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Abstract—We present a new framework based on quantization
theory to design cellular networks optimized for both legacy
ground users and uncrewed aerial vehicle (UAV) corridors,
dedicated aerial highways for safe UAV flights. Our framework
leverages antenna tilts and transmit power at each base station
to enhance coverage and quality of service among users. We
develop a comprehensive mathematical analysis and optimization
algorithms for multiple system-level performance metrics,
including received signal strength and signal-to-interference-plus-
noise ratio. Realistic antenna radiation patterns and propagation
channel models are considered, alongside a generic 3D user
distribution that allows for performance prioritization on the
ground, along UAV corridors, or a desired tradeoff between the
two. We demonstrate the efficacy of the proposed framework
through case studies, showcasing the non-trivial combinations of
antenna tilts and power levels that improve coverage and signal
quality along UAV corridors while incurring only a marginal
impact on the ground user performance compared to scenarios
without UAVs.

Index Terms—UAVY, drones, aerial corridors, cellular networks,
quantization theory.

I. INTRODUCTION
A. Motivation and Related Work

Uncrewed aerial vehicles (UAVs), commonly known as
drones, are expected to contribute to extraordinary economic
growth and societal transformations. Thanks to their low
cost and high mobility, UAVs will become of paramount
importance for goods delivery, surveillance, search and rescue,
and the monitoring of wildfire, crowds, and assets [2]-[4].
With rising urbanization pushing ground transportation to
its limits, electrical vertical take-off and landing vehicles
(eVTOLs) serving as air taxis or ambulances would take
urban mobility to new heights, contributing to a faster, safer,
and more interconnected transportation system. Autonomous
levitating pods are no longer science fiction as projects and
tests are underway, and they could redefine how we commute
and, in turn, where we live and work [5]. For these and other
applications, UAVs will need to exchange an unprecedented
amount of real-time data with the network, requiring ultra-
reliable wireless connectivity. The latter must support safe
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UAV operations through low-latency control and mission-
specific data payloads, persuading legislators to ease the
current regulations on civilian pilotless flights and giving the
green light to autonomous UAVs and the associated vertical
markets [6]-[10].

Achieving fly-and-connect capabilities faces important
hurdles. Traditional cellular base stations (BSs) are designed
to optimize 2D connectivity on the ground. As a result,
UAVs can only be reached by their upper antenna sidelobes,
and their movement causes sharp signal fluctuations [11]. In
addition, UAVs flying above buildings receive and create line-
of-sight (LoS) interfering signals from a plurality of BSs.
This interference results in UAVs experiencing a degraded
signal-to-interference-plus-noise ratio (SINR), which hinders
the correct decoding of critical command and control messages
[12], [13]. The mobile industry and academia have long joined
forces to pursue 3D connectivity, i.e., also up in the air,
by re-engineering the deployments originally built for the
ground. Short-term solutions are being implemented to handle
a few network-connected UAVs without compromising the
performance of existing ground users, e.g., via time/frequency
separation [14], [15]. However, this approach becomes
increasingly inefficient as the number of UAVs grows because
it requires dedicated radio resources for each UAV. More
advanced proposals for ubiquitous aerial connectivity rely on
network densification [16]-[20], dedicated infrastructure for
aerial services [21]-[23], joint sensing and communication
[24], or satellites complementing the ground network [25].
Nonetheless, these proposals may require costly hardware or
signal processing upgrades and still face difficulties providing
ubiquitous connectivity to a multitude of aerial devices [2].

The above circumstances rest on the assumptions that
UAVs will fly unrestricted and cellular networks will need
to guarantee connectivity at every 3D space location.
However, just like ground vehicles and piloted aircrafts, as
UAVs proliferate, their transit could be confined to specific
aerial highways, denoted as UAV corridors and defined by
appropriate air traffic regulation authorities [26], [27]. These
corridors are designated aerial routes through which UAVs
can travel. These aerial pathways are reserved to reduce the
risk of collision, disrupting the existing air traffic, and easy
integration with the current airspace management system. With
the majority of UAVs flying along corridors, the operators’
goal turns from providing sky-wide network services to
guarantee corridor-wide reliable connectivity, as illustrated in
Fig. 1. As the concept of UAV corridors gets traction, the
community has been studying UAV trajectory optimization.
The work in [28], [29] presents an online framework to
refine the UAV trajectory on-the-fly; however, their method



is not directly applicable to UAV corridors. The work in [30]-
[33] aim to match the route of a UAV to the best network
coverage pattern; however, the definition of UAV corridors
will likely be network-agnostic and safety-driven, leaving
very limited freedom for UAV trajectory optimization and
a crucial need for a 3D network optimization. More recent
work has targeted tuning cellular deployments to cater for
UAV corridors through system-level simulations, large-scale
optimization, or the theoretical analysis of a simplified setup
[34]-[39]. Nevertheless, there is an unmet need for a general
mathematical framework allowing the analysis and design
of cellular networks for both legacy ground users and UAV
corridors.

