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Abstract

In this work, we present a hierarchical batch quality control strategy with real-time process safety
management. It features a multi-time-scale framework augmenting: (i) Risk-aware model predictive
controller for short-term set point tracking and dynamic risk control under disturbances; (ii) Control-
aware optimizer for long-term quality and safety optimization over the entire batch operation; (iii)
Intermediate surrogate model to bridge the gap by readjusting the optimizer operating decisions for
the controller. All of the above problems are solved via multi-parametric mixed-integer quadratic
programming with a key advantage to generate offline explicit control/optimization laws as affine
functions of process and risk variables. This allows for the design of fit-for-purpose risk management
plan prior to real-time implementationwhile reducing the need repetitive online dynamic optimization.
A unified process model is used to underpin the consistency of hierarchical operational optimization.
The proposed approach offers a flexible strategy to integrate distinct time scales which can be selected
separately tailored to the process-specific need of control, fault prognosis, and end-batch quality control.
A T2 batch reactor case study is presented to showcase this approach to systematically address the
interactions and trade-offs of multiple decision layers toward improving process efficiency and safety.

Keywords: Quality Control, Multi-Parametric Model Predictive Control, Dynamic Risk Analysis,
Multi-Time-Scale Optimization

1. Introduction

Chemical process operations typically follow a
sequential and reactive strategy to determine pro-
cess control and safety management actions based
on set point deviations, product off-specifications,
or fault occurrences at the current time step.
It remains a central yet open research question
on how to optimize operations integrally over
multiple time scales to safely address the in-
teractions and trade-offs between different tasks
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(e.g., control, real-time optimization, scheduling)
[1, 2]. This work aims to investigate a represen-
tative process application requiring such multi-
time-scale operational optimization [3, 4], i.e. the
integration of batch process control, end-product
quality control, and fault prognosis (as shown in
Fig. 1).

In non-continuous processes (e.g., batch and
semi-batch reactors), the end-product quality
cannot be measured until the operation is termi-
nated. It is thus essential to develop advanced
control optimization techniques for real-time end-
product quality prediction while optimizing pro-
cess economics under disturbances [5, 6, 7]. An
indicative list of research studies on batch qual-
ity monitoring and control is presented in Table
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Figure 1: of process control, safety management, and qual-
ity assurance.

1. Theoretical approaches were developed us-
ing first principles model to quantitatively pre-
dict the entire batch trajectory [8, 9]. To circum-
vent process-specific model development, inferen-
tial quality monitoring was utilized in a correc-
tive manner to adjust the batch operation path
through predictions inferred by measured process
data [10]. Online measured data could be an-
alyzed via principal component analysis (PCA)
or partial least-squares (PLS) regression [11, 12],
coupled with data completion techniques to im-
pute the “missing data” up to batch-end for qual-
ity estimation [13]. A more recent work [14]
showed improved prediction accuracy using an
augmented PLS model built on hybrid simulated
and measured data. Data-driven batch moni-
toring approaches have received increasing inter-
estwhich leverage support vector techniques and
neural networks [15, 16]. For quality control,
model predictive control (MPC) strategies have
been further integrated with PCA and PLS mod-
elswhich demonstrated superior performance than
proportional-integral controllers [17, 18]. With
advancements in real-time computing, nonlinear
model predictive control (NMPC) was success-
fully applied to fed-batch bioreactors [19]. Simi-
larly, economic model predictive control (EMPC)
approaches can leverage modern computing power
to solve batch control problems in an online fash-
ion [20, 21]. Multi-parametric MPC (mp-MPC)
provides an alternative strategy which can effec-
tively enhance computational efficiency [22]. Ex-
plicit control laws can be generated offline a priori
to replace online dynamic optimization with mp-
MPC look-up map. Notably, the explicit solutions

from multi-parametric programming also provide
an instrumental link to integrate multi-time-scale
(e.g., batch control and scheduling [23], simulta-
neous design and control [24]).

Process safety management presents an addi-
tional decision layer to prevent and minimize haz-
ardous incidents due to, e.g.equipment failure.
Extensive efforts have been made to integrate ad-
vanced control with fault diagnostic algorithms
[26, 27], such as fault-tolerant control [28, 29]
which takes reactive control actions to remedy
fault from developing to severe failure. Fault
prognosis [30, 31] has so far been under-exploited,
which strives to detect fault at the early devel-
oping stage and predict its propagation to en-
able proactive risk management. Conventional
process safety analyses (e.g., hazard and oper-
ability study [32, 33], quantitative risk assess-
ment [34]) are performed prior to real-time op-
eration and updated periodically throughout the
plant lifetime such as every five years. However,
they fail to capture the impact of dynamically
varying operating conditions due to uncertain-
ties or real-time [35]. Toward prognostic process
safety management, model predictive safety sys-
tem was developed to signal the alarm system if
the plant model was foretasted to violate oper-
ability or safety constraints [36, 37]. Strategies
to integrate process safety and control were pro-
posed by characterizing a maximum set of the
state space, within which the systems dynamic
operation could be theoretically guaranteed as
safe and stable, e.g.via pertinent systems theory
[38] and Lyapunov level set [39]. The Lyapunov-
based control approaches have also been extended
to ensure stable and safe process operations from
the aspect of [40]. Dynamic risk assessment of-
fers another promising way forward for the on-
line monitoring of process safety performance us-
ing timely-updated and process-specific probabil-
ity and severity data [41, 42, 43]. Recent works ex-
plored the integration of dynamic risk assessment
and model predictive control [44], leveraging the
model-based moving horizon prediction for fault
prognosis. Namely, if any fault is predicted dur-
ing the next MPC output horizon, alarms would
be triggered ahead of time. A major challenge to
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Table 1: Batch quality monitoring and control approaches — an indicative list.

