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A UNIFIED HP-HDG FRAMEWORK FOR FRIEDRICHS’ PDE SYSTEMS*
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Abstract. This work proposes a unified hp-adaptivity framework for hybridized discontinuous Galerkin (HDG) method for
a large class of partial differential equations (PDEs) of Friedrichs’ type. In particular, we present unified hp-HDG formulations
for abstract one-field and two-field structures and prove their well-posedness. In order to handle non-conforming interfaces
we simply take advantage of HDG built-in mortar structures. With split-type mortars and the approximation space of trace,
a numerical flux can be derived via Godunov approach and be naturally employed without any additional treatment. As a
consequence, the proposed formulations are parameter-free. We perform several numerical experiments for time-independent
and linear PDEs including elliptic, hyperbolic, and mixed-type to verify the proposed unified hp-formulations and demonstrate
the effectiveness of hp-adaptation. Two adaptivity criteria are considered: one is based on a simple and fast error indicator,
while the other is rigorous but more expensive using an adjoint-based error estimate. The numerical results show that these
two approaches are comparable in terms of convergence rate even for problems with strong gradients, discontinuities, and
singularities.
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1. Introduction. The hybridized discontinuous Galerkin (HDG) methods were first introduced in [32]
and they inherit many benefits of discontinuous Galerkin (DG) methods including the applicability to a
wide variety of partial differential equations (PDEs), the capability of handling complex geometries, and
high-order accuracy support, to name a few. In addition, HDG methods improve computational efficiency
[30] by condensing out the local unknowns, and the linear system to be solved for the trace unknowns
on the mesh skeleton is smaller than DG counterparts. With these favorable advantages, HDG methods
indeed have great success solving various kinds of PDEs such as Poisson equation [30, 34, 70], convection-
diffusion equations [86, 87, 55], Stokes equations [31, 33, 88, 37, 68], Navier-Stokes equations [91, 24], Maxwell
equation [90, 79], acoustics and elastodynamics equations [89], Helmholtz equation [61, 39], and magneto-
hydrodynamic equations [74], to mention a few. A constructive and unified HDG framework for a large class
of physics governed by elliptic, parabolic, hyperbolic, and mixed-typed PDEs has been developed in [20] that
not only rediscovers most of the existing HDG methods but also discovers new ones.

As with any numerical discretization method, standard HDG could be inefficient in some crucial situa-
tions where high gradient, discontinuous, and/or singular features are present. Unfortunately, these extreme
features are not uncommon in almost all engineering/physics applications. A cure to this issue is to employ
hp-adaptivity. The idea is first proposed in [4] and is systematically studied in [62, 63]. It consists of two
key findings. The first one is that an exponential convergence rate can be attained by uniformly increasing
the degree of approximation (p-refinement) if the solution is regular enough [5]. The second one is that a
low degree of approximation along with refined mesh (h-refinement) is desired if the solution is non-smooth.
In brief, the ideal situation is to locally execute either h- or p- refinement according to the local behavior of
the solution.

In fact, the adaptive feature has been routinely applied in the context of HDG methods either through
h-adaptivity [23, 85, 46, 40, 107, 27, 35, 96, 2, 52, 77, 83, 101, 76, 75, 99, 7, 38, 78|, p-adaptivity [58,
57, 65, 97, 56, 82], or hp-adaptivity [8, 105, 106, 9]. To drive the adaptation process, some indicator is
necessary. There are three popular approaches: a posterior error estimator, adjoint-based error estimate,
and heuristic indicator. Although the reliability and efficiency of an a posterior error estimator sometimes
can be guaranteed [46, 27, 2], the derivation is problem-dependent and is typically non-trivial, especially
for nonlinear problems, [23, 46, 27, 2, 77, 76, 75, 99]. In addition, a post-process may be required in this
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type of error estimator [46, 2, 99, 58, 57]. On the other hand, an adjoint-based error estimate is popular in
engineering applications [8, 40, 107, 106, 9, 52, 82, 38] since, in this scenario, one is usually more interested
in some specific quantities instead of the solution itself. An adaptation process driven by an adjoint-based
error estimate has been developed for computing accurate values for such quantities of interest. Finally,
some heuristic indicator can also be employed in driving adaptation [66] and is typically inexpensive to be
computed. For example, in [96, 65], a measure of jump of flux is used as an error indicator. However, an
error indicator is not necessarily associated with “error”. For instance, authors in [85, 7] take advantage of
artificial viscosity as an indicator and the work [83] uses damage-field as an indicator. In this paper, we study
both adjoint-based error estimate and error indicator. The first option is easier to be derived compared to
a posterior error estimator but it still possesses certain robustness [8, 40, 107, 106, 9]. The second option is
more ad-hoc and lacks robustness. The discussion of both approaches will be addressed in Section 4 and the
numerical comparison will be made in Section 5.

The adaptation procedure can involve either h-refinement or p-refinement or both for the mesh under
consideration. The local mesh refinement can be achieved without having any hanging node at the element
boundaries for simplex meshes. In this case, no special treatment is required. The classic algorithms
without re-meshing are bisection [94, 93, 100] and red-green procedures [10]. Another approach is to simply
re-generate the mesh where the layout of the small and large elements depends on some metric [106, 52,
77, 82, 7, 78]. This mechanism is usually more computational expensive but the resulting mesh is more
economical. We would like to mention that, however, h-nonconforming interfaces are typically involved in
local h-refinement for quadrilateral and hexahedral meshes. Thanks to natural built-in mortars in HDG
methods, the relevant techniques can be easily utilized to treat nonconforming interfaces. In addition, the
issue of p-nonconforming interfaces due to local enrichment of approximation space can also be addressed by
the mortar techniques. Nonetheless, special attention is needed for curved boundaries [97, 56]. In this work,
though our hp-HDG approaches are valid for triangular/tetrahedral/quadrilateral /hexahedral elements with
straight edges/faces in both 2D and 3D, our numerical results are only for two-dimensional problems with
triangle elements.

So far, we have reviewed various HDG schemes for solving different physical problems. Since each physics
has a unique characteristic, it is natural to develop different numerical scheme for different problem. However,
the PDEs of Friedrichs’ type [54] embraces a large class of PDEs with similar mathematical structure and
this provides an opportunity of developing a single unified framework. This idea is first adopted in a series
of papers [49, 50, 51] in the analysis of DG methods. Friedrichs’ system is also the basis to unify various
discontinuous Petrov-Galerkin methods [21]. In the work [20], the author uses Friedrichs’ system to propose
a unified and constructive framework for HDG schemes via a Godunov approach, with the assumption that
the interfaces are conforming.

This paper extends the work in [20] in two important directions. First, our extension now provides a
unified HDG framework for PDEs with two-field structure (to be defined). Second we develop two unified
hp-HDG frameworks: one for one-field PDE structure and another for two-field PDE structure. In particular,
we consider Friedrichs’ systems with more general assumptions that cover one- and two-field structures. For
two-field structures, both full and partial coercivities are examined. The resulting approaches thus cover
a wide range PDEs including hyperbolic, elliptic, or mixed-type PDEs. We then propose two hp-HDG
formulations: one for one-field PDEs and the other for two-field PDEs. The derivation heavily relies on
the Godunov approach. For the two-field formulation, we further exploit its intrinsic structure to obtain
the corresponding reduced trace system. A few assumptions are identified to guarantee the existence of the
numerical flux, and this is also a key to prove the well-posedness. Several numerical experiments are carried
out to verify the effectiveness of the abstract hp-HDG formulations when applied to specific PDEs. In order
to drive the adaptivity, an adhoc error indicator and an adjoint-based error estimation are implemented and
their performance are compared. As shall be shown, using either of these criteria, numerically polluted areas
induced by high gradient/discontinuity /singular can indeed decrease through the hp-adaptation process, and
acceptable convergence rates can be attained in many cases.

The paper is organized as follows. Section 2 briefly reviews Friedrichs’ systems and outlines important
assumptions that will be used in the well-posedness analysis. In Section 3, key concepts about mortar
techniques are discussed. In addition, HDG numerical fluxes and the corresponding hp-HDG formulations
for one-field and two-field Friedrichs’ systems are derived. The well-posedness of these formulations is then
proved. The hp-adaptation strategy with adaptive criteria based on ad-hoc and adjoint-based error indicator
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is presented in Section 4. Several numerical examples for elliptic PDEs (with corner singularity, anisotropic
diffusion with discontinuous boundary condition, heterogeneous anisotropic with discontinuous diffusivity
field), linear hyperbolic PDE (with variable speed and discontinuous boundary condition), and convection-
diffusion PDE (with boundary layer and discontinuous boundary condition) are presented in Section 5.
Section 6 concludes the paper with future work.

2. Linear PDEs of Friedrichs’ type. The main idea of Friedrichs’ unification of PDEs [54] is to
cast wide classes of PDEs into the first order systems which share the same mathematical structure. In
this section, we outline one-field and two-field PDE of Friedrichs’ type. The following notations are used
in the paper. Boldface lowercases are reserved for (column) vectors, uppercase letters are for matrices, and
boldface uppercase letters are for third order tensors. Considering the following general system of linear
PDEs defined in a Lipschitz domain  C R?, where d refers to the spatial dimension:

d d
(2.1) D OkFi(2)+Gz:=) 0k (Arz)+Gz = finQ,
k=1 k=1
where Fy (z) := Agz is the k-th component of the flux tensor F'(z), z the unknown solution with values

in R™, and f € [£? (Q)]d the forcing term. Here, £2 () is the space of square-integrable functions on
Q. Additionally, 9y stands for the k-th (component-wise) partial derivative. Different types of constraints
imposed on Ay and G will result in different types of Friedrichs’ systems, and we shall discuss each case
separately in the following sub-sections.

2.1. One-field Friedrichs’ systems. One-field Friedrichs’ systems come with the following standard

assumptions [54, 67, 49]:

(A1) G e [L=(Q))™™
(A.2) Vk e {1,....d}, A, € [L°(Q)]™™ and S0, OpAy € [L2(Q)])™™.
(A?)) vk € {1, R ,d}, Ay = (Ak)T a.e. in ).
(A4) 3up >0, G+ GT + 30 0 Ay > 2u0l,, ae. in Q.
where I, is the m x m identity matrix. In this paper, the inequality of the type (A.4) stands for the
semi-positive definiteness of the difference between the matrices on the left-hand side and the right-hand
side. Inequality (A.4) is also known as full coercivity [49]. Here, [£>°(£2)]™™ denotes the space of m x m
matrix-valued essentially bounded functions on . It turns out that any symmetric and strictly hyperbolic
PDE system is an example of one-field Friedrichs’ system. The advection equation, for example, falls into
this category and it is discussed in Section 5.2. More examples can be found in Sections 3.1, 3.2 in [49].

2.2. Two-field Friedrichs’ systems. Let m? and m* be two positive integers such that m = m?+m™.
Denote %, := [L? (Q)}m , L = [L? (Q)]m ,and £ = %, x %£,. Suppose we have the decomposition
z = (o,u) for all z € £, and

o) o[0T m-PE ] keina.

Note that Cy is symmetric owing to (A.3). Two additional key assumptions on which the two-field theory is
based are [50]:

(AB) A7° =0,Vk e {1,...,d},

(A.6) G99 > kol,o for some ko > 0,
where I, is the identity matrix in R™”™7 . Assumptions (A.5)-(A.6) allow us to eliminate the o-component
of z in the PDE system and the resulting differential equation is an elliptic-like PDE for the u-component.
The two-field Friedrichs’ systems that satisfy assumptions (A.1)-(A.6) cover a wide variety of PDEs including
convection-diffusion-reaction equation, compressible linear continuum mechanics with a reaction term, and
simplified MHD. These examples are studied in Section 3 in [50].

We note that the positivity condition (A.4) can be further relaxed to account for systems that have
two-field structures with partial coercivity. This class includes convection-diffusion, anisotropic diffusion,
and typical compressible linear continuum mechanics (e.g., linearized compressible elasticity or linearized
compressible Navier-Stokes) equations, to name a few. This can be accomplished (see [51]) by replacing
assumption (A.4) with the following:
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(Ad.a) Juo > 0, G+ GT +ZZ:1 Ap > 2upl8e ae. in , where I%. is an m X m matrix defined as
Ipe O
(o — m
)
(A4b) Go* = (G*°)T =0 and By, are constant over ().
The diffusion equations are discussed in Section 5.1 and the convection-diffusion equation is discussed
in Section 5.3. In addition, compressible linear continuum mechanics is discussed in Section 3.4 in [51].

REMARK 1. Here, we omit one additional inequality ((A3B”) in [51]) required for two-field Friedrichs’
systems with partial coercivity since it will not be used in our analysis of HDG. However, the inequality is
critical in the proof of well-poseness of the continuous PDE stated in (2.1). Such an inequality can be viewed
as a generalized form of Friedrichs—Poincaré [18] or Korn’s [19] inequality, and the discrete version of it can
actually be used in our analysis which, however, will lead to a mesh-dependent HDG scheme.

2.3. Boundary conditions. Though the numerical results in Section 5 use non-homogeneous bound-
ary conditions, it is sufficient to show the well-posedness of the one-field setting (A.1)-(A.4) and the two-field
setting (A.1)-(A.6) (or (A.1)-(A.3), (Ad.a)-(A4.b), (A.5)-(A.6)) with homogeneous boundary condition. Sim-
ilar to [49, 50, 51], we consider a general homogeneous boundary condition of the following form

(2.3a) (A—M)z=0, ondQ,

where M : 9Q — R™™ and A = 22:1 niAx with n = (nq, ... ,nd)T being the unit outward vector of 9.
In addition, we assume that

(2.3b) M >0,
(2.3¢) NA-M)+N((A+M)=R",

with A (+) denoting the nullspace of its argument. It should be noted that the definition of M depends on
the boundary, that is, different choices of M associate with different boundary conditions.

