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Abstract. This work proposes a unified hp-adaptivity framework for hybridized discontinuous Galerkin (HDG) method for4
a large class of partial di↵erential equations (PDEs) of Friedrichs’ type. In particular, we present unified hp-HDG formulations5
for abstract one-field and two-field structures and prove their well-posedness. In order to handle non-conforming interfaces6
we simply take advantage of HDG built-in mortar structures. With split-type mortars and the approximation space of trace,7
a numerical flux can be derived via Godunov approach and be naturally employed without any additional treatment. As a8
consequence, the proposed formulations are parameter-free. We perform several numerical experiments for time-independent9
and linear PDEs including elliptic, hyperbolic, and mixed-type to verify the proposed unified hp-formulations and demonstrate10
the e↵ectiveness of hp-adaptation. Two adaptivity criteria are considered: one is based on a simple and fast error indicator,11
while the other is rigorous but more expensive using an adjoint-based error estimate. The numerical results show that these12
two approaches are comparable in terms of convergence rate even for problems with strong gradients, discontinuities, and13
singularities.14
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1. Introduction. The hybridized discontinuous Galerkin (HDG) methods were first introduced in [32]17

and they inherit many benefits of discontinuous Galerkin (DG) methods including the applicability to a18

wide variety of partial di↵erential equations (PDEs), the capability of handling complex geometries, and19

high-order accuracy support, to name a few. In addition, HDG methods improve computational e�ciency20

[30] by condensing out the local unknowns, and the linear system to be solved for the trace unknowns21

on the mesh skeleton is smaller than DG counterparts. With these favorable advantages, HDG methods22

indeed have great success solving various kinds of PDEs such as Poisson equation [30, 34, 70], convection-23

di↵usion equations [86, 87, 55], Stokes equations [31, 33, 88, 37, 68], Navier-Stokes equations [91, 24], Maxwell24

equation [90, 79], acoustics and elastodynamics equations [89], Helmholtz equation [61, 39], and magneto-25

hydrodynamic equations [74], to mention a few. A constructive and unified HDG framework for a large class26

of physics governed by elliptic, parabolic, hyperbolic, and mixed-typed PDEs has been developed in [20] that27

not only rediscovers most of the existing HDG methods but also discovers new ones.28

As with any numerical discretization method, standard HDG could be ine�cient in some crucial situa-29

tions where high gradient, discontinuous, and/or singular features are present. Unfortunately, these extreme30

features are not uncommon in almost all engineering/physics applications. A cure to this issue is to employ31

hp-adaptivity. The idea is first proposed in [4] and is systematically studied in [62, 63]. It consists of two32

key findings. The first one is that an exponential convergence rate can be attained by uniformly increasing33

the degree of approximation (p-refinement) if the solution is regular enough [5]. The second one is that a34

low degree of approximation along with refined mesh (h-refinement) is desired if the solution is non-smooth.35

In brief, the ideal situation is to locally execute either h- or p- refinement according to the local behavior of36

the solution.37

In fact, the adaptive feature has been routinely applied in the context of HDG methods either through38

h-adaptivity [23, 85, 46, 40, 107, 27, 35, 96, 2, 52, 77, 83, 101, 76, 75, 99, 7, 38, 78], p-adaptivity [58,39

57, 65, 97, 56, 82], or hp-adaptivity [8, 105, 106, 9]. To drive the adaptation process, some indicator is40

necessary. There are three popular approaches: a posterior error estimator, adjoint-based error estimate,41

and heuristic indicator. Although the reliability and e�ciency of an a posterior error estimator sometimes42

can be guaranteed [46, 27, 2], the derivation is problem-dependent and is typically non-trivial, especially43

for nonlinear problems, [23, 46, 27, 2, 77, 76, 75, 99]. In addition, a post-process may be required in this44
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type of error estimator [46, 2, 99, 58, 57]. On the other hand, an adjoint-based error estimate is popular in45

engineering applications [8, 40, 107, 106, 9, 52, 82, 38] since, in this scenario, one is usually more interested46

in some specific quantities instead of the solution itself. An adaptation process driven by an adjoint-based47

error estimate has been developed for computing accurate values for such quantities of interest. Finally,48

some heuristic indicator can also be employed in driving adaptation [66] and is typically inexpensive to be49

computed. For example, in [96, 65], a measure of jump of flux is used as an error indicator. However, an50

error indicator is not necessarily associated with “error”. For instance, authors in [85, 7] take advantage of51

artificial viscosity as an indicator and the work [83] uses damage-field as an indicator. In this paper, we study52

both adjoint-based error estimate and error indicator. The first option is easier to be derived compared to53

a posterior error estimator but it still possesses certain robustness [8, 40, 107, 106, 9]. The second option is54

more ad-hoc and lacks robustness. The discussion of both approaches will be addressed in Section 4 and the55

numerical comparison will be made in Section 5.56

The adaptation procedure can involve either h-refinement or p-refinement or both for the mesh under57

consideration. The local mesh refinement can be achieved without having any hanging node at the element58

boundaries for simplex meshes. In this case, no special treatment is required. The classic algorithms59

without re-meshing are bisection [94, 93, 100] and red-green procedures [10]. Another approach is to simply60

re-generate the mesh where the layout of the small and large elements depends on some metric [106, 52,61

77, 82, 7, 78]. This mechanism is usually more computational expensive but the resulting mesh is more62

economical. We would like to mention that, however, h-nonconforming interfaces are typically involved in63

local h-refinement for quadrilateral and hexahedral meshes. Thanks to natural built-in mortars in HDG64

methods, the relevant techniques can be easily utilized to treat nonconforming interfaces. In addition, the65

issue of p-nonconforming interfaces due to local enrichment of approximation space can also be addressed by66

the mortar techniques. Nonetheless, special attention is needed for curved boundaries [97, 56]. In this work,67

though our hp-HDG approaches are valid for triangular/tetrahedral/quadrilateral/hexahedral elements with68

straight edges/faces in both 2D and 3D, our numerical results are only for two-dimensional problems with69

triangle elements.70

So far, we have reviewed various HDG schemes for solving di↵erent physical problems. Since each physics71

has a unique characteristic, it is natural to develop di↵erent numerical scheme for di↵erent problem. However,72

the PDEs of Friedrichs’ type [54] embraces a large class of PDEs with similar mathematical structure and73

this provides an opportunity of developing a single unified framework. This idea is first adopted in a series74

of papers [49, 50, 51] in the analysis of DG methods. Friedrichs’ system is also the basis to unify various75

discontinuous Petrov-Galerkin methods [21]. In the work [20], the author uses Friedrichs’ system to propose76

a unified and constructive framework for HDG schemes via a Godunov approach, with the assumption that77

the interfaces are conforming.78

This paper extends the work in [20] in two important directions. First, our extension now provides a79

unified HDG framework for PDEs with two-field structure (to be defined). Second we develop two unified80

hp-HDG frameworks: one for one-field PDE structure and another for two-field PDE structure. In particular,81

we consider Friedrichs’ systems with more general assumptions that cover one- and two-field structures. For82

two-field structures, both full and partial coercivities are examined. The resulting approaches thus cover83

a wide range PDEs including hyperbolic, elliptic, or mixed-type PDEs. We then propose two hp-HDG84

formulations: one for one-field PDEs and the other for two-field PDEs. The derivation heavily relies on85

the Godunov approach. For the two-field formulation, we further exploit its intrinsic structure to obtain86

the corresponding reduced trace system. A few assumptions are identified to guarantee the existence of the87

numerical flux, and this is also a key to prove the well-posedness. Several numerical experiments are carried88

out to verify the e↵ectiveness of the abstract hp-HDG formulations when applied to specific PDEs. In order89

to drive the adaptivity, an adhoc error indicator and an adjoint-based error estimation are implemented and90

their performance are compared. As shall be shown, using either of these criteria, numerically polluted areas91

induced by high gradient/discontinuity/singular can indeed decrease through the hp-adaptation process, and92

acceptable convergence rates can be attained in many cases.93

The paper is organized as follows. Section 2 briefly reviews Friedrichs’ systems and outlines important94

assumptions that will be used in the well-posedness analysis. In Section 3, key concepts about mortar95

techniques are discussed. In addition, HDG numerical fluxes and the corresponding hp-HDG formulations96

for one-field and two-field Friedrichs’ systems are derived. The well-posedness of these formulations is then97

proved. The hp-adaptation strategy with adaptive criteria based on ad-hoc and adjoint-based error indicator98
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is presented in Section 4. Several numerical examples for elliptic PDEs (with corner singularity, anisotropic99

di↵usion with discontinuous boundary condition, heterogeneous anisotropic with discontinuous di↵usivity100

field), linear hyperbolic PDE (with variable speed and discontinuous boundary condition), and convection-101

di↵usion PDE (with boundary layer and discontinuous boundary condition) are presented in Section 5.102

Section 6 concludes the paper with future work.103

2. Linear PDEs of Friedrichs’ type. The main idea of Friedrichs’ unification of PDEs [54] is to104

cast wide classes of PDEs into the first order systems which share the same mathematical structure. In105

this section, we outline one-field and two-field PDE of Friedrichs’ type. The following notations are used106

in the paper. Boldface lowercases are reserved for (column) vectors, uppercase letters are for matrices, and107

boldface uppercase letters are for third order tensors. Considering the following general system of linear108

PDEs defined in a Lipschitz domain ⌦ ⇢ Rd, where d refers to the spatial dimension:109

(2.1)
dX

k=1

@kFk (z) +Gz :=
dX

k=1

@k (Akz) +Gz = f in ⌦,110

where Fk (z) := Akz is the k-th component of the flux tensor F (z), z the unknown solution with values111

in Rm, and f 2
⇥
L2 (⌦)

⇤d
the forcing term. Here, L2 (⌦) is the space of square-integrable functions on112

⌦. Additionally, @k stands for the k-th (component-wise) partial derivative. Di↵erent types of constraints113

imposed on Ak and G will result in di↵erent types of Friedrichs’ systems, and we shall discuss each case114

separately in the following sub-sections.115

2.1. One-field Friedrichs’ systems. One-field Friedrichs’ systems come with the following standard116

assumptions [54, 67, 49]:117

(A.1) G 2 [L1(⌦)]m,m118

(A.2) 8k 2 {1, . . . , d} , Ak 2 [L1(⌦)]m,m and
P

d

k=1 @kAk 2 [L1(⌦)]m,m.119

(A.3) 8k 2 {1, . . . , d} , Ak = (Ak)T a.e. in ⌦.120

(A.4) 9µ0 > 0, G+GT +
P

d

k=1 @kAk � 2µ0Im a.e. in ⌦.121

where Im is the m ⇥ m identity matrix. In this paper, the inequality of the type (A.4) stands for the122

semi-positive definiteness of the di↵erence between the matrices on the left-hand side and the right-hand123

side. Inequality (A.4) is also known as full coercivity [49]. Here, [L1(⌦)]m,m denotes the space of m ⇥m124

matrix-valued essentially bounded functions on ⌦. It turns out that any symmetric and strictly hyperbolic125

PDE system is an example of one-field Friedrichs’ system. The advection equation, for example, falls into126

this category and it is discussed in Section 5.2. More examples can be found in Sections 3.1, 3.2 in [49].127

2.2. Two-field Friedrichs’ systems. Letm� andmu be two positive integers such thatm = m�+mu.128

Denote L� :=
⇥
L2 (⌦)

⇤m�

, Lu :=
⇥
L2 (⌦)

⇤mu

, and L := L� ⇥Lu. Suppose we have the decomposition129

z = (�,u) for all z 2 L , and130

(2.2) G =


G�� G�u

Gu� Guu

�
, Ak =


A��

k
Bk

BT

k
Ck

�
, k 2 {1, . . . , d} .131

Note that Ck is symmetric owing to (A.3). Two additional key assumptions on which the two-field theory is132

based are [50]:133

(A.5) A��
k

= 0, 8k 2 {1, . . . , d},134

(A.6) G�� � k0Im� for some k0 > 0,135

where Im� is the identity matrix in Rm
�
,m

�

. Assumptions (A.5)-(A.6) allow us to eliminate the �-component136

of z in the PDE system and the resulting di↵erential equation is an elliptic-like PDE for the u-component.137

The two-field Friedrichs’ systems that satisfy assumptions (A.1)-(A.6) cover a wide variety of PDEs including138

convection-di↵usion-reaction equation, compressible linear continuum mechanics with a reaction term, and139

simplified MHD. These examples are studied in Section 3 in [50].140

We note that the positivity condition (A.4) can be further relaxed to account for systems that have141

two-field structures with partial coercivity. This class includes convection-di↵usion, anisotropic di↵usion,142

and typical compressible linear continuum mechanics (e.g., linearized compressible elasticity or linearized143

compressible Navier-Stokes) equations, to name a few. This can be accomplished (see [51]) by replacing144

assumption (A.4) with the following:145

146
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(A4.a) 9µ0 > 0, G+GT +
P

d

k=1 Ak � 2µ0Iom� a.e. in ⌦, where Io
m� is an m ⇥ m matrix defined as147

Io
m� :=


Im� 0
0 0

�
.148

(A4.b) G�u = (Gu�)T = 0 and Bk are constant over ⌦.149

The di↵usion equations are discussed in Section 5.1 and the convection-di↵usion equation is discussed150

in Section 5.3. In addition, compressible linear continuum mechanics is discussed in Section 3.4 in [51].151

remark 1. Here, we omit one additional inequality ((A3B”) in [51]) required for two-field Friedrichs’152

systems with partial coercivity since it will not be used in our analysis of HDG. However, the inequality is153

critical in the proof of well-poseness of the continuous PDE stated in (2.1). Such an inequality can be viewed154

as a generalized form of Friedrichs–Poincaré [18] or Korn’s [19] inequality, and the discrete version of it can155

actually be used in our analysis which, however, will lead to a mesh-dependent HDG scheme.156

2.3. Boundary conditions. Though the numerical results in Section 5 use non-homogeneous bound-157

ary conditions, it is su�cient to show the well-posedness of the one-field setting (A.1)-(A.4) and the two-field158

setting (A.1)-(A.6) (or (A.1)-(A.3), (A4.a)-(A4.b), (A.5)-(A.6)) with homogeneous boundary condition. Sim-159

ilar to [49, 50, 51], we consider a general homogeneous boundary condition of the following form160

(A�M) z = 0, on @⌦,(2.3a)161162

where M : @⌦! Rm,m and A :=
P

d

k=1 nkAk with n = (n1, . . . , nd)
T being the unit outward vector of @⌦.

