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Abstract

In this work, we present a hierarchical batch quality control strategy with real-time process safety
management. It features a multi-time-scale framework augmenting: (i) Risk-aware model predictive
controller for short-term set point tracking and dynamic risk control under disturbances; (ii) Control-
aware optimizer for long-term quality and safety optimization over the entire batch operation; (iii)
Intermediate surrogate model to bridge the gap by readjusting the optimizer operating decisions for
the controller. All of the above problems are solved via multi-parametric mixed-integer quadratic
programming with a key advantage to generate o✏ine explicit control/optimization laws as a�ne
functions of process and risk variables. This allows for the design of fit-for-purpose risk management
plan prior to real-time implementationwhile reducing the need repetitive online dynamic optimization.
A unified process model is used to underpin the consistency of hierarchical operational optimization.
The proposed approach o↵ers a flexible strategy to integrate distinct time scales which can be selected
separately tailored to the process-specific need of control, fault prognosis, and end-batch quality control.
A T2 batch reactor case study is presented to showcase this approach to systematically address the
interactions and trade-o↵s of multiple decision layers toward improving process e�ciency and safety.

Keywords: Quality Control, Multi-Parametric Model Predictive Control, Dynamic Risk Analysis,
Multi-Time-Scale Optimization

1. Introduction1

Chemical process operations typically follow a2

sequential and reactive strategy to determine pro-3

cess control and safety management actions based4

on set point deviations, product o↵-specifications,5

or fault occurrences at the current time step.6

It remains a central yet open research question7

on how to optimize operations integrally over8

multiple time scales to safely address the in-9

teractions and trade-o↵s between di↵erent tasks10
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(e.g., control, real-time optimization, scheduling) 11

[1, 2]. This work aims to investigate a represen- 12

tative process application requiring such multi- 13

time-scale operational optimization [3, 4], i.e. the 14

integration of batch process control, end-product 15

quality control, and fault prognosis (as shown in 16

Fig. 1). 17

In non-continuous processes (e.g., batch and 18

semi-batch reactors), the end-product quality 19

cannot be measured until the operation is termi- 20

nated. It is thus essential to develop advanced 21

control optimization techniques for real-time end- 22

product quality prediction while optimizing pro- 23

cess economics under disturbances [5, 6, 7]. An 24

indicative list of research studies on batch qual- 25

ity monitoring and control is presented in Table 26
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Figure 1: of process control, safety management, and qual-
ity assurance.

1. Theoretical approaches were developed us-27

ing first principles model to quantitatively pre-28

dict the entire batch trajectory [8, 9]. To circum-29

vent process-specific model development, inferen-30

tial quality monitoring was utilized in a correc-31

tive manner to adjust the batch operation path32

through predictions inferred by measured process33

data [10]. Online measured data could be an-34

alyzed via principal component analysis (PCA)35

or partial least-squares (PLS) regression [11, 12],36

coupled with data completion techniques to im-37

pute the “missing data” up to batch-end for qual-38

ity estimation [13]. A more recent work [14]39

showed improved prediction accuracy using an40

augmented PLS model built on hybrid simulated41

and measured data. Data-driven batch moni-42

toring approaches have received increasing inter-43

estwhich leverage support vector techniques and44

neural networks [15, 16]. For quality control,45

model predictive control (MPC) strategies have46

been further integrated with PCA and PLS mod-47

elswhich demonstrated superior performance than48

proportional-integral controllers [17, 18]. With49

advancements in real-time computing, nonlinear50

model predictive control (NMPC) was success-51

fully applied to fed-batch bioreactors [19]. Simi-52

larly, economic model predictive control (EMPC)53

approaches can leverage modern computing power54

to solve batch control problems in an online fash-55

ion [20, 21]. Multi-parametric MPC (mp-MPC)56

provides an alternative strategy which can e↵ec-57

tively enhance computational e�ciency [22]. Ex-58

plicit control laws can be generated o✏ine a priori59

to replace online dynamic optimization with mp-60

MPC look-up map. Notably, the explicit solutions61

from multi-parametric programming also provide 62

an instrumental link to integrate multi-time-scale 63

(e.g., batch control and scheduling [23], simulta- 64

neous design and control [24]). 65

Process safety management presents an addi- 66

tional decision layer to prevent and minimize haz- 67

ardous incidents due to, e.g.equipment failure. 68

Extensive e↵orts have been made to integrate ad- 69

vanced control with fault diagnostic algorithms 70

[26, 27], such as fault-tolerant control [28, 29] 71

which takes reactive control actions to remedy 72

fault from developing to severe failure. Fault 73

prognosis [30, 31] has so far been under-exploited, 74

which strives to detect fault at the early devel- 75

oping stage and predict its propagation to en- 76

able proactive risk management. Conventional 77

process safety analyses (e.g., hazard and oper- 78

ability study [32, 33], quantitative risk assess- 79

ment [34]) are performed prior to real-time op- 80

eration and updated periodically throughout the 81

plant lifetime such as every five years. However, 82

they fail to capture the impact of dynamically 83

varying operating conditions due to uncertain- 84

ties or real-time [35]. Toward prognostic process 85

safety management, model predictive safety sys- 86

tem was developed to signal the alarm system if 87

the plant model was foretasted to violate oper- 88

ability or safety constraints [36, 37]. Strategies 89

to integrate process safety and control were pro- 90

posed by characterizing a maximum set of the 91

state space, within which the systems dynamic 92

operation could be theoretically guaranteed as 93

safe and stable, e.g.via pertinent systems theory 94

[38] and Lyapunov level set [39]. The Lyapunov- 95

based control approaches have also been extended 96

to ensure stable and safe process operations from 97

the aspect of [40]. Dynamic risk assessment of- 98

fers another promising way forward for the on- 99

line monitoring of process safety performance us- 100

ing timely-updated and process-specific probabil- 101

ity and severity data [41, 42, 43]. Recent works ex- 102

plored the integration of dynamic risk assessment 103

and model predictive control [44], leveraging the 104

model-based moving horizon prediction for fault 105

prognosis. Namely, if any fault is predicted dur- 106

ing the next MPC output horizon, alarms would 107

be triggered ahead of time. A major challenge to 108
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Table 1: Batch quality monitoring and control approaches – an indicative list.
Focus Authors Main Features
Quality Russell et al. [8] Model-based state estimation framework to address uncertain initial conditions
monitoring Nomikos &

Applying PCA and PLS to infer process variable trajectories
MacGregor [11]
Choi et al. [13] Integrated methods with PCA and PLS
Ghosh et al. [14] Augmented PLS model built on hybrid simulated and measured data
Yao et al. [15] Data-driven approach based on functional support vector data description
Kay et al. [16] Soft sensor integrating autoencoder and heteroscedastic noise neural networks