3. hp-HDG Formulations. In this section, we are going to derive hp-HDG formulations for Friedrichs’
systems outlined in Section 2. Toward formulating an Ap-HDG scheme, it is essential to derive a numerical
flux due to discontinuous approximation space(s) used for the volume unknown(s). The well-known Godunov
approach, which involves solving the Riemann problem either exactly or approximately, is one of the most
popular methods to construct numerical fluxes. The key is to realize that the Godunov flux can be hybridized
[20]. In other words, the Godunov flux! can be defined implicitly along with trace unknown(s) and thus
can be employed as an HDG numerical flux. In addition, such an approach is desirable since it can lead
to a parameter-free scheme. The idea of hybridizing the upwind flux to constructively and systematically
derive HDG methods for abstract (and particular) PDEs is thoroughly discussed in [20]. In that work
[20], we only discussed conforming HDG approaches. In this paper, we extended this idea to derive the
upwind HDG methods for Friedrichs’ system with hp-nonconforming meshes. The key ingredient to handle
hp-nonconforming interfaces is to construct such flux directly on the mortars which are naturally built-in
HDG methods. As we shall show, this can be achieved with the specific choice of the configuration of the
mortars and the approximation space(s) of trace unknown(s). Further, we will show that the construction is
quite straightforward for one-field Friedrichs’ system. For two-field systems, it is less so especially when we
would like to reduce the number of trace unknowns in our hp-HDG formulations for the sake of efficiency.
As pointed out in Lemma 3.5, in order to accomplish this goal, we require a few more assumptions to derive
such efficient upwind HDG schemes on an abstract level.

3.1. Nomenclatures. This section collects notations and conventions for the rest of the paper. Again,
boldface lowercases are reserved for (column) vectors, uppercase letters are for matrices, and boldface up-
percase letters are for third order tensors. A partition .7, of the domain © C R¢ is a finite collection of
disjoint elements K such that Ugez, K = Q where the mesh size h is defined as maxye¢ 7, diam(K). For
the simplicity of the exposition, we will use two-dimensional simplex elements to convey our idea, though

our approach is valid for three-dimensional settings as well. The set of elemental boundaries is denoted

11t should be noted that the Godunov flux is simply an upwind flux if the problem of interest is linear and thus we may use
these two terms interchangeably in this paper without confusion.



228

229
230
231
232
233
234
235
236

A UNIFIED HP-HDG FRAMEWORK FOR FRIEDRICHS’ PDE SYSTEMS 5

by 0%, = {0K | K € Z,} each of which comes with unit outward normal vector n’. We conventionally
identify n as the normal vector on the boundary K of element K (also denoted as K~) and nt = —n~
as the normal vector of the boundary of a neighboring element (also denoted as K¥). An element K7 is
said to be a neighbor of the element K~ when 0K N K~ has a positive d — 1 Lebesgue measure. For
an element K of the partition 7, we define a face of the element K € %, by F C 0K. For an interior
interface (nonconforming or not), we introduce a mortar e as e = IKT NIK~, and e = K N IQ on the
boundary of Q. Note that e = F* = F~ if we have a conforming interface (i.e., F* = F ™), otherwise, they
are different (see Figure 1 and Figure 2). For any conforming interface the mortar e is clearly defined and for
any nonconforming interface the mortar is defined in Section 3.2.1. The collection of mortars, called mesh
skeleton, is denoted by &, &, = E2 U EP with 2 = {e € &, | e C 9N} and & = &, \ E7. The derivation of an
HDG scheme is centered around the HDG numerical flux which typically comes with the newly introduced
unknowns residing on the skeleton. Such unknowns are usually termed trace unknowns while the usual
unknowns defined within elements, such as the ones in DG methods, are termed as volume unknowns.

For the quantity f that is possibly double-valued on the mesh skeleton, we define the jump of f on
e €&, as:

Ifl=f +f", forVeecé&s, If] = f, for Vee &,

where f*(x) = lim y—z f(y).
yEKi
We define PP (D) as the space of polynomials of degree at most p on a domain D. In particular, we

denote the degree of polynomials in an element K by px and on a mortar e by p.. Next, we introduce
discontinuous piecewise polynomial spaces

Wi =IRI" Py = {z € L2(Fh) : sl € PP (K), YK € T},
ﬁ\/h = {ﬁh]m7 ﬁh = {Eh S £2(5h) . 3h|e c PPe (e), Ye € 5h}~

To account for various boundary conditions, we denote 0{2p as Dirichlet type of boundary, 02y as Neumann
type of boundary, and 0Q2r as Robin type boundary. The boundary now can be decomposed as 992 =
00p U 0NN U Qg where the intersections of any two types of boundaries are empty set. To facilitate
the discussion of the two-field Friedrichs’ system later, we further introduce some additional approximation
spaces:

Eh:[Ph]m ) Uh:[Ph]m )

5= [A]" o, - 5]

Finally, we define the inner product for the aforementioned finite element spaces. (-,-)p is defined as the
L%inner product on a domain D C R? and (-, ), as the £?-inner product on a domain D if D C R?~1. To
make our presentation more concise, we introduce the following definitions:

)z, = ZKG?;L )k

(s '>a§h = ZaKeaﬂh ZFCaK ZegF (- '>e’
(5 )ox = X rcox chF G

) '>£,L = Zeegh ()

¢ Vep = Tocep ).

3.2. Mortar-based technique. A mortar technique is characterized by the introduction of mortars,
finite element spaces on the mortars, and the method that uses mortars to patch the subdomains/elements.
Our mortar approach is built upon four mortar approaches, all of which share the aforementioned three
steps, and the key difference is the way they compute the mortar unknowns. The first approach is due
to [81, 1, 15, 16, 17, 11], originally developed for elliptic PDEs, that uses the mortar unknowns to weakly
maintain the continuity of the solution across the mortars. In this case, the mortar unknowns are solved
together with the volume unknowns on subdomains or elements. The second approach was developed in
[71, 72, 69, 22, 53] for hyperbolic PDEs in the context of spectral element and DG approaches. The upwind

’
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states, which can be considered as the mortar unknowns [20], are computed on the mortars to construct
the numerical fluxes to ensure flux conservation across the mortars. The third approach by [14, 104, 3, 92],
originally developed in the context of mixed finite element methods for elliptic-type PDEs, calls the mortar
unknowns as Lagrange multipliers and, similar to the first approach, they are solved together with the
volume unknowns. The key difference is that the weak continuity of the flux is enforced instead of the weak
continuity of the solution. Finally, the HDG approach [32, 30, 34, 70, 86, 87, 55, 31, 33, 88, 37, 68, 74, 20], in
which the mortar unknowns are called trace unknowns, uses mortar unknowns to enforce the weak continuity
of the flux similar to the third approach. The mortar unknowns are also solved together with the volume
unknowns.

In this paper, we extend the HDG built-in mortars to fully account for hp-nonconforming interfaces. To
that end, two ingredients are required: i) the appropriate choice of mortar configuration, and ii) the finite
element space defined over the mortars. We will show that our choice, without any additional interpolation
or projection, can lead to a setting where the Riemann problem is well-defined and the numerical flux can
be derived via the Godunov approach.

3.2.1. h-nonconforming interfaces. In h-nonconforming interfaces (see Figure 1a), F'* is not neces-
sarily equal to F'~. We hence need to carefully consider the definition of mortar. There are two options for
constructing a mortar as shown in Figure 1. In the first option, a set of split-sided mortars (i.e., Figure 1b)
are deployed to conform to the smaller sides of the adjacent elements, while in the second option a full-sided
mortar (i.e., Figure 1¢) is used to conform to the larger side of the adjacent element. In the context of HDG
methods, the first option is used in [28, 46, 29] and the second one is used in [96, 40, 83]. Although the
usage of the full-sided mortar can be less computationally intensive, the split-sided mortars (Figure 1b) are
chosen in this work to facilitate the implementation of the Godunov approach.

K
al Kt K
_ e
K K- K-
K e i
| ( i f |
a nonconforming interface F~ Ff F~ Fyf

(a) A nonconforming interface (b) Split-sided mortars (c¢) A full-sided mortar

Fig. 1: Two options of mortars on a nonconforming interface.

REMARK 2. It should be noted that in [73] the authors showed theoretically that either full- or split-sided
mortar can lead to a stable DG scheme on a discrete level for a time-dependent linear elasticity problem. Ad-
ditionally, they also showed numerically that both type of mortars can lead to conservative schemes. However,
split-sided mortar is still suggested in [73] in the sense that

1. it is the most natural approach for DG methods,
2. full-sided mortar has a spectral radius more than twice as large as the split-sided mortar (hence,
more restrictive time step size for explicit methods).

3.2.2. p-nonconforming interfaces. For p-nonconforming interfaces, pg+ = pg- does not hold in
general. Furthermore, the degree of approximation of trace unknowns p. could differ from pg+ or px-. In
this work, we choose:

(3.1)

Pe = max {px+,px-}, for Ve € &,
Pe = pi, for Ve C azmef,
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to facilitate the Godnuov approach and stability. This choice is also suggested in [32].

3.2.3. hp-nonconforming interfaces. By combining the setting presented in Section 3.2.1 and Section
3.2.2, we can now handle hp-nonconforming interfaces and construct an hp-HDG scheme for the Friedrichs’
system using the Godnuov approach. In addition, neither projection nor interpolation is required: thanks
to our specific selection of the configuration of mortars and of the degree of approximation of the trace
unknowns.

To illustrate the idea, we consider the nonconforming interface shown in Figure 1b and focus on the
segment e;. It is not clear how to implement the Godnuov approach since the Riemann problem is not
well-defined. The left state and right state are defined on the domains that do not conform to each other
(ie F~ # Ff‘) To resolve this issue, we can either project and interpolate the states onto the mortar e;.
Then, the Godnuov approach can be applied by solving the Riemann problem that is properly defined by
these intermediate states. This methodology is already proven to be successful in the context of DG methods
[71, 72, 69, 22, 53]. Throughout the paper we assume that all the edges/faces are straight, that is, the meshes
are affine. Curved elements are more delicate to treat and this will be part of our future work. Owing to
the natural built-in mortar in HDG methods and the way we handle the nonconforming interfaces, both
projection, and interpolation are actually implicitly implied. To see this, we consider the following piecewise
polynomial functions z, € W, (z5)* € ﬁ\/h and wy, € ‘//‘\/h. Moreover, we define a projection operator

P (-) that is the £2-projection into the space W . The projection from left state defined on F~ to the left
intermediate state (2})~ can be stated as P (25| p—ne, ) =t (27;) |e; and the equality holds in the sense that

(3.2) (zn,Wn),, = ((23)7,Wn),,  Vion € W,

Since we use split-sided mortars and choose degree approximation of the trace test space ﬁ\/h by Eq. (3.1),
it is obvious that for any polynomial function f € PPx—- (K ) it has to satisfy that f|p-ne, C PP (e1).
Due to the unique representation of polynomials, the projection actually does nothing here, and hence
P(znlFp-re,) = Zh|lF-ne,- As consequence, the left intermediate state is nothing but just the restriction
of the left state: (2})7|e, = Zn|p-re,- The same argument can also be made in terms of interpolation.
Similarly, we have the right intermediate state (2})%|e, = 2n|p+ne,- Now the upwind numerical flux can
be constructed by solving the Riemann problem locally along the normal n of the segment F~ Ney. Given
that being aligned with a single direction is one-dimension in nature, a line along the normal direction m
can be parameterized by some scalar x where x = 0 corresponds to the location of the mortar ey (see also
Figure 2 for the illustration). By extending the definition of the coefficient matriz A := 22:1 npAx with
n = (ny,... 7nd)T being unit outward vector of OK for VK € 9, the statement of the Riemann problem
[102] reads: find zp (x,t) such that

oz | 9(Az) _

(3.3) ot os !

with initial condition zj (x,0) = (z})~ for < 0, 25, (z,0) = (2})" for > 0. Here, (artificial) time ¢ is
introduced to help understand the Godunov flux via the Riemann problem, but it is otherwise not necessary
in the derivation. Figure 2 illustrates the idea of how the Riemann problem is defined in direction n that is
parametrized by . With the well-defined problem (3.3), we are now in the position to derive upwinding HDG
flux by following the procedure outlined in [20]. In this paper, the coefficient matrix A will be assumed to be
continuous across the mesh skeleton?. In particular, A is symmetric according to (A.3) and hence its eigen-
decomposition is guaranteed to exist. We thus can also define |A| := R|A| R=! where A := diag(A1, ..., \m)
and \; are eigenvalues of A, and R is the matrix composed by the corresponding eigenvectors.

