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Abstract. Deep Learning (DL), in particular deep neural networks (DNN), by default is purely data-driven4
and in general does not require physics. This is the strength of DL but also one of its key limitations5
when applied to science and engineering problems in which underlying physical properties—such6
as stability, conservation, and positivity—and accuracy are required. DL methods in their original7
forms are often not capable of respecting the underlying mathematical models or achieving desired8
accuracy even in big-data regimes. On the other hand, many data-driven science and engineering9
problems, such as inverse problems, typically have limited experimental or observational data, and10
DL would overfit the data in this case. Leveraging information encoded in the underlying mathe-11
matical models, we argue, not only compensates missing information in low data regimes but also12
provides opportunities to equip DL methods with the underlying physics, and hence promoting bet-13
ter generalization. This paper develops a model-constrained deep learning approach and its variant14
TNet—a Tikhonov neural network—that are capable of learning not only information hidden in the15
training data but also in the underlying mathematical models to solve inverse problems governed by16
partial di↵erential equations in low data regimes. We provide the constructions and some theoretical17
results for the proposed approaches for both linear and nonlinear inverse problems. Since TNet is18
designed to learn inverse solution with Tikhonov regularization, it is interpretable: in fact it recovers19
Tikhonov solutions for linear cases while potentially approximating Tikhonov solutions for nonlinear20
inverse problems. We also prove that data randomization can enhance not only the smoothness of21
the networks but also their generalizations. Comprehensive numerical results confirm the theoretical22
findings and show that with even as little as 1 training data sample for 1D deconvolution, 5 for23
inverse 2D heat conductivity problem, 100 for inverse initial conditions for time-dependent 2D Burg-24
ers’ equation, and 50 for inverse initial conditions for 2D Navier-Stokes equations, TNet solutions can25
be as accurate as Tikhonov solutions while being several orders of magnitude faster. This is possible26
owing to the model-constrained term, replications, and randomization.27

Key words. Inverse problem, randomization, model-constrained, deep learning, deep neural network, partial28
di↵erential equations.29

1. Introduction. Inverse problems are pervasive in scientific discovery and decision-making30

for complex, natural, engineered, and societal systems. They are perhaps the most popular31

mathematical approaches for enabling predictive scientific simulations that integrate obser-32

vational/experimental data, simulations and/or models [44, 27, 60]. Many engineering and33

science systems are governed by parametrized partial di↵erential equations (PDE). Compu-34

tational PDE-constrained inverse problems face not only the ill-posed nature—namely, non-35

existence, non-uniqueness, and instability of inverse solutions—but also the computational36

expense of solving the underlying PDEs. Computational inverse methods typically require37

the PDEs to be solved at many realizations of parameter and the cost is an (possibly ex-38
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2 HAI V. NGUYEN AND TAN BUI-THANH

ponentially) increasing function of the parameter dimension. The fast growth of this cost is39

typically associated with the curse of dimensionality. Inverse problems for practical complex40

systems [3, 44, 30, 12, 31] however possess this high dimensional parameter space challenge.41

Thus, mitigating the cost of repeatedly solving the underlying PDE has been of paramount42

importance in computational PDE-constrained inverse problems.43

The field of Machine Learning (ML) typically refers to computational and statistical meth-44

ods for the automated detection of meaningful patterns in data [7, 55, 40]. While Deep Learn-45

ing (DL) [21], a subset of machine learning, has proved to be state-of-the-art methods in46

many fields of computer sciences such as computer vision, speech recognition, natural lan-47

guage processing, etc, and its presence in the scientific computing community is, however,48

mostly limited to o↵-the-shelf applications of deep learning. Unlike classical scientific com-49

putational methods, such as finite element methods [14, 10, 17], in which solution accuracy50

and reliability are guaranteed under regularity conditions, standard DL methods are often far51

from providing reliable and accurate predictions for science and engineering applications. The52

reason is that though the approximation capability of deep learning, e.g. via Deep Neural53

Networks (DNN), is as good as classical methods in approximation theory [16, 23, 37, 26],54

DL accuracy is hardly attainable in general due to limitation in training. It has been shown55

that the training problem is highly nonlinear and non-convex, and that the gradient of loss56

functions can explode or vanish [22], thus possibly preventing any gradient-based optimization57

methods from reliably converging to a minimizer. Even when converged, the prediction of the58

(approximate) optimal deep learning model can be prone to over-fitting and can have poor59

generalization error.60

Many data-driven inverse problems in science and engineering problems have limited ex-61

perimental or observational data, e.g. due to the cost of placing sensors (e.g. digging an62

oil well can cost million of dollars) or the di�culties of placing sensors in certain regions63

(e.g. deep ocean bottoms). DL, by design, does not require physics, but data. This is the64

strength of DL. It is also the key limitation to science and engineering problems in which65

underlying physics needs to be respected and higher accuracy may be required. In this case,66

purely data-based DL approaches are prone to over-fitting and thus incapable of respecting67

the physics or providing the desired accuracy. Similar to least squares finite element meth-68

ods [8], we can train a DNN solution constrained by the PDE residual as a regularization69

[54, 50, 52, 53, 66, 62, 35, 46]). Such an approach attempts to learn an approximate solution70

by making the L2-norm of PDE residual small. While universal approximation results (see,71

e.g., [16, 23, 37, 26, 11]) could ensure any desired accuracy with a su�ciently large number of72

neurons, practical network architectures are moderate in both depth and width. Therefore,73

the accuracy of learning PDE solutions in function spaces can be limited.74

We are interested in parametrized PDEs—that are pervasive in design, control, optimiza-75

tion, inference, and uncertainty quantification. Attempts using pure data-driven deep learning76

to learn the parameter to observable map have been explored (see, e.g., [29, 64, 47, 59, 48, 29,77

57, 24, 56]). Approaches using autoencoder spirit that train a forward network first and then78

an inverse network in tandem [34, 39] or both of them simultaneously [20] have also been pro-79

posed. The work in [67] proposes to use a graph neural network to approximate forward solver80

and fully connected neural network to learn a regularization via the prior knowledge. Once81

trained, both networks are deployed in a Tikhonov-like regularization algorithm to obtain the82
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inverse solution. While successes are reported, generalization capability, and hence success,83

could be limited to regimes seen in the training data as the governing equations—containing84

most, if not all, information about the underlying physics—are not involved in the training.85

In order to take into account the underlying problem, a natural direction is to deploy deep86

learning methods as surrogates for expensive or di�cult components in traditional methods.87

Such a hybrid approach can enjoy the benefits of both sides. For example, learning regu-88

larizers to penalize certain undesirable features has been proposed for both inverse [32, 38]89

and imaging [2] problems. Once trained, these regularizers can be used in any traditional90

inverse or imaging methods. The main disadvantage of these approaches is that they may still91

experience the same computational expense as traditional methods when the forward map is92

the most computationally intensive part. Learning the forward map [33, 67, 4, 49] is thus93

desirable, though it may not be considered as a model-aware approach.94

A logical alternative is thus to constrain the learning of inverse solution with the underlying95

governing equations and/or physics. The work in [1] proposes to partially learn the gradient96

of a Tikhonov functional and uses the learned gradient to perform a gradient-based opti-97

mization method for solving imaging problems. A natural extension of the physics-informed98

neural network framework [13, 51, 35, 36] is to train two networks, one for solutions and99

another for unknown parameters. In an attempt to mimic the traditional PDE-constrained100

approach, [18, 6] parametrize the unknown parameters using feed-forward neural networks101

whose weights/biases are then found by an optimization approach constrained by the Navier-102

