch size, the scale of glimpse, and the number of patches utilized in each time-step. (b)
Accuracy at varying hidden and patch vector quantization levels. (c) Accuracy at the varying length of the hidden vector and the increasing
number of additional layers for hidden state determination.

sampled on N query points, and an incomplete table of N
rows can be used for MBI. Enabling MBI from incomplete

tables further improves the practicality of the procedure where

storage resources can be explicitly accounted for. Further-

more, we explore Bayesian optimization to determine the

optimal distance metrics to improve inference accuracy even

with incomplete tables. Bayesian optimization can optimize

expensive-to-evaluate functions, such as optimal distance met-

ric in MBI, by building a probabilistic objective function

model and iteratively selecting new points to evaluate based

on the expected improvement in the model’s performance. Our

results in the next section indicate that Bayesian optimization-

based optimal distance metrics can significantly improve the

prediction accuracy by 3-4%.

Finally, to enhance MBI’s speed and energy efficiency, we

utilize hierarchical clustering and analog-domain in-memory

determination with flexible distance metrics. Hierarchical K-

means clustering organizes table entries into a search tree,

enabling quick search of a subset of the table at the leaf

node for the closest entry to a query. Analog-domain in-

memory computing circuits compute distances in parallel,

using a winner-takes-all (WTA) approach for rapid retrieval.

Performing computations within the memory array eliminates

data movements, reducing energy and latency overheads. We

analyze the impact of non-idealities, like transistor process

variation, on inference accuracy in the analog circuit compo-

nents at the leaf of the clustering tree.

III. COMPONENTS OF MEMORIZATION-BASED INFERENCE

METHODOLOGY AND SIMULATION RESULTS

A. Recurrent Attention Mechanisms for Downscaling LUTs
Fig. 2 provides an overview of our RAM architecture for

memory-based inference. The attention mechanism in the fig-

ure utilizes a glimpse network to extract a smaller window of

the input image for further processing. Recurrence is achieved

through a core network that processes the hidden state vector

from the previous time step and outputs a new hidden state

vector for the current time step.

The location network computes a new location vector at

each time step, enabling focus on specific image regions. High-

resolution patches are extracted from the selected locations,

progressively increasing in size at lower resolutions to widen

the network’s image coverage. These patches are stacked to

form a patch vector, processed further through a linear layer.

The glimpse network combines the glimpse vector with the

previous time step’s hidden state and feeds it into the core

network. The core network output is propagated to the next

time step and to the location and classification networks.

The size of LUTs and the number of lookups in our MBI are

influenced by RAM architecture parameters: glimpses, patch

size, glimpse scale, and the number of patches. More glimpses

lead to increased hidden state updates and, consequently, more

MBI lookups. Larger patch sizes and more patches require

longer key vectors, leading to larger LUTs and more rows for

comprehensive key coverage. Increasing glimpse scale allows

global image feature awareness but sacrifices granularity by

compressing to a low-resolution window.

To develop the MBI table, we fine-tuned hyperparameters

and quantization levels to enhance memory efficiency. Fig.

3(a) demonstrates the impact of different hyperparameters on

accuracy. Increasing patch size initially improves accuracy

but saturates beyond a certain point. Glimpse scale increase

reduces accuracy as it tries to capture the entire image in a

few pixels. Similarly, accuracy saturation occurs with more

glimpses and patches. Fig. 3(c) shows that adding one extra

layer to the original network achieves the highest accuracy,

while further layers decrease accuracy. Additionally, larger

hidden state sizes improve accuracy by capturing more in-

formation.

In Fig. 3(b), the accuracy remains relatively constant across

the range of increasing patch size quantization bit sizes, except

for a single-bit quantization. This deviation in accuracy can

be attributed to a significant loss of information at the input

level of the model due to 1-bit quantization. In contrast, the

accuracy remains stable concerning the increase in bit size for

hidden state vector quantization.

B. Bayesian Optimization for Optimal Distance Metric
To optimize the workload of MBI, we employ incomplete

tables, where only a limited number of input combinations

are stored based on available storage resources. Through

182

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on August 29,2024 at 00:06:33 UTC from IEEE Xplore. Restrictions apply.

