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Multimodal single-neuron, 
intracranial EEG, and fMRI brain 
responses during movie watching  
in human patients
Umit Keles1,2, Julien Dubois1, Kevin J. M. Le   3, J. Michael Tyszka   2, David A. Kahn   2, 
Chrystal M. Reed   4, Jeffrey M. Chung4, Adam N. Mamelak1, Ralph Adolphs   2,3 ✉ & 
Ueli Rutishauser   1,3,4,5 ✉

We present a multimodal dataset of intracranial recordings, fMRI, and eye tracking in 20 participants 
during movie watching. Recordings consist of single neurons, local field potential, and intracranial EEG 
activity acquired from depth electrodes targeting the amygdala, hippocampus, and medial frontal 
cortex implanted for monitoring of epileptic seizures. Participants watched an 8-min long excerpt from 
the video “Bang! You’re Dead” and performed a recognition memory test for movie content. 3 T fMRI 
activity was recorded prior to surgery in 11 of these participants while performing the same task. This 
NWB- and BIDS-formatted dataset includes spike times, field potential activity, behavior, eye tracking, 
electrode locations, demographics, and functional and structural MRI scans. For technical validation, 
we provide signal quality metrics, assess eye tracking quality, behavior, the tuning of cells and high-
frequency broadband power field potentials to familiarity and event boundaries, and show brain-wide 
inter-subject correlations for fMRI. This dataset will facilitate the investigation of brain activity during 
movie watching, recognition memory, and the neural basis of the fMRI-BOLD signal.

Background & Summary
The most common approach to investigate neural representations of visual stimuli, decisions, and memory in 
humans has traditionally been to present static stimuli one at a time. With this trial-by-trial experimental design, 
analysis of neural activity focuses on relating time-locked experimental events in a particular trial to the neural 
responses they evoke1. For example, a question that would be answered this way in the context of intracranial 
recordings is to compare the onsets of stimuli that contain faces with those that do not in order to examine 
the neural correlates of face perception2. A key unanswered question is whether the representations revealed 
by trial-by-trial designs generalize to those seen during more realistic continuous experience3,4. A major step 
in this direction has been the study of neural responses while participants watch short video clips5. This has 
revealed, for example, the existence of cognitive boundaries, which mark periods of time when the ongoing 
narrative is interrupted during a continuous experience, thereby marking the start of a new episodic mem-
ory6–8. Importantly, the stimulus selectivity of neural responses seen during continuous presentation can differ 
markedly from that seen during static stimulus presentation9. Despite its ecological advantages, significant chal-
lenges remain in the analysis of continuous stimulus protocols. These include the challenge of quantifying which 
time-varying features of the stimulus are being attended (e.g., using concurrent eye tracking), comprehensive 
annotation of movies for the relevant features (especially ones that are semantically defined, such as emotions), 
and ways to extract dynamic features beyond those available in individual frames (notably, events solely inferred 
from the context, such as anticipating a person when a door begins to open). Here, we provide a comprehensive 
multi-modal dataset to foster the further development of methods to examine neural activity during movie 
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watching, and we additionally provide data from trial-by-trial responses (in a separate memory task) to enable 
direct comparisons between continuous movie-evoked activity with more traditional trial-by-trial designs.

A second major question in neuroscience is the neural basis of the fMRI-BOLD signal in general, as well 
as whether the neural basis of fMRI-BOLD is different during continuous as compared to static experimen-
tal designs. A key contribution to our understanding of the fMRI-BOLD signal has come from concurrent 
fMRI and single-unit electrophysiology in monkeys10, an approach not possible in humans. However, these 
two modalities can be obtained at separate times, in the same patients and using the same stimuli11–14. Here, 
we provide fMRI data from a subset of the same participants from whom we later also recorded electrophysiol-
ogy, watching the same movie in both conditions. This dataset is therefore a valuable opportunity to compare 
fMRI-BOLD and invasive electrophysiological activity in the same participants in the same task.

This dataset consists of data from a total of 20 participants (Fig. 1a and Table 1). Of these participants, 
11 underwent both fMRI scanning and depth electrode recordings. The stimulus that participants watched 
is an 8-min long excerpt of Alfred Hitchcock’s “Bang! You’re Dead” movie (Fig. 1b, left). This exact clip has 
been used repeatedly in neuroimaging work, thereby facilitating comparison to prior work and utilization of 
the extensive annotations that already exist for this movie15–17. While movie viewing was passive, participants 
subsequently performed a recognition memory task (Fig. 1b, right). This task was intentionally designed as a 
classic trial-by-trial design to allow direct comparison of neural responses to continuous versus trial-by-trial 
protocols. During this task, individual frames extracted from the movie were shown while patients performed 
a recognition confidence judgment (also providing a metric of how well they attended to the movie in the first 
place). We provide annotations of faces and scene cuts (Fig. 1c). At the electrophysiological level, we provide 
fully spike-sorted single neurons (1450 neurons in total), local field potential (LFP) activity recorded from the 
same microwires that were used to record single neurons, and intracranial EEG (iEEG) activity from all clinical 
macroelectrodes along the shaft of the depth electrodes, providing substantial additional anatomical coverage. 
All fMRI data were acquired prior to implantation and are whole-brain. The participants included in this study 
had hybrid depth electrodes targeting the medial temporal lobe (amygdala and hippocampus), and the medial 
frontal cortex (anterior cingulate cortex, ACC; pre-supplementary motor area, preSMA; and the ventral medial 
prefrontal cortex, vmPFC). Depth electrodes were implanted in an orthogonal approach, providing coverage of 
areas such as the dorsolateral PFC (dlPFC), ventrolateral PFC (vlPFC), and medial temporal gyrus (MTG) at 
the level of iEEG. Participants’ gaze was monitored only during intracranial recording sessions, and we provide 
the raw gaze position. For the fMRI data, we provide functional data and structural T1 and T2 scans. The data 
is packaged in two standardized data formats: all data recorded while patients were being monitored with depth 
electrodes is provided in the Neurodata Without Borders (NWB) format18, and all fMRI data is provided in the 
Brain Imaging Data Structure (BIDS) format19.