Stokes equations and heat equations. These methods, however, may not be e�cient as new103

observational data (corresponding to new unknown parameters) requires retraining. It is also104

not clear how to extend them to statistical inverse problems.105

Learning inverse maps constrained by the underlying governing equations has also been106

investigated. The work in [45], similar to [18, 6], presents an autoencoder-like approach107

in which the encoder is the inverse map and the decoder is the numerical solutions of the108

underlying governing equations evaluated at observational points. The network weights/biases109

are found by minimizing the data misfit. Taking both the data misfit and the regularization110

into account as in the traditional Tikhonov inversion approach, [25] solves 1D seismic inversion111

methods with promising results. The beauty of this approach is that, once trained, the neural112

network can be deployed to approximately solve inverse problems in real-time.113

The main contributions of this paper—a detailed extension of an approach set forth in114

[42]—is as follows. Unlike similar and independent work in [45, 18, 6, 25, 65], our model-115

constrained deep neural network approach (mcDNN) has a theoretical foundation, from which116

and numerical evidence, we infer that mcDNN may not be a good learning strategy for inverse117

problems as it could be biased by the training data, though it is interpretable compared to a118

purely data-driven counterpart. This motivates us to develop a new model-constrained deep119

learning approach, called TNet, designed to learn the Tikhonov inverse solution, and indeed it120

recovers Tikhonov regularized solutions for linear inverse problems and respects the governing121

equations exactly at the training points. Owing to the model-constrained design, TNet should122

generalize well for low data regimes and our numerical results verify this. We also propose to123

randomize the training data and rigorously justify randomization as an implicit regularization124

that could improve the generalization of the proposed deep-learning approaches. We provide125

comprehensive numerical results to support our developments for 1D deconvolution, inverse126
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heat conductivity, and inverse initial conditions for both time-dependent 2D Burgers’ and 2D127

Navier-Stokes equations.128

There are several limitations of our approaches. Firstly, the current formulation requires129

a di↵erentiable solver, thereby incurring training and memory costs that are proportional to130

the computation cost of several forward solutions. This can be resolved by using a di↵er-131

ential numerical library and we are working towards this direction. Another approach is to132

replace the di↵erential solver with di↵erential residual evaluation. We will report these ap-133

proaches in future work. Secondly, although TNet is interpretable and has higher accuracy134

compared to purely-driven approaches, by design its accuracy can not exceed the traditional135

Tikhonov method. Therefore, it is not recommended for (su�ciently) large data regimes, and136

in that case alternative approaches such as [38, 2, 32] may be preferable as they could be137

more accurate than traditional Tikhonov approach. Lastly, while existing DNN approaches138

may not have a principled way to determine an appropriate regularization parameter, TNet139

regularization parameter can be obtained directly from Tikhonov regularization parameter.140

However, akin to the Tikhonov regularization framework (or any optimization/training ap-141

proach with regularization), determining the optimal regularization parameter for TNet is a142

problem-dependent task and could be computationally intensive.143

The paper is organized as follows. In section 2 we introduce nonlinear inverse problems,144

and a data-driven naive DNN (nDNN) approach. The goal of section 3 is to present a model-145

constrained DNN (mcDNN) approach designed to learn the inverse map while being constrained146

by the parameter-to-observable map of the underlying discretized PDE. Though mcDNN is147

interpretable, it could be biased toward training data. This leads us to develop TNet—a148

Tikhonov neural network—in section 4 that aims to learn the Tikhonov solver while removing149

unnecessary biases. We show that data randomization can make TNet not only more robust150

but also generalize better: thanks to the model-constrained training. In section 5 and the151

supplementary document, comprehensive numerical results supporting our developments are152

presented for 1D deconvolution, inverse heat conductivity, and inverse initial conditions for153

both time-dependent 2D Burgers’ and 2D Navier-Stokes equations. We conclude the paper154

with future research directions in section 6. Practical implementation aspects of our proposed155

approaches and specifications of trainings are provided in the supplementary document.156

2. Introduction to forward and inverse problems. The following notations are used in157

the paper. Boldface lowercases are reserved for (column) vectors, and uppercase letters are158

for matrices. We denote by u 2 Rm the parameters sought in the inversion or the parameter159

of interest (PoI), by w 2 Rs the forward states, by G : Rs
! Rn the forward map (computing160

some observable quantity of interest), and by y 2 Rn the observations given by161

(2.1) y := G (w (u)) + ⌘,162

where ⌘ is some additive observation noise. The parameter-to-observable (PtO) map is the163

composition of the forward map G and the states, i.e., G �w. However for simplicity of the164

exposition, we do not distinguish it from the forward map and thus we also write G : Rm
3165

u 7! G (u) := G (w (u)) 2 Rn. The forward state is the solution of the forward equation166

(2.2) F (u,w) = f .167
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Assume that (2.2) is well-posed so that, for a given set of parameters u, one can (numer-168

ically for example) solve for the corresponding forward states w = w (u) := F
�1 (f). In the169

forward problem, we compute observational data y via (2.1) given a set of parameter u. In170

the inverse problem, we seek to determine the unknown parameter u given some observational171

data y, that is, we wish to construct the inverse of G. Since m is typically (much) larger than172

n for many practical problems, the parameter-to-observable map G is not invertible even when173

G is linear. The inverse task is thus ill-posed and notoriously challenging as a solution for174

u may not exist, even when it may, it is not unique nor stably depends on the data y. An175

approximate solution is typically sought via (either deterministic or statistical) regularization.176

Given the popularity of emerging machine learning, in particular deep neural networks177

(DNN), methods, we may attempt to apply a naive pure data-driven DNN (nDNN) to learn178

the (ill-posed) inverse of G, e.g.,179

(nDNN) min
b,W

LnDNN =
1

2
kU � (Y,W,b)k2 +

↵1

2
kWk

2 +
↵2

2
kbk

2 ,180

where  is a DNN with weight matrix W and bias vector b and the last two terms are181

regularizations for weights and biases with nonnegative regularization parameters ↵1 and ↵2.182

Here, Y 2 Rn⇥nt is the data matrix concatenating nt observational data yi, i = 1, . . . , nt, and183

U 2 Rm⇥nt is the parameter matrix concatenating the corresponding parameter vectors ui.184

This approach completely disregards the underlying mathematical model (2.1)-(2.2). Even185

for linear inverse problem—for example, G (u) = Gu and there is no error in computing the186

data so that Y = GU—and linear DNN such as  = WY +B, where B := b1T , and thus the187

optimal weight W 0 and bias b0 for (nDNN) are given as188

W 0 = U

✓
I �

1

nt + ↵2
11T

◆
Y T


Y

✓
I �

1

nt + ↵2
11T

◆
Y T + ↵1I

�†
189

b
0 =

1

1 + ↵2/nt

�
u�W 0y

�
,190

191192

where u := 1
nt
U1 and † denotes the pseudo-inverse operation, it is not clear if the nDNN inverse193

solution194

unDNN = W 0yobs + b
0.195

provides an approximate solution to the original inverse problem196

min
u

���yobs
�Gu

���
2

197

in an interpretable sense. This is a disadvantage of pure data-driven approaches.198

The data-driven nature of DNN could be claimed as an advantage. However, DNN can199

be considered as an “interpolation” method and thus can generalize well only for scenarios200

that have been seen in or are su�ciently close to the training data set {U, Y }. This implies a201

possible enormous amount of training data to learn the inverse of highly non-linear problems.202

In practical sciences and engineering problems, this extensive data regime is unfortunately203
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rarely the case due to the high cost of placing sensors or the di�culties in placing sensors204

in certain regions. In order for a DNN to generalize well in insu�cient/low data regimes,205

it should be equipped with information encoded in the forward model (2.1)-(2.2) that is not206

covered in the data set. Such a physics encoding also supplies meaningful interpretations207

to DNN inverse solutions as we shall show. The question is how to inform DNN about the208

underlying models? In the following, we construct two DNNs to learn the inverse of the PtO209

map G not only by information hidden in the training data but also by satisfying the forward210

equations exactly at the training points.211

y1

y2

...

yn

u⇤1

u⇤2

...

u⇤m

G

y⇤1

y⇤2

...

y⇤n

�

�

�

...