(a)

Query

C1 C2 Cn

C21 C22 C2nC11 C12 C1n Cn1 Cn2 Cnn

Level 1 Clustering

Level 2 Clustering

LUT111 LUT1.. LUT1nn LUT211 LUT2.. LUT2nn LUT111 LUT1.. LUTnnn

(b) (c)

Fig. 4: Improving memory-efficiency of MBI: (a) Under MBI with incomplete tables, the prediction accuracy for MNIST at varying LUT
size under Bayesian optimization (BO)-based weighted distance vs. unweighted metrics. BO improves prediction accuracy by 3–4% across
LUT size. (b) Hierarchical clustering to minimize necessary comparisons for finding the matching key to a query. (c). Histogram of key
matching error between brute force (BF) and clustering (CL)-based matching key search.

Fig. 5: Mixed-MBI at sweeping mixing threshold.

randomly sampling the input space and capturing input-output

episodes from the main model, we distill this information onto

the MBI table. Consequently, instead of exact matches, we

retrieve information from incomplete tables by searching for

the closest match to an input query.

To search for the optimal distance metric, we employed

Bayesian optimization. A parameterized distance metric func-

tion between query Q and key K, D(Q,K), based on weighted

Manhattan distance was used as following:

D(Q,K) =
a · M(qp, kp) + b · M(qh, kh) + c · M(ql, kl)

a+ b+ c
(1)

Here, a, b, and c are learnable weighting parameters for patch

vector (p), hidden state (h), and location vector (l) component

of the key. M() is the Manhattan distance function. qp, qh,

and ql are patch, hidden, and location vector components of

the query Q. With similar subscript notations, the components

of key K are defined. In Fig. 6, Bayesian optimization-based

optimally-weighted Manhattan distance metric improves the

prediction accuracy by 3–4% across LUT sizes compared to

unweighted distance.

C. Synthesizing Lookup Tree by Hierarchical Clustering
Fig. 4(b) depicts a hierarchical K-means clustering method

used to organize key values in a tree structure. The objective

is to minimize search load when finding the closest match to

an input query in the LUT. Keys in the table are divided into

clusters, and their centroids are determined. Sub-clusters are

then formed through multi-level clustering, continuing until

a threshold for each node’s total number of elements is ex-

ceeded. The query is compared to cluster centroids during the

query-matching process, directing it to the appropriate branch.

This comparison process repeats with sub-cluster centroids

until the query reaches a leaf node, which is exhaustively

compared to a few key vectors to find the closest match.

Fig. 4(c) shows the histogram of the distance normalized to

one between the matching key vector to a random query

using the hierarchical clustering-based approach compared

to an exhaustive search throughout the table. The former

has a significantly smaller workload. As can be seen, the

hierarchical clustering-based approach finds a matching key

vector comparable to the exhaustive search with a very high

probability – the maximum distance between the matching

keys in both cases is less than 10%. The MBI approach can

also be integrated with traditional DNNs to improve accuracy.

In Fig. 5, MBI is only applied when a matching key to

the input falls within a distance threshold for each glimpse

iteration. Otherwise, traditional DNN is employed on such

harder-to-generalize inputs. In the figure, as the matching

distance threshold increases, more data can be processed using

MBI, however, at the cost of lower accuracy.

D. In-Memory Search of Closest Key to Query
We present an in-memory processing approach to efficiently

search the closest key vector to an input query in Fig. 6(a). In-

tegrating the search and storage in the same memory structure

obviates the table-data movements to enhance efficiency.

The operational sequence of the circuits is as follows:

Multibit key vectors are stored row-wise, and query vectors

are applied on the top ports in the figure. In step-1, the pre-

charge (PCH) mechanism is activated to charge all bit lines

(BL/BLB) according to the column’s bit-significance factor.

For example, considering the p-bit precision of the query and

key vector, a column operating on the bit significance factor

j ∈ [0, p − 1] is precharged with VP,max/2
p−j−1. VP,max

is the maximum precharge level. In Fig. 3(b), only a 2-bit

precision of the patch vector provided sufficient accuracy;

hence, we encode the patch component of a key vector with

2-bit precision. From Fig. 3(b), the hidden state component of

the key vector is quantized to 1-bit for the discussed results.