Quality Kravaris et al. [9] Nonlinear control algorithm for batch trajectory tracking
control Flores-Cerrillo

Multivariate empirical model predictive control based on batch PCA models
& MacGregor [17]
Mesbah et al. [25] Dynamic control optimization based on nonlinear moment model
Aumi et al. [18] Integrating local data-driven models and inferential model for predictive control
Chang et al. [19] NMPC based on dynamic flux balance model for fed-batch reactors
Rashid et al. [21] EMPC approach for optimizing batch duration and economics

these approaches lies in the equivalence of con-109

troller output horizon with fault prognosis hori-110

zon. For process systems with very fast dynamic111

systems (e.g., seconds or less), the online MPC112

computational load will be intensive or even in-113

tractable to cover a 20-minute fault prognosis114

horizon which is essential for the operators to take115

responsive actions to alarms.116

With the ongoing digital transformation creat-117

ing more dynamic and interconnected chemical118

plants, a systematic approach is essential yet cur-119

rently lacking which can fully integrate process120

control, end-batch quality control, and fault prog-121

nosis to increase the overall process e�ciency un-122

der uncertainties with guaranteed process safety.123

To address this gap, this work proposes a hier-124

archical risk-based model predictive quality con-125

trol approach which augments multiple multi-126

parametric problems to bridge the large time span127

in a temporally scalable manner. The remaining128

sections of this paper are structured as follows:129

Section 2 introduces the proposed approach for130

risk-based model predictive quality control with131

hierarchical multi-parametric optimization formu-132

lations, particularly highlighting the role of ex-133

plicit solutions. Section 3 demonstrates the ap-134

proach on a case study of safety-critical batch re-135

actor. Section 4 presents concluding remarks and136

ongoing work.137

2. Methodology: Risk-based Model Pre- 138

dictive Quality Control 139

In this section, we first provide an overview 140

of the proposed methodology followed by the de- 141

tailed mathematical modeling and formulation of 142

each supporting component. 143

2.1. Overview of the Methodology 144

The proposed hierarchical approach for risk- 145

based model predictive quality control is shown 146

in Fig. 2, which integrates the following key com- 147

ponents: 148

• Short-term risk-aware controller — which 149

determines the optimal control actions on a 150

characteristically short (e.g., minutes or sec- 151

onds). The controller is designed for dynamic 152

risk monitoring and control for safety con- 153

siderations [45, 46] in addition to perform- 154

ing routine tasks such as disturbance rejec- 155

tion and set point tracking of major process 156

variables (e.g., temperature, purity). 157

• Long-term control-aware safety and quality 158

optimizer — which delivers an optimal in- 159

put/output set point trajectory over a char- 160

acteristically long . The optimizer forecasts 161

the entire (or su�ciently long) batch dura- 162

tion, ensuring operational safety and quality 163

targets to be satisfied. The input/output set 164
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Figure 2: Hierarchical risk-based model predictive quality control.

points are used to guide the controller opera-165

tions. Economics considerations can also be166

included in the optimizer objective function.167

• Intermediate surrogate model – which aims to168

mitigate the optimizer and controller discrep-169

ancy. When necessary, the surrogate model170

[23] translates the optimizer decisions at a171

larger time step to more achievable set points172

for the controller at a smaller time step.173

The risk controller, quality optimizer, and174

surrogate model are built on the same pro-175

cess and safety system model to ensure consis-176

tency. It is worth highlighting that the opti-177

mizer and surrogate model utilize the closed-loop178

form of process and safety system model, thus179

being aware of the risk control actions in a pre-180

dictive manner. All these three-level decision181

makers are solved as multi-parametric (mixed-182

integer) linear/quadratic programming problems,183

from which explicit solution maps can be ob-184

tained o✏ine a priori. A general multi-parametric185

quadratic programming (mp-QP) problem is186

given in Eq. 1 to showcase the idea of explicit187

solutions. More detail can be found in the recent188

books [22, 47]. As such, the online implementa-189

tion only requires a�ne function evaluation using 190

the explicit solution maps instead of repetitively 191

performing online dynamic optimization. 192

Example of mp-QP and explicit solutions 193

J⇤(✓) = minz
1
2z

TQz + cT z
s.t. Az  b+ F ✓

Aeqz = beq + Feq✓
(1)

where z is the vector of decision variables, ✓ is 194

the vector of uncertain parameters which can in- 195

clude state variables, set points, disturbances, etc. 196

in process control applications, A and b are the 197

coe�cient matrices to define the inequality con- 198

straints, Aeq and beq are the coe�cient matrices 199

to define the equality constraints. The optimal 200

decision variables z⇤ can be explicitly expressed 201

as a function of the uncertain parameters✓as pre- 202

sented in Eq. 2. Key theoretical properties of the 203

explicit solutions include: (i) z⇤(✓) is continuous 204

and piece-wise a�ne, (ii) the uncertain parameter 205

space is partitioned to convex polyhedral regions 206

(i.e., critical regions CR), and (iii) the optimal 207

objective function J⇤(✓) is convex and piece-wise 208
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quadratic.209

z⇤(✓) =

8
><

>:

K1✓ + r1, ✓1 2 CR1 = {CR1
A✓1  CR1

b}
...

Ki✓ + ri, ✓i 2 CRi = {CRi
A✓i  CRi

b}
(2)