In addition, we assume that163

M � 0,(2.3b)164

N (A�M) +N (A+M) = Rm,(2.3c)165166

with N (·) denoting the nullspace of its argument. It should be noted that the definition of M depends on167

the boundary, that is, di↵erent choices of M associate with di↵erent boundary conditions.168

3. hp-HDG Formulations. In this section, we are going to derive hp-HDG formulations for Friedrichs’169

systems outlined in Section 2. Toward formulating an hp-HDG scheme, it is essential to derive a numerical170

flux due to discontinuous approximation space(s) used for the volume unknown(s). The well-known Godunov171

approach, which involves solving the Riemann problem either exactly or approximately, is one of the most172

popular methods to construct numerical fluxes. The key is to realize that the Godunov flux can be hybridized173

[20]. In other words, the Godunov flux1 can be defined implicitly along with trace unknown(s) and thus174

can be employed as an HDG numerical flux. In addition, such an approach is desirable since it can lead175

to a parameter-free scheme. The idea of hybridizing the upwind flux to constructively and systematically176

derive HDG methods for abstract (and particular) PDEs is thoroughly discussed in [20]. In that work177

[20], we only discussed conforming HDG approaches. In this paper, we extended this idea to derive the178

upwind HDG methods for Friedrichs’ system with hp-nonconforming meshes. The key ingredient to handle179

hp-nonconforming interfaces is to construct such flux directly on the mortars which are naturally built-in180

HDG methods. As we shall show, this can be achieved with the specific choice of the configuration of the181

mortars and the approximation space(s) of trace unknown(s). Further, we will show that the construction is182

quite straightforward for one-field Friedrichs’ system. For two-field systems, it is less so especially when we183

would like to reduce the number of trace unknowns in our hp-HDG formulations for the sake of e�ciency.184

As pointed out in Lemma 3.5, in order to accomplish this goal, we require a few more assumptions to derive185

such e�cient upwind HDG schemes on an abstract level.186

3.1. Nomenclatures. This section collects notations and conventions for the rest of the paper. Again,187

boldface lowercases are reserved for (column) vectors, uppercase letters are for matrices, and boldface up-188

percase letters are for third order tensors. A partition Th of the domain ⌦ ⇢ Rd is a finite collection of189

disjoint elements K such that [K2Th
K = ⌦ where the mesh size h is defined as maxK2Th

diam(K). For190

the simplicity of the exposition, we will use two-dimensional simplex elements to convey our idea, though191

our approach is valid for three-dimensional settings as well. The set of elemental boundaries is denoted192

1It should be noted that the Godunov flux is simply an upwind flux if the problem of interest is linear and thus we may use
these two terms interchangeably in this paper without confusion.
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by @Th = {@K | K 2 Th} each of which comes with unit outward normal vector nK . We conventionally193

identify n as the normal vector on the boundary @K of element K (also denoted as K�) and n+ = �n�194

as the normal vector of the boundary of a neighboring element (also denoted as K+). An element K+ is195

said to be a neighbor of the element K� when @K+ \ @K� has a positive d � 1 Lebesgue measure. For196

an element K of the partition Th, we define a face of the element K 2 Th by F ⇢ @K. For an interior197

interface (nonconforming or not), we introduce a mortar e as e = @K+ \ @K�, and e = @K \ @⌦ on the198

boundary of ⌦. Note that e = F+ = F� if we have a conforming interface (i.e., F+ = F�), otherwise, they199

are di↵erent (see Figure 1 and Figure 2). For any conforming interface the mortar e is clearly defined and for200

any nonconforming interface the mortar is defined in Section 3.2.1. The collection of mortars, called mesh201

skeleton, is denoted by Eh, Eh = E�
h

S
E@

h
with E@

h
= {e 2 Eh | e ⇢ @⌦} and E�

h
= Eh \E@

h
. The derivation of an202

HDG scheme is centered around the HDG numerical flux which typically comes with the newly introduced203

unknowns residing on the skeleton. Such unknowns are usually termed trace unknowns while the usual204

unknowns defined within elements, such as the ones in DG methods, are termed as volume unknowns.205

For the quantity f that is possibly double-valued on the mesh skeleton, we define the jump of f on206

e 2 Eh as:207

JfK = f� + f+, for 8e 2 E�
h
, JfK = f, for 8e 2 E@

h
,208209

where f±(x) = lim y!x

y2K
±
f(y).210

We define Pp (D) as the space of polynomials of degree at most p on a domain D. In particular, we211

denote the degree of polynomials in an element K by pK and on a mortar e by pe. Next, we introduce212

discontinuous piecewise polynomial spaces213

W
h
= [P

h
]m , P

h
:=
�
zh 2 L2(Th) : zh|K 2 PpK (K) , 8K 2 Th

 
,214

cW
h
=
h
bP
h

im
, bP

h
:=
�
bzh 2 L2(Eh) : bzh|e 2 Ppe (e) , 8e 2 Eh

 
.215

216

To account for various boundary conditions, we denote @⌦D as Dirichlet type of boundary, @⌦N as Neumann217

type of boundary, and @⌦R as Robin type boundary. The boundary now can be decomposed as @⌦ =218

@⌦D [ @⌦N [ @⌦R where the intersections of any two types of boundaries are empty set. To facilitate219

the discussion of the two-field Friedrichs’ system later, we further introduce some additional approximation220

spaces:221

⌃
h
= [P

h
]m

�

, U
h
= [P

h
]m

u

,222

b⌃
h
=
h
bP
h

im�

, bU
h
=
h
bP
h

imu

.223
224

Finally, we define the inner product for the aforementioned finite element spaces. (·, ·)
D

is defined as the225

L2-inner product on a domain D ⇢ Rd and h·, ·i
D

as the L2-inner product on a domain D if D ⇢ Rd�1. To226

make our presentation more concise, we introduce the following definitions:227

8
>>>>>><

>>>>>>:

(·, ·)Th
:=
P

K2Th
(·, ·)

K
,

h·, ·i
@Th

:=
P

@K2@Th

P
F⇢@K

P
e✓F

h·, ·i
e
,

h·, ·i
@K

:=
P

F⇢@K

P
e✓F

h·, ·i
e
,

h·, ·iEh
:=
P

e2Eh
h·, ·i

e
,

h·, ·iE@

h

:=
P

e2E@

h

h·, ·i
e
.

228

3.2. Mortar-based technique. A mortar technique is characterized by the introduction of mortars,229

finite element spaces on the mortars, and the method that uses mortars to patch the subdomains/elements.230

Our mortar approach is built upon four mortar approaches, all of which share the aforementioned three231

steps, and the key di↵erence is the way they compute the mortar unknowns. The first approach is due232

to [81, 1, 15, 16, 17, 11], originally developed for elliptic PDEs, that uses the mortar unknowns to weakly233

maintain the continuity of the solution across the mortars. In this case, the mortar unknowns are solved234

together with the volume unknowns on subdomains or elements. The second approach was developed in235

[71, 72, 69, 22, 53] for hyperbolic PDEs in the context of spectral element and DG approaches. The upwind236
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states, which can be considered as the mortar unknowns [20], are computed on the mortars to construct237

the numerical fluxes to ensure flux conservation across the mortars. The third approach by [14, 104, 3, 92],238

originally developed in the context of mixed finite element methods for elliptic-type PDEs, calls the mortar239

unknowns as Lagrange multipliers and, similar to the first approach, they are solved together with the240

volume unknowns. The key di↵erence is that the weak continuity of the flux is enforced instead of the weak241

continuity of the solution. Finally, the HDG approach [32, 30, 34, 70, 86, 87, 55, 31, 33, 88, 37, 68, 74, 20], in242

which the mortar unknowns are called trace unknowns, uses mortar unknowns to enforce the weak continuity243

of the flux similar to the third approach. The mortar unknowns are also solved together with the volume244

unknowns.245

In this paper, we extend the HDG built-in mortars to fully account for hp-nonconforming interfaces. To246

that end, two ingredients are required: i) the appropriate choice of mortar configuration, and ii) the finite247

element space defined over the mortars. We will show that our choice, without any additional interpolation248

or projection, can lead to a setting where the Riemann problem is well-defined and the numerical flux can249

be derived via the Godunov approach.250

3.2.1. h-nonconforming interfaces. In h-nonconforming interfaces (see Figure 1a), F+ is not neces-251

sarily equal to F�. We hence need to carefully consider the definition of mortar. There are two options for252

constructing a mortar as shown in Figure 1. In the first option, a set of split-sided mortars (i.e., Figure 1b)253

are deployed to conform to the smaller sides of the adjacent elements, while in the second option a full-sided254

mortar (i.e., Figure 1c) is used to conform to the larger side of the adjacent element. In the context of HDG255

methods, the first option is used in [28, 46, 29] and the second one is used in [96, 40, 83]. Although the256

usage of the full-sided mortar can be less computationally intensive, the split-sided mortars (Figure 1b) are257

chosen in this work to facilitate the implementation of the Godunov approach.

(a) A nonconforming interface (b) Split-sided mortars (c) A full-sided mortar

Fig. 1: Two options of mortars on a nonconforming interface.

258

remark 2. It should be noted that in [73] the authors showed theoretically that either full- or split-sided259

mortar can lead to a stable DG scheme on a discrete level for a time-dependent linear elasticity problem. Ad-260

ditionally, they also showed numerically that both type of mortars can lead to conservative schemes. However,261

split-sided mortar is still suggested in [73] in the sense that262

1. it is the most natural approach for DG methods,263

2. full-sided mortar has a spectral radius more than twice as large as the split-sided mortar (hence,264

more restrictive time step size for explicit methods).265

3.2.2. p-nonconforming interfaces. For p-nonconforming interfaces, pK+ = pK� does not hold in266

general. Furthermore, the degree of approximation of trace unknowns pe could di↵er from pK+ or pK� . In267

this work, we choose:268

(3.1)

(
pe = max {pK+ , pK�} , for 8e 2 E�

h
,

pe = pK , for 8e ⇢ @K \ E@

h
,

269
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to facilitate the Godnuov approach and stability. This choice is also suggested in [32].270

3.2.3. hp-nonconforming interfaces. By combining the setting presented in Section 3.2.1 and Section271

3.2.2, we can now handle hp-nonconforming interfaces and construct an hp-HDG scheme for the Friedrichs’272

system using the Godnuov approach. In addition, neither projection nor interpolation is required: thanks273

to our specific selection of the configuration of mortars and of the degree of approximation of the trace274

unknowns.275

To illustrate the idea, we consider the nonconforming interface shown in Figure 1b and focus on the276

segment e1. It is not clear how to implement the Godnuov approach since the Riemann problem is not277

well-defined. The left state and right state are defined on the domains that do not conform to each other278

(i.e F� 6= F+
1 ). To resolve this issue, we can either project and interpolate the states onto the mortar e1.279

Then, the Godnuov approach can be applied by solving the Riemann problem that is properly defined by280

these intermediate states. This methodology is already proven to be successful in the context of DG methods281

[71, 72, 69, 22, 53]. Throughout the paper we assume that all the edges/faces are straight, that is, the meshes282

are a�ne. Curved elements are more delicate to treat and this will be part of our future work. Owing to283

the natural built-in mortar in HDG methods and the way we handle the nonconforming interfaces, both284

projection, and interpolation are actually implicitly implied. To see this, we consider the following piecewise285

polynomial functions zh 2 W
h
, (z⇤

h
)± 2 cW

h
and bwh 2 cW h

. Moreover, we define a projection operator286

P (·) that is the L2-projection into the space cW
h
. The projection from left state defined on F� to the left287

intermediate state (z⇤
h
)� can be stated as P (zh|F�\e1

) =: (z⇤
h
)�|e1 and the equality holds in the sense that288

(3.2) hzh, bwhie1 =
⌦
(z⇤

h
)�, bwh

↵
e1
8bwh 2 cW h

.289

Since we use split-sided mortars and choose degree approximation of the trace test space cW
h
by Eq. (3.1),290

it is obvious that for any polynomial function f 2 Pp
K� (K�) it has to satisfy that f |F�\e1

✓ Ppe (e1).291

Due to the unique representation of polynomials, the projection actually does nothing here, and hence292

P (zh|F�\e1
) = zh|F�\e1

. As consequence, the left intermediate state is nothing but just the restriction293

of the left state: (z⇤
h
)�|e1 = zh|F�\e1

. The same argument can also be made in terms of interpolation.294

Similarly, we have the right intermediate state (z⇤
h
)+|e1 = zh|F+\e1

. Now the upwind numerical flux can295

be constructed by solving the Riemann problem locally along the normal n of the segment F� \ e1. Given296

that being aligned with a single direction is one-dimension in nature, a line along the normal direction n297

can be parameterized by some scalar x where x = 0 corresponds to the location of the mortar e1 (see also298

Figure 2 for the illustration). By extending the definition of the coe�cient matrix A :=
P

d

k=1 nkAk with299

n = (n1, . . . , nd)
T being unit outward vector of @K for 8K 2 Th, the statement of the Riemann problem300

[102] reads: find zh (x, t) such that301

(3.3)
@zh

@t
+

@ (Azh)

@x
= 0,302

with initial condition zh (x, 0) = (z⇤
h
)� for x < 0, zh (x, 0) = (z⇤

h
)+ for x > 0. Here, (artificial) time t is303

introduced to help understand the Godunov flux via the Riemann problem, but it is otherwise not necessary304

in the derivation. Figure 2 illustrates the idea of how the Riemann problem is defined in direction n that is305

parametrized by x. With the well-defined problem (3.3), we are now in the position to derive upwinding HDG306

flux by following the procedure outlined in [20]. In this paper, the coe�cient matrix A will be assumed to be307

continuous across the mesh skeleton2. In particular, A is symmetric according to (A.3) and hence its eigen-308

decomposition is guaranteed to exist. We thus can also define |A| := R |⇤|R�1 where ⇤ := diag(�1, . . . ,�m)309

and �i are eigenvalues of A, and R is the matrix composed by the corresponding eigenvectors.310

3.3. A constructive derivation of an hp-HDG formulation.311

3.3.1. Friedrichs’ system with one-field structure. In this section, we derive hp-HDG formulation312

for linear PDE in Eq. (2.1) that satisfies one-field Friedrichs’ system assumptions (A.1)-(A.4). To begin, we313

apply Galerkin approximation to Eq. (2.1) on an element K 2 Th together with integration by parts. The314

2This condition can be relaxed, but we will use it to keep the presentation concise.
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Fig. 2: Illstration of how the Riemann problem is defined along a normal direction n where a line aligned in
this direction can be defined as x0 + xn with x0 2 e1.

resulting local problem reads: seek zh 2W
h
such that315

(3.4) �
dX

k=1

(Akzh, @kwh)K + (Gzh,wh)K + hF (zh)n,whi@K = (f ,wh)K , 8K 2 Th,316

for all wh 2W
h
and the flux F (zh) is a tensor in which each component is a m ⇥ d matrix. As a result,317

F (zh)n is a vector with the dimension m. By treating nonconforming interfaces in the fashion presented318

in Sec. 3.2.3, the normal flux F (zh)n on e 2 Eh is still not well-defined since the traces of both z�
h

of319

element K� and z+
h

of element K+ co-exist on e. However, it can be resolved by Godunov-type methods320

[59] through first solving, either exactly or approximately, the Riemann problem (3.3) for the upwind sate z⇤
h

321

at the mortar e and then introducing the upwind numerical flux3 F ⇤ �z�
h
, z⇤

h

�
n. Furthermore, as reported322

in [20], such flux is hybridizable. The upwind-based HDG flux can then be constructed by replacing the323

upwind state with the designated trace unknown. Following this procedure, the upwind HDG flux reads:324