3.3. A constructive derivation of an hp-HDG formulation.

3.3.1. Friedrichs’ system with one-field structure. In this section, we derive hp-HDG formulation
for linear PDE in Eq. (2.1) that satisfies one-field Friedrichs’ system assumptions (A.1)-(A.4). To begin, we
apply Galerkin approximation to Eq. (2.1) on an element K € .7, together with integration by parts. The

2This condition can be relaxed, but we will use it to keep the presentation concise.
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() g~

Fig. 2: Illstration of how the Riemann problem is defined along a normal direction n where a line aligned in
this direction can be defined as xg + xn with xg € e;.

resulting local problem reads: seek z; € W, such that
d
(3.4) Z (Arzn, Okwn) i + (Gzn, wh) i + (F (zrn) n,wn) g = (F,wn) e, VK € J,
k=1

for all w;, € W, and the flux F (z}) is a tensor in which each component is a m x d matrix. As a result,
F (z,)n is a vector with the dimension m. By treating nonconforming interfaces in the fashion presented
in Sec. 3.2.3, the normal flux F (z,)n on e € &, is still not well-defined since the traces of both z; of
element K~ and zt of element K co-exist on e. However, it can be resolved by Godunov-type methods
[59] through first solving, either exactly or approximately, the Riemann problem (3.3) for the upwind sate z},
at the mortar e and then introducing the upwind numerical flux® F* (z,:, z;‘L) n. Furthermore, as reported
n [20], such flux is hybridizable. The upwind-based HDG flux can then be constructed by replacing the
upwind state with the designated trace unknown. Following this procedure, the upwind HDG flux reads:

(3.5) F(zn,2n)n = Az, + |A| (z1, — Z1).-

Note that |A| can also be replaced by some other stability parameter matrix 7' and that will result in different
numerical fluxes (also see the discussion in [20]) By replacing F (z,)n by F (z5,,2,)n, we arrive at the
so-called local equations: seek (zp,zp) € W, x Wh such that

d
(3.6) — Z (Akzh,akwh)K + (Gzh,'wh)K + (Azp + |A| (zn — /Z\h)7wh>aK = (f,'wh)K, VK € D,
k=1

for all wy, € W,. To close the system, we still require one more constraint. This can be achieved by weakly
enforcing the continuity of the normal numerical flux (3.5) across the mortars: for (zp,25) € W, x W,

(3.7) ([Azn + [A| (zn — Zp)], wn), =0, Ve €&,

is enforced for Vw,, € ﬁ\/h. Equation (3.7) is called as conservativity condition [32] since it will guarantee
that the scheme is locally conservative. In addition, it couples all volume unknowns and hence is referred to
as a global equation. On the boundary, it is clearer to weakly enforce non-homogeneous version of boundary
conditions (2.3a) directly through the trace unknown which is already defined on 5,‘? :

(3.8) (A= M)Zp, @), = (A= M)g,®),, Vi, e W,andVe € &,

3Here, we consider the upwind numerical flux in the one-sided form F* (z;,z}';) n = Az, + |4] (z; - z}';) Typically,

such a flux is defined as a function of states from adjacent elements in the DG setting. That is, F* = F*(z, , z;:")
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where we set M := | A| and the function g : 92 — R™ is defined as

_ )9 if (A= M) #0,
(3:9) 9= {oD if (A— M) =0,

where g, is the Dirichlet data and is set to be zero for homogeneous boundary condition. It should be noted
that equation (3.8) corresponds to the ”inflow” boundary condition [20]. In addition, (3.8) is analogous to
its continuous version stated in (2.3a). Since (3.8) only specify inflow condition, it is clear that Z; cannot
be uniquely determined on the outflow. Thus, we further require that

(3.10) (Azp, + |A| (21 — Z1) , Wn), = (AZp, @), Yo, € W, andVe € £7.

Equation (3.10) is resulted from maintaining consistency of the numerical flux, and corresponds to outflow
conditions. In fact, (3.8) and (3.10) can be incorporated into a single equation as:

a T 1 _ 1 o o~
(3.11) ([Azn + Al (zn — Z0)], Wh)go =—<2(A—M)97Wh> +<2(A+M) Zh,wh>
& &

In this paper, we will work with the general form of boundary condition (3.11) for one-field Friedrichs’
system. The complete hp-HDG formulation for the one-field Friedrichs’ system is established by combining

Eq. (3.6), Eq. (3.7), and Eq. (3.11) together: seek (zp,z,) € W, x ‘//‘\/h such that *

d
(3.12a) Z (Axzp, Opwp,) 9 (Gzh,wh)yh + (Azp + |A| (21 — /Z\h),’wh>69h = (f,wh)gh ,
k=1
~ . 1 - 1 ~
(3.12b) ([Azn + Al (21 — Z0)], Wn)e, = — <§ (A— M)g,'wh> + <§ (A+ M)zh,'wh> ,
o £

for all (wy, w,) € W), x W,. We now show that the numerical scheme in (3.12) is trivially locally and
globally conservative, and furthermore well-posed.

LeMMA 3.1 (Local conservation). The hp-HDG scheme in (3.12) is locally conservative.

Proof. Taking wj, = 1 in the local equations (3.6), we obtain

(3.13) (Gzn, 1) + (Azn +|A| (20— 20) Loy = (F1), VK € T,

and thus

(314) (Gzh71)K+ Z <Azh+|A|(zh_2h)71>F:(.f71)K7 VKeyhv
FCOK

which indicates the scheme is locally conservative. In particular, the amount of flux entering an element K
is equal to the amount of flux leaving the element if both the reaction term and forcing term vanish (i.e.,
G=0and f =0). 0

As we will show later, the locally conservative property can also be easily proven for Friedrichs’ system
with two-field structure. A similar result is presented in [46] as well for an hp-HDG method used to solve
the problem of Stokes flow.

LEMMA 3.2 (Global conservation). The hp-HDG scheme in (3.12) is globally conservative.
Proof. Taking (wp,wp) = (1,1) in Eq. (3.12), we obtain

(3.15a) (Gzn, 1)2% + <[[Azh + ‘A| (zn — Qh)]]v 1>5h = (.fv l)gh )

1 1
A Al (zn — 2], = {Z@A- , ~ (A Zn, .
(3.15b) (L= + 141~ 2L 1), = = (5 M>91>gg+<2< + M) 2 1>82

4 Although g is set to be zero, we still keep it in the right-hand side of the global equation so that reader can easily observe

that inflow and outflow boundaries are switched in the adjoint hp-HDG formulation.
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Substitute Eq. (3.15b) into Eq. (3.15a), we arrive at

1 1 ~
(316) (Gz’ul)ﬂ - 7(A_M)ga1 + 7(A+M)Zha1 :(f71)ﬁ ’
h 2 £o 2 0 h
h h
which implies the scheme is globally conservative. ]

LEMMA 3.3 (Well-posedness of the local equation). Suppose that the assumptions (A.1)-(A.4) hold, the
local solver (3.12a) is well-posed, that is, given (Z, f), there exists a unique solution zp, of the local system.

Proof. Thanks to the hp-nonconforming treatment, the proof is the same as the proof of [20, Lemma
6.1], and hence omitted. d

THEOREM 3.4 (Well-posedness of the hp-HDG formulation). Suppose that
1. the assumptions (A.1)-(A.4) and (2.3b) hold,
2. N (4) = {0F,
the hp-HDG formulation in (3.12) is well-posed in the sense that, given f and the homogeneous Dirichlet
data, there exists a unique solution (zp,zp)-

Proof. Following the discussion presented in Theorem 6.2 in [20], we first take (wp,Wr) = (2h,2h)
and assume f = 0. We then perform integration by part for (3.12a), subtract (3.12b) from the resulting
equations, and substitute the following identity

(3,17) <A (/Z\h — zh) ,2h>e = % [(AEh,Eh)E + <A (zh — Eh) 5 (Zh — 2h)>e — (Azh, zh>e] 5

which is valid for Ve € &;,. Together with homogeneous Dirichlet boundary condition, we obtain

d
5 ( G+ G +ZakAk zh,zh> +§<Mzh7Zh>5;‘3
(3.18) e In
1 ~ ~
+ <(7A+|A|> (zn —Zn), (2n —Zh)> =0
2 27,

whose left-hand side is non-negative owing to the coercivity condition (A.4), semi-positiveness of boundary
operator (2.3b) and semi-positiveness of %A—|—|A| > 0. Therefore, we conclude that z;, = 0in K for VK € 9},.
Furthermore, the last two terms in (3.18) is equal to zero since our assumption N (A) = {0} implies that
N (JA]) = {0}. We thus can conclude that Z;, = 0 as well. O

3.3.2. Friedrichs’ system with two-field structure. In this section, we derive hp-HDG formulation
for two-field Friedrichs’ system in (2.1) where the coefficient matrices G and Ay can be decomposed into
block matrices as presented in Eq. (2.2). In addition, a set of assumptions (A.1)-(A.6) are assumed to hold.
However, the strong coercivity is not necessarily required and can be further weakened by replacing (A.4)
with (Ad.a)-(A4.b).

Through the Galerkin approximation along with integration by part, we will again obtain Eq. (3.4).
Moreover, the two-field structure can be further exploited by taking advantage of the decomposition where
we can introduce zp = (o, up), wy = (sp,vp), F = (F7,F*), and f = (f7, f*). Indeed, with the aid of
Eq.(2.2), the local equation can be rewritten as: seek (op,up) € X, x U}, such that

d
(3.19&) —Z(Bkuh,aksh)K—I—(G‘”ah—l—G"“uh,sh)K+(F“ (ah,uh)n,sh>aK = (fa,sh)K, VK € <7h,
k=1
(3.19b)
d
- Z (BkTO'h + Ckuh,ak'uh>K + (G on + G un,vn) g + (F* (Oh,un)n,vn) g5 = (F“ 00) g, VK € T,
=1

for all (sp,v),) € £, xU,,. Now the upwind flux F* (o} ,u; , o}, u; ) n for the two-field system can also be
derived by solving the Riemann problem stated in Eq. (3.3). To that end, it is required to compute the eigen-
decomposition of the coefficient matrix A. The two-field structure can be exploited again by decomposing

5This condition actually implies the condition (2.3c) which is a key to make the exact solution unique (see also Remark 6.3
in [20]).
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|A| as follows:

AO’O’ Ao'u
(3.20) A= [Se

where 477, A% A"? and A** are m® x m, m? x m*, m* xm?, and m* x m* sub-block matrices of |A].
In addition, the m x d matrix of upwind flux F*n can also be decomposed into m? x d and m* x d block
matrices (F?)*n and (F"™)*n, respectively. By introducing the upwind states o} and w}, the numerical
flux can be expressed in one-sided form:

(3.21)

d
o= = sk (F7)* (0'7 u, o u;)n A7° Byl |o, A% A o, —oh
F — h™h> ’ — h h
(o’h ,uh,oh,uh) n (F“Y* (o, wn, o, ul) 1 ,;_1 ng BT O, u; + Ao que| g g

where A7 = 0 by the assumption (A.5). At this point, we could replace the upwind states (o, u}) with
the trace unknowns (&, up) and obtain an upwind-based HDG flux. However, one of the upwind states
(and hence one of the trace unknowns) can be eliminated, and it is desirable since the system becomes even
cheaper to solve. Such reduction can be achieved since uj and o are linearly dependent. To see this, we
know that the numerical flux F*n must match the physical flux Fn evaluated at the upwind states. That
is,’

(3.22) F* (o}, ,u}, 05, up)n=F(o},u};)n,
where

e o N [Ae B e o . )
(3.23) F(o},up)n = kZ:lnk [B,? CJ [UZ] and A7 = 0 by the assumption (A.5).

By substituting (3.23) into (3.21) we can remove either o} or u). In this work, we eliminate . For the
other elimination possibilities, one can consult with [98].

LEMMA 3.5 (The reduced upwind flux). The upwind numerical flux can be expressed as a function of
ujy only:

* * _ Bu;;
(320 F @) = (51, 4 o o7 ()
where B := ZZ=1 ni By and C := ZZ=1 n,Cy are with n = (nq, ... ,nd)T being unit outward vector of OK

for VK € 9. The value of T depends on either of the following assumptions:

(F.1)

(F1.a) There exists an invertible matriz ® € R™"™" such that BOA® = A%, and
(F1.b) there exists an matriz ¥ € R™" ™" such that A°* = BV, and
(F1.c) {_, Range(By) = {0} and N (By) = {0} for Vk =1,...,d.
(F.2) A% =0 (note that A% = (A%?)T owing to the assumption (A.3)).
In particular, if assumption (F.1) holds then:

(3.25) T:=— (8" B"B®) " ®TBTB (W + L) + A%,
where Lyu is the m* x m* identity matriz. On the other hand, if assumption (F.2) holds then,
(3.26) T .= A"".

Proof. Tt can be proved by simple algebraic manipulation along with the corresponding assumption. See
Appendix B for detailed proof. O

6 It should be noted that both of upwind states oy and u; are the function of states from adjacent elements. That is,
o; = GZ(U;,U;,O’;,UZ) and uj = u’};(a;,u;,az,u:)
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We would like to mention that the assumption (F.1) and (F.2) are mutually exclusive from each other. For
example, the derivation of HDG numerical flux for a convection-diffusion equation rely on (F.1) while an
elliptic equation uses (F.2) (See Section 5 for more detail). According to Lemma 3.5, we can construct the
upwind-based HDG flux by replacing u} with u:

A o By,
(3.27) F(on, un, tn)n := BTop 4+ Cup + T (up —uy)|’

where the definitions of B and C follow ones introduced in Lemma 3.5 (these notations will be used in the
rest of the paper as well). In fact, the numerical flux (3.27) can represent the larger class of HDG family
other than just upwind-based HDG. It is possible to obtain different HDG schemes by setting the stability
matrix T to be different from (3.25) and (3.26). Such an exploration is also studied in [20].

Now the local equation of an hp-HDG scheme for the two-field Friedrichs system can be constructed by
substituting the upwind-based HDG flux (3.27) back into (3.19): seek (o, up,@s) € %), x U, x U,, such
that

d
(3.28a) —Z (Brtn, Oksn) e + (G°70n + G un, sn) i + (BUn, sh)gp = (F7,81) g, VK € T,
=1
d

- Z (BkTO‘h + Crun, 6k’0h) p + (G*on + G un, vn)
(3.28b) pt

+<BTa'h+Cuh+T(uhfﬁh),vh> (" vn)g, VK e,

oK

for all (sp,vp) € 3, x Uy. Again, we close the system with a conservative condition. Since the first

component in F (o, up, Up)n is already uniquely defined, we weakly enforce the continuity in the second
component: for (o, up, up) € Xy x Uy, x Uy,

(3.29) <[[BT0'h + Cup + T(uh — ﬁh)]],%h> =0, Ve € 5;?, V@h € ﬁh

Finally, the boundary conditions are specified in a similar way as in Eq. (3.8). The difference is that instead
of taking M := T, we make use of the characteristic of the two-field structure and choose M in a special way

(3.30) M= { 0 _O‘B} :

aBT  Muwu

where M¥* : 9 — R™“m" Mue > (0 and o € {=1,+1}. With this specific setting, the boundary can
then be enforced through Eq. (3.8) with the boundary data g : 9Q — R™”*™" g = (g, g*) in which g7 :
o0 — R™ and g* : 9Q — R™". Again, for clarity and for the numerical results, we use nonhomogeneous
boundary conditions, but in the well-posedness analysis it is sufficient to consider homogeneous boundary
conditions. We further set M“* = 20l,,« + C, where I,,u is the m® x m" identity matrix and g is chosen
on the case-by-case basis (see Section 5). Again, the boundary operator M is not unique but must satisfy
assumptions (2.3b) and (2.3c). In particular, (2.3b) requires:

(3.31) 20l +C > 0.
For Dirichlet type of boundary we set a =1 and ¢ = %, the boundary condition (3.8) now is restated as:
(3.32) (@n,0p), =0, Vo, €U, Yee & Ndp.