where K and r are coe�cient matrices to define210

the explicit solutions, CRA and CRb are coe�-211

cient matrices to define the corresponding critical212

regions.213

2.2. Modeling and Hierarchical Multi-parametric214

Formulations215

Hereafter, we discuss each key element consti-216

tuting the above risk-basemodel predictive control217

approach.218

2.2.1. Dynamic Risk Modeling219

Dynamic risk modeling by Bao et al. [45] is220

adopted to indicate online process safety perfor-221

mance based on the real-time values of safety-222

critical process variables (e.g., xt). Some of its223

key features to enable the integration with process224

control and real-time include: (i) The support of225

real-time process safety monitoring by updating226

fault probability and severity consequence in an227

instant manner as a function of safety-critical pro-228

cess variables, (ii) P (x(t)) and S(x(t)) take stan-229

dardized values at µ±3�, which provide a uniform230

basis to compare the safety performance of di↵er-231

ent process operating strategies, (iii) Model-based232

forecast can be implemented, as showcased in this233

work, leveraging the MPC and operational opti-234

mization formulations. As shown in Eq. 3a, the235

dynamic risk index RI(t) is defined as the product236

of fault probability P (t) and consequence severity237

S(t). This work assumes that xt follows the Gaus-238

sian probability distribution with the mean as µ239

(i.e., nominal operating condition) and the stan-240

dard deviation as �. Based on statistics, 99.7%241

of the xt values are expected to fall within the242

three-sigma region (i.e., three-sigma rule). µ±3�243

is therefore utilized as the upper and lower con-244

trol limit. The high risk region is defined as245

RI value greater than a certain threshold. The246

threshold value is determined based on prior pro-247

cess knowledge and/or historical operating data,248

beyond which the process is at a higher proba- 249

bility of abnormal operations. The fault proba- 250

bility P (t) is calculated via the Gaussian proba- 251

bility density functionas shown in Eq. 3b. The 252

fault probability is thus standardized at µ ± 3�, 253

which provides a normalized benchmark enabling 254

the comparison of di↵erent process operation (and 255

design) strategies against process safety consider- 256

ations [48]. The consequence severity S(t) is cal- 257

culated using an exponential function based on 258

the deviation of x(t) from the nominal operating 259

condition, as given in Eq. 3c. 260

As a result, the overall risk index RI(t) emerges 261

as a nonlinear pseudo-exponential function as 262

shown in Fig. 3a, which grows increasingly faster 263

as xt departs from the nominal operating condi- 264

tions. The formulation of Eq. 3 renders a notably 265

higher risk when xt falls out of the three-sigma 266

region (i.e., when the 0.3% low probability events 267

happen). This feature is instrumental for the in- 268

tegration of real-time process safety management 269

with process operations, as it allows the controller 270

and optimizer to systematically decide the prior- 271

ity among various operational objectives. For ex- 272

ample, if the risk index is high or predicted to 273

escalate, the controller and optimizer will priori- 274

tize risk mitigation. In contrast, if the risk index 275

is relatively low, the controller and optimizer will 276

prioritize to optimize operational stability, costs, 277

and/or end-batch quality. A piece-wise lineariza- 278

tion formulation (Eq. 4) is further developed to 279

approximate the original pseudo-exponential for- 280

mulation as shown in Fig. 3b. In the cases when 281

the critical process variables follow more nonlin- 282

ear distributions, e.g.binomial distributions, the 283

piece-wise linearization can be conducted in a gen- 284

eralized manner to approximate the original func- 285

tion. This allows for a linear model-based control 286

scheme which will be discussed in the next sec- 287

tion. Although a linear form of the dynamic risk 288

model is to be used for control, the original non- 289

linear nature of the risk model is critical. This 290

is because the nonlinear risk model dictates the 291

di↵erent operating regions according to risk prop- 292

agation speeds, which is further reflected by the 293

piece-wise linearization. Therefore, the process 294

and risk control can be self-adaptive to di↵erent 295
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operational objectives, e.g.to sustain stable oper-296

ation or to adapt increasingly aggressive risk con-297

trol.298

Original formulation299

RI(t) = P (t)⇥ S(t) (3a)
300

P (xt) =

Z xt

�1

1p
2⇡�

e�
[xt�(µ±3�)]2

2�2 dt (3b)

301

S(xt) = 100
(µ±3�)�xt

µ�xt (3c)

Piece-wise linearization302

RI(t) =

8
>>><

>>>:

m1x(t) + b1, x(t) 2 [ x1, x1 )

m2x(t) + b2, x(t) 2 [ x2, x2 )

m3x(t) + b3, x(t) 2 [ x3, x3 )

m4x(t) + b4, x(t) 2 [ x4, x4 ]

(4)

where m and b are the slope and intercept of the303

piece-wise linearized risk functions, underbar and304

overbar respectively represent the lower and up-305

per bounds for a given parameter, and subscript306

i 2 {1, 2, 3, 4, ...} denotes the corresponding lin-307

earized region as illustrated in Fig. 3b.308

2.2.2. Short-Term Risk-Aware Controller309

Based on the above dynamic risk model, a risk-310

aware model predictive control strategy has been311

developed in our prior work [46]. For the continu-312

ity of this work, the MPC formulation is briefly313

introduced in what follows using Eq. 5. The con-314

trol objective (Eq. 5a) can be defined for set point315

tracking, disturbance rejection, etc. The risk in-316

dex can also be treated as an output variable and317

incorporated into the control objective, as will be318

showcased later in this work. Eqs. 5b-c present319

the linearized process state space model which can320

be obtained from nonlinear high-fidelity process321

models using Jacobian linearization [49], model322

approximation [24, 50], or data-driven modeling323

[51, 52]. Eqs. 5d-f reformulate the piece-wise dy-324

namic risk model (Eq. 4) using mixed-integer lin-325

ear equations. ji is introduced as a binary variable326

to denote if the current safety-critical variable x(t)327

lies in the ith linearized region (or not), thereby328

activating the corresponding RI linear approxi-329

mation (or not). For example, if the x(t) lies in330

Figure 3: Dynamic risk modeling

the first section (x1,lo  x  x1,up), then Eq. 5f 331

holds true with j1 = 1, j2, j3, j4 = 0. As a result, 332

Eq. 5e gives M = m1 and b = b1 which renders 333

Eq. 5d to be RI � b1 = m1x. This approach 334

thus ensures that the slope (M) and y-intercept 335

(b) in Eq. 5d are the slope and y-intercept of 336

the active section of the linearized Risk Index in 337

Eq. 4. In this way, the optimal risk control de- 338

cisions are made based on the combined process 339

and risk model, which is crucial for the systems- 340

based operations and safety-critical to be aware 341

of each other. Eqs. 5g-h include path constraints 342

to state, input, output, and risk variables. There- 343

fore, this risk-aware MPC strategy o↵ers two lay- 344

ers of process safety management: (i) Control of 345
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dynamic risk as an overarching operational objec-346

tive, (ii) Constraining the operating path within347

a safe state space. Eq. 5 can be reformulated348

into a multi-parametric mixed-integer quadratic349

programming (mp-MIQP) problem [46]. As the350

binary variables ji are mutually exclusive (Eq.351

5f), the mp-MIQP problem can be simplified to352

a number of mp-QP problems valid at the cor-353

responding linearized risk region. Explicit risk-354

aware control laws can be obtained as piece-wise355

a�ne functions of states, outputs, risk index, set356

points, and disturbances (Eq. 6).357

Explicit control laws and critical regions358

min
usk

xT
NPxN +

OH�1X

t=1

(ysk � yRsk)
TQRk(ysk � yRsk)

+
CH�1X

t=0

(usk � uR
sk)

TRk(usk � uR
sk)

(5a)