(3.5) bF (zh, bzh)n := Azh + |A| (zh � bzh) .325

Note that |A| can also be replaced by some other stability parameter matrix T and that will result in di↵erent326

numerical fluxes (also see the discussion in [20]). By replacing F (zh)n by bF (zh, bzh)n, we arrive at the327

so-called local equations : seek (zh, bzh) 2W
h
⇥ cW

h
such that328

(3.6) �
dX

k=1

(Akzh, @kwh)K + (Gzh,wh)K + hAzh + |A| (zh � bzh) ,whi@K = (f ,wh)K , 8K 2 Th,329

for all wh 2W
h
. To close the system, we still require one more constraint. This can be achieved by weakly330

enforcing the continuity of the normal numerical flux (3.5) across the mortars: for (zh, bzh) 2W
h
⇥ cW

h
,331

(3.7) hJAzh + |A| (zh � bzh)K, bwhie = 0, 8e 2 E�
h
,332

is enforced for 8bwh 2 cW h
. Equation (3.7) is called as conservativity condition [32] since it will guarantee333

that the scheme is locally conservative. In addition, it couples all volume unknowns and hence is referred to334

as a global equation. On the boundary, it is clearer to weakly enforce non-homogeneous version of boundary335

conditions (2.3a) directly through the trace unknown which is already defined on E@

h
:336

(3.8) h(A�M) bzh, bwhie = h(A�M) g, bwhie , 8bwh 2 cW h
and 8e 2 E@

h
,337

3Here, we consider the upwind numerical flux in the one-sided form F ⇤
⇣
z�
h
,z⇤

h

⌘
n = Az�

h
+ |A|

⇣
z�
h

� z⇤
h

⌘
. Typically,

such a flux is defined as a function of states from adjacent elements in the DG setting. That is, F ⇤ = F ⇤(z�
h
,z+

h
).
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where we set M := |A| and the function g : @⌦! Rm is defined as338

(3.9) g :=

(
g
D

if (A�M) 6= 0,

0 if (A�M) = 0,
339

where g
D

is the Dirichlet data and is set to be zero for homogeneous boundary condition. It should be noted340

that equation (3.8) corresponds to the ”inflow” boundary condition [20]. In addition, (3.8) is analogous to341

its continuous version stated in (2.3a). Since (3.8) only specify inflow condition, it is clear that bzh cannot342

be uniquely determined on the outflow. Thus, we further require that343

(3.10) hAzh + |A| (zh � bzh) , bwhie = hAbzh, bwhie , 8bwh 2 cW h
and 8e 2 E@

h
.344

Equation (3.10) is resulted from maintaining consistency of the numerical flux, and corresponds to outflow345

conditions. In fact, (3.8) and (3.10) can be incorporated into a single equation as:346

(3.11) hJAzh + |A| (zh � bzh)K, bwhiE@

h

= �
⌧
1

2
(A�M) g, bwh

�

E@

h

+

⌧
1

2
(A+M) bzh, bwh

�

E@

h

.347

In this paper, we will work with the general form of boundary condition (3.11) for one-field Friedrichs’348

system. The complete hp-HDG formulation for the one-field Friedrichs’ system is established by combining349

Eq. (3.6), Eq. (3.7), and Eq. (3.11) together: seek (zh, bzh) 2W
h
⇥ cW

h
such that 4350

�
dX

k=1

(Akzh, @kwh)Th
+ (Gzh,wh)Th

+ hAzh + |A| (zh � bzh) ,whi@Th
= (f ,wh)Th

,(3.12a)351

hJAzh + |A| (zh � bzh)K, bwhiEh
= �

⌧
1
2
(A�M) g, bwh

�

E@

h

+

⌧
1
2
(A+M) bzh, bwh

�

E@

h

,(3.12b)352
353

for all (wh, bwh) 2 W
h
⇥ cW

h
. We now show that the numerical scheme in (3.12) is trivially locally and354

globally conservative, and furthermore well-posed.355

Lemma 3.1 (Local conservation). The hp-HDG scheme in (3.12) is locally conservative.356

Proof. Taking wh = 1 in the local equations (3.6), we obtain357

(3.13) (Gzh,1)K + hAzh + |A| (zh � bzh) ,1i@K = (f ,1)
K
, 8K 2 Th,358

and thus359

(3.14) (Gzh,1)K +
X

F⇢@K

hAzh + |A| (zh � bzh) ,1iF = (f ,1)
K
, 8K 2 Th,360

which indicates the scheme is locally conservative. In particular, the amount of flux entering an element K361

is equal to the amount of flux leaving the element if both the reaction term and forcing term vanish (i.e.,362

G = 0 and f = 0).363

As we will show later, the locally conservative property can also be easily proven for Friedrichs’ system364

with two-field structure. A similar result is presented in [46] as well for an hp-HDG method used to solve365

the problem of Stokes flow.366

Lemma 3.2 (Global conservation). The hp-HDG scheme in (3.12) is globally conservative.367

Proof. Taking (wh, bwh) = (1,1) in Eq. (3.12), we obtain368

(Gzh,1)Th
+ hJAzh + |A| (zh � bzh)K,1iEh

= (f ,1)Th
,(3.15a)369

hJAzh + |A| (zh � bzh)K,1iEh
= �

⌧
1
2
(A�M) g,1

�

E@

h

+

⌧
1
2
(A+M) bzh,1

�

E@

h

.(3.15b)370
371

4Although g is set to be zero, we still keep it in the right-hand side of the global equation so that reader can easily observe
that inflow and outflow boundaries are switched in the adjoint hp-HDG formulation.
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Substitute Eq. (3.15b) into Eq. (3.15a), we arrive at372

(3.16) (Gzh,1)Th
�
⌧
1

2
(A�M) g,1

�

E@

h

+

⌧
1

2
(A+M) bzh,1

�

E@

h

= (f ,1)Th
,373

which implies the scheme is globally conservative.374

Lemma 3.3 (Well-posedness of the local equation). Suppose that the assumptions (A.1)-(A.4) hold, the375

local solver (3.12a) is well-posed, that is, given (bzh,f), there exists a unique solution zh of the local system.376

Proof. Thanks to the hp-nonconforming treatment, the proof is the same as the proof of [20, Lemma377

6.1], and hence omitted.378

Theorem 3.4 (Well-posedness of the hp-HDG formulation). Suppose that379

1. the assumptions (A.1)-(A.4) and (2.3b) hold,380

2. N (A) = {0}5,381

the hp-HDG formulation in (3.12) is well-posed in the sense that, given f and the homogeneous Dirichlet382

data, there exists a unique solution (zh, bzh).383

Proof. Following the discussion presented in Theorem 6.2 in [20], we first take (wh, bwh) = (zh, bzh)384

and assume f = 0. We then perform integration by part for (3.12a), subtract (3.12b) from the resulting385

equations, and substitute the following identity386

(3.17) hA (bzh � zh) , bzhie =
1
2

⇥
hAbzh, bzhie + hA (zh � bzh) , (zh � bzh)ie � hAzh, zhie

⇤
,387

which is valid for 8e 2 Eh. Together with homogeneous Dirichlet boundary condition, we obtain388

(3.18)

1
2

 "
G+GT +

dX

k=1

@kAk

#
zh, zh

!

Th

+
1
2
hMbzh, bzhiE@

h

+

⌧✓
1
2
A+ |A|

◆
(zh � bzh) , (zh � bzh)

�

@Th

= 0

389

whose left-hand side is non-negative owing to the coercivity condition (A.4), semi-positiveness of boundary390

operator (2.3b) and semi-positiveness of 1
2A+|A| � 0. Therefore, we conclude that zh = 0 inK for 8K 2 Th.391

Furthermore, the last two terms in (3.18) is equal to zero since our assumption N (A) = {0} implies that392

N (|A|) = {0}. We thus can conclude that bzh = 0 as well.393

3.3.2. Friedrichs’ system with two-field structure. In this section, we derive hp-HDG formulation394

for two-field Friedrichs’ system in (2.1) where the coe�cient matrices G and Ak can be decomposed into395

block matrices as presented in Eq. (2.2). In addition, a set of assumptions (A.1)-(A.6) are assumed to hold.396

However, the strong coercivity is not necessarily required and can be further weakened by replacing (A.4)397

with (A4.a)-(A4.b).398

Through the Galerkin approximation along with integration by part, we will again obtain Eq. (3.4).399

Moreover, the two-field structure can be further exploited by taking advantage of the decomposition where400

we can introduce zh = (�h,uh), wh = (sh,vh), F = (F�,Fu), and f = (f�,fu). Indeed, with the aid of401

Eq.(2.2), the local equation can be rewritten as: seek (�h,uh) 2 ⌃
h
⇥U

h
such that402

�
dX

k=1

(Bkuh, @ksh)K + (G���h +G�uuh, sh)K + hF� (�h,uh)n, shi@K = (f�, sh)K , 8K 2 Th,(3.19a)403

�
dX

k=1

⇣
BT

k �h + Ckuh, @kvh

⌘

K

+ (Gu��h +Guuuh,vh)K + hFu (�h,uh)n,vhi@K = (fu,vh)K , 8K 2 Th,

(3.19b)

404

405

for all (sh,vh) 2 ⌃
h
⇥U

h
. Now the upwind flux F ⇤ ���

h
,u�

h
,�+

h
,u+

h

�
n for the two-field system can also be406

derived by solving the Riemann problem stated in Eq. (3.3). To that end, it is required to compute the eigen-407

decomposition of the coe�cient matrix A. The two-field structure can be exploited again by decomposing408

5This condition actually implies the condition (2.3c) which is a key to make the exact solution unique (see also Remark 6.3
in [20]).
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|A| as follows:409

(3.20) |A| =

A�� A�u

Au� Auu

�
,410

where A��, A�u, Au�, and Auu are m�⇥m�, m�⇥mu, mu⇥m�, and mu⇥mu sub-block matrices of |A|.411

In addition, the m ⇥ d matrix of upwind flux F ⇤n can also be decomposed into m� ⇥ d and mu ⇥ d block412

matrices (F�)⇤n and (Fu)⇤n, respectively. By introducing the upwind states �⇤
h
and u⇤

h
, the numerical413

flux can be expressed in one-sided form:414

(3.21)

F ⇤ ���
h
,u�

h
,�⇤

h,u
⇤
h

�
n =


(F�)⇤

�
��

h
,u�

h
,�⇤

h,u
⇤
h

�
n

(Fu)⇤ (�h,uh,�
⇤
h,u

⇤
h)n

�
=

dX

k=1

nk


A��

k Bk

BT

k Ck

� 
��

h

u�
h

�
+


A�� A�u

Au� Auu

� 
��

h
� �⇤

h

u�
h
� u⇤

h

�
,415

where A��
k

= 0 by the assumption (A.5). At this point, we could replace the upwind states (�⇤
h
,u⇤

h
) with416

the trace unknowns (b�h, buh) and obtain an upwind-based HDG flux. However, one of the upwind states417

(and hence one of the trace unknowns) can be eliminated, and it is desirable since the system becomes even418

cheaper to solve. Such reduction can be achieved since u⇤
h
and �⇤

h
are linearly dependent. To see this, we419

know that the numerical flux F ⇤n must match the physical flux Fn evaluated at the upwind states. That420

is,6421

(3.22) F ⇤ ���
h
,u�

h
,�⇤

h
,u⇤

h

�
n = F (�⇤

h
,u⇤

h
)n,422

where423

(3.23) F (�⇤
h
,u⇤

h
)n =

dX

k=1

nk


A��

k
Bk

BT

k
Ck

� 
�⇤

h

u⇤
h

�
and A��

k
= 0 by the assumption (A.5).424

By substituting (3.23) into (3.21) we can remove either �⇤
h
or u⇤

h
. In this work, we eliminate �⇤

h
. For the425

other elimination possibilities, one can consult with [98].426

Lemma 3.5 (The reduced upwind flux). The upwind numerical flux can be expressed as a function of427

u⇤
h
only:428

(3.24) F ⇤ (�h,uh,u
⇤
h
)n =


Bu⇤

h

BT�h + Cuh + T (uh � u⇤
h
)

�
429

where B :=
P

d

k=1 nkBk and C :=
P

d

k=1 nkCk are with n = (n1, . . . , nd)
T being unit outward vector of @K430

for 8K 2 Th. The value of T depends on either of the following assumptions:431

(F.1)432

(F1.a) There exists an invertible matrix � 2 Rm
u
,m

u

such that B�Au� = A��, and433

(F1.b) there exists an matrix  2 Rm
u
,m

u

such that A�u = B , and434

(F1.c)
T

d

k=1 Range (Bk) = {0} and N (Bk) = {0} for 8k = 1, . . . , d.435

(F.2) A�u = 0 (note that A�u = (Au�)T owing to the assumption (A.3)).436

In particular, if assumption (F.1) holds then:437

(3.25) T := �
�
�TBTB�

��1
�TBTB ( + Imu) +Auu,438

where Imu is the mu ⇥mu identity matrix. On the other hand, if assumption (F.2) holds then,439

(3.26) T := Auu.440

Proof. It can be proved by simple algebraic manipulation along with the corresponding assumption. See441

Appendix B for detailed proof.442

6 It should be noted that both of upwind states �⇤
h

and u⇤
h

are the function of states from adjacent elements. That is,

�⇤
h
= �⇤

h
(��

h
,u�

h
,�+

h
,u+

h
) and u⇤

h
= u⇤

h
(��

h
,u�

h
,�+

h
,u+

h
)

This manuscript is for review purposes only.



12 JAU-UEI CHEN, SHINHOO KANG, TAN BUI-THANH AND JOHN N. SHADID

We would like to mention that the assumption (F.1) and (F.2) are mutually exclusive from each other. For443

example, the derivation of HDG numerical flux for a convection-di↵usion equation rely on (F.1) while an444

elliptic equation uses (F.2) (See Section 5 for more detail). According to Lemma 3.5, we can construct the445

upwind-based HDG flux by replacing u⇤
h
with buh:446

(3.27) bF (�h,uh, buh)n :=


Bbuh

BT�h + Cuh + T (uh � buh)

�
,447

where the definitions of B and C follow ones introduced in Lemma 3.5 (these notations will be used in the448

rest of the paper as well). In fact, the numerical flux (3.27) can represent the larger class of HDG family449

other than just upwind-based HDG. It is possible to obtain di↵erent HDG schemes by setting the stability450

matrix T to be di↵erent from (3.25) and (3.26). Such an exploration is also studied in [20].451

Now the local equation of an hp-HDG scheme for the two-field Friedrichs system can be constructed by452

substituting the upwind-based HDG flux (3.27) back into (3.19): seek (�h,uh, buh) 2 ⌃
h
⇥ U

h
⇥ bU

h
such453

that454

�
dX

k=1

(Bkuh, @ksh)K + (G���h +G�uuh, sh)K + hBbuh, shi@K = (f�, sh)K , 8K 2 Th,(3.28a)455

�
dX

k=1

⇣
BT

k �h + Ckuh, @kvh

⌘

K

+ (Gu��h +Guuuh,vh)K

+
D
BT�h + Cuh + T (uh � buh) ,vh

E

@K

= (fu,vh)K , 8K 2 Th,

(3.28b)456

457

for all (sh,vh) 2 ⌃
h
⇥ U

h
. Again, we close the system with a conservative condition. Since the first458

component in bF (�h,uh, buh)n is already uniquely defined, we weakly enforce the continuity in the second459

component: for (�h,uh, buh) 2 ⌃
h
⇥U

h
⇥ bU

h
,460

(3.29)
D
JBT�h + Cuh + T (uh � buh)K, bvh

E

e

= 0, 8e 2 E�
h , 8bvh 2 bUh461

Finally, the boundary conditions are specified in a similar way as in Eq. (3.8). The di↵erence is that instead462

of taking M := T , we make use of the characteristic of the two-field structure and choose M in a special way463

(3.30) M :=


0 �↵B

↵BT Muu

�
,464

where Muu : @⌦ ! Rm
u
,m

u

, Muu � 0, and ↵ 2 {�1,+1}. With this specific setting, the boundary can465

then be enforced through Eq. (3.8) with the boundary data g : @⌦! Rm
�⇥m

u

, g = (g�, gu) in which g� :466

@⌦ ! Rm
�

and gu : @⌦ ! Rm
u

. Again, for clarity and for the numerical results, we use nonhomogeneous467

boundary conditions, but in the well-posedness analysis it is su�cient to consider homogeneous boundary468

conditions. We further set Muu = 2%Imu + C, where Imu is the mu ⇥mu identity matrix and % is chosen469

on the case-by-case basis (see Section 5). Again, the boundary operator M is not unique but must satisfy470

assumptions (2.3b) and (2.3c). In particular, (2.3b) requires:471

(3.31) 2%Imu + C � 0.472

For Dirichlet type of boundary we set ↵ = 1 and % = 1
2 , the boundary condition (3.8) now is restated as7:473

(3.32) hbuh, bvhie = 0, 8bvh 2 bUh
, 8e 2 E@

h
\ @⌦D.474

7In fact, with ↵ = 1 and % = 1
2 we obtain two equations from (3.8):

hBbuh,bshie = 0, 8bsh 2 b⌃h, 8e 2 E@

h
\ @⌦D, and hbuh, bvhie = 0, 8bvh 2 bUh, 8e 2 E@

h
\ @⌦D.