"In fact, with « =1 and o = % we obtain two equations from (3.8):

(B, 31), =0, V3, €%, Vee &l NdQp, and (@n,01), =0, Vo, €Uy, Vee &) NONp.

These two equations are re equivalent and we use the latter formulation in this paper since:
1. Given that only the trace unknown 4y, is introduced, no test function in X should be involved, and
2. The latter option is more economical.
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On the other hand, for Neumann or Robin type of boundary condition, we set & = —1 and the variable o
depends on problems to be solved. In this case, (3.8) now becomes:

(3.33) <BT0'h+C’uh+T(uh —ﬁh),6h> = <(,(_)Imu +C) ’a}“ﬁh)e, Yo, € ﬁ'h,Vee&?ﬂ(aQNUBQR).
Again, the stabilization parameter T is set to be (3.25) if the assumption (F.1) holds or to be (3.26) if the
assumption (F.2) holds. Finally, the consistency condition like (3.10) is not needed here since the equation
(3.8) itself along with the set-up (3.30) is sufficient to determine the trace unknown 4, on the boundary.
Combining (3.28), (3.29), (3.32), and (3.33), we can obtain the complete the hp-HDG formulation for the

two-field Friedrichs’ system: seek (o, up, up) € X, x U, X ﬁh such that

d
(3.34a) = (Brun, 0ksn) 5, + (G77on + G uy, 8n) g, + (BUn; Sh) gz, = (£7,80) 7,
k=1
d
T uwo uu T —~
(3.34D) - kZ:l (Bk on + Crunp, 8k’llh) 7 +(G"on+ G un,vn) 4, + <B on+ Cup + T (up — Up) ,’vh>89h
= (fuy vh)gh
(3.34¢) <[BTo'h + Cup + T (up — ah)ﬂ’6h>5h\aﬂl) = ((olm» + C) up, f)h)ghn(agzNanR) )
(3.34d) (@n, B) gpron, = 0

for all (sp,vp,0p) € T, x Uy, x U,,. We now show that the numerical scheme in (3.34) is both locally and
globally conservative, and well-posed. For the well-posedness proof, both full and partial coercivity will be
discussed. It turns out that a few extra assumptions are needed for the well-posedness and they are different
for full and partial coercivity cases.

LEMMA 3.6 (Local conservation). The hp-HDG scheme in (3.34) is both locally and globally conserva-
tive.

Proof. The proofs are the same as the proof of Lemma 3.1 and Lemma 3.2, and hence omitted. O

LEMMA 3.7 (Well-posedness of the local equation-with full coercivity). Suppose
1. the assumptions (A.1)-(A.6) hold, and
2. %C’+T2 0, and
3. By is a constant and is non-zero for k=1,...,d.
Then, the local solver composed by (3.34a) and (3.34b) is well-posed, that is, given (up, f7, f*), there exists
a unique solution (on,un) of the local solver.

Proof. Since the formulation is linear and zj, = (o1, up,) is in finite dimensional space W, it is sufficient
to restrict to a single element K and show that the solution (o, up) = 0 is a unique solution in K for K € %,
provided that @y, and f are zero. Let uyp and f be zero and (sp,v,) be (op, upy) in (3.34a) and (3.34Db).
Adding the equations yields

d
- Z (Brtn, 0xon) i + (G770 + G un, on)

(3.35) =

M-

(BkTO'h + Crup, akuh>K + (G*on + G un, un) i + <BT0'h + Cup, + Tup, uh>aK =0.

>
Il

1

By invoking the assumption that Bj is a constant for £k = 1,...,d, the term %Zgzl ((6;63,?) ah,uh)K
contribute nothing and can be freely added into (3.35). It gives

d d
; Brunp, (9kO'h K + (GUUO'h + Gau’uh, a'h)K — Z (B,?o-h =+ Ckuh, 8kuh)K

(3.36) =t

+% ki:‘ll ((31@31?) Oh, uh)K + (G"on + G*™un, un) , + <BTUh + Cun + Tun, uh>aK =0
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The first term in (3.36) can be further expanded as:

d
Z BkBk ’LLh,O'h)K—<Buh,0'h>aK,
k=1

d d
1
(337) — ; (Bku;“ akO'h)K = ; (B;ﬁkuh, O'h I + 5

The second term on the right-hand side of (3.37) is zero owing to our assumption and hence can be multiplied
by an arbitrary constant. Similarly, it is easy to show that the following identity holds:

d d
1 1
(3.38) — Z (Crun, Ocun) , = =3 Z ((OkCr)un, un) ;e — 3 (Cun, un) gy -
k=1 k=1
Substituting (3.37) and (3.38) back into (3.36), and combining (undo the decomposition) the volume integrals,

we arrive at

d
1 1
(3.39) - G+GT+ E OLAL | zn, 21 + <<C+T> uh7uh> =0.
2 k=1 K 2 oK

With the assumption of full-coercivity (A.4) and the assumption of semi-positiveness %C’ + T > 0, we can
conclude that z, = (o, up) =0 in K for any K € 9},. 1]

THEOREM 3.8 (Well-posedness of the hAp-HDG formulation-with full coercivity). Suppose:
1. the assumptions (A.1)-(A.6) and (2.3b) hold, and
2. %C—&-TZ 0, and
3. By is constant and is nonzero for k=1,...,d, and
4. NY_, Range(By) = {0} and N (By) = {0} for Vk =1,...,d.
Then, the hp-HDG formulation in (3.34) is well-posed, that is, given f°, f*, and the homogeneous Dirichlet
data, there exists a unique solution (op, up,Up).

Proof. Due to the finite-dimensional nature and the linearity of the global system, it is sufficient to show
that the solution %y = 0 is the unique solution if f = 0 along with homogeneous boundary data g = 0. We
first let f = 0 and (sp, vp, Up) = (0h, U, Up). The boundary condition (3.34d) now reads

(3.40) (wn, ﬁh>g§maszp =0,

which implies that %y, = 0 at e for Ve € EZNOQp. Adding (3.34a) and (3.34b) together, and then subtracting
(3.34c¢) from the resulting equation, we obtain

d
_ Z (Bkuh,akdh)gh + (Gaodh + Gauuh’ Uh)gh + <B’l7,h7 o'h>89;L\BQD
k

Il
-

M=

(B{ah + Crup, 5kuh) + (G* o + G* uy, uh)gh

Th

>
Il

1

(3.41)
BTO'h + Cup + T(up, — ah),uh>

+

DT\ D

B oy + Cup + T (un, — ) 717:h>

(
-

+ ((eImu + C) Un, Un) e, ~ 00y uo0 )1 = 05

2 T,\0Qp

where the result of %, = 0 at e for Ve € €7 N 9Qp is already applied. We can add the additional term
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%Zzzl (((“)kBkT) O';Huh) 7, 88 By, is constant for £ =1,...,d to obtain

(Brun, a’fah)ﬂh + (G o + G uy, O'h)gh + (B, C’h>39h\aﬂD

M- I

(BkTO'h + Crup, 8kuh) 7, + (Guao'h + Guuuh,uh % ki ((&chT) Oh, uh) '

h

bl
Il

1

(3.42)
BTO'h + Cup + T(uh — ﬁh)7 uh>

J’_
8T\

o~

BTon+Cun+T (un, —up) 7'l/ih>
8T\ D

+

—

(elmw + C) Un, Un) g, (00 uo025),1 = 0-
We have the following identity by inspection:

~ 1 ~ ~
— <Cuh, uh)ﬁﬁh\aﬂD = 5 <C (uh — uh) y (uh — uh)>93}L\BQD

1 o~
—3 <CUh,uh>agh\3QD D) <Cuh7uh>69h\BQD .

(3.43)

Note that (Cup, up), o = 0 since C is assumed to be continuous across the mesh skeleton, and the trace
unknown u, is uniquely defined on the mortar e for all e € ;. As a consequence, the last term in (3.43)
can be rewritten as —3 (Cuy, Un) 97, (o9 uo0g),r- Substituting equality (3.37), (3.38), and (3.43) back into
(3.42), and combining (undo the decomposition) the volume integrals, we arrive at the following

d
1 1 _ _
S {G+ET+D oAk | 2, 2n +<(fC+T)(uh—uh)7(uh—uh)>
2 e 2 T\ p

k=1

1 1 ~ o~
+<(*C+T)uh7uh> +<<7C+leu> uh,uh> =0.
2 87,n09 2 0T,N(09N UdQR)

With full-coercivity (A.4), semi-postiviness of the boundary operator (2.3b) (hence inequality (3.31)), and
semi-positiveness %C’ + T > 0 assumptions, we can conclude that z, = (o, u,) =0 in K for all K € .
Now substituting (o, up) = 0 back to the sub-equation (3.34a) in the local solver along with f = 0 and
Uy =0 at e for Ve € 5,? N oNp, we get:

(3.44)

(345) <B’l/],h, 8h>89h\aﬂp =0 Vspe€ Eh’

which implies that Buy, = 0. By invoking our assumption that ﬂzzl Range (By) = {0} and N (By) = {0}
for Vk = 1,...,d, the condition N (B) = {0} can be concluded. We then conclude @, = 0 in e for all
ec €h\8QD. ]

LEMMA 3.9 (Well-posedness of the local equation-with partial coercivity). Assume:
1. the assumption (A.1)-(A.3), (A4.a)-(A4.b) and (A.5)-(A.6) hold, and
2. %C+T> 0, and
3. ﬂzzl Range (By) = {0} and N (By) = {0} forVk =1,...,d.
Then, the local solver composed by (3.34a) and (3.34b) is well-posed, that is, given (up, f7, f*), there exists
a unique solution (op,un) of the local solver.

Proof. Essentially, the hp-HDG formulation for the two-field Friedrichs’ system with partial coercivity is
the same as the one with full coercivity. Hence, we can obtain the equation (3.39) as well following the same
arguments discussed in the proof of Lemma 3.7. By applying the assumption of partial coercivity (A4.a) and
of positiveness of %C’ + T > 0, we can conclude that o, = 0 on K for any K € .9, and u;, =0 on F' C 0K
for all K € 9},. By applying integration by part to the first term in (3.34a), and substituting the result that
we just obtained into it along with @; = 0 and f = 0, we have

d
(346) Z 8k Bkuh Sh)K =0 Vs,e€ 2h’
k=1
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which implies that ZZ:1 Or(Brup) = 0 in K. Furthermore, it can be rewritten as 22:1 ByOk(up) =0 in
K owing to assumption (A4.b). Based on our assumption that ﬂzzl Range (By) = {0} and N (By) = {0}
for Vk =1,...,d, we can further conclude that u;, = 0 on K for any K € . 0

THEOREM 3.10 (Well-posedness of the hp-HDG formulation -with partial coercivity). Suppose:
1. the assumptions (A.1)-(A.3), (A4.a)-(A4.b), (A.5)-(A.6), and (2.3b) hold, and
2. 3C+T >0,
3. Ni_, Range (By) = {0} and N (By) = {0} for Vk =1,...,d.
Then, the hp-HDG formulation stated in (3.34) is well-posed in the sense that given f2, f“, and the
homogeneous Dirichlet data, there exists a unique solution (op, Wp, Up).

Proof. Given that the hp-HDG formulation for the two-field Friedrichs’ system with partial coercivity
is the same as the one with full coercivity, we can directly follow the same arguments used in the proof of
Theorem 3.8 and it should lead us to equation (3.44) as well. With the stated assumptions we can conclude
that o, = 0 in K for all K € 7, and up, = 4y in FNe for all F C 0K for VOK € 0.7,\00p and for all
e € E,\0Np. Now we perform integration by part to the first term in (3.34a), transfer all integration over
0K to the summation of the integration over e where e € &, and apply the conclusion we just obtained into
the resultant equation along with f = 0, we get:

d
(3.47) > (Ok(Brun), sp) 5, =0 Vsp €3,
k=1

which implies that 22:1 Ox(Brup) = 0 in K for all K € 9,. Furthermore, it can be rewritten as
ZZ=1 B0k (un) = 0 owing to assumption (A4.b). Given that we assume mZ=1 Range (B) = {0} and
N (Bg) = {0} for Yk = 1,...,d, we can conclude that up = 0 in K for all K € .9}, but uw;, = 4y, in F'Ne for
all F C 0.7,\00p for all e € £,\0Np. This leads to up = 0 in E,\ONp. O

4. Strategy for hp-adaptation. The formulations stated in (3.12) and (3.34) provide us with HDG
schemes that can be carried out on hp-nonconforming meshes. As a result, we have a lot of flexibility when
constructing finite element spaces. It is well-known that a smooth solution can be well resolved using a high
degree of approximation even on a coarse mesh, whereas a solution with a sharp gradient is more suitable
for low degree approximations on a fine mesh. Given that these different behaviors may occur locally, it is
beneficial to use an adaptation procedure that allows us to improve the numerical results with a reasonable
computational cost. This process can be achieved by refining elements locally via either dividing them
into smaller ones (h-adaptation), or enriching their approximation spaces (p-adaptation). To that end, two
essential ingredients are needed: an error indication for each element and a method to define a new spatial
discretization [66]. For the first ingredient, two different approaches are adopted in this work. One is to use
an error indicator while the other is to use an adjoint-based error estimate. For the second ingredient, the
regularity indicator proposed in [43] is applied. In the following discussion, we will discuss the error indicator
obtained by two different approaches and then outline the algorithm for hp-adaptation.