�

�

�

�

...

�

�

�

�

...

�

Loss L := 1
2 ku� u⇤

k
2
��1 + ↵

2 ky � y⇤
k
2
⇤�1

Deep neural network  Model-constrained

Figure 1: Model-constrained neural network architecture mcDNN. The observables y is fed into
the neural network  . The parameter u⇤ predicted by the network is pushed through the PtO
map G to generate the corresponding predicted observations y⇤. Both predicted parameters
and observations are compared with ground truth u and y, respectively, to provide the mean-
square error in the loss function L.

3. Model-Constrained Deep Neural Network (mcDNN) for learning the inverse map. We212

propose to learn the inverse map via DNN constrained by the forward map as213

(mcDNN) min
b,W

LmcDNN :=
1

2
kU � (Y,W,b)k2��1 +

↵

2
kY � G ( (Y,W,b))k2⇤�1 ,214

where  is a DNN learning the map from observable data y to parameter u with weight215

matrix W and bias vector b. We have introduced Frobenius norm weighted by ��1 in the216

first term as217

kU � (Y,W,b)k2��1 :=
�����

1
2 (U � (Y,W,b))

���
2
,218

and similarly for the second term weighted by ⇤�1. Note that ⇤ is typically chosen as219

the covariance of the noise. The discussion of � is given in section 4. Unlike the naive220

This manuscript is for review purposes only.



A TIKHONOV NETWORK APPROACH FOR INVERSE PROBLEMS 7

purely data-driven DNN approach (nDNN), the model-constrained (mcDNN) makes the DNN  221

aware that the training data is generated by the forward map G. This is done by requiring222

the output of the DNN—approximate unknown parameter u for a given data y as the in-223

put—when pushed through the forward model G, reproduces the data y. The model-aware224

term ↵
2 kY � G ( (Y,W,b))k2⇤�1 can be considered as a physics-aware regularization approach225

for mcDNN (compared to the non-physical regularizations in (nDNN)). The architecture of mcDNN226

is presented in Figure 1.227

In order to shed light on our mcDNN approach let us choose a linear activation function228

such that the one-layer DNN model  (Y,W,b) for leaning the inverse map can be written as229

WY +B, where B := b1T . We also assume that the forward map is linear. For linear inverse230

problem with linear DNN, the model-constrained training problem (mcDNN) becomes231

(3.1) min
b,W

1

2
kU � (WY +B)k2��1 +

↵

2
kY �G (WY +B)k2⇤�1 .232

233

Lemma 3.1. The optimal solution W I
and b

I
of the DNN training problem (3.1) satisfies234

b
I =

�
��1 + ↵GT⇤�1G

��1
h
��1u+ ↵GT⇤�1y �

⇣
��1U Y

†
+ ↵GT⇤�1Y Y

†
⌘
y
i
,235

W I =
�
��1 + ↵GT⇤�1G

��1
h
��1U Y

†
+ ↵GT⇤�1Y Y

†
i
,236

237

where u := 1
nt
U1 and y := 1

nt
Y 1 are the column-average of the training parameters and data,238

Y := Y � y1T
, and U := U � u1T

.239

Proof. Requiring the derivative of LmcDNN in (3.1) with respect to b to vanish yields240

(3.2)
�
��1 + ↵GT⇤�1G

�
b =

⇥
��1 (U �WY ) + ↵GT⇤�1 (Y �GWY )

⇤ 1
nt

.241

Similarly, setting derivative of LmcDNN with respect to W to zero gives242

(3.3)
��1UY T + ↵GT⇤�1Y Y T

�
�
��1 + ↵GT⇤�1G

� �
b1T

�
Y T =

�
��1 + ↵GT⇤�1G

�
WY Y T .243

Solving (3.2) to (3.3) for b and W we obtain244

(3.4) W =
�
��1 + ↵GT⇤�1G

��1
⇣
��1UY

†
+ ↵GT⇤�1Y Y

†
⌘
,245

and246

(3.5) b =
�
��1 + ↵GT⇤�1G

��1
h
��1u+ ↵GT⇤�1y �

⇣
��1U Y

†
+ ↵GT⇤�1Y Y

†
⌘
y
i
,247

and this ends the proof.248

Corollary 3.2 (mcDNN is a Tikhonov solver). For a given testing/observational data yobs
,249

the mcDNN inverse solution umcDNN
of (3.1) is given by250

251

umcDNN =
�
��1 + ↵GT⇤�1G

��1
252

h
��1u+ ↵GT⇤�1y +

⇣
��1U Y

†
+ ↵GT⇤�1Y Y

†
⌘⇣

yobs
� y

⌘i
253
254
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which is exactly the solution of the following Tikhonov regularized linear inverse problem255

min
u

1

2

���yobs
�Gu

���
2

⇤�1
+

1

2↵

��u� umcDNN
0

��2
��1 ,256

where257

(3.6) umcDNN
0 = u+ U Y

†
⇣
yobs

� y
⌘
� ↵�GT⇤�1

⇣
I � Y Y

†
⌘⇣

yobs
� y

⌘
.258

The results of Corollary 3.2 shows that the mcDNN inverse solution umcDNN is equivalent to259

a Tikhonov-regularized inverse solution with a data-informed reference parameter u0 that260

depends on the training set {U, Y } and the given observational data yobs. In other words, the261

model-constrained deep learning mcDNN approach is interpretable in the sense that it provides262

data-informed Tikhonov-regularized inverse solutions.263

4. Tikhonov neural network (TNet) for learning the inverse map. We observe that the264

reference parameter umcDNN
0 in Corollary 3.2 depends on the training data, and thus the model265

generalization depends on the amount of training data. In other words, mcDNN solution umcDNN266

could have a strong bias to the training data and may limit the generalization which is not267

desirable especially for scenarios that are not very close to the training ones. On the other268

hand, in the classical Tikhonov regularization framework, the reference parameter is fixed and269

independent of the observable data. From a statistical point of view, the reference parameter is270

typically the mean of the prior distribution of the parameter of interest (PoI) u, which reflects271

the a priori belief on how the PoI should look like on average. Synergizing mcDNN and Tikhonov272

regularization ideas, we propose a Tikhonov neural network TNet—a semi-supervised model-273

constrained learning approach—where, unlike mcDNN, the unknown PoI predicted by the DNN274

 are forced to be close a reference parameter u0 as275

(TNet) min
b,W

LTNet :=
1

2
kU0 � (Y,W,b)k2��1 +

↵

2
kY � G ( (Y,W,b))k2⇤�1 ,276

where U0 = u01
T is the matrix whose each column is the reference parameter u0, and � is277

a chosen weight matrix appropriate for the problem under consideration.1 Consequently, the278

architecture of TNet is the same as mcDNN in Figure 1 except with u replaced by u0. Applying279

