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TNet: A Model-Constrained Tikhonov Network Approach for Inverse Problems*

Hai V. Nguyen® and Tan Bui-Thanh?

Abstract. Deep Learning (DL), in particular deep neural networks (DNN), by default is purely data-driven
and in general does not require physics. This is the strength of DL but also one of its key limitations
when applied to science and engineering problems in which underlying physical properties—such
as stability, conservation, and positivity—and accuracy are required. DL methods in their original
forms are often not capable of respecting the underlying mathematical models or achieving desired
accuracy even in big-data regimes. On the other hand, many data-driven science and engineering
problems, such as inverse problems, typically have limited experimental or observational data, and
DL would overfit the data in this case. Leveraging information encoded in the underlying mathe-
matical models, we argue, not only compensates missing information in low data regimes but also
provides opportunities to equip DL methods with the underlying physics, and hence promoting bet-
ter generalization. This paper develops a model-constrained deep learning approach and its variant
TNet—a Tikhonov neural network—that are capable of learning not only information hidden in the
training data but also in the underlying mathematical models to solve inverse problems governed by
partial differential equations in low data regimes. We provide the constructions and some theoretical
results for the proposed approaches for both linear and nonlinear inverse problems. Since TNet is
designed to learn inverse solution with Tikhonov regularization, it is interpretable: in fact it recovers
Tikhonov solutions for linear cases while potentially approximating Tikhonov solutions for nonlinear
inverse problems. We also prove that data randomization can enhance not only the smoothness of
the networks but also their generalizations. Comprehensive numerical results confirm the theoretical
findings and show that with even as little as 1 training data sample for 1D deconvolution, 5 for
inverse 2D heat conductivity problem, 100 for inverse initial conditions for time-dependent 2D Burg-
ers’ equation, and 50 for inverse initial conditions for 2D Navier-Stokes equations, TNet solutions can
be as accurate as Tikhonov solutions while being several orders of magnitude faster. This is possible
owing to the model-constrained term, replications, and randomization.

Key words. Inverse problem, randomization, model-constrained, deep learning, deep neural network, partial
differential equations.

1. Introduction. Inverse problems are pervasive in scientific discovery and decision-making
for complex, natural, engineered, and societal systems. They are perhaps the most popular
mathematical approaches for enabling predictive scientific simulations that integrate obser-
vational/experimental data, simulations and/or models [44, 27, 60]. Many engineering and
science systems are governed by parametrized partial differential equations (PDE). Compu-
tational PDE-constrained inverse problems face not only the ill-posed nature—namely, non-
existence, non-uniqueness, and instability of inverse solutions—but also the computational
expense of solving the underlying PDEs. Computational inverse methods typically require
the PDEs to be solved at many realizations of parameter and the cost is an (possibly ex-
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2 HAI V. NGUYEN AND TAN BUI-THANH

ponentially) increasing function of the parameter dimension. The fast growth of this cost is
typically associated with the curse of dimensionality. Inverse problems for practical complex
systems [3, 44, 30, 12, 31] however possess this high dimensional parameter space challenge.
Thus, mitigating the cost of repeatedly solving the underlying PDE has been of paramount
importance in computational PDE-constrained inverse problems.

The field of Machine Learning (ML) typically refers to computational and statistical meth-
ods for the automated detection of meaningful patterns in data [7, 55, 40]. While Deep Learn-
ing (DL) [21], a subset of machine learning, has proved to be state-of-the-art methods in
many fields of computer sciences such as computer vision, speech recognition, natural lan-
guage processing, etc, and its presence in the scientific computing community is, however,
mostly limited to off-the-shelf applications of deep learning. Unlike classical scientific com-
putational methods, such as finite element methods [14, 10, 17], in which solution accuracy
and reliability are guaranteed under regularity conditions, standard DL methods are often far
from providing reliable and accurate predictions for science and engineering applications. The
reason is that though the approximation capability of deep learning, e.g. via Deep Neural
Networks (DNN), is as good as classical methods in approximation theory [16, 23, 37, 26],
DL accuracy is hardly attainable in general due to limitation in training. It has been shown
that the training problem is highly nonlinear and non-convex, and that the gradient of loss
functions can explode or vanish [22], thus possibly preventing any gradient-based optimization
methods from reliably converging to a minimizer. Even when converged, the prediction of the
(approximate) optimal deep learning model can be prone to over-fitting and can have poor
generalization error.

Many data-driven inverse problems in science and engineering problems have limited ex-
perimental or observational data, e.g. due to the cost of placing sensors (e.g. digging an
oil well can cost million of dollars) or the difficulties of placing sensors in certain regions
(e.g. deep ocean bottoms). DL, by design, does not require physics, but data. This is the
strength of DL. It is also the key limitation to science and engineering problems in which
underlying physics needs to be respected and higher accuracy may be required. In this case,
purely data-based DL approaches are prone to over-fitting and thus incapable of respecting
the physics or providing the desired accuracy. Similar to least squares finite element meth-
ods [8], we can train a DNN solution constrained by the PDE residual as a regularization
[54, 50, 52, 53, 66, 62, 35, 46]). Such an approach attempts to learn an approximate solution
by making the L?-norm of PDE residual small. While universal approximation results (see,
e.g., [16, 23, 37, 26, 11]) could ensure any desired accuracy with a sufficiently large number of
neurons, practical network architectures are moderate in both depth and width. Therefore,
the accuracy of learning PDE solutions in function spaces can be limited.

We are interested in parametrized PDFEs—that are pervasive in design, control, optimiza-
tion, inference, and uncertainty quantification. Attempts using pure data-driven deep learning
to learn the parameter to observable map have been explored (see, e.g., [29, 64, 47, 59, 48, 29,
57, 24, 56]). Approaches using autoencoder spirit that train a forward network first and then
an inverse network in tandem [34, 39] or both of them simultaneously [20] have also been pro-
posed. The work in [67] proposes to use a graph neural network to approximate forward solver
and fully connected neural network to learn a regularization via the prior knowledge. Once
trained, both networks are deployed in a Tikhonov-like regularization algorithm to obtain the
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A TIKHONOV NETWORK APPROACH FOR INVERSE PROBLEMS 3

inverse solution. While successes are reported, generalization capability, and hence success,
could be limited to regimes seen in the training data as the governing equations—containing
most, if not all, information about the underlying physics—are not involved in the training.

In order to take into account the underlying problem, a natural direction is to deploy deep
learning methods as surrogates for expensive or difficult components in traditional methods.
Such a hybrid approach can enjoy the benefits of both sides. For example, learning regu-
larizers to penalize certain undesirable features has been proposed for both inverse [32, 38|
and imaging [2] problems. Once trained, these regularizers can be used in any traditional
inverse or imaging methods. The main disadvantage of these approaches is that they may still
experience the same computational expense as traditional methods when the forward map is
the most computationally intensive part. Learning the forward map [33, 67, 4, 49] is thus
desirable, though it may not be considered as a model-aware approach.