Focus Authors Main Features
Quality Russell et al. [§] Model-based state estimation framework to address uncertain initial conditions
monttoring y{;ﬁgﬁ;ﬁi 11 Applying PCA and PLS to infer process variable trajectories
Choi et al. [13] Integrated methods with PCA and PLS
Ghosh et al. [14] | Augmented PLS model built on hybrid simulated and measured data
Yao et al. [15] Data-driven approach based on functional support vector data description
Kay et al. [16] Soft sensor integrating autoencoder and heteroscedastic noise neural networks
Quality Kravaris et al. [9] | Nonlinear control algorithm for batch trajectory tracking
control g;cl)\ze;égizgio[lﬂ Multivariate empirical model predictive control based on batch PCA models
Mesbah et al. [25] | Dynamic control optimization based on nonlinear moment model
Aumi et al. [18] Integrating local data-driven models and inferential model for predictive control
Chang et al. [19] | NMPC based on dynamic flux balance model for fed-batch reactors
Rashid et al. [21] | EMPC approach for optimizing batch duration and economics

these approaches lies in the equivalence of con-
troller output horizon with fault prognosis hori-
zon. For process systems with very fast dynamic
systems (e.g., seconds or less), the online MPC
computational load will be intensive or even in-
tractable to cover a 20-minute fault prognosis
horizon which is essential for the operators to take
responsive actions to alarms.

With the ongoing digital transformation creat-
ing more dynamic and interconnected chemical
plants, a systematic approach is essential yet cur-
rently lacking which can fully integrate process
control, end-batch quality control, and fault prog-
nosis to increase the overall process efficiency un-
der uncertainties with guaranteed process safety.
To address this gap, this work proposes a hier-
archical risk-based model predictive quality con-
trol approach which augments multiple multi-
parametric problems to bridge the large time span
in a temporally scalable manner. The remaining
sections of this paper are structured as follows:
Section 2 introduces the proposed approach for
risk-based model predictive quality control with
hierarchical multi-parametric optimization formu-
lations, particularly highlighting the role of ex-
plicit solutions. Section 3 demonstrates the ap-
proach on a case study of safety-critical batch re-
actor. Section 4 presents concluding remarks and
ongoing work.

2. Methodology: Risk-based Model Pre-
dictive Quality Control

In this section, we first provide an overview
of the proposed methodology followed by the de-
tailed mathematical modeling and formulation of
each supporting component.

2.1. Overview of the Methodology

The proposed hierarchical approach for risk-
based model predictive quality control is shown
in Fig. 2, which integrates the following key com-
ponents:

e Short-term risk-aware controller — which
determines the optimal control actions on a
characteristically short (e.g., minutes or sec-
onds). The controller is designed for dynamic
risk monitoring and control for safety con-
siderations [45, 46] in addition to perform-
ing routine tasks such as disturbance rejec-
tion and set point tracking of major process
variables (e.g., temperature, purity).

e Long-term control-aware safety and quality
optimizer — which delivers an optimal in-
put/output set point trajectory over a char-
acteristically long . The optimizer forecasts
the entire (or sufficiently long) batch dura-
tion, ensuring operational safety and quality
targets to be satisfied. The input/output set
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Figure 2: Hierarchical risk-based model predictive quality control.

points are used to guide the controller opera-
tions. Economics considerations can also be
included in the optimizer objective function.

e [ntermediate surrogate model — which aims to
mitigate the optimizer and controller discrep-
ancy. When necessary, the surrogate model
[23] translates the optimizer decisions at a
larger time step to more achievable set points
for the controller at a smaller time step.

The risk controller, quality optimizer, and
surrogate model are built on the same pro-
cess and safety system model to ensure consis-
tency. It is worth highlighting that the opti-
mizer and surrogate model utilize the closed-loop
form of process and safety system model, thus
being aware of the risk control actions in a pre-
dictive manner. All these three-level decision
makers are solved as multi-parametric (mixed-
integer) linear/quadratic programming problems,
from which explicit solution maps can be ob-
tained offline a priori. A general multi-parametric
quadratic programming (mp-QP) problem is
given in Eq. 1 to showcase the idea of explicit
solutions. More detail can be found in the recent
books [22, 47]. As such, the online implementa-

tion only requires affine function evaluation using
the explicit solution maps instead of repetitively
performing online dynamic optimization.

Example of mp-QP and explicit solutions

J*(0) =min, 327Qz+ 'z
s.t. Az <b+ F0O
Aegz = beg + Fryf)

(1)

where z is the vector of decision variables, 6 is
the vector of uncertain parameters which can in-
clude state variables, set points, disturbances, etc.
in process control applications, A and b are the
coefficient matrices to define the inequality con-
straints, A, and b, are the coefficient matrices
to define the equality constraints. The optimal
decision variables z* can be explicitly expressed
as a function of the uncertain parametersfas pre-
sented in Eq. 2. Key theoretical properties of the
explicit solutions include: (i) z*(0) is continuous
and piece-wise affine, (ii) the uncertain parameter
space is partitioned to convex polyhedral regions
(i.e., critical regions C'R), and (iii) the optimal
objective function J*(0) is convex and piece-wise

190

191

192

193

198

199

200

201

202

203

204

205

206

207

208



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

238

239

240

241

242

243

244

245

246

247

248
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K0+ 71,0, € CR' = {CR\0, < CR!}
Z(0)=19
Kb +1,,0; € CR = {CR,0; < CRi}

2)
where K and r are coefficient matrices to define
the explicit solutions, CR4 and CR’ are coeffi-
cient matrices to define the corresponding critical
regions.

2.2. Modeling and Hierarchical Multi-parametric
Formulations

Hereafter, we discuss each key element consti-
tuting the above risk-basemodel predictive control
approach.

2.2.1. Dynamic Risk Modeling

Dynamic risk modeling by Bao et al. [45] is
adopted to indicate online process safety perfor-
mance based on the real-time values of safety-
critical process variables (e.g., z;). Some of its
key features to enable the integration with process
control and real-time include: (i) The support of
real-time process safety monitoring by updating
fault probability and severity consequence in an
instant manner as a function of safety-critical pro-
cess variables, (ii) P(z(t)) and S(z(t)) take stan-
dardized values at yu+30, which provide a uniform
basis to compare the safety performance of differ-
ent process operating strategies, (iii) Model-based
forecast can be implemented, as showcased in this
work, leveraging the MPC and operational opti-
mization formulations. As shown in Eq. 3a, the
dynamic risk index RI(t) is defined as the product
of fault probability P(t) and consequence severity
S(t). This work assumes that z; follows the Gaus-
sian probability distribution with the mean as u
(i.e., nominal operating condition) and the stan-
dard deviation as o. Based on statistics, 99.7%
of the z; values are expected to fall within the
three-sigma region (i.e., three-sigma rule). p+ 30
is therefore utilized as the upper and lower con-
trol limit. The high risk region is defined as
RI value greater than a certain threshold. The
threshold value is determined based on prior pro-
cess knowledge and/or historical operating data,

beyond which the process is at a higher proba-
bility of abnormal operations. The fault proba-
bility P(t) is calculated via the Gaussian proba-
bility density functionas shown in Eq. 3b. The
fault probability is thus standardized at u 4 3o,
which provides a normalized benchmark enabling
the comparison of different process operation (and
design) strategies against process safety consider-
ations [48]. The consequence severity S(t) is cal-
culated using an exponential function based on
the deviation of x(¢) from the nominal operating
condition, as given in Eq. 3c.