Methods
Participants.  We invited 20 patients with intractable epilepsy to participate in two visits: prior to hospital 
admission (for fMRI), and as in-patients while undergoing invasive epilepsy monitoring with depth electrodes. 
All electrophysiological recordings took place while patients were in the epilepsy monitoring unit (EMU), and 
all procedures for electrode implantation, including the anatomical location of the electrodes, were carried out 
under clinical protocols that were independent of the present study. Eleven participants completed both EMU 

Fig. 1  Overview of data and experiment. (a) Data overview with the number of participants for each brain 
recording modality used in the study. (b) The task included a movie watching phase first and then a recognition 
phase (omitted for fMRI). In the movie watching phase, participants watched an audio-visual movie, and 
in the recognition phase, they viewed 20 novel and 20 familiar movie frames, identifying each image as new 
(novel) or old (familiar) using a confidence rating scale. (c) Manual annotations of movie stimulus. Face areas, 
emotions, and head pose were provided for each video frame with a face. Scene cuts were annotated to provide 
information on the start/end time and type of cuts. Due to copyright restrictions of the movie “Bang! You’re 
Dead”, the visualizations are shown using royalty-free images. (d) Recording locations across the patients are 
shown in the template structural atlas MNI152NLin2009cAsym39.
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recordings and fMRI, four participants completed only the fMRI session but then did not proceed with invasive 
monitoring, and five participants completed only the EMU session but did not enroll in the fMRI part of the pro-
tocol (see Fig. 1a and Table 1 for details and demographics). All participants had normal or corrected-to-normal 
vision. Participation in our research study was voluntary and participants or their legal guardian, if they were 
under 18 years of age, provided informed consent. All experimental protocols were approved by the Institutional 
Review Boards of the California Institute of Technology (Caltech; IRB: 16-0692 F) and Cedars-Sinai Medical 
Center (CSMC; IRB: 13369).

Task.  The task consisted of two experimental sessions: one in the MRI scanner (typically several weeks before 
the implantation) and one in the EMU following depth electrode implantation (see Table 1 for exceptions regard-
ing participants). In most sessions, participants completed two runs of the experiment (see Table 1 for exceptions 
regarding sessions) to allow test-retest validation. Each run consisted of two phases: movie watching (both in 
the EMU and MRI scanner), followed by a recognition memory test in the EMU (Fig. 1b) and an attention 
test in the scanner. Participants were informed prior to the start of the movie watching phase that it would be 
followed by a memory or attention test. In the movie watching phase, participants were instructed to watch 
the audio-visual movie. In the recognition task phase, participants were presented with 20 novel, unseen movie 
frames (drawn from sections of the original, full version of the Hitchcock movie that were removed for the edited 
version; see Stimuli section below) and 20 familiar, viewed frames (taken from the edited version of the movie 
actually presented). Participants identified each frame image as novel or familiar using a confidence rating scale 
from 1 (novel, not seen during movie watching, sure) through 3 (novel, but most unsure) and 4 (familiar, but 
most unsure) to 6 (familiar, seen during movie watching, sure); for analysis, ratings of 1, 2, 3 were pooled into the 
participant’s classification as “novel” and ratings of 4, 5, 6 were pooled as “familiar”. They provided their answers 
by pressing buttons on an external response box (Fig. 1b). The same set of 80 frame images (consisting of 40 novel 
and 40 familiar frames) was used in the recognition memory experiment across all participants. The sequence of 
these images was randomized for each run, ensuring that the set of 40 frames (20 novel and 20 familiar) displayed 
differed between two runs for each participant, thereby maintaining the novelty of the task.

While the retrieval frames varied between the two runs for each participant, consisting of different subsets, 
the movie segment shown remained identical. This design was intentional to assess the test-retest reliability of 
the measured neural signals. However, watching the same movie twice could potentially affect this reliability. 
Specifically, the familiarity gained from the first viewing could influence participants’ responses in the sub-
sequent run, possibly lowering the reliability. Therefore, this aspect should be considered when assessing the 
test-retest reliability of neural signals.

The fMRI part of the experiment only contained the movie watching phase (no recognition memory test). 
Instead, at the end of each movie watching run, participants responded to seven multiple-choice questions 
about events that took place in the movie, by selecting one of four answer options that assessed their attention 
and memory for the movie. These questions were drawn from a set of 14 provided by Naci et al.15. For the first 
run, we used the seven odd-numbered questions from the original set. The second run utilized the remaining 
seven even-numbered questions. Participants answered on average 5.97 ± 0.98 (mean ± s.d., across participants 
and runs) questions correctly. The answers20 given by each participant are available on Figshare. The movie 

ID # of EMU runs # of fMRI runs Age Sex Epilepsy Diagnosis

P41CS 2 2 21 F Left Other

P42CS 2 2 25 F Not Localized

P43CS 2 2 42 F Left Mesial Temporal

P44CS 1 2 53 F Right Mesial Temporal

P45CS NA 2 29 F Bitemporal

P46CS NA 2 41 M NA

P47CS 2 2 32 M Right Mesial Temporal

P48CS 2 2 32 F Left Mesial Temporal

P49CS 2 NA 24 F Left Mesial Temporal

P50CS NA 2 25 M Right Temporal Neocortical

P51CS 2 2 17 M Not Localized

P53CS 2 2 60 M Bilateral Independent Temporal

P54CS 2 2 59 F Right Mesial Temporal

P55CS 2 NA 43 F Right Mesial Temporal

P56CS 2 NA 48 M Bilateral Independent Temporal

P57CS 2 NA 46 M Left Other

P58CS 1 NA 32 F Right Lateral Frontal

P59CS NA 2 34 M Left Mesial Temporal

P60CS 1 2 67 M Left Mesial Temporal

P62CS 2 2 25 F Right Mesial Temporal

Total participants: 20 Total SU runs: 29 Total fMRI runs: 30 Mean (SD): 37.75 (13.86) 11 Female

Table 1.  Patients. Number of EMU and fMRI runs performed, demographics, and pathology.
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presentation and question task were implemented in Matlab using Psychophysics Toolbox21. The movie was 
presented during MRI scanning using a back-projection system viewed through a head coil-mounted mirror. 
The video projection was 29 cm × 22 cm at a viewing distance of 100 cm resulting in an observed angular size of 
16.5° × 12.6°.