183

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on August 29,2024 at 00:06:33 UTC from IEEE Xplore. Restrictions apply.

R
ow

 S
el

ec
t

RL0

RL1

RL2

RL31

SLN

PCH

CSUM

B
L

0

B
L

B
0

B
L

1

B
L

B
1

B
L

63

B
L

B
63

CLB0 CL0

ADC

q0

CLB1 CL1 CLB63 CL63

Query
Register

CS0

SLP

k0 k1 k63

(1) Precharge bitlines (BL/BLB) according to column bit significance

(2) Discharge BL: k = 1, q=0
Discharge BLB: k = 0, q=1

(3) Sum column-wise difference
on sumlines (SLN & SLP)

6-
T

q1 q2 q63

Row-wise key vector

CS1 CS63

qqb

RL

B
L

B

B
L

kkb
DAC array to pre-charge based on

column significance
10-T SRAM cell with

XOR function

Min-Index

Min-Val.

Comparator

(4) Compare and
update min-index

(a)

× BO
Weight

(c)

(b)
> 28 mV level-to-
level difference

6T
-S

R
A

M

+
sum

partitions O
ther L

U
T

s

Fig. 6: In-memory search of matching key vector to the query: (a) Compute-in-memory array to determine Manhattan distance of
applied query vector at the top and row-wise stored key vectors in the memory array. The array utilizes ten transistor cells comprising 6-T
SRAM and a distance computing port shown at the bottom right. Computed distance is digitized, multiplied to Bayesian learned weights,
and then partitions of key/query vectors processed across multiple LUTs are combined. Key vector rows are sequentially scanned to find
the minimum distance key vector. (b) The potential difference at the sum line (SL) between nearest distance levels under process-induced
variability (minimum-sized NMOS and PMOS are simulated with σV TH = 60 mV). (c) The power distribution among ADC, row activation
peripherals, column pre-charging, and logic operations.

Therefore, in the implemented scheme to compute the distance

of a 2-bit quantized patch component of query and key vector,

the columns storing higher significance bits are precharged to

VP,max and the columns storing the least significant bits are

precharged to VP,max/2.

In step-2, after selecting the required row of key-bit vectors,

each memory cell computes the bitwise difference between the

corresponding key bit (k) and the applied query bit (q): BL

discharges only when k=1 and q=0; BLB discharges only when

k=0 and q=1. Such column discharges are utilized for multi-

bit Manhattan distance computations. For example, consider

the Manhattan distance computation between n-element long

key K and query Q. Under p-bit precision, K/Q is processed

on p × n columns. The Manhattan distance between the ith

element of K and Q is given by |Ki − Qi| =
∑p−1

j=0 |kij −
qij | × 2j . Here, kij & qij are the corresponding binary bits

of K and Q. Therefore, if kij=1 & qij=0, the corresponding

BL discharges and if kij=0 & qij=1, the corresponding BLB

discharges. If kij=qij , BL & BLB maintain their precharge

levels proportional to the bit significance factor j.

In step-3, to calculate the sum of all the differences, the

charge-sum (CSUM) is activated. This results in averaging

BL charges on the SLP and BLB charges on SLN through

transmission gates at the top. Therefore,

VSLP ≈ 1

n× p

n−1∑

i=0

p−1∑

j=0

(
1− �kij=1,qij=0

)× VP,j (2a)

VSLN ≈ 1

n× p

n−1∑

i=0

p−1∑

j=0

(
1− �kij=0,qij=1

)× VP,j (2b)