As a result, the overall risk index RI(t) emerges
as a nonlinear pseudo-exponential function as
shown in Fig. 3a, which grows increasingly faster
as x; departs from the nominal operating condi-
tions. The formulation of Eq. 3 renders a notably
higher risk when z; falls out of the three-sigma
region (i.e., when the 0.3% low probability events
happen). This feature is instrumental for the in-
tegration of real-time process safety management
with process operations, as it allows the controller
and optimizer to systematically decide the prior-
ity among various operational objectives. For ex-
ample, if the risk index is high or predicted to
escalate, the controller and optimizer will priori-
tize risk mitigation. In contrast, if the risk index
is relatively low, the controller and optimizer will
prioritize to optimize operational stability, costs,
and/or end-batch quality. A piece-wise lineariza-
tion formulation (Eq. 4) is further developed to
approximate the original pseudo-exponential for-
mulation as shown in Fig. 3b. In the cases when
the critical process variables follow more nonlin-
ear distributions, e.g.binomial distributions, the
piece-wise linearization can be conducted in a gen-
eralized manner to approximate the original func-
tion. This allows for a linear model-based control
scheme which will be discussed in the next sec-
tion. Although a linear form of the dynamic risk
model is to be used for control, the original non-
linear nature of the risk model is critical. This
is because the nonlinear risk model dictates the
different operating regions according to risk prop-
agation speeds, which is further reflected by the
piece-wise linearization. Therefore, the process
and risk control can be self-adaptive to different
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operational objectives, e.g.to sustain stable oper-
ation or to adapt increasingly aggressive risk con-
trol.

Original formulation

RI(t) = P(t) x S(t) (3)
Play) = /_ N \/217T_06Wdt (3b)

(pE30)—=zy

S(x) =100

Piece-wise linearization

mix(t) + by, =
mol

(t) (

o (t) + bz, ;C(t

RI(t) = max(t) + b3, z(
(t) (

max(t) + by,

where m and b are the slope and intercept of the
piece-wise linearized risk functions, underbar and
overbar respectively represent the lower and up-
per bounds for a given parameter, and subscript
i € {1,2,3,4,...} denotes the corresponding lin-
earized region as illustrated in Fig. 3b.

2.2.2. Short-Term Risk-Aware Controller

Based on the above dynamic risk model, a risk-
aware model predictive control strategy has been
developed in our prior work [46]. For the continu-
ity of this work, the MPC formulation is briefly
introduced in what follows using Eq. 5. The con-
trol objective (Eq. 5a) can be defined for set point
tracking, disturbance rejection, etc. The risk in-
dex can also be treated as an output variable and
incorporated into the control objective, as will be
showcased later in this work. Eqgs. 5b-c present
the linearized process state space model which can
be obtained from nonlinear high-fidelity process
models using Jacobian linearization [49], model
approximation [24, 50], or data-driven modeling
[51, 52]. Egs. 5d-f reformulate the piece-wise dy-
namic risk model (Eq. 4) using mixed-integer lin-
ear equations. 7; is introduced as a binary variable
to denote if the current safety-critical variable z(t)
lies in the i*! linearized region (or not), thereby
activating the corresponding RI linear approxi-
mation (or not). For example, if the z(t) lies in

When x(t) = u

RI = P(x) X 5(x)

u+ 3o
(a) Original formulation

x(t) = x(t)

Non-Linear Curve
Linearized Curve

RI = P(x) x S(x)

X1 Xé X :I; I X4 I I
; T x(t)
(b) Piece-wise linearization

Figure 3: Dynamic risk modeling

the first section (x1;, < © < T7,4,), then Eq. 5f
holds true with 71 = 1, ja, j3, 74 = 0. As a result,
Eq. 5e gives M = m; and b = b; which renders
Eq. 5d to be RI — by = myxz. This approach
thus ensures that the slope (M) and y-intercept
(b) in Eq. 5d are the slope and y-intercept of
the active section of the linearized Risk Index in
Eq. 4. In this way, the optimal risk control de-
cisions are made based on the combined process
and risk model, which is crucial for the systems-
based operations and safety-critical to be aware
of each other. Eqgs. 5g-h include path constraints
to state, input, output, and risk variables. There-
fore, this risk-aware MPC strategy offers two lay-
ers of process safety management: (i) Control of
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dynamic risk as an overarching operational objec-
tive, (ii) Constraining the operating path within
a safe state space. Eq. 5 can be reformulated
into a multi-parametric mixed-integer quadratic
programming (mp-MIQP) problem [46]. As the
binary variables j; are mutually exclusive (Eq.
5f), the mp-MIQP problem can be simplified to
a number of mp-QP problems valid at the cor-
responding linearized risk region. Explicit risk-
aware control laws can be obtained as piece-wise
affine functions of states, outputs, risk index, set
points, and disturbances (Eq. 6).

Ezxplicit control laws and critical regions

OH-1
rili]crl x]TVP;BN + Z (Y — yi)TQRk(?/sk - yﬁe)
=1 (ba)

CH-1
+ Z (usr — vl )T Ry (ugp, — ult)
=0

s.t. Tspr1 = Astsr + Bsugg (5b)
Ysk = Cswgp + Dyugy (5C
R]sk —b= Ml’sk (

)
5d)
ZmijizM mezb injizxsk (5e)

Yodi=1 jie{0,1} @igofi < v < @il

(2

g S Lk S fsk

(5f)

(5g)
,‘Iisk: S Ysk S ysk ﬂsk S Rlsk S msk (5h)

where subscript sk denotes the short time step
for risk-aware control, i represents the different
regions of the linearized risk model. P is terminal
weight, QR and R are controller weights, C H and
OH are respectively control and output horizons,
x is the vector of state variables, y is the vector of
output variables, u is the vector of input variables,
d is the vector of disturbances, A, B, Cs, and D,
are matrices of the linearized state space model.
Superscript R defines set point.