Movie stimulus.  The movie stimulus was an 8-min edited excerpt from the television episode “Bang! You’re 
Dead,” a black-and-white drama directed by Alfred Hitchcock and originally aired in the series “Alfred Hitchcock 
Presents” (1961). The movie was edited from its original duration of 30 min to 8 min while retaining the essential 
plot15–17. The edit we used was identical to that used in several prior studies, which had demonstrated that this 
stimulus evokes reliable and reproducible cortical activity across participants22.

Electrodes and electrophysiology.  All intracranial recording data in this dataset was acquired from 
hybrid Behnke-Fried depth electrodes23,24 (AdTech Inc.). All recordings were performed with an FDA-approved 
electrophysiology system (ATLAS system, Neuralynx Inc.). The signal from the microwires was recorded at a 
sampling rate of 32,000 Hz in broadband (0.1 to 9,000 Hz) and the signal from the macroelectrodes was sampled 
at 2,000 Hz. Microwire recordings were locally referenced within each recording site by using either one of the 
eight available micro channels or a dedicated reference channel with lower impedance provided in the bundle.

Spike detection and sorting.  Spike detection and sorting were conducted using the semiautomated 
template-matching algorithm OSort (version: 4.1)25, followed by manual post-processing. Spikes were detected 
after bandpass filtering the raw signal in the 300–3,000 Hz band. Figure 2 shows spike sorting quality metrics and 
statistics. For patients that performed multiple runs of the same experiment within the same session, all neurons 
were sorted together.

Electrode localization.  Electrodes were localized based on a pre-operative MRI and post-operative MRI 
and/or CT scans as described previously26. All electrode localizations were performed in the participant’s native 
space. In addition, we provide electrode locations in MNI152 coordinates, which we also used for visualization 
on a structural template atlas (Figs. 1d, 2i). Note that coordinates that appear in white matter or the wrong target 
structure in Figs. 1d, 2i are due to misregistration to the template brain (all electrode locations shown are con-
firmed in gray matter in the native space of the subject).

Eye tracking in EMU.  The EyeLink 1000 (SR Research Inc.) eye tracker was used to record monocular gaze 
position at a sampling rate of 500 Hz using infrared corneal reflection together with a sticker to track head posi-
tion as described previously26–28. The Eyelink’s built-in algorithms were used to classify fixations, saccades, and 
blinks. We provide the raw gaze position as well as fixations, saccades and blinks, and pupil size (number of pixels 
inside the pupil contour) throughout the experiment. Eye tracking data was not collected reliably during the MRI 
scanning and is not part of this data release.

Eye tracking analysis.  We evaluated the congruence of participants’ gaze patterns using temporally 
segmented gaze heatmaps29. For each participant and time segment, two heatmaps were constructed. First, a 
participant-specific heatmap was generated by applying a two-dimensional Gaussian filter over each gaze point. 
This filter had a standard deviation equivalent to 1° of visual angle, translating to roughly 33 pixels on our dis-
play, estimated by averaging across individual participants’ visual angles. Second, a normative gaze heatmap was 
generated by aggregating data from all participants and applying the same Gaussian filtering, while excluding the 
participant being analyzed, thereby mitigating bias in similarity calculation. This normative heatmap served as a 
reference for the visual saliency during each time segment. The alignment of an individual’s gaze with this norma-
tive heatmap for each segment was quantified by calculating the Pearson correlation between their heatmap and 
the normative heatmap, converting each heatmap into a vector before computation. These correlation coefficients 
were normalized using the Fisher z-transformation, averaged across segments, and reconverted to provide a mean 
gaze similarity score, expressed as Pearson’s r. This procedure was then repeated for each participant and each run. 
We presented our findings using 1-second time segments, though our testing with 0.5 and 2-second segments 
yielded comparable results.

MRI data acquisition.  All MRI data was acquired at the Caltech Brain Imaging Center using a 3 T scanner 
equipped with a 32-channel head-receive array (TIM Trio, Siemens Medical Solutions, Malvern, PA). BOLD 
contrast functional images were acquired during movie viewing with the following parameters: multiband 
T2*-weighted EPI sequence, TR 1016 ms, TE 30 ms, flip angle 60°, 2.5 mm isotropic voxels, no in-plane accel-
eration, multiband acceleration factor 4, bandwidth 2404 Hz/pixel, 500 acquired volumes, total imaging time 
8 min 28 s. Two runs were acquired of the movie viewing BOLD acquisition for each participant. An additional 
single-band reference image was generated by the same T2*w EPI sequence for use as an intermediate reference 
for image registration. Distortion-correction data for the EPI acquisitions employed a pair of phase-encoding 
polarity-reversed T2w SE-EPI images (TR 4800 ms, TE 50 ms, flip angle 90°) with identical geometry and EPI 
echo train timing to the T2*w EPI images. Following an MRI system upgrade (Prisma Fit, Siemens Medical 
Solutions), the BOLD acquisition TR was reduced to 700 ms and the multiband acceleration factor increased to 6. 
This change would reduce the raw tSNR of all volumes but increase the total number of volumes acquired during 
the fixed duration movie. This change impacted the BOLD acquisitions for P59CS, P60CS, and P62CS only.

T1w structural images were acquired with the following parameters: 3D MEMP-RAGE with RMS echo com-
bination, TR 2530 ms, TI 1100 ms, TE 1.6, 3.5, 5.4, 7.2 ms, 1.0 mm isotropic voxels, GRAPPA 2 in-plane acceler-
ation, total imaging time 6 min 3 s. T2w structural images were acquired with the following parameters: 3D T2w 
SPACE sequence, TR 3390 ms, effective TE 390 ms, flip angle 120°, in-plane GRAPPA acceleration 2, bandwidth 
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650 Hz/pixel, total imaging time 9 min 58 s. A total of four T1w structural images were acquired for each subject, 
with the exception of P42CS where only three were acquired. Two T2w structural images were acquired for each 
subject, except for P59CS where three were acquired.

MRI data preprocessing.  The anatomical and functional preprocessing steps (detailed in the “Anatomical 
Data Preprocessing” and “Functional Data Preprocessing” sections) were generated by fMRIprep30 and have been 
included here with minimal modification from the recommended text for clarity and style (see also: https://www.
nipreps.org/intro/transparency/#citation-boilerplates).