A logical alternative is thus to constrain the learning of inverse solution with the underlying
governing equations and/or physics. The work in [1] proposes to partially learn the gradient
of a Tikhonov functional and uses the learned gradient to perform a gradient-based opti-
mization method for solving imaging problems. A natural extension of the physics-informed
neural network framework [13, 51, 35, 36] is to train two networks, one for solutions and
another for unknown parameters. In an attempt to mimic the traditional PDE-constrained
approach, [18, 6] parametrize the unknown parameters using feed-forward neural networks
whose weights/biases are then found by an optimization approach constrained by the Navier-
Stokes equations and heat equations. These methods, however, may not be efficient as new
observational data (corresponding to new unknown parameters) requires retraining. It is also
not clear how to extend them to statistical inverse problems.

Learning inverse maps constrained by the underlying governing equations has also been
investigated. The work in [45], similar to [18, 6], presents an autoencoder-like approach
in which the encoder is the inverse map and the decoder is the numerical solutions of the
underlying governing equations evaluated at observational points. The network weights/biases
are found by minimizing the data misfit. Taking both the data misfit and the regularization
into account as in the traditional Tikhonov inversion approach, [25] solves 1D seismic inversion
methods with promising results. The beauty of this approach is that, once trained, the neural
network can be deployed to approximately solve inverse problems in real-time.

The main contributions of this paper—a detailed extension of an approach set forth in
[42]—is as follows. Unlike similar and independent work in [45, 18, 6, 25, 65], our model-
constrained deep neural network approach (mcDNN) has a theoretical foundation, from which
and numerical evidence, we infer that mcDNN may not be a good learning strategy for inverse
problems as it could be biased by the training data, though it is interpretable compared to a
purely data-driven counterpart. This motivates us to develop a new model-constrained deep
learning approach, called TNet, designed to learn the Tikhonov inverse solution, and indeed it
recovers Tikhonov regularized solutions for linear inverse problems and respects the governing
equations exactly at the training points. Owing to the model-constrained design, TNet should
generalize well for low data regimes and our numerical results verify this. We also propose to
randomize the training data and rigorously justify randomization as an implicit regularization
that could improve the generalization of the proposed deep-learning approaches. We provide
comprehensive numerical results to support our developments for 1D deconvolution, inverse

This manuscript is for review purposes only.



127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156

3

—_
(S SNG; SN
(0]

9
16(
161

162
163
164
165

166

167

4 HAI V. NGUYEN AND TAN BUI-THANH

heat conductivity, and inverse initial conditions for both time-dependent 2D Burgers’ and 2D
Navier-Stokes equations.

There are several limitations of our approaches. Firstly, the current formulation requires
a differentiable solver, thereby incurring training and memory costs that are proportional to
the computation cost of several forward solutions. This can be resolved by using a differ-
ential numerical library and we are working towards this direction. Another approach is to
replace the differential solver with differential residual evaluation. We will report these ap-
proaches in future work. Secondly, although TNet is interpretable and has higher accuracy
compared to purely-driven approaches, by design its accuracy can not exceed the traditional
Tikhonov method. Therefore, it is not recommended for (sufficiently) large data regimes, and
in that case alternative approaches such as [38, 2, 32] may be preferable as they could be
more accurate than traditional Tikhonov approach. Lastly, while existing DNN approaches
may not have a principled way to determine an appropriate regularization parameter, TNet
regularization parameter can be obtained directly from Tikhonov regularization parameter.
However, akin to the Tikhonov regularization framework (or any optimization/training ap-
proach with regularization), determining the optimal regularization parameter for TNet is a
problem-dependent task and could be computationally intensive.

The paper is organized as follows. In section 2 we introduce nonlinear inverse problems,
and a data-driven naive DNN (nDNN) approach. The goal of section 3 is to present a model-
constrained DNN (mcDNN) approach designed to learn the inverse map while being constrained
by the parameter-to-observable map of the underlying discretized PDE. Though mcDNN is
interpretable, it could be biased toward training data. This leads us to develop TNet—a
Tikhonov neural network—in section 4 that aims to learn the Tikhonov solver while removing
unnecessary biases. We show that data randomization can make TNet not only more robust
but also generalize better: thanks to the model-constrained training. In section 5 and the
supplementary document, comprehensive numerical results supporting our developments are
presented for 1D deconvolution, inverse heat conductivity, and inverse initial conditions for
both time-dependent 2D Burgers’ and 2D Navier-Stokes equations. We conclude the paper
with future research directions in section 6. Practical implementation aspects of our proposed
approaches and specifications of trainings are provided in the supplementary document.

2. Introduction to forward and inverse problems. The following notations are used in
the paper. Boldface lowercases are reserved for (column) vectors, and uppercase letters are
for matrices. We denote by u € R™ the parameters sought in the inversion or the parameter
of interest (Pol), by w € R?® the forward states, by G : R®* — R" the forward map (computing
some observable quantity of interest), and by y € R" the observations given by

(2.1) y:=G(w(u))+n,

where 7 is some additive observation noise. The parameter-to-observable (PtO) map is the
composition of the forward map G and the states, i.e., G o w. However for simplicity of the
exposition, we do not distinguish it from the forward map and thus we also write G : R™ >
u— G (u) =G (w(u)) € R". The forward state is the solution of the forward equation

(2.2) F(u,w) = f.
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A TIKHONOV NETWORK APPROACH FOR INVERSE PROBLEMS 5

Assume that (2.2) is well-posed so that, for a given set of parameters u, one can (numer-
ically for example) solve for the corresponding forward states w = w (u) := F~1 (f). In the
forward problem, we compute observational data y via (2.1) given a set of parameter w. In
the inverse problem, we seek to determine the unknown parameter u given some observational
data y, that is, we wish to construct the inverse of G. Since m is typically (much) larger than
n for many practical problems, the parameter-to-observable map G is not invertible even when
G is linear. The inverse task is thus ill-posed and notoriously challenging as a solution for
u may not exist, even when it may, it is not unique nor stably depends on the data y. An
approximate solution is typically sought via (either deterministic or statistical) regularization.