359

s.t. xsk+1 = Asxsk +Bsusk (5b)
360

ysk = Csxsk +Dsusk (5c)
361

RIsk � b = Mxsk (5d)
362 X

i

miji = M
X

i

biji = b
X

i

xiji = xsk (5e)
363 X

i

ji = 1 ji 2 {0, 1} xi,loji  xi  xi,upji (5f)
364

xsk  xsk  xsk usk  usk  usk (5g)
365

y
sk

 ysk  ysk RIsk  RIsk  RIsk (5h)

where subscript sk denotes the short time step366

for risk-aware control, i represents the di↵erent367

regions of the linearized risk model. P is terminal368

weight, QR and R are controller weights, CH and369

OH are respectively control and output horizons,370

x is the vector of state variables, y is the vector of371

output variables, u is the vector of input variables,372

d is the vector of disturbances, As, Bs, Cs, and Ds373

are matrices of the linearized state space model.374

Superscript R defines set point.375

Explicit risk-aware control laws376

usk = Ki,sk✓sk + ri,sk

✓sk 2 CRi = {CRi
A,sk✓sk  CRi

b,sk}
✓sk = [xsk, ysk, RIsk, y

R
sk, dsk]

(6)

where ✓ defines the parameter set for mp-MPC,377

CR are critical regions. CRA and CRb are coe�-378

cient matrices for critical regions.379

2.2.3. Long-Term Control-Aware Safety and 380

Quality Optimizer 381

The optimizer contributes to maintain an ac- 382

ceptable level of risk for the process while reaching 383

end-batch quality specifications. It forecasts and 384

optimizes the process safety, quality, and/or eco- 385

nomics performance over a su�ciently long time 386

span, ideally up to the end of batch. The mathe- 387

matical formulation of this optimization problem 388

is presented in Eq. 7. The objective function (Eq. 389

7a) can be formulated in linear or quadratic form 390

accounting for the minimization of cost, energy 391

consumption, and/or o↵sets from quality target, 392

etc. The optimizer utilizes the closed-loop pro- 393

cess and safety state space model (Eqs. 7b-c), 394

i.e. with the risk-aware control laws integrated. 395

A larger time step lT is adopted to ensure the 396

computational e�ciency for prediction over hours 397

or even days. This safety and quality optimizer 398

problem is also reformulated into mp-MIQP prob- 399

lems, generating explicit solutions prior to online 400

operationas given in Eq. 8. The resulting input, 401

output, and/or risk set points (uR
lT , y

R
lT , RIRlT ) are 402

then sent to guide the operations of the risk-aware 403

controller. The optimizer provides key advantages 404

which include: 405

• Enhanced computational e�ciency and pre- 406

diction accuracy – as the methodology avoids 407

relying on the risk-aware controller for end- 408

batch quality prediction which may require a 409

significantly large number of output horizons 410

at smaller control time steps. 411

• Flexible selection of controller and optimizer 412

time scales – while their fully integrated, the 413

selection of respective time scales is indepen- 414

dent. This leads to a temporally scalable 415

methodology to fit the purpose of distinct op- 416

erational optimization objectives across mul- 417

tiple time scales (e.g., short-term control ver- 418

sus long-term cost optimization). 419

• Prescriptive safety management – The opti- 420

mizer adds another layer of dynamic risk fore- 421

cast and fault prognosis over a longer time 422

horizon, particularly assessing the impact on 423
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safety of real-time operational decisions un-424

der disturbances.425

Optimizer formulation426

min
uR
lT

X
W1||yRlT � yQT ||p1 +W2||yRlT ||p2 +W3||uR

lT ||p3

(7a)427

s.t. xlT+1 = AlxlT +Blu
R
lT + CldlT (7b)

428 
yRlT

RIRlT � b

�
=


Dl

Ml

�
xlT +


El

0

�
uR
lT (7c)

429

xlT  xlT  xlT uR
lT  uR

lT  uR
lT (7d)

430

yR
lT

 yRlT  yRlT RIRlT  RIRlT  RI
R
lT (7e)

where subscript lT denotes the long time step for431

control-aware optimizer,W1 andW2 are weighting432

matrices for quality and input-related economics433

considerations, p1, p2, p3 can take the value of434

1 or 2 resulting in linear or quadratic objective435

functions, yQT are the quality control targets, and436

the matrices of the state space model Al, Bl, Cl,437

Dl, and El are derived by first simulating closed-438

loop input-output data with risk controller on and439

employing system identification techniques.440

Explicit control-aware optimizer solutions441

uR
lT = Ki,lT ✓lT + ri,lT

✓lT 2 CRi
lT = {CRi

A,lT ✓  CRi
b,lT}

✓lT = [xlT , y
R
lT , RIRlT , y

QT
lT , dlT ]

(8)

2.2.4. Intermediate Surrogate Model442

For substantially di↵erent time scales, it may be443

possible that the operating path suggested by the444

optimizer misses important process and safety dy-445

namics or constraints such that the long-term set446

points are not achievable or overly aggressive to447

the risk-aware controller. In this instance, it be-448

comes essential to interpret the input/output set449

points from the optimizer for the risk-aware con-450

troller using an intermediate to ensure smooth op-451

erational transitions while still reaching the end-452

point quality with desired process safety perfor-453

mance. To this purpose, a surrogate modeling454

approach [23] is employed as shown in Eq. 9. The455

quality control performance will be the first cri-456

terion if an intermediate surrogate model should457

be applied. If desired quality control performance 458

can be achieved, an intermediate surrogate model 459

may not be necessary. Otherwise, if o↵-spec be- 460

havior is observed as that shown in Fig. 11, some 461

important process dynamics may be missed due 462

to the lack of an intermediate surrogate model. 463

Computational load presents another main rea- 464

son for having a surrogate model, in order to cover 465

longer optimizer predictions but with a tractable 466

number of time steps. The surrogate model aims 467

to determine the new set points at the intermedi- 468

ate time step (mt) by minimizing their squared er- 469

ror against the optimizer set points at longer time 470

steps (lT ). This intermediate sampling interval is 471

currently determined via trial-and-error tuning to 472

obtain desired control performance. There exists 473

a tradeo↵ where smaller intervals can better cap- 474

ture the system dynamics, but the set points from 475

the long term optimizer may be too aggressive to 476

be achieved during the small time duration. On 477

the other hand, larger intervals face the risk of 478

missing certain important system dynamics (e.g., 479

change of process gain) while may also provide 480

smoother transition between the long-term opti- 481

mizer and short-term controller. As shown in Eq. 482

9, the surrogate model is also built on the closed- 483

loop process and safety state space model, i.e. 484

with the risk-aware control laws integrated. The 485

state-space model in Eqs. 9b-c can be obtained 486

via two strategies: (i) re-discretizing Eqs. 7b-c to 487

smaller time steps, or (ii) re-performing systems 488

identification using input-output closed loop con- 489

trol data with risk-aware controller active. The 490

surrogate model is again formulated as an mp- 491

MIQP problem with the mixed-integer variables 492

resulted from piece-wise risk linearization. The 493

explicit solutions are exemplified in Eq. 10 for 494

the model-based mapping between the surrogate 495

model set points and optimizer set points. 496

Surrogate model formulation 497

min
uR
mt

X
||yRmt � yRlT ||2 + ||uR

mt � uR
lT ||2 (9a)