Stochastic geometry is commonly used for modeling spatial
dynamics of wireless networks, facilitating the assessment of
coverage and statistical analysis of interference across the
network [40], [41]. This mathematical framework employs
point processes to represent the random spatial distribution
of network nodes [42], [43] and has proven successful in
modeling and design of wireless networks with random
topologies [44]. While stochastic geometry is a powerful tool
in analyzing large-scale behaviors of both UAV and non-UAV
networks, its inherent dependence on randomness renders it
less suitable for cellular networks with structured layout and
deterministic node positions.

Quantization theory, on the other hand, is a mathematical
framework that is particularly effective in analyzing
structured networks with a finite number of deterministically
located nodes. While quantization theory may become
computationally complex for large-scale networks, it enables
more accurate modeling and optimization of network
performance under controlled deployments. This mathematical
framework has been successfully applied to problems
involving non-UAV networks, such as the optimal deployment
of antenna arrays [45], access point placement for the optimal
throughput [46], [47], and power optimization in wireless
sensor networks [48]-[58]. Applications of quantization theory
have also been extended to UAV networks. Examples include
trajectory optimization and deployment of UAVs [59], [60],
optimal UAV placement for rate maximization [61], and the
deployment of UAVs as power efficient relay nodes [62].

B. Contribution and Summary of Results

In this paper, we take the first step towards creating the
mathematical framework discussed in Section [-A through
quantization theory. Specifically, we determine the necessary
conditions and design iterative algorithms to optimize the
antenna tilts and transmit power at each BS of a cellular
network to provide the best quality of service to both
legacy ground users and UAVs flying along corridors. To
the best of our knowledge, this is the first work doing so
in a rigorous yet tractable manner, while accounting for a
realistic network deployment, antenna radiation pattern, and
propagation channel model.

We conduct a comprehensive mathematical analysis and
develop optimization algorithms for three system-level
performance metrics, each averaged across all users within

Fig. 1: Illustration of a cellular network with downtilted and
uptilted BSs providing coverage to ground users as well as
UAVs flying along corridors (blurred gray).

the target region: (i) average received signal strength (RSS),
which is a fundamental metric for assessing the basic reach
of the radio signal from base stations at user locations and
serves as a proxy for coverage; (ii) average SINR, which also
takes the interference from neighboring cells into account and
serves as a proxy for quality of service, such as the data rate;
and (iii) max-product SINR and soft-max-min SINR, which
allow to trade quality of service for fairness among users
through tunable hyperparameters. Our analysis accommodates
a generic 3D user distribution, enabling prioritization of
performance on the ground, along UAV corridors, or any
desired tradeoff between the two.

To illustrate the effectiveness of our mathematical
framework, we further present multiple case studies, whose
main takeaways can be summarized as follows:

e As expected, optimizing the antenna tilts for average
RSS, with a focus on ground users or UAV corridors,
results in all BSs either being downtilted or uptilted,
respectively. However, by pursuing a tradeoff between the
ground and the sky, we achieve a non-trivial combination
of uptilted and downtilted antennas. This arrangement
involves a subset of BSs catering to UAV corridors while
maintaining coverage on the ground.

o Optimizing the network for SINR leads to a subset
of BSs operating at maximum power, while the
remaining ones operate at lower power levels or are
altogether deactivated. This arrangement aims to provide
a sufficiently strong signal while mitigating intercell
interference, especially along UAV corridors.

o Through the optimal combinations of antenna tilts and
transmit power, which are non-obvious and otherwise
difficult to design heuristically, our proposed algorithms
significantly enhance coverage and signal quality along
UAV corridors. These improvements are achieved with
only a marginal reduction in ground performance
compared to a scenario devoid of UAVs.

The remainder of the manuscript is organized as follows.
Section II outlines the system model and problem formulation.



The network configuration for the optimal RSS is discussed
in Section III. Section IV studies the network setup for the
optimal SINR averaged across network users. Section V entails
the experimental results for our case study and Section VI
concludes the paper.