Ezxplicit risk-aware control laws

st S Ugk S ﬂsk

Usk, = Ki,sk‘gsk + Tisk
O € CR' = {CR)) 40 < CR; .}
esk = [xslm Ysk, R[ska ygm dsk]

where 6 defines the parameter set for mp-MPC,
CR are critical regions. CR4 and C'Ry, are coeffi-
cient matrices for critical regions.

(6)

2.2.8. Long-Term  Control-Aware Safety and
Quality Optimizer

The optimizer contributes to maintain an ac-
ceptable level of risk for the process while reaching
end-batch quality specifications. It forecasts and
optimizes the process safety, quality, and/or eco-
nomics performance over a sufficiently long time
span, ideally up to the end of batch. The mathe-
matical formulation of this optimization problem
is presented in Eq. 7. The objective function (Eq.
7a) can be formulated in linear or quadratic form
accounting for the minimization of cost, energy
consumption, and/or offsets from quality target,
etc. The optimizer utilizes the closed-loop pro-
cess and safety state space model (Eqgs. 7b-c),
i.e. with the risk-aware control laws integrated.
A larger time step [T is adopted to ensure the
computational efficiency for prediction over hours
or even days. This safety and quality optimizer
problem is also reformulated into mp-MIQP prob-
lems, generating explicit solutions prior to online
operationas given in Eq. 8. The resulting input,
output, and/or risk set points (ulk, yiv, RIf) are
then sent to guide the operations of the risk-aware
controller. The optimizer provides key advantages
which include:

e Enhanced computational efficiency and pre-
diction accuracy — as the methodology avoids
relying on the risk-aware controller for end-
batch quality prediction which may require a
significantly large number of output horizons
at smaller control time steps.

e Flexible selection of controller and optimizer
time scales — while their fully integrated, the
selection of respective time scales is indepen-
dent. This leads to a temporally scalable
methodology to fit the purpose of distinct op-
erational optimization objectives across mul-
tiple time scales (e.g., short-term control ver-
sus long-term cost optimization).

e Prescriptive safety management — The opti-
mizer adds another layer of dynamic risk fore-
cast and fault prognosis over a longer time
horizon, particularly assessing the impact on
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safety of real-time operational decisions un-
der disturbances.

Optimizer formulation

min > Willyfp =y + Wally | + Wl |ugf ]
U

(7a)

s.t. Xy = Ay + Bluﬁﬂ + Cidir (7b>

R
Y Dl El
i) = [+ [] 0
T <zr <Tyr  uw <up<up o (7d)

vt <yl <yh  RIE < RIE <RI, (7e)

where subscript [T denotes the long time step for
control-aware optimizer, W, and W5 are weighting
matrices for quality and input-related economics
considerations, pi, p2, p3 can take the value of
1 or 2 resulting in linear or quadratic objective
functions, y®T are the quality control targets, and
the matrices of the state space model A;, B;, (),
Dy, and E; are derived by first simulating closed-
loop input-output data with risk controller on and
employing system identification techniques.

Ezxplicit control-aware optimizer solutions

u{r} = Ki,lTelT + riar
elT < CR;T == {CRAJTQ S CR;,ZT}

elT = [wlT7 yl};W RIZI;LH ylc%T> le]

(8)

2.2.4. Intermediate Surrogate Model

For substantially different time scales, it may be
possible that the operating path suggested by the
optimizer misses important process and safety dy-
namics or constraints such that the long-term set
points are not achievable or overly aggressive to
the risk-aware controller. In this instance, it be-
comes essential to interpret the input/output set
points from the optimizer for the risk-aware con-
troller using an intermediate to ensure smooth op-
erational transitions while still reaching the end-
point quality with desired process safety perfor-
To this purpose, a surrogate modeling
approach [23] is employed as shown in Eq. 9. The
quality control performance will be the first cri-
terion if an intermediate surrogate model should

mance.

be applied. If desired quality control performance
can be achieved, an intermediate surrogate model
may not be necessary. Otherwise, if off-spec be-
havior is observed as that shown in Fig. 11, some
important process dynamics may be missed due
to the lack of an intermediate surrogate model.
Computational load presents another main rea-
son for having a surrogate model, in order to cover
longer optimizer predictions but with a tractable
number of time steps. The surrogate model aims
to determine the new set points at the intermedi-
ate time step (mt) by minimizing their squared er-
ror against the optimizer set points at longer time
steps (IT). This intermediate sampling interval is
currently determined via trial-and-error tuning to
obtain desired control performance. There exists
a tradeoff where smaller intervals can better cap-
ture the system dynamics, but the set points from
the long term optimizer may be too aggressive to
be achieved during the small time duration. On
the other hand, larger intervals face the risk of
missing certain important system dynamics (e.g.,
change of process gain) while may also provide
smoother transition between the long-term opti-
mizer and short-term controller. As shown in Eq.
9, the surrogate model is also built on the closed-
loop process and safety state space model, i.e.
with the risk-aware control laws integrated. The
state-space model in Eqgs. 9b-c can be obtained
via two strategies: (i) re-discretizing Eqs. 7b-c to
smaller time steps, or (ii) re-performing systems
identification using input-output closed loop con-
trol data with risk-aware controller active. The
surrogate model is again formulated as an mp-
MIQP problem with the mixed-integer variables
resulted from piece-wise risk linearization. The
explicit solutions are exemplified in Eq. 10 for
the model-based mapping between the surrogate
model set points and optimizer set points.

Surrogate model formulation

min Y |lyf — fbl 2+ |luft, — ufy]

mt

(9a)

s.t. Tmt+1 — Am.’lfmt -+ BmUE;t -+ Cmdmt

R
[Rf:zf— b} - {Mm} e [ 0 ] Ui

(9b)
(9c)
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yt <yR <3k, ﬂit < Rlﬁt < Rfmt (9e)

where subscript mt refers to the intermediate time
step of the surrogate model.