Results included in this manuscript come from preprocessing performed using fMRIPrep 23.1.330 
(RRID:SCR_016216), which is based on Nipype 1.8.631 (RRID:SCR_002502).

Preprocessing of B0 inhomogeneity mappings.  A total of 2 fieldmaps were found available within the input 
BIDS structure for this particular subject. A B0 nonuniformity map (or fieldmap) was estimated based on two 
echo-planar imaging (EPI) references using topup32.

Anatomical data preprocessing.  All available T1-weighted (T1w) images for each participant were cor-
rected for intensity non-uniformity (INU) with N4BiasFieldCorrection33, distributed with ANTs 2.3.334 
(RRID:SCR_004757). An individual average T1w reference image was computed after registration of all 
INU-corrected T1w images for a given subject using mri_robust_template35 (FreeSurfer 7.3.2). The T1w ref-
erence was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from 
ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 
white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w reference using fast36 
(FSL 6.0.5.1:57b01774, RRID:SCR_002823). Brain surfaces were reconstructed using recon-all37 (FreeSurfer 
7.3.2, RRID:SCR_001847), and the brain mask estimated previously was refined with a custom variation of 
the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of 
Mindboggle38 (RRID:SCR_002438).

Fig. 2  Assessment of recording and spike sorting quality. (a) Histogram of the number of units identified on 
each active wire (only wires with at least one unit identified are counted). (b) Histogram of mean firing rates. 
(c) Histogram of proportion of inter-spike intervals (ISIs) which are shorter than 3 ms. (d) Histogram of the 
signal-to-noise ratio (SNR) of the mean waveform peak of each unit. (e) Histogram of the SNR of the entire 
waveform of all units. (f) Pairwise distance between all possible pairs of units on all wires where more than 1 
cluster was isolated. Distances are expressed in units of standard deviation (SD) after normalizing the data such 
that the distribution of waveforms around their mean is equal to 1. (g) Isolation distance of all units for which 
this metric was defined. (h) Number of cells recorded in each brain area across all the patients. (i) Recording 
locations quantified in (h) visualized anatomically. Each dot is a different electrode in which at least one usable 
unit was recorded. Shown are sagittal views of the template structural atlas MNI152NLin2009cAsym39.
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The following template was selected for spatial normalization: ICBM/MNI 152 Nonlinear Asymmetrical 
template version 2009c39 (RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym). Volume-based 
spatial normalization to the MNI152NLin2009cAsym space was performed through nonlinear registration 
with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both the individual T1w reference and the 
MNI152 T1w template.

Functional data preprocessing.  For each of the two BOLD runs acquired per participant (across all tasks and 
sessions), the following preprocessing was performed. First, a reference volume (BOLD Reference) and its 
skull-stripped version were generated by aligning and averaging the single-band references (SBRef) from the 
two BOLD runs. Head-motion parameters with respect to the BOLD reference (transformation matrices, and 
six corresponding rotation and translation parameters) were estimated before any spatiotemporal filtering using 
mcflirt40 (FSL 6.0.5.1:57b01774). BOLD runs were slice-time corrected to 0.306 s (0.5 of slice acquisition range 
0s-0.613 s) using 3dTshift from AFNI41 (RRID:SCR_005927). The BOLD reference was then co-registered to the 
T1w reference using bbregister (FreeSurfer) which implements boundary-based registration42. Co-registration 
was configured with six degrees of freedom.

Several confounding time-series were calculated based on the preprocessed BOLD: framewise displacement 
(FD), DVARS and three region-wise global signals. FD was computed using two formulations following Power43 
(absolute sum of relative motions) and Jenkinson40 (relative root mean square displacement between affines). 
FD and DVARS were calculated for each functional run, both using their implementations in Nipype (follow-
ing the definitions by Power et al.43). The three global signals were extracted within the CSF, the WM, and the 
whole-brain masks. Additionally, a set of physiological regressors were extracted to allow for component-based 
noise correction (CompCor44). Principal components were estimated after high-pass filtering the preprocessed 
BOLD time-series (using a discrete cosine filter with 128 s cut-off) for the two CompCor variants: temporal 
(tCompCor) and anatomical (aCompCor). tCompCor components were then calculated from the top 2% most 
variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined 
CSF + WM) were generated in anatomical space. The implementation differs from that of Behzadi et al.44 in that 
instead of eroding the masks by 2 pixels on BOLD space, a mask of pixels that likely contain a volume fraction of 
GM was subtracted from the aCompCor masks. This mask was obtained by dilating a GM mask extracted from 
the FreeSurfer’s aseg segmentation, to ensure components are not extracted from voxels containing a minimal 
fraction of GM. Finally, these masks were resampled into BOLD space and binarized by thresholding at 0.99 (as 
in the original implementation). Components were also calculated separately within the WM and CSF masks. 
For each CompCor decomposition, the k components with the largest singular values were retained, such that 
the retained components’ time series were sufficient to explain at least 50% of variance across the nuisance mask 
(CSF, WM, combined, or temporal). The remaining components, accounting for diminishing proportions of 
variance, were dropped from consideration.

The head-motion estimates calculated in the correction step were also placed within the corresponding con-
founds file. The confound time series derived from head motion estimates and global signals were expanded 
with the inclusion of temporal derivatives and quadratic terms for each45. Frames that exceeded a threshold of 
0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers. Additional nuisance timeseries were 
calculated by means of principal components analysis of the signal found within a thin band (crown) of voxels 
around the edge of the brain, as proposed by Patriat et al.46.

The BOLD time-series were resampled into an MNI standard space, generating a preprocessed BOLD run in 
MNI152NLin2009cAsym space. The BOLD time-series were also resampled onto FreeSurfer rfsaverage surface. 
All resamplings were performed with a single interpolation step by composing all the pertinent transformations 
(i.e., head-motion transform matrices, susceptibility distortion correction when available, and co-registrations 
to anatomical and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTrans-
forms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels47 (for 
native and MNI space). Non-gridded (surface) resamplings were performed using mri_vol2surf (for FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.10.148 (RRID:SCR_001362), mostly within the func-
tional processing workflow. For more details of the pipeline, see the section corresponding to workflows in 
fMRIPrep’s documentation (https://fmriprep.readthedocs.io/en/latest/workflows.html).