Corollary 3.2 to TNet for linear inverse problem with linear DNN we have the following result.280

Corollary 4.1 (TNet is a Tikhonov solver). For a given testing/observational data yobs
, the281

TNet inverse solution uTNet
is given by282

(4.1) uTNet =
�
��1 + ↵GT⇤�1G

��1
h
��1u0 + ↵GT⇤�1y + ↵GT⇤�1Y Y

†
⇣
yobs

� y
⌘i

283

which is exactly the solution to the following Tikhonov regularized linear inverse problem284

min
u

1

2

���yobs
�Gu

���
2

⇤�1
+

1

2↵

��u� uTNet
0

��2
��1 ,285

where286

uTNet
0 = u0 � ↵�GT⇤�1

⇣
I � Y Y

†
⌘⇣

yobs
� y

⌘
.287

1In the Bayesian setting, u0 and � are corresponding to the mean and covariance of a Gaussian prior.
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Two observations are in order. First, Corollary 4.1 shows that the TNet inverse solution288

uTNet is exactly the Tikhonov-regularized inverse solution with the true prior mean u0 as289

the reference parameter provided that the observation data Y is full row rank. This holds,290

for example, when the number of independent data is at least the same as the number of291

observations. Even when this happens, mcDNN solution in Corollary 3.2 does not coincide with292

the Tikhonov solution as the first two terms on the right-hand side of (3.6) only reduce to293

u0 in the limit of infinite training data (via the law of large numbers). Second, training data294

for PoI u is not needed (thanks to the semi-supervised learning nature of TNet). This is295

particularly useful when we like to use actual observational data in training.296

The next result is a highlight of our method in that our model-constrained approaches297

satisfy the governing equation exactly at the training points. The aspects of practical imple-298

mentation are provided in section SM1.299

Remark 4.2 (Exactly satisfying the governing equations at training points). Note that both300

mcDNN and TNet inverse solutions satisfy the governing equations exactly at all training points.301

Since mcDNN and TNet share the same model-constrained term, we only need to provide the302

proof for TNet. Due to the assumption that (2.2) is well-posed, we can write the TNet training303

problem (TNet) equivalently as304

min
b,W

LTNet :=
1

2
kU0 � (Y,W,b)k2��1 +

↵

2

ntX

i=1

��yi
� G

�
wi

���2
⇤�1 ,(4.2)305

306

subject to307

F
�
 
�
yi,W,b

�
,wi

�
= f , i = 1, . . . , nt,308309

which clearly shows that in fact TNet formulation (TNet) is a hard-constrained optimization310

problem that ensures the forward equation (2.2) to be satisfied exactly at all the training311

points during the training.312

We now show that data randomization enhances not only the generalization of TNet313

solution but also its robustness to observational noise. To begin, we randomize a generic data314

vector y, e.g. one column of Y , as follows315

(4.3) ỹ = y + ",316

where a Gaussian noise vector " ⇠ N
�
0,�2I

�
with variances �2 is added to the data. We em-317

phasize that the following arguments also hold for any random noise vector with independent318

components, each of which is a random variable with zero mean and variances �2. Let E [·]319

denote the expectation with respect to ". Following [5], for a generic loss function L (ỹ), we320

perform the Taylor expansion around y up to second order to obtain321

(4.4) E [L (ỹ)] = L (y) + E
"
@L

@y

����
y

"

#
+

1

2
E
"
"T

@2
L

@y2

����
y

"

#
+ E

h
o
⇣
k"k2

⌘i
322

where we have used su�cient small noise variance �2 so that the high-order term o
⇣
k"k2

⌘
,323

using the standard “small o” notation, is negligible.324

This manuscript is for review purposes only.



10 HAI V. NGUYEN AND TAN BUI-THANH

For training data set with nt samples, we randomize each sample as ỹi = yi + "i, i =325

1, . . . , nt, where "i ⇠ N
�
0,�2

i I
�
. Note that we can use di↵erent noise levels for data random-326

ization. In that case, the (TNet) loss becomes327

(4.5) L
rand
TNet =

ntX

i=1

1

2

��u0 � (ỹ
i)
��2
��1 +

↵

2

��ỹi
� G

�
 
�
ỹi
����2

⇤�1

| {z }
=:J (ỹi)

.328

Replacing L with J (ỹi) in (4.4) yields329

(4.6) E
⇥
J

�
ỹi
�⇤

⇡ J
�
yi
�
+ �2

i

�
P

i
1 + P

i
2 + P

i
3 + P

i
4

�
,330

where331

(4.7) J
�
yi
�
=

1

2

��u0 � (y
i)
��2
��1 +

↵

2

��yi
� G

�
 
�
yi
����2

⇤�1 ,332

and the induced penalty terms are given by333

P
i
1 =

1

2
Tr

h�
ry 

�
yi
��T

��1
�
ry 

�
yi
��i

,334

P
i
2 =

↵

2
Tr

h�
ry

⇥
yi

� G � 
�
yi
�⇤�T

⇤�1
�
ry

⇥
yi

� G � 
�
yi
�⇤�i

,335

P
i
3 =

1

2
Tr

⇥
r

2
y 

�
yi
�
� ��1

�
 
�
yi
�
� u0

�⇤
,336

P
i
4 =

↵

2
Tr

⇥
r

2
y

⇥
yi

� G � 
�
yi
�⇤

� ⇤�1
�
yi

� G � 
�
yi
��⇤

,337
338

in which Tr (·) is the trace operator, and � denotes the dot product of a third-order tensor339

and a vector. It can be observed that the training loss with randomized data is the sum of340

the original loss plus four induced regularization terms. P i
1 is non-negative and promotes the341

smoothness of the neural network. The second term of (4.7) ensures that  is close to the342

right inverse of G, and P
i
2 strengthen this closeness by forcing the derivative of the G �  to343

the identity. These two e↵ects together behave like a Hermite interpolation in which not only344

the function values but also the derivatives are required to be matched closely at the training345

points. The two terms in (4.7) make  
�
yi
�
� u0 and yi

� G � 
�
yi
�
necessary small, and as346

a result, P i
3 and P

i
4 can be dominated by P

i
1 and P

i
2, respectively. It is interesting to see that347

P
i
3 and P

i
4 can encourage the second derivatives (and hence extra smoothness) of the neural348

network  and I � G �  to be small. In other words, the beauty of data randomization is349

that it can promote a H
2-Sobolev-like Tikhonov regularization for the neural network  via350

(4.7), P i
1, and P

i
3. Moreover, it can further enforce  to be the same as the right inverse of351

the PtO map G up to second derivatives via (4.7), P i
2, and P

i
4.352

Accounting for the data randomization for all training data we can—after taking the353

expectation with the random noise "i, i = 1, . . . , nt—write (4.5) as354

(4.8) E
h
L
rand
TNet

i
⇡ LTNet +

1

2

ntX

i=1

�2
i

�
P

i
1 + P

i
2 + P

i
3 + P

i
4

�
.355
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A TIKHONOV NETWORK APPROACH FOR INVERSE PROBLEMS 11

Thus, on average, the TNet loss Lrand
TNet with randomized data is approximately the sum of the356

original TNet loss (without randomization) plus four regularization terms for each training357

data point. These induced regularization terms play a vital role in stimulating the robustness358

and accuracy of the neural network. Indeed, without data randomization, the TNet loss (TNet)359

simply requires the neural network outputs to be close to the parameter data via the data misfit360