Given the popularity of emerging machine learning, in particular deep neural networks
(DNN), methods, we may attempt to apply a naive pure data-driven DNN (nDNN) to learn
the (ill-posed) inverse of G, e.g.,

. 1 e @
(nDNN) min Lopw = 5 [[U = @ (¥, W, b)|* + 2 W+ 22 b,

where ¥ is a DNN with weight matrix W and bias vector b and the last two terms are
regularizations for weights and biases with nonnegative regularization parameters o and ao.
Here, Y € R™™ is the data matrix concatenating n; observational data y*, i = 1,...,n, and
U € R™ ™ is the parameter matrix concatenating the corresponding parameter vectors u'.
This approach completely disregards the underlying mathematical model (2.1)-(2.2). Even
for linear inverse problem—for example, G (u) = Gu and there is no error in computing the
data so that Y = GU—and linear DNN such as ¥ = WY + B, where B := b1”, and thus the
optimal weight W and bias b" for (nDNN) are given as

1 1 f
wo=U <I — ]111T> y7T [Y (I - 11117’) YT+ all]
ng + o ng + a2
1
bl=——  (uw—W%),
1+ ao/ny ( y)

where u := n%U 1 and t denotes the pseudo-inverse operation, it is not clear if the nDNN inverse
solution
unDNN — WOyobs + bO‘

provides an approximate solution to the original inverse problem
. 2
min Hyo s — GuH
u

in an interpretable sense. This is a disadvantage of pure data-driven approaches.

The data-driven nature of DNN could be claimed as an advantage. However, DNN can
be considered as an “interpolation” method and thus can generalize well only for scenarios
that have been seen in or are sufficiently close to the training data set {U, Y }. This implies a
possible enormous amount of training data to learn the inverse of highly non-linear problems.
In practical sciences and engineering problems, this extensive data regime is unfortunately
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rarely the case due to the high cost of placing sensors or the difficulties in placing sensors
in certain regions. In order for a DNN to generalize well in insufficient/low data regimes,
it should be equipped with information encoded in the forward model (2.1)-(2.2) that is not
covered in the data set.  Such a physics encoding also supplies meaningful interpretations
to DNN inverse solutions as we shall show. The question is how to inform DNN about the
underlying models? In the following, we construct two DNNs to learn the inverse of the PtO
map G not only by information hidden in the training data but also by satisfying the forward
equations exactly at the training points.

Deep neural network ¥ Model-constrained

Y1 —
o
Y2
o
Yn —

Loss L := % llu — u*|\12ul + 5 lly — y*”?\*l

Figure 1: Model-constrained neural network architecture mcDNN. The observables y is fed into
the neural network W. The parameter u* predicted by the network is pushed through the PtO
map G to generate the corresponding predicted observations y*. Both predicted parameters
and observations are compared with ground truth w and y, respectively, to provide the mean-
square error in the loss function L.

3. Model-Constrained Deep Neural Network (mcDNN) for learning the inverse map. We
propose to learn the inverse map via DNN constrained by the forward map as

1
(mcDIN) it Locoms = 5 [U = ¥ (VW) [y + 5 Y = G (¥ (Y, W, B) {1

where ¥ is a DNN learning the map from observable data y to parameter u with weight
matrix W and bias vector b. We have introduced Frobenius norm weighted by I'"! in the
first term as

2
|U =% (¥, W) = 175 W - w (v, W) |

and similarly for the second term weighted by A~'. Note that A is typically chosen as
the covariance of the noise. The discussion of I' is given in section 4. Unlike the naive
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purely data-driven DNN approach (nDNN), the model-constrained (mcDNN) makes the DNN ¥
aware that the training data is generated by the forward map G. This is done by requiring
the output of the DNN—approximate unknown parameter u for a given data y as the in-
put—when pushed through the forward model G, reproduces the data y. The model-aware
term § ||Y — G (¥ (Y, W, b)) |31 can be considered as a physics-aware regularization approach
for mcDNN (compared to the non-physical regularizations in (nDNN)). The architecture of mcDNN
is presented in Figure 1.

In order to shed light on our mcDNN approach let us choose a linear activation function
such that the one-layer DNN model ¥ (Y, W, b) for leaning the inverse map can be written as
WY + B, where B := b17. We also assume that the forward map is linear. For linear inverse
problem with linear DNN, the model-constrained training problem (mcDNN) becomes

1
(3.1) min = U — (WY + B)|[p-s +%||Y—G(WY+B)H2A,1.

Lemma 3.1. The optimal solution W' and b’ of the DNN training problem (3.1) satisfies
b= (I +aGTATIG) " [T a + aGTAT'g — (T 0V +aGTATY Y ) 5],
W= (I +aGTATIG) T [TTTY +aGTA Y Y
ghere U= nitU]l anﬁ@ = nitY]l are the column-average of the training parameters and data,
Y=Y -yl?, and U :=U —ul”.
Proof. Requiring the derivative of Lycpyy in (3.1) with respect to b to vanish yields

(3.2) T ' +aG"A'G)b =T (U -WY) +aG"A (Y - GWY)] L

n

Similarly, setting derivative of Lycpyy with respect to W to zero gives
(3.3)
I 'UY" +aG"ATYYT — (7 4+ aGTAT'G) (b1T) YT = (T + aGTATIG) WY YT,

Solving (3.2) to (3.3) for b and W we obtain
(3.4) W= (" +aGTA'G) " (r*lUTfT + aGTA*W*) ,
and
(35) b=(T"1+ ozGTA*IG)_1 [F*lﬂ +aGTA g — (P”U?T + aGTAfl??T) y] ,
and this ends the proof. |

Corollary 3.2 (mcDNN is a Tikhonov solver). For a given testing/observational data y°*,
the mcDNN inverse solution u™P™ of (3.1) is given by

PN _ (F_l + aGTA—lG)fl
[F_lﬂ +aGTA g + (F_lﬁ?T + aGTA_177T) ('yObS - ﬂ)]
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which is exactly the solution of the following Tikhonov reqularized linear inverse problem

2 1
Yo — GuHAq . o Hu _ u(]"CDNNHl%,I 7

where

(3.6) W — g Y (yObS . g) — alGTA (I - ??T) (yobs - y) .

The results of Corollary 3.2 shows that the mcDNN inverse solution u®P¥W is equivalent to
a Tikhonov-regularized inverse solution with a data-informed reference parameter wg that
depends on the training set {U, Y} and the given observational data y°**. In other words, the
model-constrained deep learning meDNN approach is interpretable in the sense that it provides
data-informed Tikhonov-reqularized inverse solutions.

4. Tikhonov neural network (TNet) for learning the inverse map. We observe that the
reference parameter uf® in Corollary 3.2 depends on the training data, and thus the model
generalization depends on the amount of training data. In other words, mcDNN solution 2®PN¥
could have a strong bias to the training data and may limit the generalization which is not
desirable especially for scenarios that are not very close to the training ones. On the other
hand, in the classical Tikhonov regularization framework, the reference parameter is fixed and
independent of the observable data. From a statistical point of view, the reference parameter is
typically the mean of the prior distribution of the parameter of interest (Pol) w, which reflects
the a priori belief on how the Pol should look like on average. Synergizing mcDNN and Tikhonov
regularization ideas, we propose a Tikhonov neural network TNet—a semi-supervised model-
constrained learning approach—where, unlike mcDNN, the unknown Pol predicted by the DNN
U are forced to be close a reference parameter ug as

1
(TNet) it Lrver = 5 [|Up = ¥ (V. W b)[for + 5 Y = G (¥ (VW b))31

)

where Uy = uol7 is the matrix whose each column is the reference parameter wug, and T is
a chosen weight matrix appropriate for the problem under consideration.! Consequently, the
architecture of TNet is the same as mcDNN in Figure 1 except with w replaced by ug. Applying
Corollary 3.2 to TNet for linear inverse problem with linear DNN we have the following result.