These two equations are re equivalent and we use the latter formulation in this paper since:
1. Given that only the trace unknown buh is introduced, no test function in b⌃h should be involved, and
2. The latter option is more economical.
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On the other hand, for Neumann or Robin type of boundary condition, we set ↵ = �1 and the variable %475

depends on problems to be solved. In this case, (3.8) now becomes:476

(3.33)
D
BT�h + Cuh + T (uh � buh) , bvh

E

e

= h(%Imu + C) buh, bvhie , 8bvh 2 bUh, 8e 2 E@

h \ (@⌦N [ @⌦R).477

Again, the stabilization parameter T is set to be (3.25) if the assumption (F.1) holds or to be (3.26) if the478

assumption (F.2) holds. Finally, the consistency condition like (3.10) is not needed here since the equation479

(3.8) itself along with the set-up (3.30) is su�cient to determine the trace unknown buh on the boundary.480

Combining (3.28), (3.29), (3.32), and (3.33), we can obtain the complete the hp-HDG formulation for the481

two-field Friedrichs’ system: seek (�h,uh, buh) 2 ⌃
h
⇥U

h
⇥ bU

h
such that482

�
dX

k=1

(Bkuh, @ksh)Th
+ (G���h +G�uuh, sh)Th

+ hBbuh, shi@Th
= (f�, sh)Th

,(3.34a)483

�
dX

k=1

⇣
BT

k �h + Ckuh, @kvh

⌘

Th

+ (Gu��h +Guuuh,vh)Th
+
D
BT�h + Cuh + T (uh � buh) ,vh

E

@Th

= (fu,vh)Th
,

(3.34b)484

D
JBT�h + Cuh + T (uh � buh)K, bvh

E

Eh\@⌦D

= h(%Imu + C) buh, bvhiEh\(@⌦N[@⌦R) ,(3.34c)485

hbuh, bvhiE@

h
\@⌦D

= 0,(3.34d)486
487

for all (sh,vh, bvh) 2 ⌃
h
⇥U

h
⇥ bU

h
. We now show that the numerical scheme in (3.34) is both locally and488

globally conservative, and well-posed. For the well-posedness proof, both full and partial coercivity will be489

discussed. It turns out that a few extra assumptions are needed for the well-posedness and they are di↵erent490

for full and partial coercivity cases.491

Lemma 3.6 (Local conservation). The hp-HDG scheme in (3.34) is both locally and globally conserva-492

tive.493

Proof. The proofs are the same as the proof of Lemma 3.1 and Lemma 3.2, and hence omitted.494

Lemma 3.7 (Well-posedness of the local equation-with full coercivity). Suppose495

1. the assumptions (A.1)-(A.6) hold, and496

2. 1
2C + T � 0, and497

3. Bk is a constant and is non-zero for k = 1, . . . , d.498

Then, the local solver composed by (3.34a) and (3.34b) is well-posed, that is, given (buh,f
�,fu), there exists499

a unique solution (�h,uh) of the local solver.500

Proof. Since the formulation is linear and zh = (�h,uh) is in finite dimensional space W
h
, it is su�cient501

to restrict to a single element K and show that the solution (�h,uh) = 0 is a unique solution in K for K 2 Th502

provided that buh and f are zero. Let buh and f be zero and (sh,vh) be (�h,uh) in (3.34a) and (3.34b).503

Adding the equations yields504

(3.35)

�
dX

k=1

(Bkuh, @k�h)K + (G���h +G�uuh,�h)K

�
dX

k=1

⇣
BT

k �h + Ckuh, @kuh

⌘

K

+ (Gu��h +Guuuh,uh)K +
D
BT�h + Cuh + Tuh,uh

E

@K

= 0.

505

By invoking the assumption that Bk is a constant for k = 1, . . . , d, the term 1
2

P
d

k=1

��
@kBT

k

�
�h,uh

�
K

506

contribute nothing and can be freely added into (3.35). It gives507

(3.36)

�
dX

k=1

(Bkuh, @k�h)K + (G���h +G�uuh,�h)K �
dX

k=1

⇣
BT

k �h + Ckuh, @kuh

⌘

K

+
1
2

dX

k=1

⇣⇣
@kB

T

k

⌘
�h,uh

⌘

K

+ (Gu��h +Guuuh,uh)K +
D
BT�h + Cuh + Tuh,uh

E

@K

= 0.

508
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The first term in (3.36) can be further expanded as:509

(3.37) �
dX

k=1

(Bkuh, @k�h)K =
dX

k=1

(Bk@kuh,�h)K +
1
2

dX

k=1

((@kBk)uh,�h)K � hBuh,�hi@K .510

The second term on the right-hand side of (3.37) is zero owing to our assumption and hence can be multiplied511

by an arbitrary constant. Similarly, it is easy to show that the following identity holds:512

(3.38) �
dX

k=1

(Ckuh, @kuh)K =
1
2

dX

k=1

((@kCk)uh,uh)K � 1
2
hCuh,uhi@K .513

Substituting (3.37) and (3.38) back into (3.36), and combining (undo the decomposition) the volume integrals,514

we arrive at515

(3.39)
1

2

  
G+GT +

dX

k=1

@kAk

!
zh, zh

!

K

+

⌧✓
1

2
C + T

◆
uh,uh

�

@K

= 0.516

With the assumption of full-coercivity (A.4) and the assumption of semi-positiveness 1
2C + T � 0, we can517

conclude that zh = (�h,uh) = 0 in K for any K 2 Th.518

Theorem 3.8 (Well-posedness of the hp-HDG formulation-with full coercivity). Suppose:519

1. the assumptions (A.1)-(A.6) and (2.3b) hold, and520

2. 1
2C + T � 0, and521

3. Bk is constant and is nonzero for k = 1, . . . , d, and522

4.
T

d

k=1 Range (Bk) = {0} and N (Bk) = {0} for 8k = 1, . . . , d.523

Then, the hp-HDG formulation in (3.34) is well-posed, that is, given f�, fu, and the homogeneous Dirichlet524

data, there exists a unique solution (�h,uh, buh).525

Proof. Due to the finite-dimensional nature and the linearity of the global system, it is su�cient to show526

that the solution buh = 0 is the unique solution if f = 0 along with homogeneous boundary data g = 0. We527

first let f = 0 and (sh,vh, bvh) = (�h,uh, buh). The boundary condition (3.34d) now reads528

(3.40) hbuh, buhiE@

h
\@⌦D

= 0,529

which implies that buh = 0 at e for 8e 2 E@

h
\@⌦D. Adding (3.34a) and (3.34b) together, and then subtracting530

(3.34c) from the resulting equation, we obtain531

(3.41)

�
dX

k=1

(Bkuh, @k�h)Th
+ (G���h +G�uuh,�h)Th

+ hBbuh,�hi@Th\@⌦D

�
dX

k=1

⇣
BT

k �h + Ckuh, @kuh

⌘

Th

+ (Gu��h +Guuuh,uh)Th

+
D
BT�h + Cuh + T (uh � buh),uh

E

@Th\@⌦D

�
D
BT�h + Cuh + T (uh � buh) , buh

E

@Th\@⌦D

+ h(%Imu + C) buh, buhiEh\(@⌦N[@⌦R),I = 0,

532

where the result of buh = 0 at e for 8e 2 E@

h
\ @⌦D is already applied. We can add the additional term533
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1
2

P
d

k=1

��
@kBT

k

�
�h,uh

�
Th

as Bk is constant for k = 1, . . . , d to obtain534

(3.42)

�
dX

k=1

(Bkuh, @k�h)Th
+ (G���h +G�uuh,�h)Th

+ hBbuh,�hi@Th\@⌦D

�
dX

k=1

⇣
BT

k �h + Ckuh, @kuh

⌘

Th

+ (Gu��h +Guuuh,uh)Th
+

1
2

dX

k=1

⇣⇣
@kB

T

k

⌘
�h,uh

⌘

Th

+
D
BT�h + Cuh + T (uh � buh),uh

E

@Th\@⌦D

�
D
BT�h + Cuh + T (uh � buh) , buh

E

@Th\@⌦D

+ h(%Imu + C) buh, buhiEh\(@⌦N[@⌦R),I = 0.

535

We have the following identity by inspection:536

(3.43)
�hCuh, buhi@Th\@⌦D

=
1
2
hC (uh � buh) , (uh � buh)i@Th\@⌦D

� 1
2
hCuh,uhi@Th\@⌦D

� 1
2
hCbuh, buhi@Th\@⌦D

.
537

Note that hCbuh, buhi@Th\@⌦ = 0 since C is assumed to be continuous across the mesh skeleton, and the trace538

unknown buh is uniquely defined on the mortar e for all e 2 E�
h
. As a consequence, the last term in (3.43)539

can be rewritten as � 1
2 hCbuh, buhi@Th\(@⌦N[@⌦R),I . Substituting equality (3.37), (3.38), and (3.43) back into540

(3.42), and combining (undo the decomposition) the volume integrals, we arrive at the following541

(3.44)

1
2

  
G+GT +

dX

k=1

@kAk

!
zh, zh

!

Th

+

⌧
(
1
2
C + T )(uh � buh), (uh � buh)

�

@Th\@⌦D

+

⌧
(
1
2
C + T )uh,uh

�

@Th\@⌦D

+

⌧✓
1
2
C + %Imu

◆
buh, buh

�

@Th\(@⌦N

S
@⌦R)

= 0.

542

With full-coercivity (A.4), semi-postiviness of the boundary operator (2.3b) (hence inequality (3.31)), and543

semi-positiveness 1
2C + T � 0 assumptions, we can conclude that zh = (�h,uh) = 0 in K for all K 2 Th.544

Now substituting (�h,uh) = 0 back to the sub-equation (3.34a) in the local solver along with f = 0 and545

buh = 0 at e for 8e 2 E@

h
\ @⌦D, we get:546

(3.45) hBbuh, shi@Th\@⌦D
= 0 8sh 2 ⌃

h
,547

which implies that Bbuh = 0. By invoking our assumption that
T

d

k=1 Range (Bk) = {0} and N (Bk) = {0}548

for 8k = 1, . . . , d, the condition N (B) = {0} can be concluded. We then conclude buh = 0 in e for all549

e 2 Eh\@⌦D.550

Lemma 3.9 (Well-posedness of the local equation-with partial coercivity). Assume:551

1. the assumption (A.1)-(A.3), (A4.a)-(A4.b) and (A.5)-(A.6) hold, and552

2. 1
2C + T > 0, and553

3.
T

d

k=1 Range (Bk) = {0} and N (Bk) = {0} for 8k = 1, . . . , d.554

Then, the local solver composed by (3.34a) and (3.34b) is well-posed, that is, given (buh,f
�,fu), there exists555

a unique solution (�h,uh) of the local solver.556

Proof. Essentially, the hp-HDG formulation for the two-field Friedrichs’ system with partial coercivity is557

the same as the one with full coercivity. Hence, we can obtain the equation (3.39) as well following the same558

arguments discussed in the proof of Lemma 3.7. By applying the assumption of partial coercivity (A4.a) and559

of positiveness of 1
2C + T > 0, we can conclude that �h = 0 on K for any K 2 Th and uh = 0 on F ⇢ @K560

for all K 2 Th. By applying integration by part to the first term in (3.34a), and substituting the result that561

we just obtained into it along with buh = 0 and f = 0, we have562

(3.46)
dX

k=1

(@k(Bkuh), sh)K = 0 8sh 2 ⌃
h
,563
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which implies that
P

d

k=1 @k(Bkuh) = 0 in K. Furthermore, it can be rewritten as
P

d

k=1 Bk@k(uh) = 0 in564

K owing to assumption (A4.b). Based on our assumption that
T

d

k=1 Range (Bk) = {0} and N (Bk) = {0}565

for 8k = 1, . . . , d, we can further conclude that uh = 0 on K for any K 2 Th.566

Theorem 3.10 (Well-posedness of the hp-HDG formulation -with partial coercivity). Suppose:567

1. the assumptions (A.1)-(A.3), (A4.a)-(A4.b), (A.5)-(A.6), and (2.3b) hold, and568

2. 1
2C + T > 0,569

3.
T

d

k=1 Range (Bk) = {0} and N (Bk) = {0} for 8k = 1, . . . , d.570

Then, the hp-HDG formulation stated in (3.34) is well-posed in the sense that given f�, fu, and the571

homogeneous Dirichlet data, there exists a unique solution (�h,uh, buh).572

Proof. Given that the hp-HDG formulation for the two-field Friedrichs’ system with partial coercivity573

is the same as the one with full coercivity, we can directly follow the same arguments used in the proof of574

Theorem 3.8 and it should lead us to equation (3.44) as well. With the stated assumptions we can conclude575

that �h = 0 in K for all K 2 Th, and uh = buh in F \ e for all F ⇢ @K for 8@K 2 @Th\@⌦D and for all576

e 2 Eh\@⌦D. Now we perform integration by part to the first term in (3.34a), transfer all integration over577

@K to the summation of the integration over e where e 2 Eh, and apply the conclusion we just obtained into578

the resultant equation along with f = 0, we get:579

(3.47)
dX

k=1

(@k(Bkuh), sh)Th
= 0 8sh 2 ⌃

h
,580

which implies that
P

d

k=1 @k(Bkuh) = 0 in K for all K 2 Th. Furthermore, it can be rewritten as581 P
d

k=1 Bk@k(uh) = 0 owing to assumption (A4.b). Given that we assume
T

d

k=1 Range (Bk) = {0} and582

N (Bk) = {0} for 8k = 1, . . . , d, we can conclude that uh = 0 in K for all K 2 Th but uh = buh in F \ e for583

all F ⇢ @Th\@⌦D for all e 2 Eh\@⌦D. This leads to buh = 0 in Eh\@⌦D.584

4. Strategy for hp-adaptation. The formulations stated in (3.12) and (3.34) provide us with HDG585

schemes that can be carried out on hp-nonconforming meshes. As a result, we have a lot of flexibility when586

constructing finite element spaces. It is well-known that a smooth solution can be well resolved using a high587

degree of approximation even on a coarse mesh, whereas a solution with a sharp gradient is more suitable588

for low degree approximations on a fine mesh. Given that these di↵erent behaviors may occur locally, it is589

beneficial to use an adaptation procedure that allows us to improve the numerical results with a reasonable590

computational cost. This process can be achieved by refining elements locally via either dividing them591

into smaller ones (h-adaptation), or enriching their approximation spaces (p-adaptation). To that end, two592

essential ingredients are needed: an error indication for each element and a method to define a new spatial593

discretization [66]. For the first ingredient, two di↵erent approaches are adopted in this work. One is to use594

an error indicator while the other is to use an adjoint-based error estimate. For the second ingredient, the595

regularity indicator proposed in [43] is applied. In the following discussion, we will discuss the error indicator596

obtained by two di↵erent approaches and then outline the algorithm for hp-adaptation.597