Here, � is the indicator function that is one only when the

identity in the subscript is true and zero otherwise. ×VP,j is the

column precharge voltage for jth significance bits. Therefore,

the average voltage of SLP and SLN, (VSLP + VSLN)/2,

follows the Manhattan distance of K and Q. In step-4, the

average voltage is digitized and multiplied with Bayesian

optimization learned weights. If a key vector cannot fit in one

memory array, it can be partitioned and processed in parallel

across several memory arrays. The weighted distance from

all arrays is combined, and the minimum distance index is

searched by serially scanning all stored key vectors.
Fig. 6(b) shows the SLP/SLN voltage distribution under the

process variability while considering minimum-sized NMOS

and PMOS with σV TH = 60 mV) on 32×32 bitcell array. Since

the minimum sum line voltage difference (ΔSL) is at least 28

mV, the analog output can be accurately digitized with a 5-bit

ADC. Fig. 6(c) shows the distribution of energy among various

operations. ADC’s energy is estimated from [9]. Peripherals

and precharge energy is simulated using HSPICE based on 16

nm-LSTP predictive technology models in [10]. The energy

dissipation of digital logic operations in step-4 is estimated

based on [11]. One key/query-vector matching operation on

32×32 consumes ∼4.7 pJ energy in our 16 nm design.
E. Compute-in-Memory vs. Memorization-based Inference

Compute-in-memory (CIM) has become a predominant ap-

proach to improve the energy efficiency of deep learning

by leveraging the same memory structure for storage and

184

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on August 29,2024 at 00:06:33 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Table I: MBI vs. CIM on MNIST

Metric MBI CIM [12] CIM [13] CIM [14]
Technology 16nm 28nm 55nm 65nm

Model RAM MLP ResNet20 LeNet

#Weights – 930,816 272,650 61,706

Weight precision – 8-bit 5-bit 1-bit

#MACs – 930,816 114,947,584 411,240

TOPS/W – 18.45 18.37 40.3

Storage (MB) 6.21 0.88 0.162 0.007

Accuracy (%) 93.04∗ 99.15 99.52 98.0

Energy/Inference 13.16 nJ∗∗ 100.9 nJ 12.51 μJ 20.4 nJ

(projected to 16nm)∗∗∗ – (32.94 nJ) 1.05 μJ 1.24 nJ

Comments:
∗The accuracy is extracted under mixed-MBI at a threshold value 5 where
69.65% data can be processed with MBI.
∗∗Energy/Inference in MBI = # of glimpses (= 5) × # of avg. levels in
LUT-tree (= 3.5) × # of key vectors per LUT (= 32) × # of splits of key
vectors (= 5) × avg. energy per comparison (= 4.7 pJ)
∗∗∗ The energy of other works, ET , in technology node T is optimistically
projected to 16 nm as ET × (16nm/T)2.

computations [15]–[17]. Table I compares both paradigms,

CIM and MBI, for the MNIST characterization test case,

which differ in many key aspects: Firstly, unlike CIM, MBI

only constrains input bit precision; weights in MBI need not

quantize. The underlying RAM architecture can be simulated

at full precision to distill LUTs. Secondly, MBI is agnostic

to necessary multiply-accumulate (MAC) operations, a key

metric of various neural network architectures. Specifically,

complex models such as ResNet20 in the table can generalize

better to more complex tasks but demand many MACs. MBI

is more suited for the distillation of such complex models.In

our approach, we have applied threshold value to determine

the amount of data to be processed by the MBI. When the

threshold value is set to be highly stringent, only a small

number of images undergo processing by MBI, resulting in

nearly perfect accuracy. However, if the threshold value is

set to be less stringent, a larger proportion of images are

processed by MBI, but the accuracy may slightly decrease.

Thirdly, MBI has a constant storage overhead that doesn’t

grow proportionally to predictive model complexity. In Table

I, for MNIST, the storage overheads of MBI are significantly

worse than CIM; however, for more complex models, MBI can

be significantly more storage efficient by avoiding the storage

of model parameters. Fourthly, by avoiding computations

and utilizing only lookups, MBI achieves significantly lower

energy per input image inference (Energy/Inference in Table

I) even when the other works are optimistically projected

to 16 nm (see comments in the table). MBI requires higher

energy than one-bit weight CIM design [14]; however, the

applicability of single-bit weight models is only limited to

simple tasks. More complex tasks, such as object localization

or ImageNet classification, require sufficiently high precision.