(the first) term, and the neural network, when pushed through the PtO map, resembles the361

observational data via the model-constrained (the second) term. Whereas, randomizing the362

data enforces not only the smoothness of the neural network  up to second order derivative363

(through the first term) but also the agreement of the neural network and the right inverse of364

the PtO map G up to second order derivatives (through the model-constrained term). Let us365

summarize the above result in the following theorem.366

Theorem 4.3. Let ỹi = yi + "i, i = 1, . . . , nt, where "i ⇠ N
�
0,�2

i I
�
. Then367

(4.9) E
h
L
rand
TNet

i
= LTNet +

1

2

ntX

i=1

�2
i

�
P

i
1 + P

i
2 + P

i
3 + P

i
4

�
+

ntX

i=1

E
h
o
⇣��"i

��2
⌘i

.368

Remark 4.4. Note that yi are not necessarily di↵erent from each other. However, the369

Hermite interpolation analogy tells us that we should have as many distinct baseline training370

points as possible for good generalization. It turns out that we just need a small number371

of distinct training points to have accurate results, as numerically shown in section 5. The372

above randomization approach also holds for nDNN and mcDNN approaches. Indeed, in the the373

final expression (4.8) we simply replace LTNet by LmcDNN (see (mcDNN)) and u0 by ui in P
i
3 for374

mcDNN. Similarly for nDNN, we replace LTNet by LnDNN (see (nDNN)) and remove P
i
2 and P

i
4.375

5. Numerical results.376

Noise realization. For all numerical results, we choose � = �max (y) for all �i in (4.9),377

where � denotes the relative noise level.378

Data generation and training. For non-linear problems in subsection 5.1, subsec-379

tion SM2.2 and subsection 5.2, we use a shallow neural network having one hidden layer with380

5000 ReLU neurons. We verified that a dense feed-forward neural network architecture with381

multiple layers could provide comparable results but with large training data sets. In small382

data regimes, i.e. 100 samples, deep networks perform poorly due to the vanishing gradient383

problem and/or the bias-variance trade-o↵ problem. Moreover, training a deep learning net-384

work faces further challenges [19, 58] that are beyond the scope of this paper. We thus focus on385

neural networks with a single hidden layer and this is su�cient to demonstrate the proposed386

TNet framework. Regarding optimization algorithm, the default ADAM [28] optimizer in JAX387

[9] is used. In all numerical results, weights and biases of the neural network are initialized by388

standard Gaussian distribution and a zero vector, respectively, using the same random seed.389

Therefore, we begin the training process with the same network for all cases.390

In order to be fair, within any comparison we use the same random seeds for noise. To391

ensure that more training data can o↵er more information, the training data set is generated392

in a nested manner, e.g., nt = 50 ⇢ nt = 100 ⇢ nt = 200 ⇢ . . ., and so on, where nt393

denotes the number of training samples. For any testing, except for the linear deconvolution394

problem in which we use 200 testing samples, a test data set of 500 samples is used to compare395
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12 HAI V. NGUYEN AND TAN BUI-THANH

approaches. The Tikhonov inverse solutions are obtained by the default BFGS algorithm [43]396

in Jax [9]. A summary of training parameters is presented in Table 1.397

Accuracy metric. To estimate the accuracy of each approach, we compute average398

relative errors from M = {200, 500} unseen random samples: the first based on pointwise399

values and the second on Euclidean norm of the physical parameter vector (which is a function400

of inverse parameter u: see (5.3) (5.5) (SM2.1)) as follows401

(5.1) Errj =
1

M

MX

i=1

⇣
!i,pred
j � !true

j

⌘2

k!truek2/m
⇥ 100 (%),402

and403

(5.2) Err =
1

M

MX

i=1

��!i,pred
� !true

��2

k!truek
2 =

1

m

mX

j=1

Errj (%),404

where superscript i denotes the ith sample, subscript j denotes the jth component of the405

vector under consideration, and m is the number of spatial grid points. Here, “pred” stands406

for the solution predicted by the neural network, and “true” for the synthetic ground truth407

parameters.408

Training parameters. Table 1 summarizes the specifications for neural network archi-409

tectures, training settings, testing data sets, etc.410

Table 1: Summary of training parameters for nDNN, mcDNN and TNet for nonlinear inverse
problems in subsection 5.1, subsection SM2.2 and subsection 5.2.

Network

Architecture 1 layer with 5000 neurons
Activation function ReLU
Weight initializer N (0, 0.02)
Bias initializer 0

Random seed 100

Training
Optimizer ADAM

Learning rate 10�3

Batch size =

(
nt if nt  500

500 otherwise

Data

Train data nt = p ⇢ nt = q, if p < q and p, q 2 N
Test data 500 samples (drawn independently)
Train random seed 18
Test random seed 28

Precision Double precision
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A TIKHONOV NETWORK APPROACH FOR INVERSE PROBLEMS 13

5.1. 2D heat conductivity inverse problem. The heat equation we consider is the follow-411

ing412

�r · (e!ry) = 20 in ⌦ = (0, 1)2413

y = 0 on �ext414

n · (e!ry) = 0 on �root,415416

where ! is the the conductivity field, y is the temperature field, and n is the unit outward417

normal vector on Neumann boundary part �root . Figure 2 shows the domain (left subfigure)418

and a 16⇥ 16 mesh (right subfigure) together with the locations of 10 observational points of419

the state y. In this problem, we are interested in reconstructing the conductivity field given420

a set of 10 pointwise observations.421

Generating train and test data sets. We start with drawing the parameter conduc-422

tivity samples via a truncated Karhunen-Loéve expansion423

(5.3) !(x) =
nX

i=1

p
�i�i(x)ui, x 2 [0, 1]2 ,424

where (�i,�i) are the eigenpairs of the following two-point correlation function [15]:425

(5.4) C (x1, x2) = exp

✓
�
kx1 � x2k1

�

◆
426

where k·k1 is the 1-norm onR
2, � = 0.02 is the correlation length. Here, u = (ui)

n
i=1 ⇠ N (0, I)427

is a standard Gaussian random vector. It should be noted that, rather than directly inverting428

for the physical parameter !, we reconstruct the coe�cient vector u. Specifically, we select429

n = 15 eigenvectors corresponding to the first 15 largest eigenvalues. For each sample, we430

discretize ! and we solve the heat equation for the temperature y by finite element method.431

Observations are obtained by extracting values of the temperature field at 10 observational432

points, which are then corrupted with additive Gaussian noise with a noise level of � =433

0.5%. Figure 3 displays five di↵erent pairs of samples of the log conductivity field ! and the434

corresponding temperature field in the data set d5. Note that we generate test pairs (!,y)435

using the same process.436

Next, we consider two cases of train data for learning the inverse map from observations437

to conductivity. Case I: Full base, i.e., nt distinct training samples are used; and Case II:438

we first pick a number of distinct baseline samples nb smaller than nt, and then replicate439

and randomize them to obtain nt samples for the train data set. For each case, the average440

relative error in (5.2) is computed with 500 true test samples for nDNN, mcDNN and TNet, and441

is compared to the relative error of the Tikhonov regularization approach.442

Case I: Training with full data sets nb = nt 2 {50, 100, 200}. We train nDNN, mcDNN443

and TNet networks using three di↵erent full training data bases, nt = 50 ⇢ nt = 100 ⇢444

nt = 200 and present the smallest errors in Table 2. As can be seen, larger data sets provide445

more accurate inverse maps. In particular, the average smallest relative errors for nDNN for446

these training sets are 60.41%, 50.69% and 49.07% which are higher than 57.27%, 50.39%447

and 48.40%, respectively, for mcDNN. With the smallest errors of 45.98%, 45.35% and, 44.98%,448
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14 HAI V. NGUYEN AND TAN BUI-THANH

Figure 2: 2D heat conductivity inverse problem. Left figure the domain and the bound-
aries; Right figure A 16⇥ 16 finite element mesh and 10 observational locations.