4.1. Doleji’s approach. By denoting q
h
as an approximate solution, hF as a length of a face of an598

element and g
D

as Dirichlet data, a local error estimator is defined as the following [43]:599

(4.1) E Doleji
h,K

(q
h
) :=

0

@
X

F⇢@K\@⌦

X

e⇢F

1
hF

hJq
h
K, q

h
i
e
+

X

F⇢@K\@⌦D

1
hF

hq
h
� g

D
, q

h
� g

D
i
F

1

A

1
2

8K 2 Th,600

which, originally, is derived in the context of the interior-penalty DG methods. We simply use it as a local601

error indicator to probe errors in our work. It is inexpensive since only the computation of the jump between602

adjacent elements is needed. In particular, q
h
:= zh and q

h
:= uh are picked for the one and two-field603

Friedrichs system, respectively.604

4.2. Adjoint approach. The main idea of the adjoint approach is to measure the error in the output605

functional of interest. The error arises when the output functional is evaluated by a numerical solution. Based606

on the pioneering work [47], the dual-weight-residual (DWR) method have been developed for error control607

and mesh optimization within the context of finite element methods [13]. In this method, an additional608
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linear system formed by an adjoint equation is needed to be solved, which then induces an estimate of the609

error in the target functional. This estimate can be used as a criterion to drive adaptation so that the error610

in the target functional is reduced. Recently, this method is adopted in solving the elliptic equations by611

using HDG method in [38] along with h-adaptivity, and the evaluation of error estimate is completed with612

the aid of the postprocessing technique [36].613

In our work, we develop a discrete weak adjoint approach where the procedure outlined in the DWR614

method is still largely followed but the primal problem considered here is already in a discretized weak615

form (i.e., Eq. (3.12) or (3.34)). For HDG methods, the discrete adjoint approach had been studied and616

implemented in [8, 40, 107, 106, 9, 52, 82]. To proceed with the discussion, some additional notations are617

needed. Let J (·) be a (Gâteaux or Fréchet) di↵erentiable output functional and, for a clearer exposition, we618

further decompose it into two di↵erential functionals J (·) = J adjoint (·) +J boundary (·) where J adjoint (·) is619

a user-defined functional and J boundary (·) is a boundary-associated functional. Examples of a user-defined620

functional could be a drag coe�cient, a lift coe�cient, an energy across the entire domain, and so on. On the621

other hand, the boundary-associated functional is also defined by a user and closely related to the boundary622

conditions of the adjoint problem (sucha as adjoint hp-HDG formulations in this paper). A more detailed623

discussion about the boundary-associated functional is addressed in Appendix A. We shall use subscript H624

to denote the approximation computed at a coarse discretization while h is for a finer level. We then define625

the operator Ih
H

as the injection from level H to level h and this operation can be done by interpolation. In626

addition, the interpolated quantity is denoted with a subscript H along with a superscript h. For example627

zh

H
= Ih

H
zH is obtained by interpolating the approximate solution zH that is solved at the coarser level628

(i.e., a lower degree of approximation or a coarser mesh or the combination.) to the finer level. Moreover,629

we define the lumped variables Zh and Wh as630

Zh :=

(
(zh, bzh) for one-field Friedrichs’ system,

(�h,uh, buh) for two-field Friedrichs’ system,
(4.2a)631

Wh :=

(
(wh, bwh) for one-field Friedrichs’ system,

(sh,vh, bvh) for two-field Friedrichs’ system,
(4.2b)632

633

where (zh, bzh) , (wh, bwh) 2 W
h
⇥ cW

h
and (�h,uh, buh) , (sh,vh, bvh) 2 ⌃

h
⇥ U

h
⇥ bU

h
. Furthermore, we634

introduce the bilinear form Rone
h

(·, ·) to denote the residual of the hp-HDG formulation for the one-field635

Friedrichs’ system (3.12). It is the sum of other bilinear forms Rz
h,K

(·, ·) and Rbz
h,e

(·, ·):636

(4.3) Rone
h (Zh,Wh) :=

X

K2Th

Rz
h,K (Zh,Wh) +

X

e2Eh

Rbz
h,e (Zh,Wh) ,637

where638

Rz
h,K (Zh,Wh) := �

dX

k=1

(Akzh, @kwh)K + (Gzh,wh)K + hAzh + T (zh � bzh) ,whi@K � (f ,wh)K ,(4.4a)639

Rbz
h,e (Zh,Wh) := hJAzh + T (zh � bzh)K, bwhie +

⌧
1
2
(A�M) g, bwh

�

e\E@

h

�
⌧
1
2
(A+M) bzh, bwh

�

e\E@

h

.(4.4b)640
641

On the other hand, the residual Rtwo
h

(·, ·) of the hp-HDG formulation for the two-field Friedrichs’ system is642

the bilinear form composed by three bilinear forms R�
h,K

(·, ·), Ru
h,K

(·, ·), and Rbu
h,e

(·, ·):643

(4.5) Rtwo
h (Zh,Wh) :=

X

K2Th

R�
h,K (Zh,Wh) +

X

K2Th

Ru
h,K (Zh,Wh) +

X

e2Eh

Rbu
h,e (Zh,Wh) ,644
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where645

R�
h,K (Zh,Wh) :=�

dX

k=1

(Bkuh, @ksh)K + (G���h +G�uuh, sh)K + hBbuh, shi@K � (f�, sh)K ,(4.6a)646

Ru
h,K (Zh,Wh) :=�

dX

k=1

⇣
BT

k �h + Ckuh, @kvh

⌘

K

+ (Gu��h +Guuuh,vh)K

+
D
BT�h + Cuh + T (uh � buh) ,vh

E

@K

� (fu,vh)K ,

(4.6b)647

Rbu
h,e (Zh,Wh) :=

D
JBT�h + Cuh + T (uh � buh)K, bvh

E

e\@⌦D

� h(%Imu + C) buh, bvhie\(@⌦N[@⌦R)

+ hCbuh, bvhie\@⌦D
.

(4.6c)648

649

At this point, we can further define a more general residual based on (4.3) and (4.5) as:650

(4.7) Rh (Zh,Wh) :=

(
Rone

h
(Zh,Wh) if only identified as a one-field Friedrichs’ system,

Rtwo
h

(Zh,Wh) if identified as a two-field Friedrichs’ system.
651

Obviously, the residual is always zero if it is evaluated by using the correct solution while it is generally652

non-zero when using the interpolated solution. That is, Rh (Zh,Wh) = 0 but in general Rh

�
Z h

H
,Wh

�
6= 0.653

Finally, the error of the output functional J (·) can now be approximated as [40, 9, 105]:654

(4.8) J (ZH)� J (Zh) ⇡ �Rh

�
Z h

H
,Wh

�
.655

Here, Wh is also referred to as an adjoint variable and serves as a detection of the sensitivity of output656

functional error induced by a less accurate solution. Further, it has to satisfy the adjoint hp-HDG formulation657

that is either (a.1) or (a.4) with the given right-hand sides depending on an output functional J (·) and on658

an interpolated solution Z h

H
. The derivation of the adjoint hp-HDG formulation and well-posedness analysis659

are discussed in Appendix A.660

From (4.8), it can be seen that two di↵erent approximation spaces (at the level h and at the level H)661

are required. In this work, we construct the finer space by enriching the degree of approximation without662

refining the mesh. That is, the meshes used in solving the primal and adjoint hp-HDG formulations are663

the same (i.e., Th = TH) but the finite element spaces on each element for the primal and adjoint hp-664

HDG formulations di↵er by one degree. The benefits are twofold: reasonable computational cost and easy665

implementation. Toward the adaptation, we need to localize the error approximation presented in (4.8). By666

defining the localized residual Rh,K as:667

(4.9) Rh,K (Zh,Wh) :=

(
Rz

h,K
(Zh,Wh) for one-field Friedrichs’ system,

R�
h,K

(Zh,Wh) +Ru
h,K

(Zh,Wh) for two-field Friedrichs’ system,
668

and following the works in [40, 105, 9], the local error indicator based on the adjoint approach can be defined669

as:670

(4.10) E adjoint
H,K

�
Z h

H
,Wh

�
:=
��Rh,K

�
Z h

H
,Wh

��� .671

It should be emphasized that the error indicator (4.10) does not include the contribution from the trace672

unknowns (i.e., Rbz
h,e

and Rbu
h,e

are neglected) owing to its insignificant influence [40, 105].673

remark 3. We would also like to point out that the output error stated in (4.8) can directly be computed674

by evaluating the di↵erence between J (ZH) and J (Zh), where we have to solve the hp-HDG formulation675

(3.12) or (3.34) at two di↵erent levels of approximation. However, in this work, we stick to the approximation676

given by the DWR method (i.e., evaluation of the right-hand side of (4.8)). This method is more general in677

the sense that the adjoint problem is always linear and is the only problem that needs to be solved at the fine678

level of approximation. It holds true regardless of whether the primal problem is linear or not.679
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4.3. An adaptation algorithm. The algorithm used in this work is the simplified version of the680

strategy proposed in [43], which provides all necessary keys for carrying out hp-adaption. Combining the681

previous discussion on error indicators, we denote a general local and global error indicator as:682

EH,K := E Doleji
H,K

(q
H
) or E adjoint

H,K

⇣
Z h

H ,Wh

⌘
,(4.11a)683

EH :=

0

@
X

K2Th

E 2
H,K

1

A

1
2

.(4.11b)684

685

To drive full hp-adapatation, a method to decide how to construct a new spatial discretization is also686

necessary. In this work, it is desirable that the spatial discretization can be constructed according to the687

smoothness of the solution. To this end, a local regularity indicator is needed and the one proposed in [43]688

is deployed in this work. By denoting |K| as the area of an element, the indicator reads:689

(4.12) GK (q
h
) :=

P
F⇢@K

P
e✓F\@⌦ hJqh

K, Jq
h
Ki

e

|K|h2pK�3
K

,690

where q
h
:= zh and q

h
:= uh are one-field and two-field Friedrichs’ system, respectively. Once error and691

regularity indicators are computed, one or a couple of the following operations will be performed:692

693

• h-refinement8: to split a given mother element K into four child elements K 0 by connecting centers694

of its edges.695

• p-refinement: to increase the degree of polynomial approximation for a given element K, i.e., we set696

pK = pK + 1.697

• p-coarsening: to decrease the degree of polynomial approximation for a given element K, i.e., we set698

pK = pK � 1.699

In the original strategy presented in [43], there are two additional operations called h-coarsening and hp-700

substitution. They merge elements that have arisen in a previous adaptation cycle along with p-refinement,701

p-coarsening, or nothing. However, according to our numerical experiments, this action only slightly increased702

e�ciency, and sometimes the performance seems to be degrading. For this reason, we remove these operations703

from our adaptation strategy. Given the user-defined tolerance 0  !  1 and the maximum cycle number,704

the hp-adaption procedure can now be performed by following the strategy outlined in Algorithm 4.1.705

5. Numerical experiments. In this section, we are going to present several numerical experiments706

for di↵erent kinds of PDEs. The numerical solution is obtained by solving hp-HDG formulations (3.12) or707

(3.34) along with the adaptivity strategy discussed in Section 4. The main goal is to demonstrate the validity708

of the unified hp formulations and examine the performance of our proposed approaches. We point out that709

the output functional employed in the adjoint approach is given as710

(5.1) J (q
h
) :=

"
X

K2Th

⇣
E Doleji
h,K

(q
h
)
⌘2
# 1

2

, where q
h
:=

(
zh, for one-field Friedrichs’ system

uh, for two-field Friedrichs’ system
,711

so that we can fairly compare the computational performance of Doleji’s approach and the adjoint approach,712

as the same quantity is minimized through the hp-adaptation process. From now on let us denote by713

�Jq
h
(·; �q

h
) the directional derivative of a functional J (·) with respect to some variable q

h
in the direction714

�q
h
. As a result, the directional derivative of the output functional given in (5.1) reads:715

(5.2)

�Jq
h
(q

h
; �q

h
) = J (q

h
)�1

X

K2Th

0

@
X

F⇢@K\@⌦D

X

e⇢F

1

hF

hJq
h
K, �q

h
i
e
+

X

F⇢@K\@⌦D

1

hF

hq
h
� gD, �q

h
i
e

1

A ,716

8We also enforce the number of hanging nodes resulting from local h-refinement to be always one in each interface within
a mesh.
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Algorithm 4.1 An hp-adaptation algorithm

1: EH,K  1 8K 2 TH and EH  0 . The initialization for starting the adaptation cycle(s).
2: while maxK2TH

EH,K � !EH or cycle number  max. cycle number do
3: Solve the hp-HDG formulation stated in (3.12) or (3.34) on a coarse (current) level.
4: (Solve the adjoint hp-HDG formulation stated in (a.1) or (a.4)
5: on a fine (by enriching degree of approximation) level if the adjoint approach is applied).
6: Compute and update local and global error indicator presented in (4.11).
7: for K 2 TH do
8: if EH,K � !maxK2TH

EH,K then
9: if GK (q

H
)  h�2

K
then

10: Tag the element as p-refinement
11: else if h�2

K
< GK (q

H
)  h�4

K
then

12: Tag the element as h-refinement
13: else
14: Tag the element as h-refinement along with p-coarsening
15: end if
16: end if
17: end for
18: Perform adaption and construct the new corresponding finite element space
19: end while

where717

�q
h
:=

(
�zh 2W

h
, for one-field Friedrichs’ system

�uh 2 U
h
, for two-field Friedrichs’ system

.718

The directional derivative �Jq
h
(q

h
; �q

h
) will appear in the right-hand side of the adjoint hp-HDG formulation719

(see (a.1) and (a.4)), and hence needs to be computed when solving the adjoint system. Instead of exactly720

computing �Jq
h
(q

h
; �q

h
), an approximation �Jq

h

�
Ih
H
q
H
; �q

h

�
is applied. We would like to point out that721

the boundary-associated functional J boundary (·) is set to zero in this paper. That is, we have homogeneous722

boundary conditions for the adjoint hp-HDG formulation. To measure the computational performance, we723

plot the convergence rate of the error in the L2-norm versus the number of degrees of freedoms (DOFs)724

resulting from the statically condensed hp-HDG formulations. It should be noted that the required DOFs725

for the adjoint approach include DOFs needed by hp-HDG formulations and DOFs needed by the adjoint hp-726

HDG formulation since we additionally have to solve for the adjoint solution to evaluate the error indicator727

(4.10).728

The PDEs under consideration in the experiments can be classified as elliptic, hyperbolic, and mixed729

equations. In the following subsections, we will briefly discuss each type of PDEs and justify the well-730

posedness of their hp-HDG formulation by using the results in Section 3. We use subscript h to denote the731

numerical solution and this should not be confused with the notations used in Section 4 where h and H refer732

to di↵erent refinement levels.733

5.1. Elliptic PDEs. For elliptic PDEs, we consider:734

(E.1) Poisson’s problem (isotropic di↵usion) with a corner singularity,735

(E.2) anisotropic di↵usion problem with discontinuous Dirichlet boundary condition, and736

(E.3) heterogeneous anisotropic di↵usion problem with discontinuous field b.737

We analyze these problems by using the two-field Friedrichs’ system with partial coercivity. The problem738

reads: find a function u : ⌦! R such that:739

�r · (bru) = f, in ⌦,

u = gu, on @⌦D,

bru · n+ �u = gu, on @⌦N [ @⌦R where � = 0 when on the @⌦N ,

(5.3)740
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where the boundary data gu : @⌦ 7! R is in L2(@⌦) and is defined as741

(5.4) gu =

8
><

>:

gD on @⌦D,

gN on @⌦N ,

gR on @⌦R.