498

s.t. xmt+1 = Amxmt +Bmu
R
mt + Cmdmt

(9b) 499
yRmt

RIRmt � b

�
=


Dm

Mm

�
xmt +


Em

0

�
uR
mt (9c)
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xmt  xmt  xmt uR
mt  uR

mt  uR
mt (9d)

500

yR
mt

 yRmt  yRmt RIRmt  RIRmt  RI
R
mt (9e)

where subscriptmt refers to the intermediate time501

step of the surrogate model.502

Explicit surrogate model solutions503

uR
mt = Ki,mt✓mt + ri,mt

✓mt 2 CRi
mt = {CRi

A,mt✓  CRi
A,mt}

✓mt = [xmt, y
R
mt, RIRmt, y

R
lT , RIRlT , u

R
lT , dmt]

(10)

2.3. Remarks504

For the introduced risk-based model predictive505

quality control approach, three explicit/multi-506

parametric solution maps are respectively ob-507

tained for the hierarchical control-aware safety508

and quality optimizer, intermediate surrogate509

model, and risk-aware controller. In this way,510

the decisions from upper-level (in longer term)511

can be seamlessly conveyed to the lower-level (in512

shorter term), while the lower-level dynamics are513

explicitly aware by the long-term representation.514

Several remarks can be made here to highlight515

the key advantages of this proposed approach: (i)516

Multi-parametric programming enables the gen-517

eration of explicit control or optimization solu-518

tions a priori as piece-wise a�ne functions of pro-519

cess states, outputs, risk, disturbances, etc. From520

this, a quantitative and algorithmic understand-521

ing on the impact of disturbances and real-time522

(e.g., set point selection) can be generated even523

before operating the process online. The risk con-524

troller can thus be tuned accordingly to max-525

imize the safe operating region against distur-526

bances, while simultaneously optimizing the over-527

all batch e�ciency and productivity; (ii) Di↵erent528

operating tasks (e.g., control, cost, fault progno-529

sis) can exhibit distinct slower or faster dynam-530

ical time scales spanning from seconds to hours.531

The three-level hierarchical formulation addresses532

the respective tasks at their characteristic time533

scales while e↵ectively integrating the at a super-534

visory level instead of undertaking all the deci-535

sions at every minimum time step; (iii) Multi-536

parametric programming replaces repetitive on-537

line optimization with online a�ne function eval-538

uation, which has been proven to significantly re-539

duce online computational time and computing540

resources. Tackling such multi-time-scale opti- 541

mization using classic MPC typically results in 542

a large scale mixed-integer dynamic optimization 543

problem which is ine�cient or computationally in- 544

tractable. 545

When necessary, an online (mixed integer) dy- 546

namic optimization problem can be further posed 547

to optimize process economics, energy e�ciency, 548

sustainability, etc. by coordinating the optimizer, 549

surrogate model, and controllers together. As 550

shown in Eq. 11, this approach provides an instru- 551

mental feature to utilize a single online dynamic 552

optimization problem while addressing additional 553

needs beyond quality control, such as response to 554

demand changes. This optimization problem fea- 555

tures: an objective function, the nonlinear pro- 556

cess model, the nonlinear risk model, explicit con- 557

troller solutions, explicit optimizer solutions, ex- 558

plicit surrogate model solutions, and path con- 559

straints. The ability to utilize the high fidelity 560

process and risk models in online optimization 561

is also critical to close the loop with the origi- 562

nal nonlinear process systems. The current work 563

leverages the hierarchical approach to extend the 564

safety and quality optimizer to cover a signif- 565

icantly longer horizon than the risk controller. 566

However, the methodology generally intends to 567

decompose the operational optimization complex- 568

ity for any systems with intrinsic disparate dy- 569

namics (e.g., fast, slow, and/or hybrid). In addi- 570

tion, the current work assumes that a verified high 571

fidelity process model is available for model-based 572

control optimization. The extension to (physics- 573

guided) data-driven modeling and online model 574

updating using real-time measurement data can 575

be referred to our recent work [51, 53]. 576

min F =
R ⌧
0 P (x(t), y(t), RI(t), u(t), d(t))dt

s.t. dx(t)/dt = f(x(t), u(t), d(t))
RI = RI(x(t), u(t), d(t))
usk = Ki,sk✓sk + ri,sk
uRlT = Ki,lT ✓lT + ri,lT
uRmt = Ki,mt✓mt + ri,mt

x  x(t)  x, u  u(t)  u
y  y(t)  y RI  RI(t)  RI

(11)
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3. Case Study – Safety-Critical T2 Batch577

Reactor578

In this section, we apply the above methodology579

on a safety-critical exothermic batch reactor. This580

case study is conceptualized from the batch produc-581

tion process at T2 Laboratories Inc., which su↵ered582

from a process safety incident in 2007 resulting in583

four deaths and twenty-eight injuries [54]. Various584

application scenarios are investigated to demonstrate585

the potential, e�cacy, and flexibility of the proposed586

method to integrate process control, dynamic risk587

management, and end-batch quality control.588

3.1. Process Description589

A schematic of this T2 batch reactor is shown in590

Fig. 4. It has two feed streams respectively including591

methylcyclopentadiene (A), sodium (B), and diglyme592

(S) to produce sodium methylcylcopentadiene (C) as593

a desired product for gasoline additive and hydrogen594

(D) as a side product. The two exothermic reactions595

occurring in this reactor are given below. The activa-596

tion energy of the side reaction is substantially larger597

than the main reaction, which makes the side reaction598

rate only significant at elevated temperatures. How-599

ever, if cooling utility is not adequately suppliedin the600

2007 incident, the batch reactor temperature may in-601

crease uncontrollably which will eventually ignite the602

hydrogen and lead to explosion.603

Main reaction:604

Methylcyclopentadiene (A) + Sodium (B)605

Diglyme(S)�������! Sodium Methylcyclopentadiene (C) +606

Hydrogen (D)607

Side reaction:608

609 Diglyme (S)
Sodium(B)�������! Hydrogen (D) + Byproduct610

The research objective of this study is to determine611

the optimal batch operating strategy which can:612

• Meet the end-batch product quality target which613

is defined against the conversion of raw material614

A.615

• Provide safe and optimal operations under dis-616

turbances, ideally operating at the low risk level617

throughout batch duration.618

Figure 4: T2 batch reactor diagram

• Prevent the process from entering the high risk 619

region. However, if fault occurrence cannot be 620

circumvented, raise alarm ahead of time to allow 621

the operators to prudently plan for emergency 622

shutdown. 623

3.2. Process and Risk Modeling 624

A first principles model is developed to describe 625

this reactoras given in Eq. 12. More specifically, 626

Eqs. 12a-c define component mass balances and Eq. 627

12d calculates energy balance. The major process 628

variables and parameters are summarized in Table 629

2. The current work assumes that the above model 630

provides an accurate description for this batch re- 631

actor and mainly focuses on the development of a 632

hierarchical risk-based quality control strategy. To 633

improve the accuracy of the simulated model in real- 634

world industrial applications, online model approxi- 635

mation can be adopted using real-time measurement 636

data. An approach to this, as outlined in our prior 637

work [53], is to use physics-informed machine learning 638

techniques to estimate parameters in Eq. 12 based on 639

plant data. System identification and machine learn- 640

ing approaches can also be directly utilized to ob- 641

tain state space models from plant data, which can 642

then be used to construct the risk control algorithms 643

[55, 51]. 644

dCA

dt
= �k1CACB (12a)