II. SYSTEM MODEL

The cellular network under consideration is depicted in
Fig. 1 and detailed as follows.

A. Network Topology

1) Ground Cellular Network: The underlying infrastructure
of our network is a terrestrial cellular deployment consisting
of N BSs that provide service to network users. The location
of BS n is denoted by p,, for each n € {1,---,N}. Let
® = (61, --,0n) where 6,, € [-90°,490°] is the vertical
antenna tilt of BS n, that can be adjusted by a mobile
operator, with positive and negative angles denoting uptilts
and downtilts, respectively. Let p = (p1,- -, pn) where p,
is the transmission power of BS n, measured in dBm, which
is also adjustable by a mobile operator with a maximum value
of pmax. We denote the antenna horizontal boresight direction
(azimuth) of BS n by ¢,, € [-180°,4180°] which is assumed
to be fixed upon deployment.

2) UAV Corridors and Legacy Ground Users: There are
two types of users being served by the BSs: (i) UAVs
that traverse a region Qu = Uffgl Q. consisting of Ny
predefined aerial routes/corridors (),; and (ii) ground-users
(GUEs) that are dispersed over a 2D region Q¢. Let A(q) be
a probability density function that represents the distribution
of users in the target region Q = QulJQ¢. For the
simplicity of presentation, we assume that A(g) is known
and independent of time; however, our proposed framework
is equally applicable for the online setting where A(q) varies
with time. Each user is associated with one BS; thus, the
target region ) is partitioned into N disjoint subregions
V = (V1,--+,Vn) such that users within V,, are associated
with BS n.

B. Channel Model

In this manuscript, we explore practical applications of our
method for radio access network optimization, specifically
focusing on long-term cell planning decisions like base station
configuration for optimal coverage. To this end, we consider
large-scale fading throughout the remaining sections since
small-scale fading affects instantaneous signal quality and its
effect can be mitigated via advanced channel coding schemes.

1) Antenna Gain: The BSs use directional antennas with
vertical and horizontal half-power beamwidths of 6335 and
¢3aB, respectively. Let A« be the maximum antenna gain
at the boresight and denote the vertical and horizontal antenna
gains in dB by AY _ and AX | respectively. Directional

n,q n,q>
antenna gains are given by [63]:
12 12
Ax,q = 7027 [en,q - gn]z y qu = "5 [¢n,q - ¢n]2 5
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where 6, 4 and ¢, 4 are the elevation angle and the azimuth
angle between BS n and the user location g € @, respectively.
These angles can be calculated as:

0,q = tan™! de Doy - @)
\/(qx _pn,x) + (Qy - pn,y)
B tan—! % +180° x 2¢ if gx —pnx >0
Pn.q = tan—1( B=Pny

qx —Pn,x +1800 x (26 + 1) if dx — Pn,x <0

where subscripts -, and -, denote the horizontal and vertical
Cartesian coordinates of a point, respectively, and -, denotes
its height. The integer c is selected such that —180° < ¢, g —
¢n < 4+180°. Thus, the total antenna gain of BS n in dB is
given by A, g = Amax + A .+ Al .

2) Pathloss: The pathloss L,, 4 between BS n and the user
location q is a function of their distance and given by:

Ly,q = aq + bglogyg (HQ*an), (3)

where aq depends on the carrier frequency and bg relates to
the line-of-sight condition and the pathloss exponent, which
depends on the BS deployment feature and the user height at
q. In our case study in Section V, we utilize practical values
for the constants aq and bg that are adopted from the 3GPP
studies [15], [63].

In the remainder of the manuscript, we assume that the BS
location p,, and the azimuth orientation ¢,, are fixed for all
n € {1,---,N}. We optimize over the vertical antenna tilts,
cell partitioning, and BS transmission powers for multiple
performance metrics that are introduced in the next two
sections.

III. OPTIMAL RSS IN CELLULAR NETWORKS
A. Problem Formulation

Our aim in this section is to optimize the average RSS across
all users within the target region @. The RSS from BS n,
measured in dBm, provided at the user location q is given by:

RSSS};?H(q; en) = pn + An,q - Ln,q = pn + Amax

12 12
- 92 [en;q - 971]2 - QST [¢n,q - ¢n]2
3dB 3dB

— aq — bglogyg (Hq *Pn“)- 4

The overall performance function, i.e., the RSS averaged over
all network users, is given by:

N
Pass(V,0) = Y / RSSn(7: @)\ (@)dg.  (5)
n=1 n

In what follows, we seek to maximize the performance
function ®gss in Eq. (5) over the cell partitioning V' and BS
vertical antenna tilts ©.