Functional data denoising.  The functional data preprocessed by fMRIprep was then denoised by using Python 
code provided in the GitHub repository associated with the budapest-fmri-data study49,50. In this code, ordinary 
least-squares regression was used to regress out specific nuisance parameters from the functional time series. 
These nuisance parameters included six motion parameters along with their derivatives, global signal, framewise 
displacement43, the first six noise components estimated by aCompCor44, and polynomial trends up to the sec-
ond order. The denoised data was then used to calculate the metrics of interest, either in native volumetric space 
or on fsaverage template. No further spatial smoothing or temporal filtering was applied.

Temporal signal-to-noise ratio (tSNR) in fMRI data.  Voxel-wise tSNR values were computed to assess 
fMRI data quality. We first computed tSNR values in each participant’s native space without applying template 
normalization. The tSNR was computed for each voxel and for each run by dividing the mean BOLD signal inten-
sity over time by the standard deviation of the signal intensity. Voxel-wise tSNR values were averaged across the 
two fMRI runs to obtain a single tSNR for each voxel. In addition, to generate a group tSNR map and examine the 
variation of tSNR across the cortex, we repeated the analysis after first spatially normalizing participant-specific 
images to the fsaverage template.
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Inter-subject correlation in fMRI data.  Inter-subject correlation (ISC) was computed to compare the 
activation patterns across participants51. To this end, participant-specific temporal BOLD data were first spatially 
normalized to the fsaverage template. To account for the difference in sampling rate (see MRI data acquisition), 
we adjusted the fMRI data of three participants which was collected with TR = 0.7 s. We downsampled their data 
to 1.016 Hz to match the data of the remaining participants, which was collected with TR = 1.016 s. The down-
sampling was performed using the Python library resampy (see https://github.com/bmcfee/resampy). For each 
participant, the temporal correlation between the participant’s time course and the average of all other partici-
pants’ time courses was computed at each node of the fsaverage surface. This procedure provided a distribution 
of correlations across participants at each node of the fsaverage surface. The node-wise correlation distributions 
were then averaged across participants at each node to generate a group ISC map. Prior to averaging, the corre-
lation values were Fisher z-transformed, averaged, and inverse Fisher-transformed51. This ISC map allowed us to 
examine the activation similarity between participants across the cortex.

Movie annotations.  The movie stimulus was manually annotated to detect and label face areas, emotions, 
and head pose. Face areas were defined as the regions of the video frame that contained a face. For each detected 
face, annotations included the corresponding pixels in a frame, the identity of the movie character depicted there, 
and the orientation of the face. Emotions expressed by each character seen in a frame were labeled using six emo-
tion categories: afraid, angry, happy, neutral, sad, and surprised. The head pose was labeled as one of nine catego-
ries: left-45, left-90, right-45, right-90, back, front, looking-down, looking-up, and occluded. These annotations 
of face attributes were provided for every video frame in which a face was detected. Annotations were performed 
by two independent annotators and discrepancies between the annotators were resolved through discussion and 
consensus.

Scene cuts in the video were also manually annotated. Scene cuts were defined as a quick pixel-wise transi-
tion between two consecutive shots accompanied by a change in video content or camera angle. Annotations 
included the start and end time of each scene cut, as well as the type of cut (e.g., cut, dissolve, fade-out/in). Scene 
cuts were also categorized into two types based on manual annotations: continuity cuts and scene changes. 
Continuity cuts are changes in the camera angle or view, where there is no significant change in the movie con-
tent or location; the subsequent scene flows smoothly from the previous one, maintaining narrative continuity. 
Scene changes are transitions that involve a noticeable shift in content or setting, with the new scene introduc-
ing different characters, locations, or events, leading to a distinct break in the narrative or visual presentation.  
The movie contained 80 continuity cuts and 13 scene changes.

LFP and iEEG data processing.  The data from microwires and macroelectrodes underwent several pro-
cessing steps before validating data quality. First, a notch filter (zero-double phase, FIR filter at 60 Hz and its 
harmonics) was applied to attenuate power-line noise. Next, a high-pass filter with a cut-off frequency of 0.1 Hz 
was used to remove slow fluctuations and drifts in the signal. The channel data were then re-referenced to the 
common average signal to eliminate common noise and trends. Following re-referencing, time-frequency wave-
let decomposition was performed using the Morlet transform with five wavelet cycles for frequencies within the  
70 to 170 Hz range, spaced by 10 Hz increments. The power of the signal in each 10 Hz frequency band was 
z-scored across time to partially correct for the 1/frequency decay of signals. Finally, z-scored power estimates 
were averaged across frequency bands to obtain a single high-frequency broadband (HFB) time-course per 
channel.

Data Records
Electrophysiology.  All data collected in the EMU (electrophysiology, eye tracking, and behavioral recog-
nition ratings) were standardized following the NWB data format18. We followed the description of the fields we 
used from NWB for our data that we published previously52. Each NWB file includes various types of data: (1) 
spike times of all sorted neurons; (2) the LFP from all microwires, which were downsampled to 1000 Hz using 
decimation, after applying an anti-aliasing low-pass filter53 set at 500 Hz. Notably, the data was acquired with a 
0.1 Hz high-pass filter, resulting in our LFP/iEEG data being bandpass filtered at 0.1–500 Hz; (3) the field poten-
tials from all iEEG macroelectrodes, similarly downsampled to 1000 Hz; (4) behavior; (5) electrode locations; 
(6) spike sorting quality metrics; and (7) eye tracking data. The full dataset54 is available on DANDI as Dandiset 
000623.