4.1. Doleji’s approach. By denoting g;, as an approximate solution, hr as a length of a face of an
element and g, as Dirichlet data, a local error estimator is defined as the following [43]:

1
2
oleji 1 1
@1 &g, = ( > 2 lada).+ > F<qh—gD’qh—9D>F> VK € T,

FCOK\0Q eCF FCOKNONp

which, originally, is derived in the context of the interior-penalty DG methods. We simply use it as a local
error indicator to probe errors in our work. It is inexpensive since only the computation of the jump between
adjacent elements is needed. In particular, q; := zj and g; := wuj are picked for the one and two-field
Friedrichs system, respectively.

4.2. Adjoint approach. The main idea of the adjoint approach is to measure the error in the output
functional of interest. The error arises when the output functional is evaluated by a numerical solution. Based
on the pioneering work [47], the dual-weight-residual (DWR) method have been developed for error control
and mesh optimization within the context of finite element methods [13]. In this method, an additional
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linear system formed by an adjoint equation is needed to be solved, which then induces an estimate of the
error in the target functional. This estimate can be used as a criterion to drive adaptation so that the error
in the target functional is reduced. Recently, this method is adopted in solving the elliptic equations by
using HDG method in [38] along with h-adaptivity, and the evaluation of error estimate is completed with
the aid of the postprocessing technique [36].

In our work, we develop a discrete weak adjoint approach where the procedure outlined in the DWR
method is still largely followed but the primal problem considered here is already in a discretized weak
form (i.e., Eq. (3.12) or (3.34)). For HDG methods, the discrete adjoint approach had been studied and
implemented in [8, 40, 107, 106, 9, 52, 82]. To proceed with the discussion, some additional notations are
needed. Let J (-) be a (Gateaux or Fréchet) differentiable output functional and, for a clearer exposition, we
further decompose it into two differential functionals 7 (-) = Je¥omt (.) 4 gboundary () where Jo40t (.) is
a user-defined functional and J°°%"497¥ (.) is a boundary-associated functional. Examples of a user-defined
functional could be a drag coefficient, a lift coefficient, an energy across the entire domain, and so on. On the
other hand, the boundary-associated functional is also defined by a user and closely related to the boundary
conditions of the adjoint problem (sucha as adjoint hp-HDG formulations in this paper). A more detailed
discussion about the boundary-associated functional is addressed in Appendix A. We shall use subscript H
to denote the approximation computed at a coarse discretization while A is for a finer level. We then define
the operator If}{ as the injection from level H to level h and this operation can be done by interpolation. In
addition, the interpolated quantity is denoted with a subscript H along with a superscript h. For example
2" = 1% zy is obtained by interpolating the approximate solution zy that is solved at the coarser level
(i.e., a lower degree of approximation or a coarser mesh or the combination.) to the finer level. Moreover,
we define the lumped variables 2, and %}, as

Zh, Z1) for one-field Friedrichs’ system,

(4.28,) gh = {

Oh,Up,up) for two-field Friedrichs’ system,

(
(
(4.2D) ” { (wp, Wy) for one-field Friedrichs’ system,
. h —
(

Sh,Vp,0p) for two-field Friedrichs’ system,

where (zp,2h), (W, wy,) € W), x Wh and (o, wn, Up) , (Sh, 4, 0p) € B, x U, x U,,. Furthermore, we
introduce the bilinear form R3" (+,-) to denote the residual of the hp-HDG formulation for the one-field
Friedrichs’ system (3.12). It is the sum of other bilinear forms R,  (+,-) and Rj, _ (-, -):

(4.3) R (2, Wh) = > Rik (Zi, W)+ > Rire (20, 74),
KeTy, e€céy,
where
d
(44a)  Ri (20, 7h) Z (Arzn, Okwn) ¢ + (Gzh, wn) i + (Azn + T (2n — Zn) , Wh) g — (F, wn)
k=1

z =N N 1 N 1 ~ o~
(4.4D) Rh,em,%)::<quh+T<zh—zh>ﬂ,wh>e+<§<A—M>g,wh> 8—<5(A+M>zh,wh>
ené

a9
engy

On the other hand, the residual R{™ (-, -) of the hp-HDG formulation for the twcl—ﬁeld Friedrichs’ system is
the bilinear form composed by three bilinear forms Rf ;. (-,-), R} g (+,+), and R}, (-, ):

(4.5) R (L Wh) = > Riw (L, W)+ > Rt (L W)+ > Rite (20, #4)

KeTy, Keay, e€Ep,
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where
d

(4.6a) RY i (2, Wi) := = D (Buwn, 0ksn) e + (G770 + G un, 81) ¢ + (Bn, 8n) o — (f7, 80)c
k=1
d

Rivk (Zns W) i= — Z (Bgﬂh + Crun, 8kvh) + (G o + G up,vn)
(4.6Db) =1 K
+ BTah+Cu;z+T(uh—ﬁh)7vh>aK—(f“,vh)K,
5 (2 W) ={[BYon+ Cun+T (un —un)], — {(oImw + C) Un,
(60) Fe (@) = (1B on+ Cun+ T (wn —w)]8n) = (o i D)oo o)

+(CUn, 1) o0, -

At this point, we can further define a more general residual based on (4.3) and (4.5) as:

R (%4, )  if only identified as a one-field Friedrichs’ system,

(4.7) Rn (%, ) = two o . PR
RO (23, #h)  if identified as a two-field Friedrichs’ system.

Obviously, the residual is always zero if it is evaluated by using the correct solution while it is generally

non-zero when using the interpolated solution. That is, Ry, (25, #4) = 0 but in general Ry, (27}, #4) # 0.

Finally, the error of the output functional 7 (-) can now be approximated as [40, 9, 105]:

(4.8) T (Zu) = T (20) = R (231, 71) -

Here, %}, is also referred to as an adjoint variable and serves as a detection of the sensitivity of output
functional error induced by a less accurate solution. Further, it has to satisfy the adjoint Ap-HDG formulation
that is either (a.1) or (a.4) with the given right-hand sides depending on an output functional 7 (-) and on
an interpolated solution %, I’} The derivation of the adjoint Ap-HDG formulation and well-posedness analysis
are discussed in Appendix A.

From (4.8), it can be seen that two different approximation spaces (at the level h and at the level H)
are required. In this work, we construct the finer space by enriching the degree of approximation without
refining the mesh. That is, the meshes used in solving the primal and adjoint hp-HDG formulations are
the same (i.e., J, = Jp) but the finite element spaces on each element for the primal and adjoint hp-
HDG formulations differ by one degree. The benefits are twofold: reasonable computational cost and easy
implementation. Toward the adaptation, we need to localize the error approximation presented in (4.8). By
defining the localized residual Ry, i as:

RE w (20, M) for one-field Friedrichs’ system,
(4.9) Rh,K (fh, Wh) = 0-7 w . . ,

Rk (20, Wh) + Ry e (21, W) for two-field Friedrichs’ system,
and following the works in [40, 105, 9], the local error indicator based on the adjoint approach can be defined
as:

(4.10) ERI( L M) = [ R (201, 70)|.

It should be emphasized that the error indicator (4.10) does not include the contribution from the trace
unknowns (i.e., Rj . and R} are neglected) owing to its insignificant influence [40, 105].

REMARK 3. We would also like to point out that the output error stated in (4.8) can directly be computed
by evaluating the difference between J (Zwu) and J (%4,), where we have to solve the hp-HDG formulation
(3.12) or (3.34) at two different levels of approzimation. However, in this work, we stick to the approximation
given by the DWR method (i.e., evaluation of the right-hand side of (4.8)). This method is more general in
the sense that the adjoint problem is always linear and is the only problem that needs to be solved at the fine
level of approximation. It holds true regardless of whether the primal problem is linear or not.
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4.3. An adaptation algorithm. The algorithm used in this work is the simplified version of the
strategy proposed in [43], which provides all necessary keys for carrying out hp-adaption. Combining the
previous discussion on error indicators, we denote a general local and global error indicator as:

(4.11a) S = ERA () or SR (2 ),
%
(4.11b) E = Z 6531?1,1(
KeTy,

To drive full hp-adapatation, a method to decide how to construct a new spatial discretization is also
necessary. In this work, it is desirable that the spatial discretization can be constructed according to the
smoothness of the solution. To this end, a local regularity indicator is needed and the one proposed in [43]
is deployed in this work. By denoting | K| as the area of an element, the indicator reads:

o 2 FcoK ZegF\OQ (lgn). lan)).
(4.12) Y (an) = K[ 1223

)

where gq;, := zj and gq;, := u;, are one-field and two-field Friedrichs’ system, respectively. Once error and
regularity indicators are computed, one or a couple of the following operations will be performed:

e h-refinement®: to split a given mother element K into four child elements K’ by connecting centers
of its edges.
e p-refinement: to increase the degree of polynomial approximation for a given element K, i.e., we set

Pk =pk + 1L
e p-coarsening: to decrease the degree of polynomial approximation for a given element K, i.e., we set
px =pk — L

In the original strategy presented in [43], there are two additional operations called h-coarsening and hp-
substitution. They merge elements that have arisen in a previous adaptation cycle along with p-refinement,
p-coarsening, or nothing. However, according to our numerical experiments, this action only slightly increased
efficiency, and sometimes the performance seems to be degrading. For this reason, we remove these operations
from our adaptation strategy. Given the user-defined tolerance 0 < w < 1 and the maximum cycle number,
the hp-adaption procedure can now be performed by following the strategy outlined in Algorithm 4.1.

5. Numerical experiments. In this section, we are going to present several numerical experiments
for different kinds of PDEs. The numerical solution is obtained by solving hp-HDG formulations (3.12) or
(3.34) along with the adaptivity strategy discussed in Section 4. The main goal is to demonstrate the validity
of the unified hp formulations and examine the performance of our proposed approaches. We point out that
the output functional employed in the adjoint approach is given as

1
oleji 2| ” zp, for one-field Friedrichs’ system
G1)  T(gy) = [ > (5 an) ] , where g, :={ "

Ke7, up, for two-field Friedrichs’ system

so that we can fairly compare the computational performance of Doleji’s approach and the adjoint approach,
as the same quantity is minimized through the hp-adaptation process. From now on let us denote by
0Jq, (-;9qy,) the directional derivative of a functional J (-) with respect to some variable q;, in the direction
dqy,. As a result, the directional derivative of the output functional given in (5.1) reads:

(5.2)

3o @sda) =T @) 3 | Y Y s dadda) ot Y - gpdan. |-

KeT, \FCOK\8Qp eCF FcornaQp ¥

8We also enforce the number of hanging nodes resulting from local h-refinement to be always one in each interface within
a mesh.
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Algorithm 4.1 An hp-adaptation algorithm

1: gk <1 VK € Ty and g <0 > The initialization for starting the adaptation cycle(s).
2: while maxge 7, 6u,x > wéy or cycle number < max. cycle number do
3: Solve the hp-HDG formulation stated in (3.12) or (3.34) on a coarse (current) level.

4: (Solve the adjoint hp-HDG formulation stated in (a.1) or (a.4)

5: on a fine (by enriching degree of approximation) level if the adjoint approach is applied).
6: Compute and update local and global error indicator presented in (4.11).

7: for K € 95 do

8: if gH,K zwmaxKeyH gH,K then

9: if Y5 (qy) < hy” then

10: Tag the element as p-refinement

11: else if hj> < 9k (qy) < hi' then

12: Tag the element as h-refinement

13: else

14: Tag the element as h-refinement along with p-coarsening

15: end if

16: end if

17: end for

18: Perform adaption and construct the new corresponding finite element space

19: end while

where

Sa. - 0z € W, for one-field Friedrichs’ system
D= dup, € Uy, for two-field Friedrichs’ system

The directional derivative 674, (qy,;dqy,) will appear in the right-hand side of the adjoint hp-HDG formulation
(see (a.1) and (a.4)), and hence needs to be computed when solving the adjoint system. Instead of exactly
computing §Jq, (q5,;0q;,), an approximation §Jg, (I}ﬁqH; 5qh) is applied. We would like to point out that
the boundary-associated functional J°°%n4e7¥ (.) is set to zero in this paper. That is, we have homogeneous
boundary conditions for the adjoint Ap-HDG formulation. To measure the computational performance, we
plot the convergence rate of the error in the £2mnorm versus the number of degrees of freedoms (DOFs)
resulting from the statically condensed hp-HDG formulations. It should be noted that the required DOFs
for the adjoint approach include DOFs needed by Ap-HDG formulations and DOF's needed by the adjoint hp-
HDG formulation since we additionally have to solve for the adjoint solution to evaluate the error indicator
(4.10).

The PDEs under consideration in the experiments can be classified as elliptic, hyperbolic, and mixed
equations. In the following subsections, we will briefly discuss each type of PDEs and justify the well-
posedness of their Ap-HDG formulation by using the results in Section 3. We use subscript h to denote the
numerical solution and this should not be confused with the notations used in Section 4 where h and H refer
to different refinement levels.

5.1. Elliptic PDEs. For elliptic PDEs, we consider:
(E.1) Poisson’s problem (isotropic diffusion) with a corner singularity,
(E.2) anisotropic diffusion problem with discontinuous Dirichlet boundary condition, and
(E.3) heterogeneous anisotropic diffusion problem with discontinuous field K.
We analyze these problems by using the two-field Friedrichs’ system with partial coercivity. The problem
reads: find a function u :  — R such that:

-V (kVu)=f, inQ,
(5.3) u=g" ondQp,
KVu-n+ X u=g", ondQyUIQr where A\ =0 when on the 9Qy,
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where the boundary data g% : 9Q +— R is in £2(0€2) and is defined as

gp on 0Qp,
(5.4) g" = q gy on Iy,
gr on 0Qg.