Figure 3: 2D heat conductivity inverse problem. 5 distinct training pair samples in data
set d5. Top row: the log conductivity field. Bottom row: The corresponding temperature
field and 10 observations points

correspondingly, TNet outperforms nDNN and mcDNN by a significant margin, and is similar449

to Tikhonov (TIK) approach. It is not surprising since TNet approach is designed to learn450

Tikhonov method, as discussed in section 4. This is further confirmed by the fact that while451

regularization parameters for mcDNN, TNet, and Tikhonov approaches are the same, namely452

↵ = 8000, only TNet and Tikhonov solutions agree well with each other for a wide range of453

regularization parameters, as shown in Figure 4. On the contrary, a data-driven approach such454

as nDNN requires su�cient training data (more than 100 for this case as Figure 4 indicates) to455

This manuscript is for review purposes only.



A TIKHONOV NETWORK APPROACH FOR INVERSE PROBLEMS 15

provide a reasonable solution. We note that mcDNN is not much more accurate than nDNN for456

this example, perhaps due to strong bias from the data as suggested by Corollary 3.2.457

The preceding discussion also alludes to an important point. In particular, identifying458

a good approximation of the optimal regularization parameter plays a vital part in TNet459

performance. This can be accomplished by finding a good regularization parameter for the460

Tikhonov approach and using it for TNet. The subject of determining a suitable regularization461

parameter has been studied extensively in the literature using various approaches including462

the Morozov discrepancy principle, L-curve, and cross-validation [41, 61, 63]. The numerical463

results in Figure 4 show that TNet and mcDNN results are robust in accuracy for a su�ciently464

large neighborhood around the optimal Tikhonov regularization parameter, and thus a reason-465

able regularization parameter is su�cient for TNet and mcDNN methods. Another important466

point that we show in the deconvolution subsection SM2.1 is that the optimal regularization467

parameter for TNet and mcDNN are numerically independent of training data sets, while it468

varies drastically for nDNN method. This implies TNet and mcDNN are more robust and reliable469

than nDNN.470

Table 2: 2D heat conductivity inverse problem, Case I. The average relative error (5.2)
over 500 test samples obtained by nDNN (optimal ↵ varies depending on the data set), mcDNN
(↵ = 8000), TNet (↵ = 8000) with nested data sets nt = 50 ⇢ nt = 100 ⇢ nt = 200, and
Tikhonov (TIK) with ↵ = 8000.

nDNN mcDNN TNet TIK
nt = 50 60.41 57.27 45.98

44.99nt = 100 50.69 50.39 45.35
nt = 200 49.07 48.40 44.98

Case II: Training with nb = 20 < nt 2 {60, 100, 200, 1000, 2000, 5000}. We now471

investigate how the data augmentation via randomization performs with nDNN, mcDNN and472

TNet. In particular, 20 noise-free baseline data pairs are replicated to create N samples of473

training data sets ranging from nt = 20 to nt = 5000, which are then randomized with 2%474

additive white noise. Table 3 shows the average relative error (5.2) of the test data set obtained475

by nDNN, mcDNN and TNet. In the first row are the results for the baseline case with nt = nb = 20476

and this is used as the reference for the other rows. It can be seen that data randomization477

and augmentation, though regularizes the smoothness of the network, negligibly improves478

the accuracy of nDNN. Clearly, nDNN is not equipped with the forward map and completely479

depends on the limited information given in the baseline data. On the contrary, the accuracy480

for mcDNN is improved by about 10% for nt � 1000. This is expected as Theorem 4.3 shows481

that randomization, via the model-constrained term, promotes the network solution to be482

the right inverse of the forward map up to second order. However, mcDNN’s accuracy level483

saturates with nt = 1000 and is still significantly higher than the Tikhonov approach (the484

last column). This is again due to data-dependent regularization nature (see Corollary 3.2),485

and hence biasing to the training data, of the mcDNN approach despite of the e↵ectiveness486

of model-constrained term. Unlike nDNN and mcDNN approaches, TNet results are much more487
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16 HAI V. NGUYEN AND TAN BUI-THANH

Figure 4: 2D heat conductivity inverse problem, Case I. The average relative error (5.2)
over 500 test samples with nested data sets nt = 50 ⇢ nt = 100 ⇢ nt = 200. The comparisons
are done for nDNN (dashed curves), mcDNN (dotted curves), TNet (colored solids curves), and
Tikhonov (TIK: black curve) over a wide range of regularization parameter values.

accurate regardless of any considered value of nt. Furthermore, they seem to approach the488

Tikhonov accuracy as nt increases from 20 to 5000. In particular, TNet needs only about 100489

samples replicated and randomized from nb = 20 distinct baseline samples to learn an inverse490

map as nearly accurate as the Tikhonov solution.491

Figure 5 shows the pointwise average error over 500 test samples (see (5.1)) for nDNN,492

mcDNN, TNet, and Tikhonov (TIK) approaches for nb = 20 and nt = 200. While nDNN and493

mcDNN have a high level of error, TNet has a similar error as the TIK solver in both values and494

patterns. For all these methods, we show in Figure 6 the reconstructed conductivities from495

a new unseen noisy data for nb = 20 and nt = 200. The synthetic ground truth conductivity496

and the corresponding temperature distribution are also presented for reference in the middle497

column. Again, the TNet inverse solution is in good agreement with the Tikhonov one, and498

thus with the ground truth, while nDNN and mcDNN yield quite inaccurate reconstructions.499

How many baseline pairs are su�cient for TNet? For this problem we numerically500

study how many distinct baseline pairs are needed to achieve a reasonably accurate inverse501

solution from the TNet approach. Figure 7 shows that nb = 5 baseline pairs are su�cient502

when nt � 1000. For example, with nb = 5 and nt = 1000, TNet achieves a relative error of503

approximately 46.7% compared to 44.99 % of the Tikhonov solution. We also observe that,504

given an inadequate number of distinct baseline pairs, i.e., one or two, it is challenging to learn505

a highly accurate inverse operator even with data augmentation, randomization, and large nt506

due to lacking information. This can be seen through the second term in (4.8). Indeed, in507
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Table 3: 2D heat conductivity inverse problem, Case II. The average relative error (5.2)
for nDNN (optimal ↵ varies depending on the data set), mcDNN (↵ = 8000), TNet(↵ = 8000),
and Tikhonov (TIK) (↵ = 8000) over 500-sample test data set obtained by training with
nb = 20 baseline data pairs.