Synchronization (electrophysiology).  TTL pulses were sent from the stimulus presentation computer 
to the intracranial recording system and the eye tracker to synchronize the three different clocks in these three 
systems to events. In each system, TTLs were written in a log file together with timestamps of the individual 
system’s own clock and additional task-specific information such as the number of the specific frame displayed 
during movie watching or the value of a key pressed during the recognition memory task. The following TTL 
values were used: start of experiment block = 61, end of experiment block = 66, start of the movie = 4, end of the 
movie = 10, instruction screen for the recognition memory task = 52, key press to pass the instruction screen or 
to record the recognition task confidence rating = 33, start probe for a recognition memory trial (image pres-
entation onset) = 7, start of inter-trial interval (ITI) between the key press and the next recognition trial = 9. In 
addition, during movie watching, a TTL signal was sent every second (cycling through the numbers from 40 to 
49 every ten seconds) to serve as a time marker to log the frame number at each second throughout the movie 
duration. Furthermore, the eye tracker recorded the timestamp corresponding to each frame displayed during the 
movie watching phase. These timestamp logs allowed precise alignment of brain activity with specific moments 
in the movie or the recognition memory task, enabling accurate analysis of neural responses to the stimuli and 
tasks. At the beginning of the movie and after every second of movie watching, TTLs were sent immediately after 
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the first frame of that part of the movie was displayed (as indicated by psychophysics toolbox). Therefore, the 
maximal uncertainty with respect to the TTL of what is shown on the screen is ~16 ms.

Structural and Functional MRI.  The raw DICOM MRI data, including high resolution structural, 
field mapping, and BOLD functional data, was converted and organized according to the BIDS data format19. 
Deidentified MRI data55 (with coded subject IDs, scan date removed, month and year of birth only in metadata, 
voxelated faces in structural images) are available on OpenNeuro as dataset ds004798.

Synchronization (fMRI).  The movie presentation was synchronized to the MRI acquisition using a TTL 
trigger generated by the pulse sequence for the first slice of the first acquired volume. This trigger signal was 
converted into a synthetic keypress, which was captured by the stimulation control software (Psychophysics 
Toolbox). Once the movie was triggered, its frame display was accurately controlled by the stimulation script. The 
script generated a log file that recorded the frame count every second during the video presentation, similar to 
how electrophysiology synchronization was handled above.

Annotations.  As described above, we provide the following annotations for the movie: (i) face annotations, 
including face areas, emotions, and head pose; (ii) scene cut annotations, including time information and the type 
of the cut (see Movie annotations above). The annotations regarding various face attributions and scene cuts are 
organized in a pickle format and a CSV format file, respectively. The annotation files20 are available on Figshare.

Technical Validation
Number of neurons isolated and spike-sorting quality metrics.  We recorded 1450 neurons in total 
from the amygdala, hippocampus, vmPFC, ACC, and preSMA across 29 sessions involving 16 subjects (Fig. 2h). 
There were on average 1.99 units per wire (only counting wires with at least one isolated neuron) and the mean 
firing rate of neurons was 2.47 ± 3.32 (mean ± standard deviation, s.d.; Fig. 2a,b). We assessed spike sorting qual-
ity using our standard set of metrics56–58 (see Fig. 2a–g): (i) the percentage of interspike intervals (ISIs) below 3 ms 
was 0.40% ± 0.53% (Fig. 2c), showing that neurons were well isolated without refractory period violations; (ii) the 
ratio between peak amplitude of the mean waveform of each cluster and the standard deviation of the noise was 
5.95 ± 3.48 (Fig. 2d; peak SNR) and the mean SNR was 2.07 ± 1.13 (Fig. 2e); (iii) the pairwise projection distance 
in clustering space between all neurons isolated on the same wire was 11.98 ± 8.93 (Fig. 2f, projection test; in units 
of s.d. of the signal); and (iv) the median isolation distance was 24.90 (Fig. 2g). The location of each neuron is 
indicated in MNI152 coordinates and illustrated in Fig. 2i.

Eye tracking data quality (behavior).  The quality of eye tracking data was assessed in two ways. First, 
the percentage of missing gaze data (either missing data points from the eye tracker or gaze out of the stimulus 
presentation monitor) was computed for each participant. The gaze data was missing at more than half of the 
movie watching duration only for one participant (P53CS, the percentage of missing data was 74% in the first run 
and 84% in the second run of the movie watching phase). The gaze data from this participant was excluded from 
the eye tracking data quality analysis. Second, temporally binned heatmaps were used to measure the similarity of 
each participant’s gaze pattern to a reference heatmap generated from the aggregate gaze data of all participants, 
and both were constructed using gaze data from 1-s epochs of the movie. The reference heatmap represented the 
visual salience of the movie at the respective time bin. The Pearson correlation was used to compute the simi-
larity between the heatmaps at each time bin and the correlation values were averaged across all time bins for 
each participant. We found that the individual participant’s gaze patterns were highly correlated with the refer-
ence visual salience (Pearson’s r = 0.75 ± 0.12, mean ± s.d., across participants and runs, correlations were Fisher 
z-transformed prior to averaging, and then the average and s.d. were inverse Fisher-transformed) while having 
low percentages of missing gaze data (7% ± 8%) (Fig. 3a). These eye tracking results are consistent with previously 
reported data in healthy subjects29 and suggest that the participants were highly engaged with the movie stimulus 
during the experiment.

New-old task performance (behavior) in EMU.  To obtain event-based neurophysiological data that 
complement the movie data (cf. Introduction) and also to help assess whether participants paid attention to the 
movie, we asked participants to perform a recognition memory test after they watched the movie. Participants 
provided new/old ratings on a confidence scale from 1 (new/novel, not seen during movie watching, sure) to  
6 (old/familiar, seen during movie watching, sure; Fig. 1b). Participants had excellent memory: their average 
accuracy across all confidence levels was 0.79 ± 0.19 AUC (Fig. 3b). In addition, there was no significant differ-
ence in memory accuracy between the first and second run for the 13 participants who performed the two runs 
of movie watching and recognition memory tasks (run #1: 0.79 ± 0.14; run #2: 0.79 ± 0.24 AUC; p = 0.960, paired 
t-test). Furthermore, participants provided accurate confidence judgments, with accuracy significantly higher for 
high compared to low confidence judgments (Fig. 3c). Together, this behavioral data indicates that participants 
attentively watched the movies and that they formed declarative memories59 for the content of the movies.