742

Here, f 2 L2(⌦) is a source term; and b 2 [L1(⌦)]d,d is a symmetric positive-definite di↵usivity coe�cient743

with its lowest eigenvalue uniformly bounded away from zero. To be able to interpret the numerical result744

later, we briefly review some physical aspects of the PDE stated in (5.3). At each location within ⌦, we745

have the principal direction of anisotropy denoted by X and the direction of weak di↵usion denoted by Y .746

As shown in Figure 3 along with coordinate of physical domain (x1, x2), it is possible to align x1 to X by747

rotating the system with the angle ✓m so that the equation (5.3) becomes:748

X

@2u

@X2
+ Y

@2u

@Y 2
= f in ⌦,749

where X and Y are referred to the di↵usivity in X-direction and in Y -direction, respectively. Since X750

represents the principal direction of anisotropy, we always have X � Y . At this point, we can define the751

anisotropy ratio A := X/Y which indicates the strength of the anisotropy. The case A = 1 corresponds752

to isotropic di↵usion (i.e., a Laplace’s or Poisson’s equation). Now the di↵usivity coe�cient b can be753

expressed as:754

b =


X cos2(✓m) + Y sin2(✓m) (X � Y ) sin(✓m) cos(✓m)
(X � Y ) sin(✓m) cos(✓m) X sin2(✓m) + Y cos2(✓m)

�
,755

or756

b =


A cos2(✓m) + sin2(✓m) (A � 1) sin(✓m) cos(✓m)
(A � 1) sin(✓m) cos(✓m) A sin2(✓m) + cos2(✓m)

�
.757

Fig. 3: The skewed domain of anisotropic field with X parallel to the anisotropic principal direction.

To cast the problems into the Friedrichs’ framework, we rewrite the original PDE stated in (5.3) into758

the first order form by introducing the auxiliary variable � := �bru:759

ru+ b�1� = 0, in ⌦,(5.5a)760

r · � = f, in ⌦,(5.5b)761

u = gu, on @⌦D,

�� · n+ �u = gu, on @⌦N [ @⌦R where � = 0 when on the @⌦N .
(5.5c)762

763

Thus, the size of the system is given as: m = d + 1, m� = d, and mu = 1. The corresponding two-field764

Friedrichs’ system reads:765

(5.6) G =


b�1 0d⇥1

01⇥d 0

�
, Ak =


0d⇥d ek
eT
k

0

�
,766
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where ek stands for the k-th canonical basis in Rm
�

and 0 with subscript indicates the zero matrix with its767

dimension specified by the subscipts. To enforce boundary conditions properly, the boundary operator M768

defined in (3.30) can be specified as:769

(5.7)

(
↵ = +1, Muu = 2%Imu , on @⌦D where % := 1

2 ,

↵ = �1, Muu = 2%Imu , on @⌦N [ @⌦R where % := �,
770

where we require � = 0 on @⌦N and � > 0 on @⌦R in order for the conditions in (2.3b) and (2.3c) to hold.771

Lemma 5.1. The hp-HDG formulation for the PDE stated in (5.5) is well-posed both locally and globally.772

Proof. The assumptions (A.1)-(A.3), (A4.a)-(A4.b) and (A.5)-(A.6) is obviously satisfied by substituting773

(5.6) into each conditions.774

On the other hand, the numerical flux falls into the category (F.2) where we have:775

(5.8) |A| =
"

nnT

knk2
0d⇥1

01⇥d knk22

#
776

in which k·k2 is a standard Euclidean norm. Thus, the stabilization parameter reads T = knk22 = 1. It is777

evident that:778

• 1
2C + T = T = 1 > 0, and779

•
T

d

k=1 Range (ek) = {0} and N (ek) = {0} for 8k = 1, . . . , d.780

Hence, by Lemma 3.9 and Theorem 3.10 we can conclude that the hp-HDG formulation for the elliptic PDE781

(5.5) is well-posed locally and globally.782

5.2. Hyperbolic PDE. We consider the following hyperbolic PDE:783

(HP.1) steady-state linear advection with variable speed and discontinuous inflow condition.784

The PDE for steady-state linear advection reads: find a function u : ⌦! R such that:785

r · (�u) = f, in ⌦,

u = gD, on @⌦�(5.9)786

with � 2 [L1 (⌦)]d, r · � 2 L1 (⌦), f 2 L2 (⌦) and gD 2 L2 (@⌦�). Here, we adopt the convention787

@⌦� = {x 2 @⌦ : � · n < 0} to denote the inflow boundaries, and they are essentially Dirichlet boundaries788

in this problem set. It is well-known that singularity (or discontinuity) can be propagated by linear advection.789

Hence, we can expect that there is a shock within the domain ⌦ if a discontinuity is specified at the inflow790

boundary @⌦�. The problem can be analyzed by the one-field Friedrichs’ system. The size of the system is791

m = 1 and the corresponding system reads:792

(5.10) G = 0, Ak = �k for k = 1, · · · , d.793

It is clear that that assumptions (A.1)-(A.3) are valid. To have coercivity (A.4), we further assume that794

(5.11) ess inf
⌦

1

2
r · � � 0.795

Finally, we also require the following conditions to obtain a well-posed HDG scheme:796

� · n 6= 0 on e, 8e 2 Eh, J� · nK = 0 on @K, 8K 2 Th,(5.12)797798

where we assume � ·n is always continuous across element edges and does not vanish at edges (or mortars).799

Note that the condition for continuity can be relaxed and the resulting numerical flux has the weight-average800

type of stabilization parameter [20].801

Lemma 5.2. The hp-HDG formulation for the PDE stated in (5.9) is well-posed both locally and globally802

if the assumptions (5.11) and (5.12) hold.803
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Proof. Consider the following transformation:804

(5.13) u = �ũ, where � := e��(x�x0)·�,805

in which � 2 R, x0 2 ⌦, and ũ : ⌦! R. Substituting (5.13) back into (5.9) gives us:806

r ·
⇣
�̃ũ
⌘
= f, in ⌦,

ũ = g̃D, on @⌦�,
(5.14)807

where �̃ = �� and g̃D = ��1gD. Note that � > 0 and hence its inverse always exists. The PDE (5.14) can808

also be identified as a one-field Friedrichs’ system where:809

(5.15) G = 0, Ak = �̃
k
.810

It is obvious that (A.1)-(A.3) are valid and811

(5.16) G+GT +
dX

k=1

@kAk =
dX

k=1

@k�̃k
= �r·� � k�k22 �� > 0,812

where the last inequality will hold by the assumption (5.11) and by taking � < 0. Therefore, condition (A.4)813

is also satisfied. Finally, N (A) = N
⇣
�̃ · n

⌘
= {0} along all surfaces of the elements since the continuity of814

� · n is assumed and the mapping � is di↵eomorphism. With the aid of Lemma 3.3 and Theorem 3.4, we815

can conclude that the hp-HDG formulation for (5.14) is well-posed both locally and globally. Given that the816

mapping � is bijective, this conclusion is also valid for (5.9).817

remark 4. It is possible to extend the Friedrichs’ framework discussed in this paper to time-dependent818

problems. One way to achieve this is to treat one of the spatial variables as the time. For example, the819

model (5.9) is readily to be rewritten as one-dimensional unsteady linear advection by changing x1 as t and820

specifying � as (1, a) where the scalar a is advection velocity. However, this way may only be straightforward821

for linear scalar problems. In particular, it is di�cult for PDEs with vector states (i.e., the first-order form822

of the unsteady heat equation).823

The more general and easier extension is to employ Rothe’s method [95]. By applying Rothe’s method,824

the time derivative term becomes a reaction term and the rest of the terms can still easily be written in825

the general form outlined in Eq. (2.1). In addition, due to the positiveness of the time variable, the newly826

introduced reaction term induced by the time derivative term would not pose a negative e↵ect on the (partial827

or full) coercivity condition ((A.4) or (A4.a)).828

5.3. Mixed PDE. For mixed PDE, we consider:829

(HB.1) steady-state convection-di↵usion problem with discontinuous inflow condition,830

r · (�u� bru) = f, in ⌦,
(

u = gu, on @⌦+,

(�u� bru) · n = gu, on @⌦� [ @⌦0,

(5.17)831

where the boundary data gu : @⌦ 7! R is in L2(@⌦) and is defined as832

(5.18) gu =

(
gD on @⌦+,

gN,R on @⌦0 [ @⌦�.
833

Here, � 2 [L1 (⌦)]d, r · � 2 L1 (⌦), f 2 L2 (⌦), and b is a symmetric positive definite matrix-valued834

defined on ⌦ with lowest eigenvalue uniformly bounded away from zero. In addition, @⌦� [ @⌦+ [ @⌦0 =835

@⌦ where @⌦� = {x 2 @⌦ : � · n < 0} is an inflow boundary; @⌦+ = {x 2 @⌦ : � · n > 0} is an outflow836

boundary; and @⌦0 = {x 2 @⌦ : � · n = 0} is a zero-flow boundary. It is evident that @⌦+ = @⌦D and837

@⌦0 [ @⌦� = @⌦N [ @⌦R. The problem can be analyzed by a two-field Friedrichs’ system with partial838
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coercivity. The size of the system is given as m = d + 1, m� = d, and mu = 1. The two-field Friedrichs’839

system for this problem reads:840

(5.19) G =


b�1 0d⇥1

01⇥d 0

�
and Ak =


0d⇥d ek
eT
k

�k

�
.841

We further assume that:842

(5.20) ess inf
⌦

✓
1

2
r · �

◆
� 0,843

to gain partial coercivity. The boundary conditions can be enforced by specifying the boundary operator M844

as845

(5.21)

(
↵ = +1, Muu = 2%Imu + � · n, on @⌦D,

↵ = �1, Muu = 2%Imu + � · n, on @⌦N [ @⌦R.
846

In addition, we set % = 1
2 on @⌦D, % = 0 on @⌦N and % = �� · n on @⌦R. Thus, conditions (2.3b) and847

(2.3c) are satisfied. Finally, the following condition is also assumed:848

� · n 6= 0 on e, 8e 2 Eh, J� · nK = 0 on @K, 8K 2 Th.(5.22)849850

That is, we assume � · n is always continuous across element edges and does not vanish at edges (or851

mortars). As mentioned in the previous example, this condition can be relaxed by modifying the derivation852

of the upwind flux.853

Lemma 5.3. The hp-HDG formulation for the PDE stated in (5.17) is well-posed both locally and globally854

if the assumptions (5.20) and (5.22) hold.855

Proof. Assumptions (A.1)-(A.3), (A4.b), and (A.5)-(A.6) hold true and can be easily verified. In addi-856

tion, (A4.a) also holds if assumption (5.20) does. On the other hand, the eigendecomposition of A reads857

(5.23) |A| = 1q
|� · n|2 + 4


2nnT (� · n)n

(� · n)nT |� · n|2 + 2

�
.858

Thus, by setting � = 2
�·n and  = �·np

|�·n|2+4
, hypothesis (F.1) holds since � · n 6= 0 across all elements.859

Since the stabilization parameter T = 1
2

✓q
|� · n|2 + 4� � · n

◆
we have860

• 1
2C + T = 1

2

q
|� · n|2 + 4 > 0, and861

•
T

d

k=1 Range (ek) = {0} and N (ek) = {0} for 8k = 1, . . . , d.862

863

By Lemma 3.9 and Theorem 3.10, we conclude that the hp-HDG formulation for (5.22) is well-posed both864

locally and globally.865

5.4. Numerical settings and results. For the numerical experiments, we use the square domain866

⌦ = (0, 1)⇥ (0, 1) for (E.1)-(E.2),(HP.1), and (HB.1), and the rectangular domain ⌦ = (0, 8.4)⇥ (0, 24) for867

(E.3). In addition, they are initially solved on the simple meshes as shown in Figure 4 with pK = 2 for868

8K 2 Th at the 0-th cycle of adaptation.869
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(a) Initial mesh 1 (b) Initial mesh 2

Fig. 4: (a) Initial mesh for (E.1)-(E.2),(HP.1), and (HB.1), and (b) initial mesh used for (E.3).

The solver developed in this work is built upon a MATLAB code discussed in [64]. For the numerical870

evaluation of integrals, cubature rule is used over elements and Gauss quadrature over the surfaces of871

elements. The adaptation is performed using Algorithm 4.1 with di↵erent error indicators stated in (4.11)872

for all problems. Convergence histories of L2-error norm are also presented if the exact solutions are available.873

(E.1) Poisson’s problem with a corner singularity. Consider Poisson’s problem stated in (5.3)874

where the di↵usivity coe�cient b is set to be the identity matrix, the forcing term f is set to zero, and the875

exact solution is given below:876

(5.24) u (x1, x2) = 2
�
x2
1 + x2

2

��3/4
x1x2 (1� x1) (1� x2) .877

Dirichlet boundary condition is applied to all the boundaries such that the solution can satisfy (5.24). It878

can be shown (see [6]) that the solution presented in (5.24) is singular at the origin (x1, x2) = (0, 0), but is879

regular in the rest of the domain ⌦. The problem is also studied in [43, 44].880

881

We take ! = 0.01 and Figure 5 shows the corresponding results at the adaptation cycle where the882

L2-norm of u � uh have an order of magnitude O(10�4) for both approaches. The pK map shown in883

Figure 5 matches our expectations, that is, aggressive h-refinement takes place near the singularity while884

intensive p-refinement occurs in the other part of the domain. The pK maps produced by the two di↵erent885

approaches are similar. Around the singularity, numerous small elements with low-order approximation886

are generated by the adaptation procedure, while away from it, a few large elements are generated with887

high-order approximation. However, overall, higher degrees of approximation are generated in the adjoint888

approach as opposed to Doleji’s approach.889

Despite the presence of intense oscillation near the singularity, hp-adaptation forces the oscillation zone890

to shrink. As demonstrated in Figure 5, the numerically polluted area is significantly reduced to a small891

region at the final cycle of the adaptation. This improvement can also be seen in Figure 6 which shows892

a convergence study of uh with di↵erent tolerance values ! = 0.01 and ! = 0.1. For the lower tolerance893

! = 0.01, both approaches show good convergence behavior, but Doleji’s method requires fewer degrees of894

freedom than the adjoint method at a given error level. For the higher tolerance ! = 0.1, however, the895

convergence rate for Doleji’s approach is flattened out near 103 degrees of freedom, whereas the adjoint896

counterpart still converges to the true solution.897

(E.2) Anisotropic di↵usion problem with the discontinuous Dirichlet boundary condition.898

In this example, we consider a strongly anisotropic di↵usion problem stated in (5.3) where the di↵usivity899

coe�cient b is set with ✓m = ⇡/4 and A = 1000, and the forcing term f is set to zero. In addition, the900

following piecewise constant Dirichlet boundary data is applied to (5.5c):901

(5.25) gD =

(
1 when x1 = 1 or x2 = 0,

0 when x1 = 0 or x2 = 1.
902

This manuscript is for review purposes only.