645

dCB

dt
= �k1CACB (12b)
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646

dCS

dt
= �k2CS (12c)

647

dT

dt
=

V
P

(��Hkrk)� UAx(T � Tc)

CP
P

Ni
(12d)

As shown in Fig. 4, the valve opening for the cool-648

ing utility stream is used in practice for reactor tem-649

perature control. For the simplicity of process mod-650

eling in this work, the heat transfer coe�cient U is651

utilized as the manipulated variable which is propor-652

tional to the utility flow rate. This case study al-653

lows for cooling through negative U values which is654

essential for process safety management, while also655

enabling heating through positive U values to accel-656

erate reactant conversions and meet quality targets.657

It is recognized that this represents a simplified mod-658

eling consideration, while in practice this may require659

a more complicated control system design to achieve660

the cease of flow for one utility and the emergence of661

flow for the other.662

The dynamic risk model is then developed in ac-663

cordance with Eq. 3. Based on literature [38], the664

nominal reactor operation temperature is selected as665

460 K. When temperature exceeds 480.34 K, the re-666

actor has a higher probability for thermal runaway.667

Therefore, the risk index is defined as a function of668

temperature which is the key safety-critical variable669

in the process. The mean (µ) is adopted as 460 K670

with a standard deviation (�) of 5 K, which results in671

the upper control limit as 475 K (i.e., µ+3�). In prac-672

tice, the values of mean and standard deviation are673

determined by the engineers based on prior process674

knowledge and operating data. As shown previously675

in Fig 3, the risk index begins to rapidly increase676

when the process is 3� away from the mean value µ.677

Specifically for this case study, the value of the risk678

index becomes significant at 475 K for the controller679

to take actions which gives a 5 K bu↵er region from680

entering the high risk region over 480.34 K (equiva-681

lently, RI � 3).682

3.3. Risk-Aware Model Predictive Control683

A combined linearized process and risk model is684

developed for its use in model predictive control. A685

discrete state space model is obtained from the batch686

reactor nonlinear first principles model (Eq. 12) using687

the MATLAB® system identification toolbox [56].688

The time step is selected as 5 minutes due to the689

slow dynamics of this reactor. Note that the physi- 690

cal meanings of state variables (x) are not retained 691

in the identified state space model. Thus it is nec- 692

essary to estimate the states of the system based on 693

measured outputs which assumes an accurate online 694

output measurement of temperature. The Jacobian 695

method provides an alternative model linearization 696

strategy [46]. However, to ensure su�cient model ac- 697

curacy, successive online model linearization is found 698

to be necessary for batch processes due to the lack of 699

steady states. An additional case-study on risk-aware 700

control utilizing the Jacobian method to derive state- 701

space models of the system is provided in the Sup- 702

porting Information. The implementation shows that 703

the Jacobian requires excessive updates as the batch 704

system is intrinsically dynamic. For each new Ja- 705

cobian, new multi-parametric model predictive con- 706

trol (mp-MPC) laws should be generated via online 707

computation. This would no longer leverage the ad- 708

vantage of mp-MPC to obtain explicit control laws 709

o✏ine a priori and to reduce online computational 710

loads. This is why system identification is adopted in 711

this work which can provide a single linearized batch 712

model with su�cient modeling accuracy. The non- 713

linear dynamic risk model is also reformulated into 714

disjoint piece-wise a�ne functions. The risk model 715

is integrated with the process state space model by 716

treating RI as an output and appending the neces- 717

sary relationships with state variablesas presented in 718

Eq. 13. 719

xsk+1 = Axsk +BUsk (13a)

720

RIsk � b = Mxsk (13b)

The coe�cient matrices A, B, M , and linearization 721

parameters m and b are given below. m and b are to 722

be recast as mixed-integer expressions following Eqs. 723

5d-f. 724

A =


1.0088 �0.0495
0.1008 0.4611

�

B =


�1.520⇥ 10�7

�1.945⇥ 10�6

�

M = m


�1.017⇥ 103

8.250⇥ 101

�T

(14)
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Table 2: List of major batch process variables and parameters.

State variables CA, CB, CS: Concentrations, T : Temperature
Manipulated variable U : Heat transfer coe�cient
Control variable RI: Risk
Disturbance T0: Initial Temperature
Model parameters V : Volume (4000 L), ⇢: Mixture density (36 mol/L)

Cp: Specific heat (430.91 J/mol·K)
Ax: Heat transfer area (5.3 m2), Tc: Coolant (373K)
�Hk:Heat of reaction (-45.6 kJ/mol, -320 kJ/mol)
ki = Aiexp(� Ei

RT ): Reaction rate constant for reaction i
Ai: Frequency factor (A1 = 4⇥ 1014, A2 = 1⇥ 1084)
Ei: Activation energy (E1 = 1.28⇥ 105, E2 = 8⇥ 105 J/mol·K)

m =

8
>>>><

>>>>:

0.00776, T 2 [460, 472]

0.21471, T 2 (472, 477]

0.54957, T 2 (477, 481]

0.76287, T 2 (481, 495]

b =

8
>>>><

>>>>:

�3.5717, T 2 [460, 472]

�101.25, T 2 (472, 477]

�260.98, T 2 (477, 481]

�363.58, T 2 (481, 495]

(15)

A risk-aware MPC problem is then developed as per725

Eq. 5 to optimally manipulate the heat transfer coef-726

ficient (U) to keep the risk index (RI) at the desired727

low risk level (RIRsk = 0). The tuning parameters728

and path constraints for the risk-aware control are729

summarized in Tables 3 and 4.