Imaging data quality.  To validate the fMRI data, we examined various metrics that assess data quality for 
motion artifacts, signal-to-noise ratio, and consistency across individual participants. Firstly, we examined par-
ticipant motion during the scans, quantifying framewise displacement and identifying motion outliers. Based on 
the motion parameters estimated by fMRIprep30, we found that participants exhibited minimal motion, with a 
low median framewise displacement of 0.15 mm (minimum median across participants was 0.09 mm, maximum 
was 0.38 mm, see Fig. 4a), and a small percentage of volumes (median = 1.8%; min 0.2%, max 14.8%) marked as 
motion outliers by fMRIprep.

https://doi.org/10.1038/s41597-024-03029-1
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Next, we investigated the temporal signal-to-noise ratio (tSNR) as a measure of data quality across the 
whole brain and across different cortical areas. We estimated tSNR for each participant in both the partic-
ipant’s anatomical space (to minimize potential interpolation effects) and the fsaverage template space.  
The mean whole-brain tSNR across participants was 67.56 ± 8.29, mean ± s.d., consistent with previous data-
sets49,60, suggesting robust signal quality (see Fig. 4b). In addition, we observed expected variations in tSNR 
across brain regions, with higher values in dorsal areas and lower values in anterior temporal and orbito-frontal 
cortex and subcortical regions arising from the receive coil sensitivity profile and local signal dropout due to 
static field inhomogeneities (see Fig. 4c).

Finally, we used the Inter-subject Correlation (ISC) metric51 to assess the consistency of brain responses to 
the movie stimulus across participants (see Fig. 5). The ISC analysis confirmed that the stimulus elicited com-
parable brain responses among participants, showing high ISC values in visual and auditory areas as expected 
for an audio-visual movie stimulus. Furthermore, brain regions associated with processing social information, 
such as the precuneus, temporo-parietal junction (TPJ), and medial prefrontal cortex (MPFC), demonstrated 
elevated ISC values. This suggests that the movie content effectively engaged participants in processing social 
aspects of the narrative.

Neuronal responses (recognition memory phase).  To validate the neural data, we examined the neural 
correlates of novelty/familiarity during the recognition memory task. We only used correct trials for this analy-
sis, i.e., we compared true positives (familiar) with true negatives (novel). Note that this analysis is restricted to 
recognition and does not present any analysis of signals at encoding. We referred to cells or channels as ‘memory 
selective’ if their response (average firing rate or HFB power, respectively) in a 1.5 s window starting 200 ms 
after stimulus onset differed significantly between novel and familiar trials (bootstrap comparison of means with 
10,000 runs, p < 0.05). Of the overall 1450 recorded neurons, 1266 were included in this analysis. The remainder 
was excluded based on these behavioral criteria: i) behavioral AUC > 0.6 on all trials, ii) less than 10 correct 

Fig. 3  Eye tracking data quality during movie watching and behavioral ROC curves for recognition task for 
the EMU sessions. (a) Eye tracking data quality was assessed using two measures: the correlation between 
each participant’s gaze heatmap and an average gaze heatmap generated from all participants’ gaze data (blue 
bar chart), and the percentage of missing gaze data (gray bar chart). Higher correlation values and lower 
percentages of missing data indicate better quality. Error bars show the standard deviation of correlations across 
time bins, calculated from the 16th and 84th percentiles of z-transformed correlation values. (b) Behavioral ROC 
curves for each individual session (grey) and the average across all sessions (blue) for the recognition task. Each 
dot represents a different confidence level, with the highest confidence level (6) corresponding to the point with 
the lowest false alarm rate. (c) Relationship between confidence and accuracy for recognition task. Each line 
shows the accuracy of responses for high- and low-confidence trials for each individual session. The vertical 
lines show the standard deviation across all sessions. Accuracy was significantly different between high- versus 
low-confidence trials (p < 0.001, paired t-test).
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trials per condition59. Excluded patients and runs were P44CS run 1, P51CS run 2, P56CS run 2, P57CS runs 1 
and 2. Significant proportions of cells were memory selective in the amygdala (32/436, p = 0.015, permutation 
test with 2,000 shuffling of average firing rates across trials for each cell), ACC (22/186, p = 0.002), and vmPFC 
(14/150, p = 0.016) but not the hippocampus (14/238, p = 0.30) and preSMA (17/256, p = 0.17). The properties 

Fig. 4  Assessment of fMRI data quality. (a) Framewise displacement in mm for each participant across all runs. 
The violin plots show the minimum, median, and maximum values, along with the distribution of underlying 
values. (b) Whole-brain tSNR distributions for each participant, computed using a brain mask that was 
generated from each participant’s native anatomical space. The tSNR values were computed for individual voxels 
in this mask and then averaged across the two runs. (c) Mean whole-brain tSNR across runs and participants, 
computed using data that was projected onto the fsaverage template surface.
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of the selected memory selective cells are comparable to those in similar tasks in published work (Fig. 6a,b show 
examples), including the finding that memory selective cells are more common in the amygdala compared to the 
hippocampus in some tasks1,26. We next repeated the same analysis using HFB power for the local field poten-
tials recorded on the microwires as well as the macroelectrodes that were in the same target structures. For the 
LFP, significant proportions of channels were memory selective in the amygdala (37/368, p = 0.002, permuta-
tion test with 2,000 shuffling of average HBF power across trials for each channel), ACC (33/368, p = 0.028), 
and preSMA (40/368, p = 0.001) but not hippocampus (17/368, p = 0.90) and vmPFC (28/336, p = 0.05). At the 
iEEG level (macro channels), significant proportion of channels in the ACC (41/368, p < 0.001), vmPFC (34/368, 
p = 0.012), and preSMA (45/368, p < 0.001) but not the amygdala (25/368, p = 0.47) and hippocampus (32/368, 
p = 0.067) were memory selective for HFB power (Fig. 6c,d show examples). Together, this analysis confirms that 
memory-selective signals were present at both the single-neuron and LFP level. We note that in this analysis we 
only used correct trials and we are therefore not differentiating between decision and memory signals26.

The brain areas for which significant percentages of memory-selective cells and/or LFP/iEEG channels were 
found varied by signal modality. For example, the ACC showed memory selectivity in all three modalities, the 
hippocampus showed selectivity in none of them, and the amygdala showed selectivity at the single-cell and LFP 
but not iEEG level. These discrepancies indicate that these three signal modalities are distinct, an aspect that our 
dataset is well suited to investigate. Lastly, we hypothesize that the absence of significant memory selectivity in 
the hippocampus in all three signal modalities is due to a lack of statistical power because we have seen before 
that memory selective cells in the hippocampus are weaker and less common than those in the amygdala in 
some tasks26.