Corollary 4.1 (TNet is a Tikhonov solver). For a given testing/observational data y°*, the
TNet inverse solution uw™e is given by

(1) w™ = (07 4 aGTATIG) ! [T g + aG AT + aGTATY Y (y - 7))
which is exactly the solution to the following Tikhonov regularized linear inverse problem

1 2 1
min v = Guf, + 55 e - w8 -,

where
ul’t = ug — al'GTA™! (I — ??T> <y"bs — @) .

In the Bayesian setting, uo and I' are corresponding to the mean and covariance of a Gaussian prior.
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A TIKHONOV NETWORK APPROACH FOR INVERSE PROBLEMS 9

Two observations are in order. First, Corollary 4.1 shows that the TNet inverse solution
u™et is exactly the Tikhonov-regularized inverse solution with the true prior mean ug as
the reference parameter provided that the observation data Y is full row rank. This holds,
for example, when the number of independent data is at least the same as the number of
observations. Even when this happens, mcDNN solution in Corollary 3.2 does not coincide with
the Tikhonov solution as the first two terms on the right-hand side of (3.6) only reduce to
up in the limit of infinite training data (via the law of large numbers). Second, training data
for Pol u is not needed (thanks to the semi-supervised learning nature of TNet). This is
particularly useful when we like to use actual observational data in training.

The next result is a highlight of our method in that our model-constrained approaches
satisfy the governing equation exactly at the training points. The aspects of practical imple-
mentation are provided in section SM1.

Remark 4.2 (Exactly satisfying the governing equations at training points). Note that both
mcDNN and TNet inverse solutions satisfy the governing equations exactly at all training points.
Since mcDNN and TNet share the same model-constrained term, we only need to provide the
proof for TNet. Due to the assumption that (2.2) is well-posed, we can write the TNet training
problem (TNet) equivalently as

1 "t A ,
(42) min Lave = 5 [Uo =0 (Y, Wb + 53 [ly = G (w)[31

’ i=1
subject to

F(U(y . W,b),w')=Ff, i=1,...,m,

which clearly shows that in fact TNet formulation (TNet) is a hard-constrained optimization
problem that ensures the forward equation (2.2) to be satisfied exactly at all the training
points during the training.

We now show that data randomization enhances not only the generalization of TNet
solution but also its robustness to observational noise. To begin, we randomize a generic data
vector y, e.g. one column of Y, as follows

(4.3) y=1y-+e,

where a Gaussian noise vector € ~ N (0, \2T ) with variances \? is added to the data. We em-
phasize that the following arguments also hold for any random noise vector with independent
components, each of which is a random variable with zero mean and variances A\2. Let E[]
denote the expectation with respect to €. Following [5], for a generic loss function £ (g), we
perform the Taylor expansion around y up to second order to obtain

e (er)]

where we have used sufficient small noise variance A\? so that the high-order term o (HEHQ),

e

(4.4) ElL(y)]=L(y)+E dy?

8y€

Yy

g g

1
+ 5B
Yy

using the standard “small 0” notation, is negligible.
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For training data set with n; samples, we randomize each sample as §° = y' + &’,i =
1,...,n¢, where g; ~ N (0, )\%I ) Note that we can use different noise levels for data random-
ization. In that case, the (TNet) loss becomes

(45) et =30 Yo - v @)+ S5 - g (v @R
. ::J(iﬂ)
Replacing £ with J(@;) in (4.4) yields
(4.6) E[J (§)] =T (y') + N (P} + Pi+ Pi+Pi),
where
(4.7) J (y') = % o — (w7 + % " =G (¥ (")) ||3-+ -
and the induced penalty terms are given by
Pl = JTr (v, <yi>>T (VT ()]
Pi= ST |(Vy [y ~Gow (W) A7 (Vy [y~ Gow (v)])]
p;;:;mvzwy) T ()~ w)]
Pi= ST (V3 [y —Gow (y)] oA ('~ 0w (3)],

in which Tr () is the trace operator, and ® denotes the dot product of a third-order tensor
and a vector. It can be observed that the training loss with randomized data is the sum of
the original loss plus four induced regularization terms. P} is non-negative and promotes the
smoothness of the neural network. The second term of (4.7) ensures that ¥ is close to the
right inverse of G, and P} strengthen this closeness by forcing the derivative of the G o ¥ to
the identity. These two effects together behave like a Hermite interpolation in which not only
the function values but also the derivatives are required to be matched closely at the training
points. The two terms in (4.7) make ¥ (yl) —ugand y* —Go W (y’) necessary small, and as
a result, P; and Pj can be dominated by P} and Pj, respectively. It is interesting to see that
P and P} can encourage the second derivatives (and hence extra smoothness) of the neural
network W and I — G o ¥ to be small. In other words, the beauty of data randomization is
that it can promote a H2-Sobolev-like Tikhonov regularization for the neural network ¥ via
(4.7), Pi, and Pi. Moreover, it can further enforce ¥ to be the same as the right inverse of
the PtO map G up to second derivatives via (4.7), P4, and P%.

Accounting for the data randomization for all training data we can—after taking the
expectation with the random noise €’, i = 1,...,n;—write (4.5) as

1 & , : : ;
(4.8) E {Eﬁ{;ﬂ ~ Lrver + 5 2N (PL+Ph+ P+ Pi).
=1
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A TIKHONOV NETWORK APPROACH FOR INVERSE PROBLEMS 11

Thus, on average, the TNet loss £332¢ with randomized data is approximately the sum of the

original TNet loss (without randomization) plus four regularization terms for each training
data point. These induced regularization terms play a vital role in stimulating the robustness
and accuracy of the neural network. Indeed, without data randomization, the TNet loss (TNet)
simply requires the neural network outputs to be close to the parameter data via the data misfit
(the first) term, and the neural network, when pushed through the PtO map, resembles the
observational data via the model-constrained (the second) term. Whereas, randomizing the
data enforces not only the smoothness of the neural network ¥ up to second order derivative
(through the first term) but also the agreement of the neural network and the right inverse of
the PtO map G up to second order derivatives (through the model-constrained term). Let us
summarize the above result in the following theorem.

Theorem 4.3. Let §* = y' +¢€',i =1,...,n:, where g; ~ N (0,M21). Then

(49) B[] = Lot SN P4 PE PP + 3B [o ()]

i=1 i=1

Remark 4.4. Note that y’ are not necessarily different from each other. However, the
Hermite interpolation analogy tells us that we should have as many distinct baseline training
points as possible for good generalization. It turns out that we just need a small number
of distinct training points to have accurate results, as numerically shown in section 5. The
above randomization approach also holds for nDNN and mcDNN approaches. Indeed, in the the
final expression (4.8) we simply replace Lryet by Lucony (see (mcDNN)) and ug by u’ in P} for
mcDNN. Similarly for nDNN, we replace Lryer by Lopyy (see (nDNN)) and remove Pi and Pj.