nDNN mcDNN TNet TIK
nt = 20 89.66 77.61 55.56

44.99

nt = 60 86.87 77.02 47.35
nt = 100 87.19 72.58 46.27
nt = 200 89.59 71.81 46.01
nt = 1000 88.67 69.68 45.16
nt = 2000 88.31 69.72 45.23
nt = 5000 88.55 69.71 45.11

nDNN (80.59) mcDNN (71.81) TNet (46.01) TIK (44.99)

Figure 5: 2D heat conductivity inverse problem, Case II. The distribution of average
relative pointwise error (5.1) for nDNN, mcDNN, TNet, and Tikhonov (TIK) over 500 test samples
obtained with nb = 20 and nt = 200. The numbers in the parentheses are the average error
(5.2) incurred by these methods.

this case, we have508

1

2

ntX

i=1

�2
i

�
P

i
1 + P

i
2 + P

i
3 + P

i
4

�
=

nt

2nb

nbX

i=1

�2
i

�
P

i
1 + P

i
2 + P

i
3 + P

i
4

�
,509

and thus the induced regularizations are active only at the distinct baseline samples. For510

small baseline samples, there is simply not enough information for TNet to perform well. This511

again agrees with the Hermite interpolation analogy discussed in section 4.512
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nDNN Exact mcDNN

TNet Temperature field TIK

Figure 6: 2D heat conductivity inverse problem, Case II. Predicted (reconstructed)
heat conductivities for an unseen noisy test sample obtained by nDNN, mcDNN, and TNet neural
networks along with the Tikhonov reconstruction for nb = 20 and nt = 200. Shown in the
middle column are the synthetic ground truth (Exact) conductivity and the corresponding
temperature field for reference.

5.2. 2D Navier-Stokes equation. The vorticity form of 2D Navier-Stokes equation for513

viscous and incompressible fluid [33] is written as514

@t!(x, t) + v(x, t) ·r!(x, t) = ⌫�!(x, t) + f(x), x 2 (0, 1)2 , t 2 (0, T ]

r · v(x, t) = 0, x 2 (0, 1)2 , t 2 (0, T ]

!(x, 0) = !0(x), x 2 (0, 1)2
515

where v 2 (0, 1)2⇥(0, T ] is the velocity field, ! = r⇥v is the vorticity, !0 is the initial vorticity,516

f(x) = 0.1 (sin (2⇡ (x1 + x2)) + cos (2⇡ (x1 + x2))) is the forcing function, and ⌫ = 10�3 is the517

viscosity coe�cient. The spatial domain is discretized with 32 ⇥ 32 uniform mesh, while the518

time horizon t 2 (0, 10) is subdivided into 1000 time steps with �t = 10�2. We target to519

reconstruct the initial vorticity !0 from the measurements of vorticity at 20 observed points520

at the final time T = 10.521

Generating train and test data sets. To generate data pairs of (!,y), we draw522

samples of !(x, 0) using the truncated Karhunen-Loève expansion523

(5.5) !(x, 0) =
24X

i=1

p
�i �i(x)ui,524
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Figure 7: 2D heat conductivity inverse problem. The average relative error (5.2) as a
function of nb and nt for TNet approach.

where ui ⇠ N (0, 1) , i = 1, . . . , 24, thus u0 = 0,� = I, and (�i,�i) are eigenpairs obtained by525

the eigendecomposition of the covariance operator 7
3
2 (��+ 49I)�2.5 with periodic boundary526

conditions. Next, we discretize an initial vorticity !(x, 0), denoted as !0, and we solve the527

Navier-Stokes equation by the stream-function formulation with a pseudospectral method [33]528

to obtain a discrete representation !t of ! (x, t) at any time t. The observation operator is529

imposed on solution !10 to form the synthetic observables y, then a realization of additive530

white noise with � = 2% is added to generate a noise-corrupted y sample. A sample of (!0,!10)531

pair together with the observation points is shown in the middle column of Figure 10.532

Similar to the heat conductivity inverse problem in subsection 5.1 and Burgers’ equations533

in subsection SM2.2, we consider two cases of training data. Case I: Full data with distinct534

training samples are used; and Case II: we first pick a number of distinct baseline samples nb535

smaller than nt, and then replicate and randomize them to obtain nt samples for the train data536

set. We shall compare and contrast results from nDNN, mcDNN, TNet, and Tikhonov solutions.537

Case I: Full distinct training samples nb = nt = {50, 100, 200, 500}. In Figure 8 are538

the average relative error (5.2) versus the regularization parameter ↵ over 500 test samples539

with nb = nt = {50, 100, 200, 500}. The results are shown for nDNN (dashed curves), mcDNN540

(dotted curves), TNet (colored solids curves), and Tikhonov (TIK: black curve) solutions.541

The general behavior of the error as a function of regularization parameter is similar to the542

results for Burgers and heat equations, and thus omitted. Here, we focus on results at the543

“best” regularization parameters for all methods. The optimal regularization parameters of544

mcDNN and TNet agree with that of Tikhonov methods, namely ↵ = 2200, due to the same545

reason as explained in the three other numerical problems. Whereas, nDNN has small optimal546

regularization parameters. At the optimal regularization parameter, as summarized in Table 4,547
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with a given nt, TNet error is smaller than those of nDNN and mcDNN with twice amount of data.548

For example, TNet solution with nt = 100 incurs an error of 27.14%, smaller than 32.39% and549

28.54% of nDNN and mcDNN with nt = 200. It is not surprising that TNet solution tends to550

converge to Tikhonov (TIK) solution faster as it is designed to do so (see Corollary 4.1) while551

the others are not. Clearly, without being constrained to the forward map nDNN needs the552

largest amount of data to approximate the inverse map with the same level of accuracy.553

Figure 8: 2D Navier-Stokes equation, Case I. The average relative error (5.2) versus
the regularization parameter ↵ over 500 test samples with nb = nt = {50, 100, 200, 500}.
The results are shown for nDNN (dashed curves), mcDNN (dotted curves), TNet (colored solids
curves), and Tikhonov (TIK: black curve) solutions.

Case II: Training with nb 2 {10, 50}  nt 2 {50, 100, 200, 500, 1000}. Table 5 presents554

the relative error (5.2) of test data sets obtained by di↵erent approaches at the optimal regu-555

larization parameters. It can be seen that nDNN results are improved as more distinct baseline556

data pairs are deployed in training data sets. Nevertheless, for any baseline case, replication557

and randomization to generate nt data samples, while being more computationally demanding,558

do not provide additional accuracy in nDNN solutions. Again, this implies that the performance559

of nDNN completely relies on the underlying information provided by distinct baseline data.560

The behavior of mcDNN is, on the other hand, not predictable. In particular, replication and561

randomization improves the results for nb = 10 but not for nb = 50: perhaps due to the562

data-driven nature, and hence bias, of umcDNN
0 as discussed in section 4 after Corollary 4.1.563
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Table 4: 2D Navier-Stokes equation, Case I. The average relative error (5.2) over 500
test samples obtained by nDNN (↵ ⇡ 10), mcDNN (↵ = 2200), TNet (↵ = 2200) with nested data
sets nt = 50 ⇢ nt = 100 ⇢ nt = 200 ⇢ nt = 500, and TIK (↵ = 2200.)