Neuronal responses (movie watching phase).  To validate the neural data recorded during the movie 
watching phase, we analyzed the neural responses to two types of scene cuts: continuity cuts and scene changes 
(see Movie Annotations). Continuity cuts refer to changes in the camera view without significant alterations in 
the movie content or location, while scene changes involve noticeable shifts in content or setting, leading to new 
episodes (events) in the movie. We referred to cells or channels as ‘event selective’ if their response (average firing 
rate or HFB power, respectively) in a 1.0 s window starting from a scene cut onset differed significantly between 
scene changes and continuity cuts (bootstrap comparison of means with 10,000 runs, p < 0.05). Significant pro-
portions of cells were event selective in the vmPFC (10/175, p = 0.005, permutation test) and preSMA (20/299, 
p < 0.001) but not in the amygdala (15/479, p = 0.081), ACC (7/236, p = 0.224), and hippocampus (8/261, 

Fig. 5  Functional inter-subject correlation. Functional Inter-subject Correlation (ISC) maps of BOLD 
responses during movie watching. The analysis reveals consistent activation in visual and auditory areas, as 
well as in regions associated with social cognition (such as precuneus, medial prefrontal cortex, and temporo-
parietal junction) and higher-order cognitive processes (such as prefrontal areas), highlighting the responses to 
complex, real-world stimuli, particularly those with social relevance.
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p = 0.199; Fig. 7a,b show examples). We next repeated the same analysis using HFB power for the local field 
potentials recorded on the microwires as well as the field potentials from the macroelectrodes that were in the 
same target structures. For the LFP, significant proportions of channels were event selective in the amygdala 
(20/448, p = 0.005, permutation test), hippocampus (40/448, p < 0.001), ACC (33/448, p < 0.001), vmPFC 
(15/400, p = 0.015), and preSMA (22/448, p = 0.001). At the iEEG level (macro channels), significant proportion 
of channels in the amygdala (67/448, p < 0.001), hippocampus (41/448, p < 0.001), ACC (25/448, p < 0.001), 
vmPFC (33/449, p < 0.001), and preSMA (21/448, p = 0.002) were event selective (Fig. 7c,d show examples). 
Together, this analysis confirms that event selective signals were present at both the single-neuron and LFP level.

Usage Notes
The NWB files are labelled by patient ID and session number. For manipulating an NWB file in Python, such as 
reading the file in and using the fields and functions associated with NWB classes, see the provided code in the 
GitHub repository (see Code Availability) and the pynwb module documentation18. All single-unit spike times 
(found in NWBFile.units) are referenced to the movie start. Note that LFP samples (found in NWBFile.process-
ing[‘ecephys’]) from 10 s before movie start are included for baseline and to reduce edge effects in time-frequency 
analyses. To create timepoints for the LFP samples, start at 10 seconds before the starting time (ElectricalSeries.
starting_time) and increment by 1/sampling frequency (ElectricalSeries.rate, 1000 Hz). Samples taken during 
movie watching start at 10 s. Spike detection was conducted in blocks of 16 seconds25, with the spike detection 
threshold determined based on the standard deviation of the signal in that block. If there was high-amplitude 
noise or an artifact in a given block, it is possible that no spikes are detected in an entire 16-second-long block. 
This effect can be seen in raster plots for certain units and does not mean the unit did not fire during that time 
block. For the exact time points of frames in a given session, such as finding the time of a frame when a scene 
cut occurs, we recommend using the times found in NWBFile.stimulus[“movieframe_time”]. The movie has a 
frame rate of 25 Hz. Depending on the Python package used to load the movie, the number of frames may differ. 
We recommend using a package such as OpenCV for a total of 11971 frames. For the time points of experiment 
events, such as when the movie ended, we recommend using the times found in NWBFile.trials. Note that there 
was a variable delay between the end of the movie and the start of the recognition trials, but electrophysiology 
data is still included for that time in between these two events. To determine in which brain area a particular unit 
is located, we recommend taking the electrode ID from NWBFile.units and looking up the electrode location 
in NWBFile.electrodes. It is helpful to convert both the NWBFile.units and NWBFile.electrodes into pandas 
DataFrames. For anonymity, the session dates (NWBFile.session_start_time) are not the actual dates of the 
sessions. All structural MR images are deidentified by irreversible face voxelation using voxface (https://github.
com/jmtyszka/voxface).

Fig. 6  Example memory selective neurons and channels. (a,b) Responses during the recognition task from two 
sample memory neurons located in (a) the pre-supplementary motor area (preSMA), showing a firing increase 
for familiar stimuli (familiarity selective) and (b) anterior cingulate cortex (ACC), showing a firing increase 
for novel stimuli (novelty selective). Top, raster plot; bottom, PSTH (bin size = 250 ms). Trials are aligned to 
stimulus onset (red line) and ordered by stimulus type (novel versus familiar) for illustration purposes. Error 
bars indicate the standard error of the mean values. (c,d) Average HFB responses from two sample channels 
recorded from a macroelectrode in the preSMA and a microwire in the ACC, respectively; both showing a 
response increase for novel stimuli (bin size = 250 ms). Significance of selection criteria (bootstrap test, novel 
versus familiar) was p = 0.003 (a), p < 0.001(b), p < 0.001 (c), p < 0.001 (d).
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Code availability
All code is available in the GitHub repository (https://github.com/rutishauserlab/bmovie-release-NWB-BIDS). 
The python code includes scripts to read and plot the data from the NWB files and perform the analyses presented 
in this data descriptor. The code relies heavily on open-source Python packages such as numpy61, scipy62, pynwb18, 
mne-python63, nilearn48, and pycortex64. The movie annotation files are also provided in the GitHub repository 
under ‘assets/annotations’ folder. The scripts related to the estimation of tSNR and ISC were adapted from the 
code provided in the GitHub repository associated with the budapest-fmri-data study49,50 (see: https://github.
com/mvdoc/budapest-fmri-data).
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