26 JAU-UEI CHEN, SHINHOO KANG, TAN BUI-THANH AND JOHN N. SHADID

Doleji’s approach Adjoint approach

u
h
(S
u
rf
ac
e)

u
h
(C

on
to
u
r)

p K
m
ap

|u
�
u
h
|

Fig. 5: Numerical results at the adaptation cycle where L2-norm of u�uh is about O(10�4) for the isotropic
di↵usion problem modeled by the elliptic problem (E.1) with the exact solution stated in (5.24). The
tolerance is chosen as ! = 0.01. The left column uses Doleji’s approach (4.1) while the right column uses the
adjoint approach (4.10). Surface and contour plots of the numerical solution are presented in the first two
rows, the mesh configuration along with the arrangement of the degree of approximation pK is presented in
the third row, and the absolute error is presented in the fourth row.

The discontinuities at the corners (0, 0) and (1, 1) induce sharp gradients, making the problem di�cult to903

solve. This problem is also investigated in [103, 80]. A semi-analytic solution for this test problem can be904

found by a sequence of geometric transformations which are numerically computed using MATLAB Schwarz-905

Christo↵el toolbox [45]. Given that the accuracy of the mapping is su�cient, we treat this semi-analytic906

solution as “exact” to benchmark against our hp-HDG solution.907
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(a) Tolerance ! = 0.1 (b) Tolerance ! = 0.01

Fig. 6: Convergence histories of uh measured in L2-norm. The results are obtained by numerically solving
the isotropic di↵usion problem modeled by the elliptic problem (E.1) (with the exact solution in (5.24)) with
di↵erent tolerance (a) ! = 0.1 and (b) ! = 0.01. In each plot, the results obtained by Doleji’s and adjoint
approaches are presented.

908

With the tolerance ! = 0.01, we plot numerical results of both approaches in Figure 7 at the adaptation909

cycle where L2-norm of u � uh are about O(10�3). Due to the strong anisotropic feature, the solution910

behaves like convection where the amount of the flux transported in the specific direction is more than in911

the other direction. In this example, the dominant direction is 45 degrees from the x1-axis. As a result,912

“discontinuity”-like behavior occurs within the domain along the diagonal and becomes more substantial913

around the corners due to the presence of discontinuous Dirichlet boundary data. As can be seen in Figure914

7, Gibbs phenomenon [60] occurs around the corners (0, 0) and (1, 1). Similar to the numerical result shown915

for (E.1), the numerically polluted area can be largely reduced though the oscillation cannot be completely916

removed via the adaptation process. This observation is also consistent with the convergence histories of uh917

presented in Figure 8. On the other hand, Figure 8 demonstrates that a small tolerance value is required in918

this testing case to achieve acceptable convergence rates. Moreover, increasing the anisotropic ratio A will919

make the problem more challenging to solve because the profile of the uh will tend to be even steeper. A920

shock-like front may form, which causes more h-refinement and hence more DOFs. A closer look at Figure921

8 reveals that the adaptation process for Doleji’s approach stops first due to the satisfaction of criteria922

maxK2Th
Eh,K � !Eh while the adjoint approach proceeds further and stops owing to the maximum number923

of iterations. This observation suggests that more robust stopping criteria may be needed. However, the924

e↵ort in designing robust stopping criteria may not be trivial and is beyond the scope of this paper. In925

summary, both approaches are comparable in this testing case using the adaptation algorithm outlined in926

Algorithm 4.1.927

(E.3) Heterogeneous anisotropic di↵usion problem with discontinuous field b. Here we con-928

sider the problem stated in (5.3), but with a piecewise constant di↵usivity coe�cient b and Neumann/Robin929

mixed type boundary conditions930

(5.26) bru · n+ �u = g, on @⌦N [ @⌦R,931

where @⌦ = @⌦N [ @⌦R. Given that b is now spatially varying the problem is not only anisotropic but also932

heterogeneous. The PDE can model the heat conduction in non-homogeneous materials, where u describes933

the temperature field. For example, the so-called “battery problem” [41], is of this type and is examined934

here. The domain is then modeled as a battery composed of five di↵erent materials which are indexed as935

numbers 1-5 in Table 1. The values of b for di↵erent materials and the corresponding forcing term f are936
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summarized in Table 2. The boundary data is given in Table 3.937

938

Figure 9 shows the numerical results of the two approaches at the final cycle of adaptation with ! = 0.01.939

This problem is challenging in that the coe�cient of the PDE is discontinuous across the entire domain.940

Without aligning the mesh skeleton with these discontinuities, a serious Gibb’s phenomenon is easily induced.941

If we simply employ an isotropic h-refinement, then the numerically polluted area may still spread to some942

extent. One remedy for addressing this issue is to use anisotropic h-refinement [42, 80, 25, 9, 12]. However,943

such refinement requires a more delicate error estimator/indicator and needs to be equipped with a proper944

algorithm for generating a mesh. This task is left for future work.945

Material Region
1 [0, 8.4]⇥ [0, 0.8), (8, 8.4]⇥ [0.8, 23.2], [0, 8.4]⇥ (23.2, 24]
2 [0, 6.1)⇥ [1.6, 3.6), [0, 6.1)⇥ [18.8, 21.2)
3 [0, 6.1)⇥ [3.6, 18.8)
4 [6.1, 6.5)⇥ [0.8, 21.2)
5 [0, 6.1)⇥ [0.8, 1.6), (6.5, 8)⇥ [0.8, 21.2), [0, 8)⇥ [21.2, 23.2)

Table 1: The geometry of materials of the battery problem modeled with (E.3).

Material X Y A ✓m f
1 25.0 25.0 1.00 0.0 0.0
2 7.0 0.8 8.75 0.0 0.0
3 5.0 0.00001 5.00⇥ 105 0.0 1.0
4 0.2 0.2 1.00 0.0 1.0
5 0.05 0.05 1.00 0.0 0.0

Table 2: Di↵usivity coe�cient b and forcing term f
for the battery problem.

BC data � g
Left 0.0 0.0
Up 1.0 3.0

Right 2.0 2.0
Bottom 3.0 1.0

Table 3: Boundary data used in (5.5c) for the
battery problem.

(HP.1) Steady-state linear advection with variable speed and discontinuous inflow condi-946

tion. In this experiment, we are going to solve the linear advection problem described in (5.9) along with947

the advection velocity � = (1 + sin (⇡x2), 2) and the inflow data948

(5.27) gD =

8
><

>:

1, for x1 = 0, 0  x2  1,

sin6(2⇡x1), for 0  x1  0.5, x2 = 0,

0, for 0.5  x1  1, x2 = 0,

949

where there is a discontinuity occurring right at the origin. The problem is also studied in [20, 84] and can950

be solved exactly by using the method of characteristics.951

952

In Figure 10, we present the numerical results of both methods at the adaptation cycle where L2-norm953

of u�uh is O(10�1). Due to the discontinuous inflow boundary data and the nature of hyperbolic PDEs, we954

have a shock formed within the domain ⌦. It is very challenging to remove the oscillation induced by Gibbs’955

phenomena unless all the discontinuities are well aligned with the skeleton of the mesh and the first order956

of approximation is used near the discontinuities. Given that we only consider isotropic h-refinement here,957

it is not possible to meet this condition. Nonetheless, we can still narrow down the region of shock-induced958

oscillation by the hp-adaptation process. As we expect, the aggressive h-refinement is performed around the959

shock, but less in near-outflow region even with strong discontinuities.960

Figure 11 presents the convergence of uh using both approaches along with two di↵erent tolerance values.961

It can be observed that the convergence rate can only be improved (not zero anymore) if the tolerance is set962

to be small enough. In addition, the two approaches are comparable in this example as well.963
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(HB.1) Steady-state convection-di↵usion problem with discontinuous inflow condition. In964

this example, we focus on the steady-state convection-di↵usion equation (5.17) and especially examine the965

problem first proposed by Eriksson and Johnson in [48]. This problem is also investigated in [26] using a966

discontinuous Petrov-Galerkin method. The di↵usivity matrix is set to be b := "I2 where I2 is the 2 ⇥ 2967

identity matrix, and the velocity field is stated as � := (0, 1). The boundaries are given as follows:968

@⌦� = {(x1, x2) : x1 = 0, 0  x2  1} ,969

@⌦+ = {(x1, x2) : x1 = 1, 0  x2  1} ,970

@⌦0 = {(x1, x2) : 0 < x1 < 1, x2 = 0 or 1} .971972

The boundary data in (5.18) read:973

gD = 0, on @⌦+

gN,R =

(
(�u0 + �0) · n on @⌦�,

0 on @⌦0,

(5.28)974

and u0 := u(0, x2), �0 := �(0, x2). Further, the function u0 is set to be a discontinuous function :975

(5.29) u0(x2) =

(
(x2 � 1)2, x2 > 0.5,

�x2
2, x2  0.5.

976

The Eriksson-Johnson problem can be solved by the separation of variables and the solution is:977

(5.30) u(x1, x2) = C0 +
1X

i=1

Ci

es2(x1�1) � es1(x1�1)

e�s2 � e�s1
cos (i⇡x2),978

where979

Ci =

Z 1

0
2u0 cos (i⇡x2) dx2,980

s1,2 =
1±
p
1 + 4"�i

2"
,981

�i = "i2⇡2.982983

In this testing case, we actually have @⌦� = @⌦R, @⌦+ = @⌦D, and @⌦0 = @⌦N . Note that we do not have984

a closed form of the exact solution. Therefore, for a convergence study, we approximate u0 using the first985

20 terms of the series in (5.30). Similarly, �0 can be approximated in the same way. The problem is tricky986

because there is not only discontinuous inflow data but also a boundary layer developed around the outflow987

boundary. In addition, the smaller the di↵usivity coe�cient " is, the thinner the boundary layer which can988

only be well-resolved using a mesh with a proper resolution.989

990

Figure 12 shows the numerical results of the two approaches with " = 10�3 and ! = 0.05 at the991

adaptation cycle where the L2-norm of u�uh is O(10�3). As discussed previously, there is a boundary layer992

(sharp gradient in solution u) around the outflow boundary x1 = 1. Furthermore, the resulting pK maps for993

the two approaches are significantly di↵erent. Doleji’s approach does not capture the sharp gradient induced994

by discontinuous Dirichlet boundary data at the inflow boundary @⌦� and the smooth region near zero-flow995

boundaries @⌦0, but approximates the boundary layer near the outflow boundary @⌦+ well. Unless an even996

smaller tolerance value is provided, the value of local error indicator E Doleji
h,K

(uh) surrounding the boundary997

layer is much higher than that of the rest of the domain, resulting in much less refinement in the area except998

for the region around @⌦+. On the other hand, the adjoint approach does capture almost every feature of999

the solution u. However, the local h-refinement is still not su�cient at the outflow boundary @⌦+, and the1000

boundary layer is under-resolved due to flattened convergence rate of the adjoint approach in Figure 13.1001

Figure 13 shows the convergence histories of uh together with three di↵erent di↵usivities. To capture1002

the thinner boundary layer caused by the smaller di↵usivity, we employ a smaller tolerance value. As can1003

be seen, Doleji’s approach is slightly better than the adjoint approach in terms of accuracy and convergence1004

rate.1005
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Doleji’s approach Adjoint approach
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Fig. 7: Numerical results at the adaptation cycle where L2-norm of u�uh is about O(10�3). The results are
collected by solving the anisotropic di↵usion problem modeled by the elliptic problem (E.2) with anisotropic
ratio A = 1000. Further, the semi-analytic solution can be obtained with the aid of accurate mappings.
The tolerance is chosen as ! = 0.01. The left column is for Doleji’s approach (4.1) and the right column for
the adjoint approach (4.10). Surface and contour plots of the numerical solution are presented in the first
two rows, the mesh configuration along with the arrangement of the degree of approximation pK is presented
in the third row, and the absolute error is presented in the fourth row.
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(a)Tolerance ! = 0.1 (b) Tolerance ! = 0.01

Fig. 8: Convergence histories of uh measured in L2-norm. The results are obtained by numerically solving
the anisotropic di↵usion problem modeled by the elliptic problem (E.2) where the semi-analytic solution can
be obtained with the aid of accurate mappings. Di↵erent tolerance values of (a) ! = 0.1 and (b) ! = 0.01
are used. In each plot, the results with various anisotropy ratios A (denoted by di↵erent colors) obtained
by di↵erent approaches (denoted by di↵erent marks) are presented.
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Doleji’s approach Adjoint approach
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Fig. 9: Numerical results at the final cycle of adaptation for the battery problem modeled with the elliptic
problem (E.3). The tolerance is chosen as ! = 0.01. The left column is for Doleji’s approach (4.1) and
the right column for the adjoint approach (4.10). Surface and contour plots of the numerical solution are
presented in the first two rows, and the mesh configuration along with the arrangement of the degree of
approximation pK is presented in the third row.
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Doleji’s approach Adjoint approach
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Fig. 10: Numerical results at the adaptation cycle where L2-norm of u� uh is about O(10�1) for the linear
advection problem modeled with the hyperbolic problem (HP.1). Further, the exact solution can be obtained
using the method of characteristics. The tolerance is chosen as ! = 0.05. The left column is for Doleji’s
approach (4.1) and the right column for the adjoint approach (4.10). Surface and contour plots of the
numerical solution are presented in the first two rows, the mesh configuration along with the arrangement
of the degree of approximation pK is presented in the third row, and the absolute error is presented in the
fourth row.
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(a) Tolerance ! = 0.1 (b) Tolerance ! = 0.05

Fig. 11: Convergence histories of uh measured in L2-norm. The results are obtained by numerically solving
the linear advection problem modeled with the hyperbolic problem (HP.1). The exact solution can be found
by the method of characteristics. The results obtained with two di↵erent tolerances of (a) ! = 0.1 and (b)
! = 0.05 are presented.
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Doleji’s approach Adjoint approach
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Fig. 12: Numerical results at the adaptation cycle where L2-norm of u � uh for the convection-di↵usion
problem modeled by the mixed problem (HB.1) with the exact solution stated in (5.30) with the di↵usivity
" = 10�3. The tolerance is chosen as ! = 0.05. The left column is for Doleji’s approach (4.1) and the right
column for the adjoint approach (4.10). Surface and contour plots of the numerical solution are presented
in the first two rows, the mesh configuration along with the arrangement of the degree of approximation pK
is presented in the third row, and the absolute error is presented in the fourth row.
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Fig. 13: Convergence histories of uh measured in L2-norm. The results are obtained by numerically solving
the convection-di↵usion problem modeled by the mixed problem (HB.1) that admits the exact solution
stated in (5.30). The results with various di↵usivity values " (denoted by di↵erent colors) are presented.
For di↵erent di↵usivity values " = 10�2, 10�3 and 10�4, di↵erent tolerance ! = 0.1, 0.05 and 0.01 are used
respectively.
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6. Conclusion. In this work, we proposed unified hp-HDG frameworks for Friedrichs’ system that1006

embraces large classes of PDEs. At the heart of our adaptivity strategy is to take advantage of natural1007

built-in mortars in HDG methods. By choosing split-sided type of mortar, the degree pe = max {pK+ , pK�}1008

for 8e 2 E�
h
and pe = pK for 8e ⇢ @K \ E@

h
, an upwind-based numerical flux can be naturally derived and1009

be constructed over mortars. For one-field Friedrichs’ systems, we have a general form of the numerical1010

flux. For two-field Friedrichs’ systems, we exploit the system’s intrinsic structure to obtain the numerical1011

flux in the reduced form. The existence of such a numerical flux is guaranteed as long as a few more1012

additional assumptions are satisfied. We have shown that hp-HDG formulations are parameter-free and are1013

well-posed for both one-field and two-field Friedrichs’ systems. Leveraging the Friedrichs’ framework we1014

have systematically constructed and analyzed hp-HDG formulations for one-field and two-field systems. The1015

unification opens an opportunity for us to develop a single universal code to solve various kinds of PDEs.1016