Here, f € £2(Q) is a source term; and K € [£L> (Q)]d’d is a symmetric positive-definite diffusivity coefficient
with its lowest eigenvalue uniformly bounded away from zero. To be able to interpret the numerical result
later, we briefly review some physical aspects of the PDE stated in (5.3). At each location within Q, we
have the principal direction of anisotropy denoted by X and the direction of weak diffusion denoted by Y.
As shown in Figure 3 along with coordinate of physical domain (z1,x2), it is possible to align 1 to X by
rotating the system with the angle 6,, so that the equation (5.3) becomes:

0%u 0%u B QO
HXW + HYW = f m 82,
where kx and ky are referred to the diffusivity in X-direction and in Y-direction, respectively. Since kx
represents the principal direction of anisotropy, we always have kx > ky. At this point, we can define the
anisotropy ratio Ay := kx /Ky which indicates the strength of the anisotropy. The case A, = 1 corresponds
to isotropic diffusion (i.e., a Laplace’s or Poisson’s equation). Now the diffusivity coefficient K can be
expressed as:

. [kxcos?(0m) + Ky sin®(0m)  (kx — Ky ) sin(fm) cos(Om)
BT | (kx — ky ) sin(0m) cos(0m)  kx sin?(0m) + Ky cos®(On) |’
or

- {AK c0s?(0m) +sin®(0m)  (Ax — 1) sin(0,) cos(Hm)}
(A — 1)sin(0) cos(0m) Ak sin?(0m) + cos®(0m) |

€L

O .

Fig. 3: The skewed domain of anisotropic field with X parallel to the anisotropic principal direction.

To cast the problems into the Friedrichs’ framework, we rewrite the original PDE stated in (5.3) into

the first order form by introducing the auziliary variable o := —kVu:
(5.5a) Vu+#r ‘e =0, inQ,
(5.5b) V-o=f 1inQ,

u=g" ondQp,

5.5
(5:5¢) —o-n+ A u=g" ondQdyUOINg where A =0 when on the 9Qy.

Thus, the size of the system is given as: m = d+ 1, m? = d, and m® = 1. The corresponding two-field
Friedrichs’ system reads:

~—1
_ |k Odx1 A, — Ogxd ek
(56) G= |:01><d 0 :| 5 k — |: e%“ K
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where ej, stands for the k-th canonical basis in R”" and 0 with subscript indicates the zero matrix with its
dimension specified by the subscipts. To enforce boundary conditions properly, the boundary operator M
defined in (3.30) can be specified as:

(5.7) { o =+1, M¥* = 20l,,, on dQp where ¢ := 1,

a=—1, M** =20l «, on 0QN UOJQgr where g := A,

where we require A = 0 on 00y and A > 0 on 0Qg in order for the conditions in (2.3b) and (2.3c) to hold.
LEMMA 5.1. The hp-HDG formulation for the PDE stated in (5.5) is well-posed both locally and globally.

Proof. The assumptions (A.1)-(A.3), (Ad.a)-(A4.b) and (A.5)-(A.6) is obviously satisfied by substituting
(5.6) into each conditions.
On the other hand, the numerical flux falls into the category (F.2) where we have:

cl Oax1
(5.8) |A| = | Inl. 5
O1xa 7l
in which [|-||, is a standard Euclidean norm. Thus, the stabilization parameter reads T = ||n||§ =1 Itis

evident that:

e ;C+T=T=1>0,and

. nZ=1 Range (e;) = {0} and N (er) = {0} for Vk =1,...,d.
Hence, by Lemma 3.9 and Theorem 3.10 we can conclude that the hp-HDG formulation for the elliptic PDE
(5.5) is well-posed locally and globally. 0

5.2. Hyperbolic PDE. We consider the following hyperbolic PDE:
(HP.1) steady-state linear advection with variable speed and discontinuous inflow condition.
The PDE for steady-state linear advection reads: find a function w : Q — R such that:

V(ﬁu):f, inQv

(5.9) _
u=g¢gp, on Jf)

with 8 € [£®°()]%, V-8B € L=(Q), f € £2(Q) and gp € L£L2(0Q7). Here, we adopt the convention
0N~ ={x € dN: B -n <0} to denote the inflow boundaries, and they are essentially Dirichlet boundaries
in this problem set. It is well-known that singularity (or discontinuity) can be propagated by linear advection.
Hence, we can expect that there is a shock within the domain €2 if a discontinuity is specified at the inflow
boundary 9Q2~. The problem can be analyzed by the one-field Friedrichs’ system. The size of the system is
m = 1 and the corresponding system reads:

(5.10) G =0, Ap=prfork=1,---,d.
It is clear that that assumptions (A.1)-(A.3) are valid. To have coercivity (A.4), we further assume that
(5.11) ess inf lv -B>0.
Q 2
Finally, we also require the following conditions to obtain a well-posed HDG scheme:

(5.12) B-n#0one, Vecl, [B-n] =0o0n 0K, VK€ I,

where we assume 3 - n is always continuous across element edges and does not vanish at edges (or mortars).
Note that the condition for continuity can be relaxed and the resulting numerical flux has the weight-average
type of stabilization parameter [20].

LEMMA 5.2. The hp-HDG formulation for the PDE stated in (5.9) is well-posed both locally and globally
if the assumptions (5.11) and (5.12) hold.
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Proof. Consider the following transformation:
(5.13) u =i, wherey:=e V@ )8
in which v € R, &g € ©, and @ : Q@ — R. Substituting (5.13) back into (5.9) gives us:

v (fm) —f inQ,

4= gp, on ",

(5.14)

where 3 = xB and gp = x 'gp. Note that y > 0 and hence its inverse always exists. The PDE (5.14) can
also be identified as a one-field Friedrichs’ system where:

(5.15) G=0, Ay =08,.
It is obvious that (A.1)-(A.3) are valid and

d d
(5.16) G+G"+) 0pAL = 0By = xV-B - [Bll37x >0,

k=1 k=1

where the last inequality will hold by the assumption (5.11) and by taking v < 0. Therefore, condition (A.4)
is also satisfied. Finally, N (4) =N (,é' . n) = {0} along all surfaces of the elements since the continuity of

B - m is assumed and the mapping x is diffeomorphism. With the aid of Lemma 3.3 and Theorem 3.4, we
can conclude that the hp-HDG formulation for (5.14) is well-posed both locally and globally. Given that the
mapping x is bijective, this conclusion is also valid for (5.9). 0

REMARK 4. It is possible to extend the Friedrichs’ framework discussed in this paper to time-dependent
problems. One way to achieve this is to treat one of the spatial variables as the time. For example, the
model (5.9) is readily to be rewritten as one-dimensional unsteady linear advection by changing x1 as t and
specifying B as (1,a) where the scalar a is advection velocity. However, this way may only be straightforward
for linear scalar problems. In particular, it is difficult for PDEs with vector states (i.e., the first-order form
of the unsteady heat equation).

The more general and easier extension is to employ Rothe’s method [95]. By applying Rothe’s method,
the time derivative term becomes a reaction term and the rest of the terms can still easily be written in
the general form outlined in Eq. (2.1). In addition, due to the positiveness of the time variable, the newly
introduced reaction term induced by the time derivative term would not pose a negative effect on the (partial
or full) coercivity condition ((A.4) or (44.a)).

5.3. Mixed PDE. For mixed PDE, we consider:
(HB.1) steady-state convection-diffusion problem with discontinuous inflow condition,

V- (Bu—KVu)=f, inQ,

(5.17) u=g% ondQt,
(Bu—RKVu)-n=g" ondQ U,

where the boundary data g* : 9 + R is in £2(0€2) and is defined as
Nt

(5.18) gu = 9P On B

gN,R ON 0y U O~

Here, 8 € [L®(Q)]%, V-8 € L=(Q), f € £2(Q), and & is a symmetric positive definite matrix-valued
defined on 2 with lowest eigenvalue uniformly bounded away from zero. In addition, 9Q~ U 9QT U 9y =
90 where 90~ = {z € 9N : B-n <0} is an inflow boundary; 9Qt = {zx € 9Q: B8-n > 0} is an outflow
boundary; and 9Q¢ = {z € 902 : 3-n =0} is a zero-flow boundary. It is evident that QT = 9Qp and
0Qp U 0N~ = 00Qn UOQR. The problem can be analyzed by a two-field Friedrichs’ system with partial
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coercivity. The size of the system is given as m = d + 1, m® = d, and m® = 1. The two-field Friedrichs’
system for this problem reads:

(5.19) G- R Oaal g g, = [Oaxa e
' Oixa 0 P lel B

We further assume that:
1
. 59 1 -V - >
(5.20) ebsﬂlnf (2V ﬂ) >0,

to gain partial coercivity. The boundary conditions can be enforced by specifying the boundary operator M
as

(5.21) a=+1, M** =20l,,« + 8 -n, on 0Qp,
' a=-1, M** =20l,,u + B -n, on 00y UINR.

In addition, we set o = % on 00p, 0o =0 on Ny and p = —3 - n on INk. Thus, conditions (2.3b) and
(2.3¢) are satisfied. Finally, the following condition is also assumed:

(5.22) B-n#0one, Veek&y, [B-n] =0o0n 0K, VK€

That is, we assume (3 - n is always continuous across element edges and does not vanish at edges (or
mortars). As mentioned in the previous example, this condition can be relaxed by modifying the derivation
of the upwind flux.

LEMMA 5.3. The hp-HDG formulation for the PDE stated in (5.17) is well-posed both locally and globally
if the assumptions (5.20) and (5.22) hold.

Proof. Assumptions (A.1)-(A.3), (A4.b), and (A.5)-(A.6) hold true and can be easily verified. In addi-
tion, (A4.a) also holds if assumption (5.20) does. On the other hand, the eigendecomposition of A reads

1 2nn’ (B-n)n
5:23) A= — |7y 3ol
B -n|"+4
Thus, by setting ® = ﬂin and ¥ = \/ﬁ7 hypothesis (F.1) holds since 8- n # 0 across all elements.

Since the stabilization parameter T = % (\/ 1B - n\2 +4-08- n) we have
o lC+T=1/1B-n>+4>0,and
e

. ﬂizl Range (er) = {0} and N (ex) = {0} for Vk =1,...,d.

By Lemma 3.9 and Theorem 3.10, we conclude that the hp-HDG formulation for (5.22) is well-posed both
locally and globally. 0

5.4. Numerical settings and results. For the numerical experiments, we use the square domain
Q=1(0,1) x (0,1) for (E.1)-(E.2),(HP.1), and (HB.1), and the rectangular domain 2 = (0, 8.4) x (0,24) for
(E.3). In addition, they are initially solved on the simple meshes as shown in Figure 4 with px = 2 for
VK € 9, at the 0-th cycle of adaptation.
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1
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> >
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0 0

0 0.5 1 0 2 4 6 8
X X
(a) Initial mesh 1 (b) Initial mesh 2

Fig. 4: (a) Initial mesh for (E.1)-(E.2),(HP.1), and (HB.1), and (b) initial mesh used for (E.3).

The solver developed in this work is built upon a MATLAB code discussed in [64]. For the numerical
evaluation of integrals, cubature rule is used over elements and Gauss quadrature over the surfaces of
elements. The adaptation is performed using Algorithm 4.1 with different error indicators stated in (4.11)
for all problems. Convergence histories of £2-error norm are also presented if the exact solutions are available.

(E.1) Poisson’s problem with a corner singularity. Consider Poisson’s problem stated in (5.3)
where the diffusivity coefficient K is set to be the identity matrix, the forcing term f is set to zero, and the
exact solution is given below:

(5.24) u(x, ) =2 (x% + x%)_3/4

r1Tg (1 — 1'1) (1 — 1'2) .

Dirichlet boundary condition is applied to all the boundaries such that the solution can satisfy (5.24). It
can be shown (see [6]) that the solution presented in (5.24) is singular at the origin (x1,x2) = (0,0), but is
regular in the rest of the domain 2. The problem is also studied in [43, 44].

We take w = 0.01 and Figure 5 shows the corresponding results at the adaptation cycle where the
L%mnorm of u — uy have an order of magnitude O(10~*) for both approaches. The px map shown in
Figure 5 matches our expectations, that is, aggressive h-refinement takes place near the singularity while
intensive p-refinement occurs in the other part of the domain. The px maps produced by the two different
approaches are similar. Around the singularity, numerous small elements with low-order approximation
are generated by the adaptation procedure, while away from it, a few large elements are generated with
high-order approximation. However, overall, higher degrees of approximation are generated in the adjoint
approach as opposed to Doleji’s approach.

Despite the presence of intense oscillation near the singularity, hp-adaptation forces the oscillation zone
to shrink. As demonstrated in Figure 5, the numerically polluted area is significantly reduced to a small
region at the final cycle of the adaptation. This improvement can also be seen in Figure 6 which shows
a convergence study of uy, with different tolerance values w = 0.01 and w = 0.1. For the lower tolerance
w = 0.01, both approaches show good convergence behavior, but Doleji’s method requires fewer degrees of
freedom than the adjoint method at a given error level. For the higher tolerance w = 0.1, however, the
convergence rate for Doleji’s approach is flattened out near 10® degrees of freedom, whereas the adjoint
counterpart still converges to the true solution.

(E.2) Anisotropic diffusion problem with the discontinuous Dirichlet boundary condition.
In this example, we consider a strongly anisotropic diffusion problem stated in (5.3) where the diffusivity
coefficient K is set with 6, = 7/4 and A, = 1000, and the forcing term f is set to zero. In addition, the
following piecewise constant Dirichlet boundary data is applied to (5.5¢):
1 hen 1 =1 or zo =0,
(5.25) gp = { when 2

0 when 2y =0or zo = 1.
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Fig. 5: Numerical results at the adaptation cycle where £2-norm of u — uy, is about O(10~%) for the isotropic
diffusion problem modeled by the elliptic problem (E.1) with the exact solution stated in (5.24). The
tolerance is chosen as w = 0.01. The left column uses Doleji’s approach (4.1) while the right column uses the
adjoint approach (4.10). Surface and contour plots of the numerical solution are presented in the first two
rows, the mesh configuration along with the arrangement of the degree of approximation pg is presented in
the third row, and the absolute error is presented in the fourth row.