Remark 1. Due to the absence of interference from
neighboring cells, optimizing ®Prss w.r.t. the BS transmission
powers p always reduces to allocating the maximum
transmission power pmax to each BS. Hence, we only optimize
over the cell partitioning and BS vertical antenna tilts while



assuming that the BS transmission powers p are given and
fixed.

Remark 2. The RSS function in Eq. (4) is not necessarily a
non-increasing function of the distance between the BS and the
user. This is because while moving away from the BS worsens
the pathloss component, it may lead to a better antenna gain
and thus, an overall RSS value.

B. Analytical Framework

Our goal is to optimize the performance function $pgs over
variables V' and ©. Not only does the optimal choice of
each variable depend on the value of the other, but also this
optimization problem is NP-hard. Our approach is to design
an alternating optimization algorithm that iterates between
updating V' and ©. In quantization theory, variations of the
Lloyd algorithm [64], [65] have been used to solve similar
optimization problems. Inspired by quantization theory, we
need to: (i) find the optimal cell partitioning V' given a set of
BS vertical antenna tilts ®; and (ii) find the optimal vertical
antenna tilts ® for a given cell partitioning V. The solution
of the first task is a generalized Voronoi tessellation [66], [67]
carried out via the following proposition:

Proposition 1. For a given set of BS vertical antenna tilts ©,
the optimal cell partitioning V*(®) = (V;*(©),--- ,V3(©))

that maximizes the performance function ®rgg is given by:

V;:(©) = {q € Q| RSS{h(q; 6) > RSSSss(q; 61),
forall 1 <k < N},

for each n € {1,--- | N}. The ties can be broken arbitrarily.

Proof. Let W = (Wy,---,Wy) be any arbitrary cell
partitioning of the target region (). Then:

N
Pan(W.0) = 3 [ 5832 (a: @M a)dg
W

N
<3 [ s e @) Maa

|
\:i

| max [Rssiia(a:©)| M(a)da

/ max [R5, (4: ©))| Ma)dg

|
I MZ I

SSdBm q; ®)\(q)dq
= q)dBm( ; )7
ie., V* achieves a performance no less than any other
partitioning W and is optimal. |

For the second task, our approach is to apply gradient
ascent to find the optimal BS vertical antenna tilts ® for
a given cell partitioning V. Gradient ascent is a first-order
optimization algorithm that iteratively refines the estimate of
a locally optimal ® by following the direction of the gradient.

Proposition 2. The partial derivative of the performance
Sfunction ®rgs w.rt. 0y, is given by:

N
o0(V,0) 24 ~ /
=Y On.q —
00, 9?0,3{“_1 vn(e)ng 4

+/ (On.q — 9n)>\(Q)dQ}- )
Vn(e)mQG

Proof. The partial derivative of Eq. (5) w.r.t. 8,, consists of
two components: (i) the derivative of the integrand; and (ii) the
integral over the boundaries of V,, and its neighboring regions.
For any point g on the boundary of neighboring regions V/,
and V,,,, the normal outward vectors have opposite directions
and we have RSS®) (¢;©) = RSS(® (g; ©); thus, the sum

of elements in the second component is zero [48]. The first
component evaluates to:

0r)\(q)dgq

9B(V,®)
90,,

(a) 24 /
932dB { uz::l Vo (©)NQu !

+ / (en,q - en)A(Q)dq}v (8)
JVa(®)NQe

where (a) follows from the definition of Q@ = Qu |J Q¢, and
the proof is complete. |

0 oslo
/V <o 90, TS5 0) A (a)dg

C. Proposed Algorithm

With our two tasks accomplished in Propositions 1 and 2,
we propose the maximum-RSS vertical antenna tilt (Max-RSS-
VAT) iterative optimization algorithm outlined in Algorithm 1.