5. Numerical results.

Noise realization. For all numerical results, we choose A = d max (y) for all \; in (4.9),
where & denotes the relative noise level.

Data generation and training. For non-linear problems in subsection 5.1, subsec-
tion SM2.2 and subsection 5.2, we use a shallow neural network having one hidden layer with
5000 ReLU neurons. We verified that a dense feed-forward neural network architecture with
multiple layers could provide comparable results but with large training data sets. In small
data regimes, i.e. 100 samples, deep networks perform poorly due to the vanishing gradient
problem and/or the bias-variance trade-off problem. Moreover, training a deep learning net-
work faces further challenges [19, 58] that are beyond the scope of this paper. We thus focus on
neural networks with a single hidden layer and this is sufficient to demonstrate the proposed
TNet framework. Regarding optimization algorithm, the default ADAM [28] optimizer in JAX
[9] is used. In all numerical results, weights and biases of the neural network are initialized by
standard Gaussian distribution and a zero vector, respectively, using the same random seed.
Therefore, we begin the training process with the same network for all cases.

In order to be fair, within any comparison we use the same random seeds for noise. To
ensure that more training data can offer more information, the training data set is generated
in a nested manner, e.g., ny = 50 C n, = 100 C ny = 200 C ..., and so on, where n;
denotes the number of training samples. For any testing, except for the linear deconvolution
problem in which we use 200 testing samples, a test data set of 500 samples is used to compare
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approaches. The Tikhonov inverse solutions are obtained by the default BFGS algorithm [43]
in Jax [9]. A summary of training parameters is presented in Table 1.

Accuracy metric. To estimate the accuracy of each approach, we compute average
relative errors from M = {200,500} unseen random samples: the first based on pointwise
values and the second on Euclidean norm of the physical parameter vector (which is a function
of inverse parameter u: see (5.3) (5.5) (SM2.1)) as follows

M( ,pred true)
J
(5.1) Err; = M; T x 100 (%),

and

i,pred __ true H2 m

= % Z Err; (%),

j=1

(5.2) Err = Z e

where superscript ¢ denotes the ith sample, subscript j denotes the jth component of the
vector under consideration, and m is the number of spatial grid points. Here, “pred” stands
for the solution predicted by the neural network, and “true” for the synthetic ground truth
parameters.

Training parameters. Table 1 summarizes the specifications for neural network archi-
tectures, training settings, testing data sets, etc.

Table 1: Summary of training parameters for nDNN, mcDNN and TNet for nonlinear inverse
problems in subsection 5.1, subsection SM2.2 and subsection 5.2.

Architecture 1 layer with 5000 neurons
Activation function ReLU
Network — Weight initializer N (0,0.02)
Bias initializer 0
Random seed 100
Optimizer ADAM
Training Learning rate 1073
Batch size = {nt if my < 500
500 otherwise
Train data n=pCnt=g¢q, ifp<qgandp,qeN
Test data 500 samples (drawn independently)
Data -
Train random seed 18
Test random seed 28
Precision Double precision
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A TIKHONOV NETWORK APPROACH FOR INVERSE PROBLEMS 13

5.1. 2D heat conductivity inverse problem. The heat equation we consider is the follow-
ing
—V - (e¥Vy) =20 inQ=(0,1)
y=0 on I
n-(e“Vy)=0 on ™%,

where w is the the conductivity field, y is the temperature field, and n is the unit outward
normal vector on Neumann boundary part I'*°°" . Figure 2 shows the domain (left subfigure)
and a 16 x 16 mesh (right subfigure) together with the locations of 10 observational points of
the state y. In this problem, we are interested in reconstructing the conductivity field given
a set of 10 pointwise observations.

Generating train and test data sets. We start with drawing the parameter conduc-
tivity samples via a truncated Karhunen-Loéve expansion

(5.3 wl@) = 3 Vi, e 0,17,

where (), ¢;) are the eigenpairs of the following two-point correlation function [15]:

g

where ||-||; is the 1-norm on R?, 8 = 0.02 is the correlation length. Here, u = (u;)_; ~ N (0,1)
is a standard Gaussian random vector. It should be noted that, rather than directly inverting
for the physical parameter w, we reconstruct the coefficient vector w. Specifically, we select
n = 15 eigenvectors corresponding to the first 15 largest eigenvalues. For each sample, we
discretize w and we solve the heat equation for the temperature y by finite element method.
Observations are obtained by extracting values of the temperature field at 10 observational
points, which are then corrupted with additive Gaussian noise with a noise level of § =
0.5%. Figure 3 displays five different pairs of samples of the log conductivity field w and the
corresponding temperature field in the data set d5. Note that we generate test pairs (w,y)
using the same process.

Next, we consider two cases of train data for learning the inverse map from observations
to conductivity. Case I: Full base, i.e., n; distinct training samples are used; and Case II:
we first pick a number of distinct baseline samples n, smaller than n;, and then replicate
and randomize them to obtain n; samples for the train data set. For each case, the average
relative error in (5.2) is computed with 500 true test samples for nDNN, mcDNN and TNet, and
is compared to the relative error of the Tikhonov regularization approach.

Case I: Training with full data sets n, = n, € {50,100,200}. We train nDNN, mcDNN
and TNet networks using three different full training data bases, n; = 50 C ny = 100 C
ny = 200 and present the smallest errors in Table 2. As can be seen, larger data sets provide
more accurate inverse maps. In particular, the average smallest relative errors for nDNN for
these training sets are 60.41%, 50.69% and 49.07% which are higher than 57.27%, 50.39%
and 48.40%, respectively, for mcDNN. With the smallest errors of 45.98%, 45.35% and, 44.98%,

(5-4) C (21, 2) = exp <_“1‘1—$2”1>
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Figure 2: 2D heat conductivity inverse problem. Left figure the domain and the bound-
aries; Right figure A 16 x 16 finite element mesh and 10 observational locations.
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Figure 3: 2D heat conductivity inverse problem. 5 distinct training pair samples in data
set d5. Top row: the log conductivity field. Bottom row: The corresponding temperature
field and 10 observations points

correspondingly, TNet outperforms nDNN and mcDNN by a significant margin, and is similar
to Tikhonov (TIK) approach. It is not surprising since TNet approach is designed to learn
Tikhonov method, as discussed in section 4. This is further confirmed by the fact that while
regularization parameters for mcDNN, TNet, and Tikhonov approaches are the same, namely
a = 8000, only TNet and Tikhonov solutions agree well with each other for a wide range of
regularization parameters, as shown in Figure 4. On the contrary, a data-driven approach such
as nDNN requires sufficient training data (more than 100 for this case as Figure 4 indicates) to
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A TIKHONOV NETWORK APPROACH FOR INVERSE PROBLEMS 15

provide a reasonable solution. We note that mcDNN is not much more accurate than nDNN for
this example, perhaps due to strong bias from the data as suggested by Corollary 3.2.