Table 3: Risk-aware controller – Tuning parameters

QRk Rk OH CH
1⇥ 108 1⇥ 10�6 3 1

730

Table 4: Risk-aware controller – Path constraints

U RI x1, x2

Min �5.5⇥ 104 �3 �100,�100
Max 5.5⇥ 104 25 100, 100

The risk-aware control problem is solved via mixed-731

integer quadratic programming to generate explicit732

control solutions. The closed-loop risk control per-733

formance is showcased in Figs. 5 and 6, which re-734

spectively present the scenario with initial conditions735

at a low risk level (RI = 0 equivalent to T = 460K) 736

and a moderate risk level (RI = 0.062 equivalent to 737

T = 468K). It is worth highlighting that, despite 738

the explicit control laws are designed based on the 739

linearized model, the closed-loop control and opera- 740

tional optimization throughout this work are imple- 741

mented against the original nonlinear process model 742

given in Eqs. 12a-d. In both scenarios, the risk-aware 743

controller is able to eventually stabilize the process at 744

the desired risk set point (RIRsk = 0). With a low-risk 745

initial condition (Fig. 5), the controller succeeds in 746

maintaining RI ⇡ 0 throughout the operations. With 747

a moderate-risk initial condition (Fig. 6), a slight risk 748

increase is observed while it is controlled back to the 749

set point shortly after. Without the risk-aware con- 750

trol, it is shown that this process quickly reaches the 751

high risk region. 752

Figure 5: Open-loop and closed-loop simulation – Low risk
initial condition.
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Figure 6: Open-loop and closed-loop simulation – Moder-
ate risk initial condition.

3.4. Integration with Safety and Quality Opti-753

mization754

The long-term safety and quality optimizer deter-755

mines the optimal set points for the risk controller or756

surrogate model at a supervisory level by forecasting757

the operations throughout the batch. It also employs758

a linearized discrete state-space model which is de-759

veloped using the MATLAB® system identification760

toolbox [56]. As the states of the linearized state761

space model become physically meaningless due to762

system identification (Eq. 13a), they should be es-763

timated utilizing online output measurements which764

in this scenario is the temperature and the concen-765

tration of species A, i.e. CA. In practice, if the con-766

centration is not measurable, state estimation tech-767

niques should be used to provide the information.768

The model is identified from the input-output data769

generated from the batch reactor closed-loop simula-770

tions, i.e. with the risk controller on. In this work,771

the objective function of the optimizer is set to meet772

the end-batch quality target, which is defined against773

the concentration of reactant A. In what follows, we774

present three scenarios to showcase the agility of the775

proposed hierarchical strategy fitting the purpose for776

various process dynamics and requirements. Namely:777

(1) Two-level controller and optimizer integration, (2)778

Three-level integration with intermediate surrogate779

model, and (3) Quality control with fixed batch du-780

ration.781

Scenario 1: Two-Level Controller and Optimizer 782

Integration 783

Herein, the time step for the optimizer is selected 784

as 20 minutes while forecasting over the next oper- 785

ation. The resulting optimal input and output set 786

points are directly passed to the risk controller, the 787

latter of which has a time step of 5 minutes. The opti- 788

mizer time step also represents the frequency at which 789

it provides updated set points to the controller. The 790

optimizer tuning parameters and path constraints are 791

provided below in Tables 5 and 6. Scenario 2 will 792

showcase an optimizer set up with significantly longer 793

time step which necessitates the use of intermediate 794

surrogate model, and Scenario 3 will apply a time- 795

varying optimizer with forecast horizon all the way 796

to the end of batch. 797

Table 5: Scenario 1 – Optimizer tuning parameters

W1 W3 p1 p3 OHT CHT

1⇥ 104 1⇥ 10�6 2 2 4 3

Table 6: Scenario 1 – Optimizer path constraints

UR
lT CR

A,lT x1, x2, x3, x4

Min 400 0 �100,�100,�100,�100
Max 470 1 100, 100, 100, 100

With the controller and optimizer integration, the 798

batch operating trajectories are shown in Figs. 7-10 799

respectively illustrating the concentration of reactant 800

A, dynamic risk, reactor temperature, and heat trans- 801

fer coe�cient. Three end-point concentrations (i.e. 802

CQT
A = 0.1, 0.05, and 0.01 mol/L) are examined to 803

demonstrate the capability of quality target tracking. 804

As shown in Fig. 7, the operating paths under dif- 805

ferent quality targets are identical until reaching the 806

first quality target (CQT
A = 0.1 mol/L). The three 807

quality targets are satisfied within 3, 4, and 7 hours 808

respectively. The varying batch times are a result of 809

the well controlled trade-o↵ between reaction produc- 810

tivity and process risk, as the elevated reactor tem- 811

perature can accelerate the batch production while 812

posing higher risk. As depicted in Figs. 8 and 9, 813

the controller and optimizer begin with the strategy 814

to take a maximally acceptable risk up to the up- 815

per control limit (i.e., 475 K), which strive to boost 816

the reaction productivity for quality considerations. 817

Thus, the reactor is initially heated up as shown by 818
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the manipulated variable profile in Fig. 10. However,819

the utility input switches to cooling at 0.5 hours as820

the process is forecast to enter the high risk region if821

heating continues.822

Moreover, the predictive behavior of the integrated823

controller and optimizer also shines through when it824

approaches the quality target. Using CQT
A = 0.01825

mol/L as an example, rapid cooling begins at 5 hours826

when the quality target is about to be met, with827

the heat transfer coe�cient surges to the maximum828

5.5⇥ 104 W/m2K to cease the reaction. Slight O↵set829

is observed, e.g.the process ends at CA ⇡ 0.03 mol/L830

for the quality target of 0.01 mol/L. The accuracy of831

quality control will be remedied later using quality832

control with fixed batch duration (Scenario 3). Inter-833

estingly, if the quality controller is dormant initially834

and then activated later, a similar heating surge as835

in Fig. 10 is present at the moment of activation.836

This further suggests that the long-term optimizer837

tends to keep the reactor at a relatively higher risk838

level to meet quality targets in a swift manner, while839

the controller alone takes more conservative actions840

prioritizing risk management.841

Figure 7: Scenario 1 – End-batch quality control for vari-
ous quality targets.

Scenario 2: Three-Level Integration with Surro-842

gate Model843

In certain instances where the long term and short844

term time spans are substantially di↵erent, issues845

may arise if: (i) the controller can achieve the set846

point determined by the optimizer in a short time,847

and (ii) the optimizer may neglect important short-848

term dynamics. To test this scenario, the quality and849

safety optimizer adopts a time step of one hour to pro-850

long the batch operation forecast and enhance long851

Figure 8: Scenario 1 – Dynamic risk profiles for quality
control.

Figure 9: Scenario 1 – Temperature profiles for quality
control.