Lot < Tyt < Tyt : < U

Ezxplicit surrogate model solutions

R
mt Ki,mtemt + Timt

Ot € CR: {CRfél,mte < CRil,mt}
gmt = [men ymt7 R[mt> le’ RIII;” ulI’{T’ dmt]

2.3. Remarks

For the introduced risk-based model predictive
quality control approach, three explicit/multi-
parametric solution maps are respectively ob-
tained for the hierarchical control-aware safety
and quality optimizer, intermediate surrogate
model, and risk-aware controller. In this way,
the decisions from upper-level (in longer term)
can be seamlessly conveyed to the lower-level (in
shorter term), while the lower-level dynamics are
explicitly aware by the long-term representation.
Several remarks can be made here to highlight
the key advantages of this proposed approach: (i)
Multi-parametric programming enables the gen-
eration of explicit control or optimization solu-
tions a priori as piece-wise affine functions of pro-
cess states, outputs, risk, disturbances, etc. From
this, a quantitative and algorithmic understand-
ing on the impact of disturbances and real-time
(e.g., set point selection) can be generated even
before operating the process online. The risk con-
troller can thus be tuned accordingly to max-
imize the safe operating region against distur-
bances, while simultaneously optimizing the over-
all batch efficiency and productivity; (ii) Different
operating tasks (e.g., control, cost, fault progno-
sis) can exhibit distinct slower or faster dynam-
ical time scales spanning from seconds to hours.
The three-level hierarchical formulation addresses
the respective tasks at their characteristic time
scales while effectively integrating the at a super-
visory level instead of undertaking all the deci-
sions at every minimum time step; (iii) Multi-
parametric programming replaces repetitive on-
line optimization with online affine function eval-
uation, which has been proven to significantly re-
duce online computational time and computing

u

(10)

mt

resources. Tackling such multi-time-scale opti-
mization using classic MPC typically results in
a large scale mixed-integer dynamic optimization
problem which is inefficient or computationally in-
tractable.

When necessary, an online (mixed integer) dy-
namic optimization problem can be further posed
to optimize process economics, energy efficiency,
sustainability, etc. by coordinating the optimizer,
surrogate model, and controllers together. As
shown in Eq. 11, this approach provides an instru-
mental feature to utilize a single online dynamic
optimization problem while addressing additional
needs beyond quality control, such as response to
demand changes. This optimization problem fea-
tures: an objective function, the nonlinear pro-
cess model, the nonlinear risk model, explicit con-
troller solutions, explicit optimizer solutions, ex-
plicit surrogate model solutions, and path con-
straints. The ability to utilize the high fidelity
process and risk models in online optimization
is also critical to close the loop with the origi-
nal nonlinear process systems. The current work
leverages the hierarchical approach to extend the
safety and quality optimizer to cover a signif-
icantly longer horizon than the risk controller.
However, the methodology generally intends to
decompose the operational optimization complex-
ity for any systems with intrinsic disparate dy-
namics (e.g., fast, slow, and/or hybrid). In addi-
tion, the current work assumes that a verified high
fidelity process model is available for model-based
control optimization. The extension to (physics-
guided) data-driven modeling and online model
updating using real-time measurement data can
be referred to our recent work [51, 53].

min F fo‘r x(t),y(t), RI(t),u(t),
st. dx(t)/dt = f(z(t),u(t),d(t)
RI = RI(x(t), u(t),d(t))
Usk = Ki,skesk + 7 sk
ult. = Ky im0 + rigr
ully, = KimtOmt + Time
z<z(t)<zT w<ult)<u
y<ylt)<y RI < RI(t)

d(t))dt

(11)
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3. Case Study — Safety-Critical T2 Batch
Reactor

In this section, we apply the above methodology
on a safety-critical exothermic batch reactor. This
case study is conceptualized from the batch produc-
tion process at T2 Laboratories Inc., which suffered
from a process safety incident in 2007 resulting in
four deaths and twenty-eight injuries [54]. Various
application scenarios are investigated to demonstrate
the potential, efficacy, and flexibility of the proposed
method to integrate process control, dynamic risk
management, and end-batch quality control.

3.1. Process Description

A schematic of this T2 batch reactor is shown in
Fig. 4. It has two feed streams respectively including
methylcyclopentadiene (A), sodium (B), and diglyme
(S) to produce sodium methylcylcopentadiene (C) as
a desired product for gasoline additive and hydrogen
(D) as a side product. The two exothermic reactions
occurring in this reactor are given below. The activa-
tion energy of the side reaction is substantially larger
than the main reaction, which makes the side reaction
rate only significant at elevated temperatures. How-
ever, if cooling utility is not adequately suppliedin the
2007 incident, the batch reactor temperature may in-
crease uncontrollably which will eventually ignite the
hydrogen and lead to explosion.

Main reaction:

Methylcyclopentadiene (A) + Sodium (B)

M) Sodium Methylcyclopentadiene (C) +

Hydrogen (D)

Side reaction:

Sodi B
Diglyme (S) Sodium(B), Hydrogen (D) 4+ Byproduct
The research objective of this study is to determine
the optimal batch operating strategy which can:

e Meet the end-batch product quality target which
is defined against the conversion of raw material

A.

e Provide safe and optimal operations under dis-
turbances, ideally operating at the low risk level
throughout batch duration.

. Control

Feed A. 5. t=1p Product, t=tf -

»~

Feed B. t=ty

Utility Inlet

Figure 4: T2 batch reactor diagram

e Prevent the process from entering the high risk
region. However, if fault occurrence cannot be
circumvented, raise alarm ahead of time to allow
the operators to prudently plan for emergency
shutdown.