The preceding discussion also alludes to an important point. In particular, identifying
a good approximation of the optimal regularization parameter plays a vital part in TNet
performance. This can be accomplished by finding a good regularization parameter for the
Tikhonov approach and using it for TNet. The subject of determining a suitable regularization
parameter has been studied extensively in the literature using various approaches including
the Morozov discrepancy principle, L-curve, and cross-validation [41, 61, 63]. The numerical
results in Figure 4 show that TNet and mcDNN results are robust in accuracy for a sufficiently
large neighborhood around the optimal Tikhonov regularization parameter, and thus a reason-
able regularization parameter is sufficient for TNet and mcDNN methods. Another important
point that we show in the deconvolution subsection SM2.1 is that the optimal regularization
parameter for TNet and mcDNN are numerically independent of training data sets, while it
varies drastically for nDNN method. This implies TNet and mcDNN are more robust and reliable
than nDNN.

Table 2: 2D heat conductivity inverse problem, Case I. The average relative error (5.2)
over 500 test samples obtained by nDNN (optimal « varies depending on the data set), mcDNN
(v = 8000), TNet (o = 8000) with nested data sets n; = 50 C ny = 100 C n; = 200, and
Tikhonov (TIK) with oo = 8000.

nDNN | mcDNN | TNet | TIK
ny = 50 | 60.41 | 57.27 | 45.98
ny = 100 | 50.69 | 50.39 | 45.35 | 44.99
ny = 200 | 49.07 | 48.40 | 44.98

Case II: Training with n, = 20 < n; € {60, 100,200, 1000, 2000,5000}. We now
investigate how the data augmentation via randomization performs with nDNN, mcDNN and
TNet. In particular, 20 noise-free baseline data pairs are replicated to create IN samples of
training data sets ranging from n; = 20 to n; = 5000, which are then randomized with 2%
additive white noise. Table 3 shows the average relative error (5.2) of the test data set obtained
by nDNN, mcDNN and TNet. In the first row are the results for the baseline case with n; = nj, = 20
and this is used as the reference for the other rows. It can be seen that data randomization
and augmentation, though regularizes the smoothness of the network, negligibly improves
the accuracy of nDNN. Clearly, nDNN is not equipped with the forward map and completely
depends on the limited information given in the baseline data. On the contrary, the accuracy
for mcDNN is improved by about 10% for n; > 1000. This is expected as Theorem 4.3 shows
that randomization, via the model-constrained term, promotes the network solution to be
the right inverse of the forward map up to second order. However, mcDNN’s accuracy level
saturates with n; = 1000 and is still significantly higher than the Tikhonov approach (the
last column). This is again due to data-dependent regularization nature (see Corollary 3.2),
and hence biasing to the training data, of the mcDNN approach despite of the effectiveness
of model-constrained term. Unlike nDNN and mcDNN approaches, TNet results are much more
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Figure 4: 2D heat conductivity inverse problem, Case I. The average relative error (5.2)
over 500 test samples with nested data sets n; = 50 C ny = 100 C ny = 200. The comparisons
are done for nDNN (dashed curves), mcDNN (dotted curves), TNet (colored solids curves), and
Tikhonov (TIK: black curve) over a wide range of regularization parameter values.

accurate regardless of any considered value of n;. Furthermore, they seem to approach the
Tikhonov accuracy as n; increases from 20 to 5000. In particular, TNet needs only about 100
samples replicated and randomized from n, = 20 distinct baseline samples to learn an inverse
map as nearly accurate as the Tikhonov solution.

Figure 5 shows the pointwise average error over 500 test samples (see (5.1)) for nDNN,
mcDNN, TNet, and Tikhonov (TIK) approaches for n, = 20 and n; = 200. While nDNN and
mcDNN have a high level of error, TNet has a similar error as the TIK solver in both values and
patterns. For all these methods, we show in Figure 6 the reconstructed conductivities from
a new unseen noisy data for n, = 20 and n; = 200. The synthetic ground truth conductivity
and the corresponding temperature distribution are also presented for reference in the middle
column. Again, the TNet inverse solution is in good agreement with the Tikhonov one, and
thus with the ground truth, while nDNN and mcDNN yield quite inaccurate reconstructions.

How many baseline pairs are sufficient for TNet? For this problem we numerically
study how many distinct baseline pairs are needed to achieve a reasonably accurate inverse
solution from the TNet approach. Figure 7 shows that ny = 5 baseline pairs are sufficient
when n; > 1000. For example, with n;, = 5 and n; = 1000, TNet achieves a relative error of
approximately 46.7% compared to 44.99 % of the Tikhonov solution. We also observe that,
given an inadequate number of distinct baseline pairs, i.e., one or two, it is challenging to learn
a highly accurate inverse operator even with data augmentation, randomization, and large n;
due to lacking information. This can be seen through the second term in (4.8). Indeed, in
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Table 3: 2D heat conductivity inverse problem, Case II. The average relative error (5.2)
for nDNN (optimal « varies depending on the data set), mcDNN (o = 8000), TNet(« = 8000),
and Tikhonov (TIK) (o = 8000) over 500-sample test data set obtained by training with
np = 20 baseline data pairs.

nDNN | mcDNN | TNet | TIK
ny = 20 89.66 | 77.61 | 55.56
ny = 60 86.87 | 77.02 | 47.35
ny = 100 | 87.19 | 72.58 | 46.27
ng =200 | 89.59 | 71.81 | 46.01 | 44.99
ny = 1000 | 88.67 | 69.68 | 45.16
ng = 2000 | 88.31 | 69.72 | 45.23
ny = 5000 | 88.55 | 69.71 | 45.11

nDNN (80.59) mcDNN (71.81) TNet (46.01) TIK (44.99)

. ®

0 30 60 9 120 150 180 210 240 270 0 30 60 9 120 150 180 210 240 270 0 30 60 9 120 150 180 210 240 270

Figure 5: 2D heat conductivity inverse problem, Case II. The distribution of average
relative pointwise error (5.1) for nDNN, mcDNN, TNet, and Tikhonov (TIK) over 500 test samples
obtained with ny = 20 and n; = 200. The numbers in the parentheses are the average error
(5.2) incurred by these methods.

this case, we have

1 vt . . . . n ' . . . .
§ZA$(P{+P5+P§+P}1) :2—7;2)\?(77{+P§+P§+P1),
=1

i=1

and thus the induced regularizations are active only at the distinct baseline samples. For
small baseline samples, there is simply not enough information for TNet to perform well. This
again agrees with the Hermite interpolation analogy discussed in section 4.
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Figure 6: 2D heat conductivity inverse problem, Case II. Predicted (reconstructed)
heat conductivities for an unseen noisy test sample obtained by nDNN, mcDNN, and TNet neural
networks along with the Tikhonov reconstruction for n, = 20 and n; = 200. Shown in the
middle column are the synthetic ground truth (Exact) conductivity and the corresponding
temperature field for reference.