The discontinuities at the corners (0,0) and (1, 1) induce sharp gradients, making the problem difficult to
solve. This problem is also investigated in [103, 80]. A semi-analytic solution for this test problem can be
found by a sequence of geometric transformations which are numerically computed using MATLAB Schwarz-
Christoffel toolbox [45]. Given that the accuracy of the mapping is sufficient, we treat this semi-analytic
solution as “exact” to benchmark against our hp-HDG solution.
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Fig. 6: Convergence histories of u;, measured in £2-norm. The results are obtained by numerically solving
the isotropic diffusion problem modeled by the elliptic problem (E.1) (with the exact solution in (5.24)) with
different tolerance (a) w = 0.1 and (b) w = 0.01. In each plot, the results obtained by Doleji’s and adjoint
approaches are presented.

With the tolerance w = 0.01, we plot numerical results of both approaches in Figure 7 at the adaptation
cycle where £2-norm of u — uy are about O(1073). Due to the strong anisotropic feature, the solution
behaves like convection where the amount of the flux transported in the specific direction is more than in
the other direction. In this example, the dominant direction is 45 degrees from the zi-axis. As a result,
“discontinuity”-like behavior occurs within the domain along the diagonal and becomes more substantial
around the corners due to the presence of discontinuous Dirichlet boundary data. As can be seen in Figure
7, Gibbs phenomenon [60] occurs around the corners (0,0) and (1,1). Similar to the numerical result shown
for (E.1), the numerically polluted area can be largely reduced though the oscillation cannot be completely
removed via the adaptation process. This observation is also consistent with the convergence histories of uy,
presented in Figure 8. On the other hand, Figure 8 demonstrates that a small tolerance value is required in
this testing case to achieve acceptable convergence rates. Moreover, increasing the anisotropic ratio A, will
make the problem more challenging to solve because the profile of the uj, will tend to be even steeper. A
shock-like front may form, which causes more h-refinement and hence more DOFs. A closer look at Figure
8 reveals that the adaptation process for Doleji’s approach stops first due to the satisfaction of criteria
maxgeg, 6h,x > wdép, while the adjoint approach proceeds further and stops owing to the maximum number
of iterations. This observation suggests that more robust stopping criteria may be needed. However, the
effort in designing robust stopping criteria may not be trivial and is beyond the scope of this paper. In
summary, both approaches are comparable in this testing case using the adaptation algorithm outlined in
Algorithm 4.1.

(E.3) Heterogeneous anisotropic diffusion problem with discontinuous field k. Here we con-
sider the problem stated in (5.3), but with a piecewise constant diffusivity coefficient £ and Neumann/Robin
mixed type boundary conditions

(5.26) KVu-n+Au=g, ondQyUOIQg,

where 0Q = 0Qn UINR. Given that K is now spatially varying the problem is not only anisotropic but also
heterogeneous. The PDE can model the heat conduction in non-homogeneous materials, where u describes
the temperature field. For example, the so-called “battery problem” [41], is of this type and is examined
here. The domain is then modeled as a battery composed of five different materials which are indexed as
numbers 1-5 in Table 1. The values of K for different materials and the corresponding forcing term f are
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summarized in Table 2. The boundary data is given in Table 3.

Figure 9 shows the numerical results of the two approaches at the final cycle of adaptation with w = 0.01.
This problem is challenging in that the coefficient of the PDE is discontinuous across the entire domain.
Without aligning the mesh skeleton with these discontinuities, a serious Gibb’s phenomenon is easily induced.
If we simply employ an isotropic h-refinement, then the numerically polluted area may still spread to some
extent. One remedy for addressing this issue is to use anisotropic h-refinement [42, 80, 25, 9, 12]. However,
such refinement requires a more delicate error estimator/indicator and needs to be equipped with a proper
algorithm for generating a mesh. This task is left for future work.

Material Region
1 [0, 8.4] x [0, 0.8), (8, 8.4] x [0.8, 23.2], [0, 8.4] x (23.2, 24]
2 [0, 6.1) x [1.6, 3.6), [0, 6.1) x [18.8, 21.2)
3 [0, 6.1) x [3.6, 18.8)
4 [6.1, 6.5) x [0.8, 21.2)
5 [0, 6.1) x [0.8, 1.6), (6.5, 8) x [0.8, 21.2), [0,8) x [21.2, 23.2)

Table 1: The geometry of materials of the battery problem modeled with (E.3).

Material kx Ky A Om f

1 250 25.0 1.00 00 0.0 B(i df?ta vo 090
2 7.0 0.8 8.75 0.0 0.0 S Lo 30
3 50  0.00001 5.00x10° 0.0 1.0 P S
Right 2.0 2.0
4 0.2 0.2 1.00 0.0 1.0 Bottom 30 10
5 0.05  0.05 1.00 0.0 0.0 e

Table 3: Boundary data used in (5.5¢) for the

Table 2: Diffusivity coefficient K and forcing term f battery problem

for the battery problem.

(HP.1) Steady-state linear advection with variable speed and discontinuous inflow condi-
tion. In this experiment, we are going to solve the linear advection problem described in (5.9) along with
the advection velocity B = (1 + sin (wz3), 2) and the inflow data

17 forx1:O7O§x2§1,
(5.27) gp =} sin®(27xy), for 0 < xy < 0.5, x5 =0,
0, for0.5<xz <1, x5 =0,

where there is a discontinuity occurring right at the origin. The problem is also studied in [20, 84] and can
be solved exactly by using the method of characteristics.

In Figure 10, we present the numerical results of both methods at the adaptation cycle where £2-norm
of u—uy is O(1071). Due to the discontinuous inflow boundary data and the nature of hyperbolic PDEs, we
have a shock formed within the domain 2. It is very challenging to remove the oscillation induced by Gibbs’
phenomena unless all the discontinuities are well aligned with the skeleton of the mesh and the first order
of approximation is used near the discontinuities. Given that we only consider isotropic h-refinement here,
it is not possible to meet this condition. Nonetheless, we can still narrow down the region of shock-induced
oscillation by the hp-adaptation process. As we expect, the aggressive h-refinement is performed around the
shock, but less in near-outflow region even with strong discontinuities.

Figure 11 presents the convergence of u;, using both approaches along with two different tolerance values.
It can be observed that the convergence rate can only be improved (not zero anymore) if the tolerance is set
to be small enough. In addition, the two approaches are comparable in this example as well.
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(HB.1) Steady-state convection-diffusion problem with discontinuous inflow condition. In
this example, we focus on the steady-state convection-diffusion equation (5.17) and especially examine the
problem first proposed by Eriksson and Johnson in [48]. This problem is also investigated in [26] using a
discontinuous Petrov-Galerkin method. The diffusivity matrix is set to be K := el where I is the 2 x 2
identity matrix, and the velocity field is stated as 3 := (0,1). The boundaries are given as follows:

o0 ={(x1,22) 21 =0,0< 29 <1},
oV ={(z1,22) 121 =1,0 < wp < 1},
N = {(z1,22) : 0< 1 <1,29=00r 1}.
The boundary data in (5.18) read:
gp =0, on 9O

(528) _ (ﬂuo + 0’0) - on 8(2_,
INEZN 0 on 09,

and ug := u(0,23), og := (0, z2). Further, the function wug is set to be a discontinuous function :

(332 - 1)2, z9 > 0.5,
f:rg, zo < 0.5.

(5.29) UO<.’1?2) == {

The Eriksson-Johnson problem can be solved by the separation of variables and the solution is:

so(x1—1) _ esl(zl—l)

cos (imxs),

(5.30) u(ar,@s) = Co+ Y G
=1

e %2 —e %1
where

1
C;, = / 2ug cos (imxs) das,
0

14+ I+ deo;

S1,2 =
2e

o = ei?m2.
In this testing case, we actually have 9Q~ = 0Qg, 00T = Qp, and 99y = INQn. Note that we do not have
a closed form of the exact solution. Therefore, for a convergence study, we approximate ug using the first
20 terms of the series in (5.30). Similarly, o9 can be approximated in the same way. The problem is tricky
because there is not only discontinuous inflow data but also a boundary layer developed around the outflow
boundary. In addition, the smaller the diffusivity coefficient ¢ is, the thinner the boundary layer which can
only be well-resolved using a mesh with a proper resolution.

Figure 12 shows the numerical results of the two approaches with ¢ = 1072 and w = 0.05 at the
adaptation cycle where the £2-norm of u —uy, is O(1072). As discussed previously, there is a boundary layer
(sharp gradient in solution u) around the outflow boundary 1 = 1. Furthermore, the resulting px maps for
the two approaches are significantly different. Doleji’s approach does not capture the sharp gradient induced
by discontinuous Dirichlet boundary data at the inflow boundary 92~ and the smooth region near zero-flow
boundaries 9, but approximates the boundary layer near the outflow boundary 9Q% well. Unless an even
smaller tolerance value is provided, the value of local error indicator é”,? ;’(le”(uh) surrounding the boundary
layer is much higher than that of the rest of the domain, resulting in much less refinement in the area except
for the region around dQ%. On the other hand, the adjoint approach does capture almost every feature of
the solution u. However, the local h-refinement is still not sufficient at the outflow boundary 90", and the
boundary layer is under-resolved due to flattened convergence rate of the adjoint approach in Figure 13.

Figure 13 shows the convergence histories of u, together with three different diffusivities. To capture
the thinner boundary layer caused by the smaller diffusivity, we employ a smaller tolerance value. As can
be seen, Doleji’s approach is slightly better than the adjoint approach in terms of accuracy and convergence
rate.
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Fig. 7: Numerical results at the adaptation cycle where £2-norm of u — uy, is about O(1073). The results are
collected by solving the anisotropic diffusion problem modeled by the elliptic problem (E.2) with anisotropic
ratio A, = 1000. Further, the semi-analytic solution can be obtained with the aid of accurate mappings.
The tolerance is chosen as w = 0.01. The left column is for Doleji’s approach (4.1) and the right column for
the adjoint approach (4.10). Surface and contour plots of the numerical solution are presented in the first
two rows, the mesh configuration along with the arrangement of the degree of approximation py is presented
in the third row, and the absolute error is presented in the fourth row.
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—x— Doleji's approach, Ak=100
—x— Doleji's approach, Ak=1000
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(b) Tolerance w = 0.01

31

Fig. 8: Convergence histories of u;, measured in £2-norm. The results are obtained by numerically solving
the anisotropic diffusion problem modeled by the elliptic problem (E.2) where the semi-analytic solution can
be obtained with the aid of accurate mappings. Different tolerance values of (a) w = 0.1 and (b) w = 0.01
are used. In each plot, the results with various anisotropy ratios A, (denoted by different colors) obtained
by different approaches (denoted by different marks) are presented.
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Fig. 9: Numerical results at the final cycle of adaptation for the battery problem modeled with the elliptic
problem (E.3). The tolerance is chosen as w = 0.01. The left column is for Doleji’s approach (4.1) and
the right column for the adjoint approach (4.10). Surface and contour plots of the numerical solution are
presented in the first two rows, and the mesh configuration along with the arrangement of the degree of
approximation pg is presented in the third row.
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Fig. 10: Numerical results at the adaptation cycle where £2-norm of u — uy, is about O(107!) for the linear
advection problem modeled with the hyperbolic problem (HP.1). Further, the exact solution can be obtained
using the method of characteristics. The tolerance is chosen as w = 0.05. The left column is for Doleji’s
approach (4.1) and the right column for the adjoint approach (4.10). Surface and contour plots of the
numerical solution are presented in the first two rows, the mesh configuration along with the arrangement
of the degree of approximation px is presented in the third row, and the absolute error is presented in the
fourth row.
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Fig. 11: Convergence histories of u; measured in £2-norm. The results are obtained by numerically solving
the linear advection problem modeled with the hyperbolic problem (HP.1). The exact solution can be found
by the method of characteristics. The results obtained with two different tolerances of (a) w = 0.1 and (b)
w = 0.05 are presented.
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Fig. 12: Numerical results at the adaptation cycle where £2-norm of u — uy, for the convection-diffusion
problem modeled by the mixed problem (HB.1) with the exact solution stated in (5.30) with the diffusivity
e = 1073, The tolerance is chosen as w = 0.05. The left column is for Doleji’s approach (4.1) and the right
column for the adjoint approach (4.10). Surface and contour plots of the numerical solution are presented
in the first two rows, the mesh configuration along with the arrangement of the degree of approximation pg
is presented in the third row, and the absolute error is presented in the fourth row.
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Fig. 13: Convergence histories of u; measured in £2-norm. The results are obtained by numerically solving
the convection-diffusion problem modeled by the mixed problem (HB.1) that admits the exact solution
stated in (5.30). The results with various diffusivity values & (denoted by different colors) are presented.
For different diffusivity values ¢ = 1072,10~3 and 10~4, different tolerance w = 0.1,0.05 and 0.01 are used

respectively.
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6. Conclusion. In this work, we proposed unified hp-HDG frameworks for Friedrichs’ system that
embraces large classes of PDEs. At the heart of our adaptivity strategy is to take advantage of natural
built-in mortars in HDG methods. By choosing split-sided type of mortar, the degree p. = max {pg+,pr-}
for Ve € & and p. = pk for Ve C 0K N 5}‘? , an upwind-based numerical flux can be naturally derived and
be constructed over mortars. For one-field Friedrichs’ systems, we have a general form of the numerical
flux. For two-field Friedrichs’ systems, we exploit the system’s intrinsic structure to obtain the numerical
flux in the reduced form. The existence of such a numerical flux is guaranteed as long as a few more
additional assumptions are satisfied. We have shown that Ap-HDG formulations are parameter-free and are
well-posed for both one-field and two-field Friedrichs’ systems. Leveraging the Friedrichs’ framework we
have systematically constructed and analyzed hp-HDG formulations for one-field and two-field systems. The
unification opens an opportunity for us to develop a single universal code to solve various kinds of PDEs.