3.2. Process and Risk Modeling

A first principles model is developed to describe
this reactoras given in Eq. 12. More specifically,
Egs. 12a-c define component mass balances and Eq.
12d calculates energy balance. The major process
variables and parameters are summarized in Table
2. The current work assumes that the above model
provides an accurate description for this batch re-
actor and mainly focuses on the development of a
hierarchical risk-based quality control strategy. To
improve the accuracy of the simulated model in real-
world industrial applications, online model approxi-
mation can be adopted using real-time measurement
data. An approach to this, as outlined in our prior
work [53], is to use physics-informed machine learning
techniques to estimate parameters in Eq. 12 based on
plant data. System identification and machine learn-
ing approaches can also be directly utilized to ob-
tain state space models from plant data, which can
then be used to construct the risk control algorithms
[55, 51].

dCa

—_— = — 12
dt kchCB ( a)

s _ _pcacy (12b)

dt
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g: VZ(—AHka)—UAx(T—TC) (12d)
ar CrS N,

As shown in Fig. 4, the valve opening for the cool-
ing utility stream is used in practice for reactor tem-
perature control. For the simplicity of process mod-
eling in this work, the heat transfer coefficient U is
utilized as the manipulated variable which is propor-
tional to the utility flow rate. This case study al-
lows for cooling through negative U values which is
essential for process safety management, while also
enabling heating through positive U values to accel-
erate reactant conversions and meet quality targets.
It is recognized that this represents a simplified mod-
eling consideration, while in practice this may require
a more complicated control system design to achieve
the cease of flow for one utility and the emergence of
flow for the other.

The dynamic risk model is then developed in ac-
cordance with Eq. 3. Based on literature [38], the
nominal reactor operation temperature is selected as
460 K. When temperature exceeds 480.34 K, the re-
actor has a higher probability for thermal runaway.
Therefore, the risk index is defined as a function of
temperature which is the key safety-critical variable
in the process. The mean (u) is adopted as 460 K
with a standard deviation (0) of 5 K, which results in
the upper control limit as 475 K (i.e., p+39). In prac-
tice, the values of mean and standard deviation are
determined by the engineers based on prior process
knowledge and operating data. As shown previously
in Fig 3, the risk index begins to rapidly increase
when the process is 30 away from the mean value pu.
Specifically for this case study, the value of the risk
index becomes significant at 475 K for the controller
to take actions which gives a 5 K buffer region from
entering the high risk region over 480.34 K (equiva-
lently, RI > 3).

3.3. Risk-Aware Model Predictive Control

A combined linearized process and risk model is
developed for its use in model predictive control. A
discrete state space model is obtained from the batch
reactor nonlinear first principles model (Eq. 12) using
the MATLAB® system identification toolbox [56].
The time step is selected as 5 minutes due to the
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slow dynamics of this reactor. Note that the physi-
cal meanings of state variables (Z) are not retained
in the identified state space model. Thus it is nec-
essary to estimate the states of the system based on
measured outputs which assumes an accurate online
output measurement of temperature. The Jacobian
method provides an alternative model linearization
strategy [46]. However, to ensure sufficient model ac-
curacy, successive online model linearization is found
to be necessary for batch processes due to the lack of
steady states. An additional case-study on risk-aware
control utilizing the Jacobian method to derive state-
space models of the system is provided in the Sup-
porting Information. The implementation shows that
the Jacobian requires excessive updates as the batch
system is intrinsically dynamic. For each new Ja-
cobian, new multi-parametric model predictive con-
trol (mp-MPC) laws should be generated via online
computation. This would no longer leverage the ad-
vantage of mp-MPC to obtain explicit control laws
offline a priori and to reduce online computational
loads. This is why system identification is adopted in
this work which can provide a single linearized batch
model with sufficient modeling accuracy. The non-
linear dynamic risk model is also reformulated into
disjoint piece-wise affine functions. The risk model
is integrated with the process state space model by
treating RI as an output and appending the neces-

sary relationships with state variablesas presented in
Eq. 13.

Tsh+1 = AT + BUg (13&)

RIg — b= Mz, (13b)

The coefficient matrices A, B, M, and linearization
parameters m and b are given below. m and b are to
be recast as mixed-integer expressions following Eqs.
5d-f.

A 1.0088 —0.0495
~ [0.1008  0.4611

B _ [~1:520x 1077
~|-1.945x 107¢

~1.017 x 103]T

M_m[ 8.250 x 10!

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724



725

726

727

728

729

730

731

732

733

734

735

Table 2: List of major batch process variables and parameters.

State variables

Cy,Cp,Cs: Concentrations, T: Temperature

Manipulated variable

U: Heat transfer coefficient

Control variable RI: Risk

Disturbance

Ty: Initial Temperature

Model parameters

E;
RT

k; = Ajexp(—

V: Volume (4000 L), p: Mixture density (36 mol/L)

C,: Specific heat (430.91 J/mol-K)

A,: Heat transfer area (5.3 m?), T,: Coolant (373K)

AHy:Heat of reaction (-45.6 kJ/mol, -320 kJ/mol)

): Reaction rate constant for reaction i

A;: Frequency factor (A; = 4 x 10, Ay =1 x 1084)

E;: Activation energy (E; = 1.28 x 10°, Ey = 8 x 10° J/mol-K)

0.00776, T € [460,472]

) 0.21471, T € (472,477

"7 0.54957, T e (477, 481]
0.76287, T € (481, 495]

(15)

—3.5717, T € [460,472]

) 10125, T € (472,477)

) —260.98, T € (477,481]

—363.58, T € (481,495

A risk-aware MPC problem is then developed as per
Eq. 5 to optimally manipulate the heat transfer coef-
ficient (U) to keep the risk index (RI) at the desired
low risk level (RIZ = 0). The tuning parameters
and path constraints for the risk-aware control are
summarized in Tables 3 and 4.

Table 3: Risk-aware controller — Tuning parameters
ORy R, |OH|CH
1x10%|1x107° 3 1

Table 4: Risk-aware controller — Path constraints

U RI T1, T2
Min | =5.5 x 10* | =3 | =100, —100
Maz | 5.5x 10" | 25 100, 100

The risk-aware control problem is solved via mixed-
integer quadratic programming to generate explicit
control solutions. The closed-loop risk control per-
formance is showcased in Figs. 5 and 6, which re-
spectively present the scenario with initial conditions
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at a low risk level (RI = 0 equivalent to 7" = 460K)
and a moderate risk level (RI = 0.062 equivalent to
T = 468K). It is worth highlighting that, despite
the explicit control laws are designed based on the
linearized model, the closed-loop control and opera-
tional optimization throughout this work are imple-
mented against the original nonlinear process model
given in Egs. 12a-d. In both scenarios, the risk-aware
controller is able to eventually stabilize the process at
the desired risk set point (RI% = 0). With a low-risk
initial condition (Fig. 5), the controller succeeds in
maintaining RI ~ 0 throughout the operations. With
a moderate-risk initial condition (Fig. 6), a slight risk
increase is observed while it is controlled back to the
set point shortly after. Without the risk-aware con-
trol, it is shown that this process quickly reaches the
high risk region.