-0.6

. -0.9

5.2. 2D Navier-Stokes equation. The vorticity form of 2D Navier-Stokes equation for
viscous and incompressible fluid [33] is written as

dw(z,t) +v(z,t) - Vw(z,t) = vAw(x, t) + f(z), x € (0,1)* te(0,T]
V -u(z,t) =0, z e (0,1)%,te(0,T]
w(z,0) = wo(x), z e (0,1)

where v € (0, 1)2 x (0, T is the velocity field, w = V xwv is the vorticity, wg is the initial vorticity,
f(z) = 0.1 (sin (27 (w1 + 22)) + cos (27 (x1 + 2))) is the forcing function, and v = 1072 is the
viscosity coefficient. The spatial domain is discretized with 32 x 32 uniform mesh, while the
time horizon ¢t € (0,10) is subdivided into 1000 time steps with At = 1072. We target to
reconstruct the initial vorticity wg from the measurements of vorticity at 20 observed points
at the final time T' = 10.

Generating train and test data sets. To generate data pairs of (w,y), we draw
samples of w(x,0) using the truncated Karhunen-Loéve expansion

24
(5.5) w(z,0) = Z Vi i) u,
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Figure 7: 2D heat conductivity inverse problem. The average relative error (5.2) as a
function of n; and n; for TNet approach.

where u; ~ N (0,1),i=1,...,24, thus up = 0,I' = I, and ()\;, ¢;) are eigenpairs obtained by
the eigendecomposition of the covariance operator 75 (—A+ 491)_2‘5 with periodic boundary
conditions. Next, we discretize an initial vorticity w(zx,0), denoted as wy, and we solve the
Navier-Stokes equation by the stream-function formulation with a pseudospectral method [33]
to obtain a discrete representation w; of w (x,t) at any time ¢. The observation operator is
imposed on solution wig to form the synthetic observables y, then a realization of additive
white noise with § = 2% is added to generate a noise-corrupted y sample. A sample of (wp, wi0)
pair together with the observation points is shown in the middle column of Figure 10.
Similar to the heat conductivity inverse problem in subsection 5.1 and Burgers’ equations
in subsection SM2.2, we consider two cases of training data. Case I: Full data with distinct
training samples are used; and Case II: we first pick a number of distinct baseline samples ny
smaller than n;, and then replicate and randomize them to obtain n; samples for the train data
set. We shall compare and contrast results from nDNN, mcDNN, TNet, and Tikhonov solutions.
Case I: Full distinct training samples n;, = n; = {50, 100, 200, 500}. In Figure 8 are
the average relative error (5.2) versus the regularization parameter o over 500 test samples
with np = n; = {50,100, 200,500}. The results are shown for nDNN (dashed curves), mcDNN
(dotted curves), TNet (colored solids curves), and Tikhonov (TIK: black curve) solutions.
The general behavior of the error as a function of regularization parameter is similar to the
results for Burgers and heat equations, and thus omitted. Here, we focus on results at the
“best” regularization parameters for all methods. The optimal regularization parameters of
mcDNN and TNet agree with that of Tikhonov methods, namely o = 2200, due to the same
reason as explained in the three other numerical problems. Whereas, nDNN has small optimal
regularization parameters. At the optimal regularization parameter, as summarized in Table 4,
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with a given n;, TNet error is smaller than those of nDNN and mcDNN with twice amount of data.
For example, TNet solution with n; = 100 incurs an error of 27.14%, smaller than 32.39% and
28.54% of nDNN and mcDNN with n; = 200. It is not surprising that TNet solution tends to
converge to Tikhonov (TIK) solution faster as it is designed to do so (see Corollary 4.1) while
the others are not. Clearly, without being constrained to the forward map nDNN needs the
largest amount of data to approximate the inverse map with the same level of accuracy.

70 7
-e- nDNN n{=50 -~ mCcDNN n¢ =50 —e— TNet n,=50 R

4
-g- nDNN ;=100 --¥- mcDNN n;=100 TNet ne =100 //y

——
-6- nDNN ;=200 -+ mcDNN n;=200 —e— TNetn,=200 . ¢
/
TNet n; =500 1/
TIK Vs 14

-8- nDNN n;=500 < mcDNN n; =500

1

601

Average relative error (%) of 500 test samples

2901 102 103 104 10°
Regularization parameters

Figure 8: 2D Navier-Stokes equation, Case I. The average relative error (5.2) versus
the regularization parameter a over 500 test samples with n, = n, = {50,100, 200,500}.
The results are shown for nDNN (dashed curves), mcDNN (dotted curves), TNet (colored solids
curves), and Tikhonov (TIK: black curve) solutions.

Case II: Training with n;, € {10,50} < n; € {50,100, 200, 500, 1000}. Table 5 presents
the relative error (5.2) of test data sets obtained by different approaches at the optimal regu-
larization parameters. It can be seen that nDNN results are improved as more distinct baseline
data pairs are deployed in training data sets. Nevertheless, for any baseline case, replication
and randomization to generate n; data samples, while being more computationally demanding,
do not provide additional accuracy in nDNN solutions. Again, this implies that the performance
of nDNN completely relies on the underlying information provided by distinct baseline data.
The behavior of mcDNN is, on the other hand, not predictable. In particular, replication and
randomization improves the results for n, = 10 but not for n, = 50: perhaps due to the

data-driven nature, and hence bias, of uf®™ as discussed in section 4 after Corollary 4.1.
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Table 4: 2D Navier-Stokes equation, Case I. The average relative error (5.2) over 500
test samples obtained by nDNN (a & 10), meDNN (o = 2200), TNet (a = 2200) with nested data
sets ny = 50 C ny = 100 C n, = 200 C ny = 500, and TIK (a = 2200.)

nDNN | mcDNN | TNet | TIK
ny = 50 | 43.00 | 37.86 | 30.71
ny = 100 | 37.98 | 31.15 | 27.14
ny = 200 | 32.39 | 28.54 | 26.18
n; = 500 | 28.08 | 26.62 | 24.22

21.93

On the contrary, TNet results are consistently and significantly improved with replication
and randomization for n; € {10,50}. In particular, for a given ny, the larger n; is, the more
accurate the TNet solution. As further demonstrated in Figure 9, trained with n, = 50 and
ny = 1000, the distribution of pointwise relative error for TNet is closest to that of Tikhonov
solution, and is every where far lower than those of mcDNN and nDNN. Shown in Figure 10 are
the predicted (reconstructed) initial vorticities for an unseen noisy test sample obtained by
nDNN, mcDNN, and TNet neural networks for ny = 50 and n; = 1000 along with the Tikhonov
reconstruction. Shown in the middle column are the synthetic ground truth initial vorticity
and the corresponding final vorticity for reference. Again, TNet reconstruction is closest to
TIK inversion and nDNN provides the most inaccurate solution.