Besides the analysis, several numerical experiments are also carried out. In the experiments, three
distinct types of PDEs are considered: elliptic, hyperbolic, and mixed-type. We showed that these PDEs fall
into our framework and their Ap-HDG formulations are hence well-posed. Additionally, a simple algorithm
is proposed to drive the hp-adaptation and to verify its efficacy. Two different error indicators are used for
our adaptivity strategy: Doleji’s approach and the adjoint approach. The former relies on the estimation of
the smoothness of the numerical solutions. The latter uses duality to derive an estimation of accuracy for a
chosen output functional. Regarding performance, both approaches show improvement in the convergence
rates and are comparable to each other for almost all the examples if an appropriate tolerance is picked.
This is expected as the global objective function is used. (For a more localized objective, the adjoint is
typically much more efficient, but it is not our focus here. We simply demonstrate that our hp-formulations
and hp-adaptation can work with both of these popular approaches.) However, for the Poisson problem
considered in (E.1) the exponential convergence rates are only observed at the first half of cycles of adaption
in Doleji’s approach with the tolerance w = 0.1. It is somehow stagnant for the rest half of the cycles of
adaption. On the other hand, the convergence rate of the adjoint approach with the tolerance w = 0.01 is
about 1.4-1.5, which is not appealing. Moreover, we also found that both approaches are quite sensitive to
the user-defined tolerance value. A more robust hp-refinement strategy is required and it is the subject of
future work.

Finally, we end the conclusion with a couple of remarks. In this work, we only considered one-field
and two-field Friedrichs’ systems. Another significant structure is the three-field, which includes the PDE
governed by the linearized incompressible flow. However, such a system requires a significant amount of
dedicated discussion and deserves another paper to cover it. Thus, it is left for future work. Although we
only consider steady-state PDEs in this paper, it is not hard to extend our current work to time-dependent
models where the temporal derivative is first discretized by some single-step time scheme. The discretized
terms can be treated as reaction and forcing terms, and the resulting semi-discrete PDE can then be re-
written as a general conservation form stated in (2.1). Thus, the analysis presented in this study is still
applicable. However, the algorithm of hp-adaption may need to be re-designed because different time steps
can cause the solution to behave differently. Thus, h-coarsening operations may also be required in response
to this change. Furthermore, a proper transfer of the solution between each adaptation needs to be carefully
addressed.

Acknowledgments. Thanks to Geonyoung Lee for the fruitful discussion on the hp-adaptivity for
elliptic equations. This research is partially funded by the National Science Foundation awards NSF-OAC-
2212442, NSF-2108320, NSF-1808576 and NSF-CAREER-1845799; by the Department of Energy award
DE-SC0018147 and DE-SC0022211.

Appendix A. Adjoint hp-HDG formulation. In this paper, we deployed a discrete weak adjoint
approach that allows us to follow (almost identically) the framework outlined in [13] to derive adjoint-based
error estimations. Instead of treating the governing equation (2.1) as a primal problem, here we consider
hp-HDG formulation that is stated in (3.12) or (3.34) as a primal problem. The procedure of derivation of
the adjoint problem is briefly described below:

1. Re-state the primal problem, either (3.12) or (3.34), as a bilinear form.

2. Define an output functional 7 (-) (Recall that J () = Je¥ont (.) 4 gboundary (.)) of the approximate
solution %, given in (4.2a) and use it as an objective function of an optimization problem along
with the constraint posed by the bilinear formulation given in step one.
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3. Re-write the constrained optimization problem constructed in the previous step as the unconstrained
optimization problem applying the Lagrangian approach in which the test function %}, presented in
the bilinear formulation now becomes a Lagrange multiplier.

4. Solve this trivial optimization problem by taking advantage of the first optimality condition and the
adjoint hp-HDG formulation can then be derived.

Note that the derivation of the adjoint PDEs can also be done by following a similar procedure. However,
it should be noted that the adjoint hp-HDG formulations derived by following the above procedure are not
necessarily the same as the ones discretized from the adjoint PDEs. In fact, they are different in this paper.

The adjoint hp-HDG formulation with regard to the one-field Friedrichs’ system reads: seek (wp,, wy) €

W, x ﬁ\/h such that:

d
(a.la) — Z (’wh,ak (Ak(Szh))gh + (GT'wh7 5zh) . + (—Aﬁ)h + T(wh - ﬁ\}h) 75zh>39h = _6t7:5j0i"t (ffh; 6zh)
=1 v

(a.1b)
~ ~ ~ 1 -~ ~ adjoin = oundary (4 o~
([[—Awh—&—T(wh—wh)}],ézh)gh = —<§(—A+M)T'wh,6zh> —5.72:J t(ffhgézh) —5jgbh d y(zh;ézh),

1)
gh

for all (0z4,62,) € W, x W,. The stabilization parameter is still set as T := |A| and the boundary
operator is set as M := |A|. In order to incorporate the boundary condition, the boundary-associated
functional Jb°%ndary (Z,) is included in J (2%) and has the following form:

~ 1 . o
(3'2) jboundary (Zh) - <2 (_A - M)T zhagad]mnt> 5 )
&p

where the function g¥@°* : 90 — R™ is defined as

(a.3) gediomt godiomt i (A4 M) # 0,
0 .

adjoint

and g7 is the Dirichlet data for the adjoint system given in (a.1). Comparing (3.9) and (a.3), it can
be observed that the inflow and outflow boundaries are switched between the primal formulation (3.12) and
its’s adjoint formulation (a.1). It should be also noted that the adjoint problem (a.1) will automatically have
homogeneous boundary conditions if the boundary-associated functional is zero (i.e., g%ij oint _ 0), which is
the case in the numerical studies presented in this paper.

The well-posedness analysis is similar to Lemma 3.3 for the local equation (a.la) and to Theorem 3.4
for the adjoint hp-HDG formulation (a.1). Thus, we simply outline the following lemma and theorem about
well-posedness without any proof for the sake of brevity.

LEMMA A.1 (Well-posedness of the local equation). Suppose that the assumptions (A.1)-(A.]) hold,
the local solver (a.la) is well-posed, that is, given wy, and 5‘7;}?j0i”t (Z5;02y,), there exists a unique solution
wy, of the local system.

THEOREM A.2 (Well-posedness of the adjoint Ap-HDG formulation). Suppose that
1. the assumptions (A.1)-(A.4) and (2.3b) hold,
2. N (4) = {0},
the adjoint hp-HDG formulation stated in (a.1) is well-posed in the sense that given §J24°" (25 6z,),
6J£}fjomt (Z23,;6Zn) and 5]£iu"daw (Zn;0zy), there exists a unique solution (wp, Wy).

On the other hand, the adjoint hp-HDG formulation with regard to the two-field Friedrichs’ system
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reads: seek (sp, vp, Up) € 3, x U, x U, such that

(a.4a) _é (”’Hak (Bf?‘”fh)) ot ((G"")Tsh + ((G“) oy, 5ah) ,, BB do),

= —6jﬁfj°i"t (gh; (5Uh)

d d
Z Sh, Ok Bkéuh Z Vp, Bk Ck(;uh)) (Gau)Tsh =+ (Guu)T’Uh, 5uh) 7,
(a.4b) k=1 k=1
< T ~ -~ _ adjoint .
+(—B" s, —C vh—l—T(vh —vh),5uh>ay = —6juh (fh,éuh)
h
(a.4c)
<[[—BT3h — C’Tfu\h + T (v, — vp) ,6uh]], §ah>8 \00 = (ol muvp, §ﬁh>5hﬂ(8§2NuE)QR) — 6J3?NUOQR (Tn; 6tn)
h D
(a.4d) (Bn, 6Un) eonon, = —0Tay " (Zh; 6Un) — 8TZEP (@n; 0tin) ,

for all (dop, dup,d0up) € Xy, x Uy, % ﬁ'h. The following boundary-associated functional is contained in the
output functional J (%) to account for the boundary conditions:

(a.5) jboundary (ah) _ jaﬂNanR (ah) + jBQD (ah) ,
where
a.6 ONNUIONR ) = — <1/I adjoint> _ <a adjoint> and
( ) ‘-7 ( h) 9N ESHBQN h'9pr S;'jmaQR ) )
OQp (5 — <A adjoint>
u = u
j ( h) hs9p Sfﬁaﬂp )

in which gadjomt 00N — R, gaRdjomt 00 — R, and gadjomt 00p — R. As indicated in Section 5, the
homogeneous conditions are considered in this paper (i.e., gaiomt = gadioint _ g“Rdj"mt = 0). A similar
analysis used in Lemma 3.7 and Theorem 3.8 can still be apphed to the adjoint hp-HDG formulation (a.4)
whose primal formulation (3.34) has full coercivity. Likewise, a similar argument presented in Lemma 3.9
and Theorem 3.10 can be used for the same adjoint formulation (a.4) whose primal formulation (3.34) only

has partial coercivity.

LEMMA A.3 (Well-posedness of the local equation-with full coercivity). The local solver composed by
(a.da) and (a.4b) is well-posed provided that:
1. the assumptions (A.1)-(A.6) hold, and
1C +T >0, and
3 Bk is a constant and is non-zero for k=1,...,d.
By being well-posed, we mean that given vy, 0 jad]"mt (%, 601), and 5]5;‘fj°i”t (Z5; 6uy,), there exists a
unique solution (sp,vy) of the local solver.

THEOREM A.4 (Well-posedness of the adjoint Ap-HDG formulation-with full coercivity). Suppose:
1. the assumptions (A.1)-(A.6) and (2.3b) hold, and
2. %C’—&-Tz 0, and
3. By is constant and is nonzero fork=1,...,d, and
4. N¢_, Range(By) = {0} and N (By) = {0} for Vk =1,...,d.
Then, the adjoint hp-HDG formulation stated in (a.4) is well-posed in the sense that given
§J2domt (%5 80,), 6TIG0M (Z,; buy), 6Jad]omt (25; 0uy) and éjgzund”y (up; 0uy,), there exists a unique
solution (Sp,vp,Vp).
LEMMA A.5 (Well-posedness of the local equation-with partial coercivity). The local solver composed
by (a.da) and (a.4b) is well-posed provided that:
1. the assumption (A.1)-(A.3), (A4.a)-(A4.b) and (A.5)-(A.6) hold, and
2. 3C+T >0, and
3. ﬂk | Range (By) = {0} and N (By) = {0} forVk =1,...,d.
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By being well-posed, we mean that given O, 6J2%°" (25;60,), and §J2%°M (25;0uy,), there eists a
unique solution (sp,vy) of the local solver.

THEOREM A.6 (Well-posedness of the adjoint Ap-HDG formulation -with partial coercivity). Suppose:
1. the assumptions (A.1)-(A.3), (A4.a)-(A4.b), (A.5)-(A.6), and (2.3b) hold, and
2. 3C+T >0,
3. ﬂZ:1 Range (By) = {0} and N (By) = {0} forVk=1,...,d.
Then, the adjoint hp-HDG formulation stated in (a.4) is well-posed in the sense that given
6(7;?““ (Z3;00h), 5]{}?“”‘5 (Z0; dup), 5]§fjomt (Z24,; 61y) and 5‘752“”“”” (up; 0uy,), there exists a unique
solution (8p,vp,Vp).

As can be seen, the assumptions needed for the well-posedness of primal formulations are the same as the
corresponding adjoint formulation. In fact, this observation holds true for all HDG methods. To see it, we
can express both volume and trace unknowns as discrete vectors (i.e., each element in the vectors represents
a nodal value) instead of functions. The system of primal equations can then be rewritten in the matrix
form and the transpose of the matrix is exactly the matrix in the corresponding system of adjoint equations
[40, 105]. Tt is easy to see that the transpose of a square matrix is indeed invertible if the original square
matrix is invertible.

Appendix B. Proof of the existence of the upwind flux in reduced form. We first look at the
upwind flux stated in (3.23). Thanks to the assumption (A.5), the submatrix A7? contribute nothing and
hence we have

(b.1) Floiuin= g P
By the equality (3.22), we then have’

(b.2) F* (a,:,u;,a'}kl,u,ﬁ) n_ = F(o},u;)n

Buj, }
(3.22)

- [BT 5+ Cuj,
o0 ap h

Further, the numerical flux F* (0';, Uy, a};u,’:) n also satisfies Eq. (3.21) and thus we have flexibility in

replacing one of components of the numerical flux. Given that the upwind state Buj, is desired to be kept
in the numerical flux, we replace the second component in F* using Eq. (3.21) and arrive at

o Buj

* * * _ h

(b.3) F (o w0 000 wi) = | groy, o Gy + A% (o, - o) + A (ay, — u}i)] '

The goal is to eliminate the state o} from the right-hand side of Eq. (b.3) via either the assumption (F.1)
or (F.2).

We first consider that (F.1) holds true. Since the second row in the equality (3.22) is already used to
rewrite (b.2) as (b.3) and the first row remains unused, we can take advantage of this observation to obtain

(b.4) Buj = Bup + A7 (o), — o},) + A% (up, —uy) .
By invoking assumptions (F1.a) and (F1.b), Eq. (b.4) can be rearranged as
(b.5) A% (), — 0}) = — (BTBTBD) " ®TBT B (U + Ipu),

where the matrix (@TBTBQ)_l is guaranteed to exist owing to the assumptions (Fl.a) (®~! exists) and
(Fl.c) (implies that N (B) = {0}). Now substitute (b.5) into (b.3) and define T in the way described in
(3.25), we then can arrive at the formulation (3.24).

Now assume that (F.2) holds true, it is obvious that the state o} will vanish. By applying the definition

(3.26), the formation (3.24) can then be obtained.

9 As mentioned in Footnote 6, it should be noted that both of upwind states oy and u; are the function of states from
adjacent elements. That is, o} = a’,‘l(a;,u;,az,u;) and uj = u;(a;,u;,dz,u;t).
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