4.5

T
= = = Critical Risk
—©— Open Loop | -
Closed Loop

Risk Index

0 02 0.4 0.6 0.8 1 12
Time (h)

Figure 5: Open-loop and closed-loop simulation — Low risk
initial condition.
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Figure 6: Open-loop and closed-loop simulation — Moder-
ate risk initial condition.

3.4. Integration with Safety and Quality Opti-
mazation

The long-term safety and quality optimizer deter-
mines the optimal set points for the risk controller or
surrogate model at a supervisory level by forecasting
the operations throughout the batch. It also employs
a linearized discrete state-space model which is de-
veloped using the MATLAB® system identification
toolbox [56]. As the states of the linearized state
space model become physically meaningless due to
system identification (Eq. 13a), they should be es-
timated utilizing online output measurements which
in this scenario is the temperature and the concen-
tration of species A, i.e. C'4. In practice, if the con-
centration is not measurable, state estimation tech-
niques should be used to provide the information.
The model is identified from the input-output data
generated from the batch reactor closed-loop simula-
tions, i.e. with the risk controller on. In this work,
the objective function of the optimizer is set to meet
the end-batch quality target, which is defined against
the concentration of reactant A. In what follows, we
present three scenarios to showcase the agility of the
proposed hierarchical strategy fitting the purpose for
various process dynamics and requirements. Namely:
(1) Two-level controller and optimizer integration, (2)
Three-level integration with intermediate surrogate
model, and (3) Quality control with fixed batch du-
ration.
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Scenario 1: Two-Level Controller and Optimizer
Integration

Herein, the time step for the optimizer is selected
as 20 minutes while forecasting over the next oper-
ation. The resulting optimal input and output set
points are directly passed to the risk controller, the
latter of which has a time step of 5 minutes. The opti-
mizer time step also represents the frequency at which
it provides updated set points to the controller. The
optimizer tuning parameters and path constraints are
provided below in Tables 5 and 6. Scenario 2 will
showcase an optimizer set up with significantly longer
time step which necessitates the use of intermediate
surrogate model, and Scenario 3 will apply a time-
varying optimizer with forecast horizon all the way
to the end of batch.

Table 5: Scenario 1 — Optimizer tuning parameters

Wi W p1 | ps | OHp | CHyp
1x10*|[1x10%] 2| 2 4 3

Table 6: Scenario 1 — Optimizer path constraints

UZI’}" CE T fly EQ? f-?n f4
Min | 400 0 —100, —100, —100, —100
Max | 470 1 100, 100, 100, 100

With the controller and optimizer integration, the
batch operating trajectories are shown in Figs. 7-10
respectively illustrating the concentration of reactant
A, dynamic risk, reactor temperature, and heat trans-
fer coefficient. Three end-point concentrations (i.e.
CET = 0.1, 0.05, and 0.01 mol/L) are examined to
demonstrate the capability of quality target tracking.
As shown in Fig. 7, the operating paths under dif-
ferent quality targets are identical until reaching the
first quality target (CgT = 0.1 mol/L). The three
quality targets are satisfied within 3, 4, and 7 hours
respectively. The varying batch times are a result of
the well controlled trade-off between reaction produc-
tivity and process risk, as the elevated reactor tem-
perature can accelerate the batch production while
posing higher risk. As depicted in Figs. 8 and 9,
the controller and optimizer begin with the strategy
to take a maximally acceptable risk up to the up-
per control limit (i.e., 475 K), which strive to boost
the reaction productivity for quality considerations.
Thus, the reactor is initially heated up as shown by
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the manipulated variable profile in Fig. 10. However,
the utility input switches to cooling at 0.5 hours as
the process is forecast to enter the high risk region if
heating continues.

Moreover, the predictive behavior of the integrated
controller and optimizer also shines through when it
approaches the quality target. Using C’gT = 0.01
mol/L as an example, rapid cooling begins at 5 hours
when the quality target is about to be met, with
the heat transfer coefficient surges to the maximum
5.5 x 10* W/m?K to cease the reaction. Slight Offset
is observed, e.g.the process ends at C'4 ~ 0.03 mol/L
for the quality target of 0.01 mol/L. The accuracy of
quality control will be remedied later using quality
control with fixed batch duration (Scenario 3). Inter-
estingly, if the quality controller is dormant initially
and then activated later, a similar heating surge as
in Fig. 10 is present at the moment of activation.
This further suggests that the long-term optimizer
tends to keep the reactor at a relatively higher risk
level to meet quality targets in a swift manner, while
the controller alone takes more conservative actions
prioritizine risk management.

0.4

——QT=0.1

Concentration of A (mol/L)

0 1 2 3 4 5 6 7 8 9
Time (h)

Figure 7: Scenario 1 — End-batch quality control for vari-
ous quality targets.

Scenario 2: Three-Level Integration with Surro-
gate Model

In certain instances where the long term and short
term time spans are substantially different, issues
may arise if: (i) the controller can achieve the set
point determined by the optimizer in a short time,
and (ii) the optimizer may neglect important short-
term dynamics. To test this scenario, the quality and
safety optimizer adopts a time step of one hour to pro-
long the batch operation forecast and enhance long

——QT=0.1
—e—QT=0.05
QT =0.01

Risk Index

Figure 8: Scenario 1 — Dynamic risk profiles for quality
control.

480

—#—QT=0.1

Reactor Temperature (K)
&
]

‘ . : ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8 9
Time(h)

Figure 9: Scenario 1 — Temperature profiles for quality
control.
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Figure 10: Scenario 1 — Manipulated variable responses
for quality control.
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term predictions. It is set to forecast 4 hours into the
future and provides set point updates every hour to
the risk controller. As shown in Fig. 11, if the set
points are directly sent from the optimizer to the con-
troller without an intermediate surrogate model, the
decision makers are unable to meet the quality tar-
get at 0.1 mol/L. This is because the optimizer with
Ts = 1 hour cannot account for the early reaction dy-
namics, particularly those occurring during the first
hour.