Figure 10: Scenario 1 – Manipulated variable responses
for quality control.
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term predictions. It is set to forecast 4 hours into the852

future and provides set point updates every hour to853

the risk controller. As shown in Fig. 11, if the set854

points are directly sent from the optimizer to the con-855

troller without an intermediate surrogate model, the856

decision makers are unable to meet the quality tar-857

get at 0.1 mol/L. This is because the optimizer with858

Ts = 1 hour cannot account for the early reaction dy-859

namics, particularly those occurring during the first860

hour.861

In this context, an intermediate surrogate model is862

essential to bridge the gap and act as a middle de-863

cision maker as per Fig. 2. The surrogate modeling864

scheme is developed and applied according to Eq. 9865

which predicts over 30 minutes and provides updated866

set points every 10 min. The long-term quality and867

safety optimizer thus provides updated set points to868

the surrogate model, the latter of which further com-869

putes more reasonable set points at a shorter time870

span to guide the risk-aware controller. As shown in871

Fig. 11, the quality target can be met with the aid of872

surrogate model. The consequence a longer sampling873

rate is highlighted in Fig. 12 where a higher risk than874

both Scenario 1 and 3 is attained. The slight o↵set875

is comparable to that in Scenario 1. Based on these876

results, the surrogate modeling technique proves to877

be successful at translating the long time span oper-878

ational goals to the short time span risk-aware con-879

troller.880

Figure 11: Scenario 2 – Quality control with surrogate
modeling

Figure 12: Scenario 2 – Dynamic risk profiles with surro-
gate modeling

Figure 13: Scenario 2 – Manipulated variable profiles with
surrogate modeling

Scenario 3: Quality control with fixed batch dura- 881

tion 882

The optimizer in the previous scenarios utilize a 883

fixed and rolling output forecast horizon, e.g.1 hour 884

in Scenario 1 or 4 hours in Scenario 2. In this way, 885

the operating strategy is optimized to meet the end- 886

batch quality target as soon as possible while a batch 887

duration is not strictly posed. Hereafter, we consider 888

a fixed total batch duration and require the optimizer 889

to always predict up to the end-point time. This re- 890

sults in a much larger number of optimizer output 891

horizons to be solved using multi-parametric opti- 892

mization. More importantly, the explicit solutions 893

need to be updated at each time step as the number 894

of output horizons is manipulated to be one less at 895

each successive time step. According to the results of 896
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Scenario 1, the quality targets of 0.1, 0.05, and 0.01897

mol/L require 3, 4, and 7 hours respectively. For898

the quality optimizer with 15-minute time step, 12,899

16, and 28 output horizons are respectively required900

for each quality target at the initial time point. The901

resulting operating trajectories of this approach are902

shown in Figs. 14-16. This method is demonstrated903

to be e↵ective in meeting the quality targets while904

maintaining safe operations. The o↵set for QT = 0.1905

mol/L is comparable to the previous scenarios, while906

notably less for the quality targets of 0.05 mol/L and907

0.01 mol/L. However, the manipulated variable U ap-908

pears to be sporadicas shown in Fig. 16. This oper-909

ating strategy also requires more computational time910

due to the increased and time-varying number of op-911

timizer output horizons. For the largest output hori-912

zon (OH = 28), the total number of critical regions to913

be stored for o✏ine mp-MIQP solutions is 6,639. The914

quality target of 0.01 mol/L takes the longest to com-915

pute with a time of 3.25 minutes and the target of 0.1916

mol/L takes 0.52 minutes. The computational times917

in Scenarios 1 and 2 are all within 6 seconds. These918

studies are carried out on an Alienware m16 with an919

Intel i9-13900HX CPU and an NVIDIA GeForce RTX920

4090 Laptop GPU.921

Figure 14: Scenario 3 – Quality control with fixed batch
duration

4. Conclusions922

In this work, we have developed a hierarchical923

multi-parametric optimization approach for multi-924

time-scale operational optimization, with application925

to the integration of model predictive control, end-926

point batch quality control, and prescriptive risk927

Figure 15: Scenario 3 – Dynamic risk profiles

Figure 16: Scenario 3 – Manipulated Variable profiles

management. A short-term risk-aware controller is 928

utilized for risk control, set point tracking, and distur- 929

bance rejection together with a long-term optimizer 930

to meet batch quality targets and enhance overall 931

operational safety. The methodology is made more 932

robust through the formulation and implementation 933

of an intermediate surrogate model when necessary. 934

The e↵ectiveness and potential of the approach is 935

demonstrated on a safety-critical exothermic batch 936

reactor. 937

The proposed approach is complementary to eco- 938

nomic model predictive control [57, 58] which ad- 939

dresses simultaneous economics and control consid- 940

erations at every time step. It allows for decompos- 941

ing the multi-time-scale to a hierarchy of operational 942

optimization problems at the respective character- 943

istic time scales. This can provide more flexibility 944

for problem formulation. In addition to leveraging 945

16



the long-term optimizer for cost optimization (hours)946

and the short-term controller for risk control (min-947

utes), the surrogate model creates another interme-948

diate which can be leveraged for, e.g.fault prognosis949

(20 min to activate alarm in advance).950

This work utilizes multi-parametric (mixed-951

integer) linear/quadratic optimization based on lin-952

earized process model. Though the optimization al-953

gorithms relieve online computational strain, a de-954

sired trait for the long prediction horizons necessary955

in this work, linearizing process and risk models com-956

promises the accuracy of the system projections in the957

optimization problem. Linearization in this system is958

shown to be acceptable as the case studies are val-959

idated against the original nonlinear process model.960

However, in some systemslinearizations may lead to961

undesirable performance or infeasible actions. Re-962

duced order modeling (ROM) or model order reduc-963

tion (MOR) techniques o↵er ways to reduce the com-964

putational complexity of high-fidelity models without965

compromising performance or accuracy. Koopman966

operator theory is one such technique that provides967

the capability to fully represent nonlinear dynamics968

as a globally linear model [59, 60]. Deriving the op-969

erator can be quite challenging and real-world imple-970

mentations often involve approximations of the op-971

erator [61]. Recent research using machine learning972

has found approaches to approximate these operators973

[62, 63]. Using the Koopman operator method in this974

system would integrate nicely into the proposed ap-975

proaches while potentially mitigating any lineariza-976

tion errors made. Additionally, in our prior work [51],977

we have developed multi-parametric MPC based on a978

nonlinear machine learning-based process model with979

a self-adaptive linearization algorithm. This can be980

readily applied to this work and to enhance the appli-981

cability of the proposed approach. It is of the authors’982

ongoing work to develop robust risk control strategies983

to address the linearization errors. Additionally, the984

current approach assumes an accurate online output985

measurement to estimate the system states, but such986

accurate measurements may not be always available987

in practice. In more complex systems, such as phar-988

maceutical processes, it can be especially challenging989

to obtain the desired state information. State esti-990

mators like the Kalman filter are commonly used in991

practice but typically rely on the assumption that the992

uncertainty in the system follows a Gaussian distri-993

bution. For these reasons, ongoing work will extend994

the proposed framework by incorporating Bayesian995

state estimators to enhance the control optimization 996

performance under generalizable uncertainties. 997
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