nDNN mcDNN TNet TIK
nt = 50 43.00 37.86 30.71

21.93
nt = 100 37.98 31.15 27.14
nt = 200 32.39 28.54 26.18
nt = 500 28.08 26.62 24.22

On the contrary, TNet results are consistently and significantly improved with replication564

and randomization for nb 2 {10, 50}. In particular, for a given nb, the larger nt is, the more565

accurate the TNet solution. As further demonstrated in Figure 9, trained with nb = 50 and566

nt = 1000, the distribution of pointwise relative error for TNet is closest to that of Tikhonov567

solution, and is every where far lower than those of mcDNN and nDNN. Shown in Figure 10 are568

the predicted (reconstructed) initial vorticities for an unseen noisy test sample obtained by569

nDNN, mcDNN, and TNet neural networks for nb = 50 and nt = 1000 along with the Tikhonov570

reconstruction. Shown in the middle column are the synthetic ground truth initial vorticity571

and the corresponding final vorticity for reference. Again, TNet reconstruction is closest to572

TIK inversion and nDNN provides the most inaccurate solution.573

Table 5: 2D Navier-Stokes equation, Case II. The average relative error (5.2) for nDNN
(↵ ⇡ 10), mcDNN (↵ = 2200), TNet(↵ = 2200), and Tikhonov (TIK) (↵ = 2200) over 500-
sample test data set obtained with nb = {10, 50} baseline data pairs.

Training data
size (nt)

nb = 10 nb = 50
TIK

nDNN mcDNN TNet nDNN mcDNN TNet

nt = 50 85.09 73.15 58.71 43.00 37.86 30.71

21.93
nt = 100 85.37 72.58 48.46 42.03 38.80 30.06
nt = 200 85.87 64.04 39.75 43.17 37.74 29.06
nt = 500 85.85 50.76 38.28 43.29 37.10 27.91
nt = 1000 85.52 48.32 34.13 42.85 37.24 26.96

5.3. Training cost and speedup with deep learning solutions. The training costs for the574

case of nt = 1000 randomized training samples for heat, Burgers, and Navier-Stokes equations575

are presented in Table 6. It can be observed that the heat equation requires the least training576

time, 1.6 hours, while the corresponding times for the Burgers’ equation and Navier-Stokes577

equation are 16 and 20 hours, respectively. It should be noted that executing the forward map578

and the backpropagation constitutes the majority of the training cost. Table 6 also provides579

information on the computational cost of reconstructing an unseen test sample using the580
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nDNN (42.85) mcDNN (37.24) TNet (26.96) TIK (21.93)

Figure 9: 2D Navier-Stokes equation, Case II. The distribution of average relative point-
wise error (5.1) for nDNN, mcDNN, TNet, and Tikhonov (TIK) over 500 test samples obtained
with nb = 50 and nt = 1000. The numbers in the parentheses are the average error (5.2)
incurred by these methods.

nDNN Exact mcDNN

TNet Final vorticity TIK

Figure 10: 2D Navier-Stokes equation, Case II. Predicted (reconstructed) initial vortici-
ties for an unseen noisy test sample obtained by nDNN, mcDNN, and TNet neural networks along
with the Tikhonov reconstruction for nb = 50 and nt = 1000. Shown in the middle column
are the synthetic ground truth (Exact) initial vorticity and the corresponding final vorticity
for reference.

classical Tikhonov (TIK) regularization technique and our proposed deep learning approach2581

2Note that the cost for nDNN and mcDNN is the same as they have the same network architecture.
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TNet. We order the first column the increase in complexity from heat equation to Burger’s582

equation to Navier-Stokes equation. Here, the complexity is estimated based on the number583

of time steps, the operations carried out per time step, and the mesh size. As can be seen,584

the more complicated the problem is, the more time Tikhonov takes to obtain the solution.585

Unlike the Tikhonov approach, regardless of the complexity of the problems, the learned TNet586

inverse map using one hidden layer with 5000 neurons takes the same small amount of time:587

approximately 0.0003 seconds. Note that the Tikhonov solver is implemented directly in588

JAX using the default BFGS algorithm with the gradient computed by the default Autograd589

functionality. Thus, the Tikhonov computation enjoys JAX optimized features including XLA590

(accelerated linear algebra), JIT (just-in-time compilation), and the nested primitive loop591

technique. Even with such optimization, Tikhonov is still orders of magnitude slower than592

TNet. In particular, for the Navier-Stokes equation, TNet is 24, 785 times faster than Tikhonov.593

We expect the computational gain is much more significant for larger-scale 3D time-dependent594

nonlinear forward problems. Clearly, once trained, obtaining TNet solutions is simply a feed-595

forward neural network evaluation, which could be close to real-time or real-time depending596

on the depth and the width of the network.597

Table 6: The training cost (measured in hours) for the case of nt = 1000 randomized training
samples for all three problems. The computational time (measured in seconds) for inverse
solution governed by heat, Burgers, and Navier-Stokes equation using TNet (second column)
and Tikhonov (third column) methods, and the speed-up (fourth column) of TNet relative to
Tikhonov using NVIDIA A100 GPUs on Lonestar6 at the Texas Advanced Computing Center
(TACC).

Inverse Problems Training (hours) TNet (seconds) TIK (seconds) Speed-up
Heat equation 1.6 2.74⇥ 10�4 4.36⇥ 10�2 159

Burger’s equations 16.0 2.93⇥ 10�4 1.08 3,683
Navier-Stokes equation 20.0 2.93⇥ 10�4 7.26 24,785

6. Conclusions. We argue that in order for a DNN to generalize well in insu�cient data598

regimes, it should be equipped with information encoded in the underlying mathematical599

model that is not or partially covered in the data set. In other words, it is natural to require600

DNN to be aware of the underlying mathematical models (or discretizations) in order for601

it to be a reliable and interpretable tool for sciences and engineering applications. Indeed,602

we have shown that the proposed model-constrained deep learning approaches are the same603

as Tikhonov regularization methods for linear inverse problems, while it is not clear if in-604

verse solutions using purely data-driven DL methods are interpretable. We have shown that605

data randomization can further enhance the robustness and the generalization of our model-606

constrained deep neural networks. The numerical results not only confirm the theoretical607

findings but also show that even with as little as 1 training data sample for 1D deconvolution,608

5 for inverse heat conductivity, 100 for inverse initial condition for time-dependent 2D Burgers’609

equation, and 50 for inverse initial condition for 2D Navier-Stokes equations, TNet solutions610

can be as accurate as Tikhonov solutions while being several orders of magnitude faster. This611

This manuscript is for review purposes only.



24 HAI V. NGUYEN AND TAN BUI-THANH

is not possible without the model-constrained term, replications, and randomization. Ongoing612

work is to understand under which conditions TNet solution converges to Tikhonov solution613

for nonlinear inverse problems. Of interest is to estimate the minimum number of distinct614

baseline training samples to obtain a certain accuracy on average for unseen data. Inversions615

governed by fluid flows with high Reynolds numbers and shocks are an important class of616

problems in our portfolio, and they are under investigation. Extension to statistical inver-617

sions is also part of our future work. The main limitation of TNet is that a di↵erential solver618

is needed during training. This can be resolved by using a di↵erential numerical library. An-619

other approach is to replace the di↵erential solver with di↵erential residual evaluation. We620

will report these approaches in future work.621
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