In this context, an intermediate surrogate model is
essential to bridge the gap and act as a middle de-
cision maker as per Fig. 2. The surrogate modeling
scheme is developed and applied according to Eq. 9
which predicts over 30 minutes and provides updated
set points every 10 min. The long-term quality and
safety optimizer thus provides updated set points to
the surrogate model, the latter of which further com-
putes more reasonable set points at a shorter time
span to guide the risk-aware controller. As shown in
Fig. 11, the quality target can be met with the aid of
surrogate model. The consequence a longer sampling
rate is highlighted in Fig. 12 where a higher risk than
both Scenario 1 and 3 is attained. The slight offset
is comparable to that in Scenario 1. Based on these
results, the surrogate modeling technique proves to
be successful at translating the long time span oper-
ational goals to the short time span risk-aware con-
troller.

0.4

T T T T
—#— With Surrogate Model
—©— Without Surrogate Model

Concentration of A (mol/L)

Time (h)

Figure 11: Scenario 2 — Quality control with surrogate
modeling
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Figure 12: Scenario 2 — Dynamic risk profiles with surro-
gate modeling
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Figure 13: Scenario 2 — Manipulated variable profiles with
surrogate modeling

Scenario 3: Quality control with fixed batch dura-
tion

The optimizer in the previous scenarios utilize a
fixed and rolling output forecast horizon, e.g.1 hour
in Scenario 1 or 4 hours in Scenario 2. In this way,
the operating strategy is optimized to meet the end-
batch quality target as soon as possible while a batch
duration is not strictly posed. Hereafter, we consider
a fixed total batch duration and require the optimizer
to always predict up to the end-point time. This re-
sults in a much larger number of optimizer output
horizons to be solved using multi-parametric opti-
mization. More importantly, the explicit solutions
need to be updated at each time step as the number
of output horizons is manipulated to be one less at
each successive time step. According to the results of
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Scenario 1, the quality targets of 0.1, 0.05, and 0.01
mol/L require 3, 4, and 7 hours respectively. For
the quality optimizer with 15-minute time step, 12,
16, and 28 output horizons are respectively required
for each quality target at the initial time point. The
resulting operating trajectories of this approach are
shown in Figs. 14-16. This method is demonstrated
to be effective in meeting the quality targets while
maintaining safe operations. The offset for Q7T = 0.1
mol/L is comparable to the previous scenarios, while
notably less for the quality targets of 0.05 mol/L and
0.01 mol/L. However, the manipulated variable U ap-
pears to be sporadicas shown in Fig. 16. This oper-
ating strategy also requires more computational time
due to the increased and time-varying number of op-
timizer output horizons. For the largest output hori-
zon (OH = 28), the total number of critical regions to
be stored for offline mp-MIQP solutions is 6,639. The
quality target of 0.01 mol/L takes the longest to com-
pute with a time of 3.25 minutes and the target of 0.1
mol/L takes 0.52 minutes. The computational times
in Scenarios 1 and 2 are all within 6 seconds. These
studies are carried out on an Alienware m16 with an
Intel 19-13900HX CPU and an NVIDIA GeForce RTX
4090 Laptop GPU.
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Figure 14: Scenario 3 — Quality control with fixed batch
duration

4. Conclusions

In this work, we have developed a hierarchical
multi-parametric optimization approach for multi-
time-scale operational optimization, with application
to the integration of model predictive control, end-
point batch quality control, and prescriptive risk
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Figure 15: Scenario 3 — Dynamic risk profiles
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Figure 16: Scenario 3 — Manipulated Variable profiles

management. A short-term risk-aware controller is
utilized for risk control, set point tracking, and distur-
bance rejection together with a long-term optimizer
to meet batch quality targets and enhance overall
operational safety. The methodology is made more
robust through the formulation and implementation
of an intermediate surrogate model when necessary.
The effectiveness and potential of the approach is
demonstrated on a safety-critical exothermic batch
reactor.

The proposed approach is complementary to eco-
nomic model predictive control [57, 58] which ad-
dresses simultaneous economics and control consid-
erations at every time step. It allows for decompos-
ing the multi-time-scale to a hierarchy of operational
optimization problems at the respective character-
istic time scales. This can provide more flexibility
for problem formulation. In addition to leveraging
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the long-term optimizer for cost optimization (hours)
and the short-term controller for risk control (min-
utes), the surrogate model creates another interme-
diate which can be leveraged for, e.g.fault prognosis
(20 min to activate alarm in advance).

This work utilizes multi-parametric (mixed-
integer) linear/quadratic optimization based on lin-
earized process model. Though the optimization al-
gorithms relieve online computational strain, a de-
sired trait for the long prediction horizons necessary
in this work, linearizing process and risk models com-
promises the accuracy of the system projections in the
optimization problem. Linearization in this system is
shown to be acceptable as the case studies are val-
idated against the original nonlinear process model.
However, in some systemslinearizations may lead to
undesirable performance or infeasible actions. Re-
duced order modeling (ROM) or model order reduc-
tion (MOR) techniques offer ways to reduce the com-
putational complexity of high-fidelity models without
compromising performance or accuracy. Koopman
operator theory is one such technique that provides
the capability to fully represent nonlinear dynamics
as a globally linear model [59, 60]. Deriving the op-
erator can be quite challenging and real-world imple-
mentations often involve approximations of the op-
erator [61]. Recent research using machine learning
has found approaches to approximate these operators
[62, 63]. Using the Koopman operator method in this
system would integrate nicely into the proposed ap-
proaches while potentially mitigating any lineariza-
tion errors made. Additionally, in our prior work [51],
we have developed multi-parametric MPC based on a
nonlinear machine learning-based process model with
a self-adaptive linearization algorithm. This can be
readily applied to this work and to enhance the appli-
cability of the proposed approach. It is of the authors’
ongoing work to develop robust risk control strategies
to address the linearization errors. Additionally, the
current approach assumes an accurate online output
measurement to estimate the system states, but such
accurate measurements may not be always available
in practice. In more complex systems, such as phar-
maceutical processes, it can be especially challenging
to obtain the desired state information. State esti-
mators like the Kalman filter are commonly used in
practice but typically rely on the assumption that the
uncertainty in the system follows a Gaussian distri-
bution. For these reasons, ongoing work will extend
the proposed framework by incorporating Bayesian
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state estimators to enhance the control optimization
performance under generalizable uncertainties.
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