IV. CONCLUSIONS

We have introduced a novel memory-based inference ap-

proach that allows model size-agnostic inference under con-

stant time and storage budget. Our method condenses predic-

tions from a trained model into LUT. During inference, the

LUT is searched for the closest matching key vector to a given

input glimpse. By performing memorization-based predictions

on multiple glimpses, the final prediction is obtained. Com-

pared to competitive compute-in-memory (CIM) approaches,

MBI improves energy efficiency by ∼2.7× than multilayer

perceptions (MLP)-CIM and by ∼83× than ResNet20-CIM

for MNIST character recognition.

Acknowledgement: This work was supported by NSF Foun-

dations of Emerging Technology (FET) Grant #2106824.

REFERENCES

[1] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[2] P. Shukla, A. Muralidhar, N. Iliev, T. Tulabandhula, S. B. Fuller,
and A. R. Trivedi, “Ultralow-power localization of insect-scale drones:
Interplay of probabilistic filtering and compute-in-memory,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 1,
pp. 68–80, 2021.

[3] P. Shukla, S. Nasrin, N. Darabi, W. Gomes, and A. R. Trivedi, “Mc-
cim: Compute-in-memory with monte-carlo dropouts for bayesian edge
intelligence,” IEEE Transactions on Circuits and Systems I: Regular
Papers, 2022.

[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[5] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[6] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[8] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual
attention,” vol. 27, 2014.

[9] H. Jiang, W. Li, S. Huang, S. Cosemans, F. Catthoor, and S. Yu,
“Analog-to-digital converter design exploration for compute-in-memory
accelerators,” IEEE Design & Test, vol. 39, no. 2, pp. 48–55, 2021.

[10] “Predictive technology model,” accessed: November 21, 2023. [Online].
Available: https://ptm.asu.edu/

[11] A. b. A. Tahrim, H. C. Chin, C. S. Lim, and M. L. P. Tan, “Design and
performance analysis of 1-bit finfet full adder cells for subthreshold
region at 16 nm process technology,” J. Nanomaterials, vol. 16, no. 1,
jan 2015. [Online]. Available: https://doi.org/10.1155/2015/726175

[12] E. Lee, T. Han, D. Seo, G. Shin, J. Kim, S. Kim, S. Jeong, J. Rhe,
J. Park, J. H. Ko, and Y. Lee, “A charge-domain scalable-weight in-
memory computing macro with dual-sram architecture for precision-
scalable dnn accelerators,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 68, no. 8, pp. 3305–3316, 2021.

[13] X. Si, J.-J. Chen, Y.-N. Tu, W.-H. Huang, J.-H. Wang, Y.-C. Chiu, W.-
C. Wei, S.-Y. Wu, X. Sun, R. Liu, S. Yu, R.-S. Liu, C.-C. Hsieh, K.-T.
Tang, Q. Li, and M.-F. Chang, “A twin-8t sram computation-in-memory
unit-macro for multibit cnn-based ai edge processors,” IEEE Journal of
Solid-State Circuits, vol. 55, no. 1, pp. 189–202, 2020.

[14] A. Biswas and A. P. Chandrakasan, “Conv-sram: An energy-efficient
sram with in-memory dot-product computation for low-power convolu-
tional neural networks,” IEEE Journal of Solid-State Circuits, vol. 54,
no. 1, pp. 217–230, 2019.

[15] S. Nasrin, D. Badawi, A. E. Cetin, W. Gomes, and A. R. Trivedi, “Mf-
net: Compute-in-memory sram for multibit precision inference using
memory-immersed data conversion and multiplication-free operators,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68,
no. 5, pp. 1966–1978, 2021.

[16] P. Shukla, A. Shylendra, T. Tulabandhula, and A. R. Trivedi, “Mc 2
ram: Markov chain monte carlo sampling in sram for fast bayesian
inference,” in 2020 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2020, pp. 1–5.

[17] S. Nasrin, A. Shylendra, N. Darabi, T. Tulabandhula, W. Gomes,
A. Chakrabarty, and A. R. Trivedi, “Enos: Energy-aware network
operator search in deep neural networks,” IEEE Access, vol. 10, pp.
81 447–81 457, 2022.

185

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on August 29,2024 at 00:06:33 UTC from IEEE Xplore. Restrictions apply.