Besides the analysis, several numerical experiments are also carried out. In the experiments, three1017

distinct types of PDEs are considered: elliptic, hyperbolic, and mixed-type. We showed that these PDEs fall1018

into our framework and their hp-HDG formulations are hence well-posed. Additionally, a simple algorithm1019

is proposed to drive the hp-adaptation and to verify its e�cacy. Two di↵erent error indicators are used for1020

our adaptivity strategy: Doleji’s approach and the adjoint approach. The former relies on the estimation of1021

the smoothness of the numerical solutions. The latter uses duality to derive an estimation of accuracy for a1022

chosen output functional. Regarding performance, both approaches show improvement in the convergence1023

rates and are comparable to each other for almost all the examples if an appropriate tolerance is picked.1024

This is expected as the global objective function is used. (For a more localized objective, the adjoint is1025

typically much more e�cient, but it is not our focus here. We simply demonstrate that our hp-formulations1026

and hp-adaptation can work with both of these popular approaches.) However, for the Poisson problem1027

considered in (E.1) the exponential convergence rates are only observed at the first half of cycles of adaption1028

in Doleji’s approach with the tolerance ! = 0.1. It is somehow stagnant for the rest half of the cycles of1029

adaption. On the other hand, the convergence rate of the adjoint approach with the tolerance ! = 0.01 is1030

about 1.4-1.5, which is not appealing. Moreover, we also found that both approaches are quite sensitive to1031

the user-defined tolerance value. A more robust hp-refinement strategy is required and it is the subject of1032

future work.1033

Finally, we end the conclusion with a couple of remarks. In this work, we only considered one-field1034

and two-field Friedrichs’ systems. Another significant structure is the three-field, which includes the PDE1035

governed by the linearized incompressible flow. However, such a system requires a significant amount of1036

dedicated discussion and deserves another paper to cover it. Thus, it is left for future work. Although we1037

only consider steady-state PDEs in this paper, it is not hard to extend our current work to time-dependent1038

models where the temporal derivative is first discretized by some single-step time scheme. The discretized1039

terms can be treated as reaction and forcing terms, and the resulting semi-discrete PDE can then be re-1040

written as a general conservation form stated in (2.1). Thus, the analysis presented in this study is still1041

applicable. However, the algorithm of hp-adaption may need to be re-designed because di↵erent time steps1042

can cause the solution to behave di↵erently. Thus, h-coarsening operations may also be required in response1043

to this change. Furthermore, a proper transfer of the solution between each adaptation needs to be carefully1044

addressed.1045
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Appendix A. Adjoint hp-HDG formulation. In this paper, we deployed a discrete weak adjoint1050

approach that allows us to follow (almost identically) the framework outlined in [13] to derive adjoint-based1051

error estimations. Instead of treating the governing equation (2.1) as a primal problem, here we consider1052

hp-HDG formulation that is stated in (3.12) or (3.34) as a primal problem. The procedure of derivation of1053

the adjoint problem is briefly described below:1054

1. Re-state the primal problem, either (3.12) or (3.34), as a bilinear form.1055

2. Define an output functional J (·) (Recall that J (·) = J adjoint (·)+J boundary (·)) of the approximate1056

solution Zh given in (4.2a) and use it as an objective function of an optimization problem along1057

with the constraint posed by the bilinear formulation given in step one.1058
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3. Re-write the constrained optimization problem constructed in the previous step as the unconstrained1059

optimization problem applying the Lagrangian approach in which the test function Wh presented in1060

the bilinear formulation now becomes a Lagrange multiplier.1061

4. Solve this trivial optimization problem by taking advantage of the first optimality condition and the1062

adjoint hp-HDG formulation can then be derived.1063

Note that the derivation of the adjoint PDEs can also be done by following a similar procedure. However,1064

it should be noted that the adjoint hp-HDG formulations derived by following the above procedure are not1065

necessarily the same as the ones discretized from the adjoint PDEs. In fact, they are di↵erent in this paper.1066

The adjoint hp-HDG formulation with regard to the one-field Friedrichs’ system reads: seek (wh, bwh) 21067

W
h
⇥ cW

h
such that:1068

�
dX

k=1

(wh, @k (Ak�zh))Th
+
⇣
GTwh, �zh

⌘

Th

+ h�Abwh + T (wh � bwh) , �zhi@Th
= ��J adjoint

zh
(Zh; �zh)(a.1a)1069

hJ�Abwh + T (wh � bwh)K, �bzhiEh
= �

⌧
1
2
(�A+M)T bwh, �bzh

�

E@

h

� �J adjoint

bzh
(Zh; �bzh)� �J boundary

bzh
(bzh; �bzh) ,

(a.1b)

1070
1071

for all (�zh, �bzh) 2 W
h
⇥ cW

h
. The stabilization parameter is still set as T := |A| and the boundary1072

operator is set as M := |A|. In order to incorporate the boundary condition, the boundary-associated1073

functional J boundary (bzh) is included in J (Zh) and has the following form:1074

(a.2) J boundary (bzh) = �
⌧
1

2
(�A�M)T bzh, g

adjoint

�

E@

h

,1075

where the function gadjoint : @⌦! Rm is defined as1076

(a.3) gadjoint :=

(
gadjoint

D
if (A+M) 6= 0,

0 if (A+M) = 0,
1077

and gadjoint

D
is the Dirichlet data for the adjoint system given in (a.1). Comparing (3.9) and (a.3), it can1078

be observed that the inflow and outflow boundaries are switched between the primal formulation (3.12) and1079

its’s adjoint formulation (a.1). It should be also noted that the adjoint problem (a.1) will automatically have1080

homogeneous boundary conditions if the boundary-associated functional is zero (i.e., gadjoint

D
= 0), which is1081

the case in the numerical studies presented in this paper.1082

The well-posedness analysis is similar to Lemma 3.3 for the local equation (a.1a) and to Theorem 3.41083

for the adjoint hp-HDG formulation (a.1). Thus, we simply outline the following lemma and theorem about1084

well-posedness without any proof for the sake of brevity.1085

Lemma A.1 (Well-posedness of the local equation). Suppose that the assumptions (A.1)-(A.4) hold,1086

the local solver (a.1a) is well-posed, that is, given bwh and �J adjoint

zh
(Zh; �zh), there exists a unique solution1087

wh of the local system.1088

Theorem A.2 (Well-posedness of the adjoint hp-HDG formulation). Suppose that1089

1. the assumptions (A.1)-(A.4) and (2.3b) hold,1090

2. N (A) = {0},1091

the adjoint hp-HDG formulation stated in (a.1) is well-posed in the sense that given �J adjoint

zh
(Zh; �zh),1092

�J adjoint

bzh

(Zh; �bzh) and �J boundary

bzh

(bzh; �bzh), there exists a unique solution (wh, bwh).1093

On the other hand, the adjoint hp-HDG formulation with regard to the two-field Friedrichs’ system1094
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reads: seek (sh,vh, bvh) 2 ⌃
h
⇥U

h
⇥ bU

h
such that1095

�
dX

k=1

⇣
vh, @k

⇣
BT

k ��h

⌘⌘

Th

+
⇣
(G��)Tsh + ((Gu�)Tvh, ��h

⌘

Th

� hBbvh, ��hi@Th

= ��J adjoint

�h
(Zh; ��h)

(a.4a)1096

�
dX

k=1

(sh, @k (Bk�uh))Th
�

dX

k=1

(vh, @k (Ck�uh))Th
+
⇣
G�u)Tsh + (Guu)Tvh, �uh

⌘

Th

+
D
�BTsh � CT bvh + T (vh � bvh) , �uh

E

@Th

= ��J adjoint

uh
(Zh; �uh)

(a.4b)1097

D
J�BTsh � CT bvh + T (vh � bvh) , �uhK, �buh

E

Eh\@⌦D

= h%Imubvh, �buhiEh\(@⌦N[@⌦R) � �J @⌦N[@⌦R

buh
(buh; �buh)

(a.4c)

1098

hbvh, �buhiE@

h
\@⌦D

= ��J adjoint

buh
(Zh; �buh)� �J @⌦D

buh
(buh; �buh) ,(a.4d)1099

1100

for all (��h, �uh, �buh) 2 ⌃
h
⇥U

h
⇥ bU

h
. The following boundary-associated functional is contained in the1101

output functional J (Zh) to account for the boundary conditions:1102

J boundary (buh) = J @⌦N[@⌦R (buh) + J @⌦D (buh) ,(a.5)11031104

where1105

J @⌦N[@⌦R (buh) = �
D
buh, g

adjoint

N

E

E@

h
\@⌦N

�
D
buh, g

adjoint

R

E

E@

h
\@⌦R

, and,(a.6)1106

J @⌦D (buh) = �
D
buh, g

adjoint

D

E

E@

h
\@⌦D

,1107
1108

in which gadjoint

N
: @⌦N 7! R, gadjoint

R
: @⌦R 7! R, and gadjoint

D
: @⌦D 7! R. As indicated in Section 5, the1109

homogeneous conditions are considered in this paper (i.e., gadjoint

D
= gadjoint

N
= gadjoint

R
= 0). A similar1110

analysis used in Lemma 3.7 and Theorem 3.8 can still be applied to the adjoint hp-HDG formulation (a.4)1111

whose primal formulation (3.34) has full coercivity. Likewise, a similar argument presented in Lemma 3.91112

and Theorem 3.10 can be used for the same adjoint formulation (a.4) whose primal formulation (3.34) only1113

has partial coercivity.1114

Lemma A.3 (Well-posedness of the local equation-with full coercivity). The local solver composed by1115

(a.4a) and (a.4b) is well-posed provided that:1116

1. the assumptions (A.1)-(A.6) hold, and1117

2. 1
2C + T � 0, and1118

3. Bk is a constant and is non-zero for k = 1, . . . , d.1119

By being well-posed, we mean that given bvh, �J adjoint

�h
(Zh; ��h), and �J adjoint

uh
(Zh; �uh), there exists a1120

unique solution (sh,vh) of the local solver.1121

Theorem A.4 (Well-posedness of the adjoint hp-HDG formulation-with full coercivity). Suppose:1122

1. the assumptions (A.1)-(A.6) and (2.3b) hold, and1123

2. 1
2C + T � 0, and1124

3. Bk is constant and is nonzero for k = 1, . . . , d, and1125

4.
T

d

k=1 Range (Bk) = {0} and N (Bk) = {0} for 8k = 1, . . . , d.1126

Then, the adjoint hp-HDG formulation stated in (a.4) is well-posed in the sense that given1127

�J adjoint

�h
(Zh; ��h), �J adjoint

uh
(Zh; �uh), �J adjoint

buh

(Zh; �buh) and �J boundary

buh

(buh; �buh), there exists a unique1128

solution (sh,vh, bvh).1129

Lemma A.5 (Well-posedness of the local equation-with partial coercivity). The local solver composed1130

by (a.4a) and (a.4b) is well-posed provided that:1131

1. the assumption (A.1)-(A.3), (A4.a)-(A4.b) and (A.5)-(A.6) hold, and1132

2. 1
2C + T > 0, and1133

3.
T

d

k=1 Range (Bk) = {0} and N (Bk) = {0} for 8k = 1, . . . , d.1134
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By being well-posed, we mean that given bvh, �J adjoint

�h
(Zh; ��h), and �J adjoint

uh
(Zh; �uh), there exists a1135

unique solution (sh,vh) of the local solver.1136

Theorem A.6 (Well-posedness of the adjoint hp-HDG formulation -with partial coercivity). Suppose:1137

1. the assumptions (A.1)-(A.3), (A4.a)-(A4.b), (A.5)-(A.6), and (2.3b) hold, and1138

2. 1
2C + T > 0,1139

3.
T

d

k=1 Range (Bk) = {0} and N (Bk) = {0} for 8k = 1, . . . , d.1140

Then, the adjoint hp-HDG formulation stated in (a.4) is well-posed in the sense that given1141

�J adjoint

�h
(Zh; ��h), �J adjoint

uh
(Zh; �uh), �J adjoint

buh

(Zh; �buh) and �J boundary

buh

(buh; �buh), there exists a unique1142

solution (sh,vh, bvh).1143

As can be seen, the assumptions needed for the well-posedness of primal formulations are the same as the1144

corresponding adjoint formulation. In fact, this observation holds true for all HDG methods. To see it, we1145

can express both volume and trace unknowns as discrete vectors (i.e., each element in the vectors represents1146

a nodal value) instead of functions. The system of primal equations can then be rewritten in the matrix1147

form and the transpose of the matrix is exactly the matrix in the corresponding system of adjoint equations1148

[40, 105]. It is easy to see that the transpose of a square matrix is indeed invertible if the original square1149

matrix is invertible.1150

Appendix B. Proof of the existence of the upwind flux in reduced form. We first look at the1151

upwind flux stated in (3.23). Thanks to the assumption (A.5), the submatrix A��
k

contribute nothing and1152

hence we have1153

(b.1) F (�⇤
h
,u⇤

h
)n =


Bu⇤

h

BT�⇤
h
+ Cu⇤

h

�
.1154

By the equality (3.22), we then have91155

(b.2) F ⇤ ���
h
,u�

h
,�⇤

h
,u⇤

h

�
n =|{z}

(3.22)

F (�⇤
h
,u⇤

h
)n =|{z}

(b.1)


Bu⇤

h

BT�⇤
h
+ Cu⇤

h

�
.1156

Further, the numerical flux F ⇤ ���
h
,u�

h
,�⇤

h
,u⇤

h

�
n also satisfies Eq. (3.21) and thus we have flexibility in1157

replacing one of components of the numerical flux. Given that the upwind state Bu⇤
h
is desired to be kept1158

in the numerical flux, we replace the second component in F ⇤ using Eq. (3.21) and arrive at1159

(b.3) F ⇤ ���
h
,u�

h
,�⇤

h
,u⇤

h

�
n =


Bu⇤

h

BT�h + Cuh +Au� (�h � �⇤
h
) +Auu (uh � u⇤

h
)

�
.1160

The goal is to eliminate the state �⇤
h
from the right-hand side of Eq. (b.3) via either the assumption (F.1)1161

or (F.2).1162

We first consider that (F.1) holds true. Since the second row in the equality (3.22) is already used to1163

rewrite (b.2) as (b.3) and the first row remains unused, we can take advantage of this observation to obtain1164

(b.4) Bu⇤
h
= Buh +A�� (�h � �⇤

h
) +A�u (uh � u⇤

h
) .1165

By invoking assumptions (F1.a) and (F1.b), Eq. (b.4) can be rearranged as1166

(b.5) A�� (�h � �⇤
h
) = �

�
�TBTB�

��1
�TBTB ( + Imu) ,1167

where the matrix
�
�TBTB�

��1
is guaranteed to exist owing to the assumptions (F1.a) (��1 exists) and1168

(F1.c) (implies that N (B) = {0}). Now substitute (b.5) into (b.3) and define T in the way described in1169

(3.25), we then can arrive at the formulation (3.24).1170

Now assume that (F.2) holds true, it is obvious that the state �⇤
h
will vanish. By applying the definition1171

(3.26), the formation (3.24) can then be obtained.1172

9As mentioned in Footnote 6, it should be noted that both of upwind states �⇤
h

and u⇤
h

are the function of states from

adjacent elements. That is, �⇤
h
= �⇤

h
(��

h
,u�

h
,�+

h
,u+

h
) and u⇤

h
= u⇤

h
(��

h
,u�

h
,�+

h
,u+

h
).
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