Table 5: 2D Navier-Stokes equation, Case II. The average relative error (5.2) for nDNN
(v &= 10), mcDNN (a = 2200), TNet(a = 2200), and Tikhonov (TIK) (o = 2200) over 500-
sample test data set obtained with n, = {10,50} baseline data pairs.

Training data ny = 10 np = 50
size (ny) nDNN | mcDNN | TNet | nDNN | mcDNN | TNet
ng = 50 85.09 | 73.15 | 58.71 | 43.00 | 37.86 | 30.71
ng = 100 85.37 | 72.58 | 48.46 | 42.03 | 38.80 | 30.06
ng = 200 85.87 | 64.04 | 39.75 | 43.17 | 37.74 | 29.06 | 21.93
ng = 500 85.85 | 50.76 | 38.28 | 43.29 | 37.10 | 27.91
n; = 1000 85.52 | 48.32 | 34.13 | 42.85 | 37.24 | 26.96

TIK

5.3. Training cost and speedup with deep learning solutions. The training costs for the
case of ny = 1000 randomized training samples for heat, Burgers, and Navier-Stokes equations
are presented in Table 6. It can be observed that the heat equation requires the least training
time, 1.6 hours, while the corresponding times for the Burgers’ equation and Navier-Stokes
equation are 16 and 20 hours, respectively. It should be noted that executing the forward map
and the backpropagation constitutes the majority of the training cost. Table 6 also provides
information on the computational cost of reconstructing an unseen test sample using the
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nDNN (42.85) mcDNN (37.24) TNet (26.96) TIK (21.93)

(2
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Figure 9: 2D Navier-Stokes equation, Case II. The distribution of average relative point-
wise error (5.1) for nDNN, mcDNN, TNet, and Tikhonov (TIK) over 500 test samples obtained
with np = 50 and n; = 1000. The numbers in the parentheses are the average error (5.2)
incurred by these methods.

nDNN Exact mcDNN

0.75 0.75 0.75
0.60 0.60 0.60
0.45 0.45 0.45
0.30 0.30 0.30
0.15 0.15 0.15
0.00 0.00 0.00
-0.15 -0.15 -0.15
-0.30 -0.30 -0.30
~0.45 -0.45 ~0.45
~0.60 -0.60 ~0.60
TIK

Final vorticity

0.75

0.60
0.8 O 0.45
0.4 0.30

-0.15
-0.30
—0.45

—0.60

Figure 10: 2D Navier-Stokes equation, Case II. Predicted (reconstructed) initial vortici-
ties for an unseen noisy test sample obtained by nDNN, mcDNN, and TNet neural networks along
with the Tikhonov reconstruction for n;, = 50 and n; = 1000. Shown in the middle column
are the synthetic ground truth (Exact) initial vorticity and the corresponding final vorticity
for reference.

581 classical Tikhonov (TIK) regularization technique and our proposed deep learning approach?

2Note that the cost for nDNN and mcDNN is the same as they have the same network architecture.
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TNet. We order the first column the increase in complexity from heat equation to Burger’s
equation to Navier-Stokes equation. Here, the complexity is estimated based on the number
of time steps, the operations carried out per time step, and the mesh size. As can be seen,
the more complicated the problem is, the more time Tikhonov takes to obtain the solution.
Unlike the Tikhonov approach, regardless of the complexity of the problems, the learned TNet
inverse map using one hidden layer with 5000 neurons takes the same small amount of time:
approximately 0.0003 seconds. Note that the Tikhonov solver is implemented directly in
JAX using the default BFGS algorithm with the gradient computed by the default Autograd
functionality. Thus, the Tikhonov computation enjoys JAX optimized features including XLA
(accelerated linear algebra), JIT (just-in-time compilation), and the nested primitive loop
technique. Even with such optimization, Tikhonov is still orders of magnitude slower than
TNet. In particular, for the Navier-Stokes equation, TNet is 24, 785 times faster than Tikhonov.
We expect the computational gain is much more significant for larger-scale 3D time-dependent
nonlinear forward problems. Clearly, once trained, obtaining TNet solutions is simply a feed-
forward neural network evaluation, which could be close to real-time or real-time depending
on the depth and the width of the network.

Table 6: The training cost (measured in hours) for the case of n; = 1000 randomized training
samples for all three problems. The computational time (measured in seconds) for inverse
solution governed by heat, Burgers, and Navier-Stokes equation using TNet (second column)
and Tikhonov (third column) methods, and the speed-up (fourth column) of TNet relative to
Tikhonov using NVIDIA A100 GPUs on Lonestar6 at the Texas Advanced Computing Center
(TACC).

Inverse Problems Training (hours) | TNet (seconds) | TIK (seconds) | Speed-up
Heat equation 1.6 2.74 x 1074 4.36 x 1072 159
Burger’s equations 16.0 2.93 x 1074 1.08 3,683
Navier-Stokes equation 20.0 2.93 x 1074 7.26 24,785

6. Conclusions. We argue that in order for a DNN to generalize well in insufficient data
regimes, it should be equipped with information encoded in the underlying mathematical
model that is not or partially covered in the data set. In other words, it is natural to require
DNN to be aware of the underlying mathematical models (or discretizations) in order for
it to be a reliable and interpretable tool for sciences and engineering applications. Indeed,
we have shown that the proposed model-constrained deep learning approaches are the same
as Tikhonov regularization methods for linear inverse problems, while it is not clear if in-
verse solutions using purely data-driven DL methods are interpretable. We have shown that
data randomization can further enhance the robustness and the generalization of our model-
constrained deep neural networks. The numerical results not only confirm the theoretical
findings but also show that even with as little as 1 training data sample for 1D deconvolution,
5 for inverse heat conductivity, 100 for inverse initial condition for time-dependent 2D Burgers’
equation, and 50 for inverse initial condition for 2D Navier-Stokes equations, TNet solutions
can be as accurate as Tikhonov solutions while being several orders of magnitude faster. This
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is not possible without the model-constrained term, replications, and randomization. Ongoing
work is to understand under which conditions TNet solution converges to Tikhonov solution
for nonlinear inverse problems. Of interest is to estimate the minimum number of distinct
baseline training samples to obtain a certain accuracy on average for unseen data. Inversions
governed by fluid flows with high Reynolds numbers and shocks are an important class of
problems in our portfolio, and they are under investigation. Extension to statistical inver-
sions is also part of our future work. The main limitation of TNet is that a differential solver
is needed during training. This can be resolved by using a differential numerical library. An-
other approach is to replace the differential solver with differential residual evaluation. We
will report these approaches in future work.
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