Algorithm 1: Maximum-RSS vertical antenna tilt
(Max-RSS-VAT) optimization
Result: Optimal BS vertical antenna tilts ®* and cell
partitioning V'*.
Input: Initial BS vertical antenna tilts ® and cell
partitioning V, learning rate 7o € (0, 1), convergence
error thresholds €1, e € RT, constant x € (0,1);

do
— Calculate (I)gcgg) = ‘I)RSS (V, @),
— Update the cell V,, according to Eq. (6) for each
ne{l,--- ,N};
— Set 7 < no;
do

— Calculate &g = Ppgs (V,0);

— Calculate W according to Eq. (7) for
eachn e {l,---,N};
— NN XK;

-0+ O+ nVedss(V,0);
— Calculate @, = Ppgs (V,09);
while 2 ‘I’A > €1;

(new) __
- Calculate Bpoa’ = Ppss (V,0);
q)(mw) q)(uhl)
while 7“5@(“,4; BSS. > €9

RSS




Proposition 3. The Max-RSS-VAT algorithm is an iterative
improvement algorithm and converges.

Proof. Proposition 1 indicates that updating the cell V,,
according to Eq. (6), as it is done in the Max-RSS-VAT
algorithm, yields the optimal cell partitioning for a given value
of ®; thus, the performance function ®pgg will not decrease
as a result of this update rule. The Max-RSS-VAT algorithm
updates the vertical antenna tilts ® using gradient ascent
where the learning rate at time ¢ is given by 7; = 19 X k.
Because ».,~ 77 < Y o,oq 7 = 7o-no < oo, the gradient
ascent is guaranteed to converge [68] and does not decrease
the performance function ®Ppgss. Hence, the Max-RSS-VAT
algorithm generates a sequence of non-decreasing performance
function values that are also upper bounded because of the
limited transmission power at each BS; thus, the algorithm
converges. ]

IV. OPTIMAL SINR IN CELLULAR NETWORKS
A. Problem Formulation

Our goal in this section is to optimize the average signal-
to-interference-plus-noise ratio (SINR) across all users within
the target region (). Not only is this optimization performed
over the cell partitioning V' and BS vertical antenna tilts ©,
but also this is done over BS transmission power values p.
Indeed, unlike the case of RSS in Section III, BS transmission
power values play a crucial role because of the interference
from neighboring cells. Using the definition of RSSL(;};; in Eq.
(4), we define:

1075355 (@:60n,0n)

(@)
SINR, ;0,p)=10lo .
a (4 P) B10 10 75RSS (230, .05) 4 o2
€))
where o2 denotes the noise variance in linear units. The
performance function, which is the SINR measured in dB and
averaged over all network users, is given by:

J#n

N
(DSINR(Vv 67 p) = Z / SINRR(;;) (q7 67 p)A(q)dqv (10)
n=17Vn

where the constraint in Eq. (11) comes from the fact that for
any BS, say n, the transmission power p,, measured in dBm
cannot exceed pp.x. In what follows, we aim to optimize
the performance function ®sryg over the cell partitioning, BS
vertical antenna tilts, and BS transmission powers.

S.t. pn < Pmax

B. Analytical Framework

Our approach to optimize the performance function ®gryg
over variables V', ©, and p is via an alternating optimization
algorithm that iteratively optimizes each variable while the
other two are held fixed. This goal is carried out over the
following three steps: (i) find the optimal cell partitioning
V for a given BS vertical antenna tilt ® and transmission
power p; (ii) find the optimal antenna tilts ® for a given cell
partitioning and BS transmission power p; and (iii) find the
optimal BS transmission power p for a given cell partitioning

V' and vertical antenna tilts ®. The first step is accomplished
in the following proposition.

Proposition 4. For a given set of BS vertical antenna tilts ©
and transmission power values p, the optimal cell partitioning
V*(©,p) = (Vi(©,p), - ,V3(©,p)) that maximizes the
performance function ®gmyg is given by:

V(©,p)={q € Q| RSS(q; O, pn) > RSSE)(; Ok, o),
forall1<k<N}, (12)

for each n € {1,--- ,N}. The ties can be broken arbitrarily.

The proof of Proposition 4 is provided in Appendix A.

For the second step, we aim to apply gradient ascent to find
the optimal © for a given cell partitioning and BS transmission
power. The following proposition provides the main ingredient
needed for this process.

Proposition 5. The derivative of Eq. (10) w.r.t. the BS vertical
antenna tilt 0,, is given by:

N,
0951 (V, 0, p) 24 U/
06y, 9§d13 uz::l Vn(®,p)ﬂQf

24
+/ (en,q - gn))‘(q)dQ} - GT Z {
Vn(©,p)NQc 3dB j£p

1 (@) (.
(en’q —_ 977,) . 1OWRSSdBm(q‘,‘9n7pn)

.
Zj# 1075RSSE) (a50;.05) 4 g2

A(q)dq}-

(13)

Proof. Similar to the proof of Proposition 2, it can be shown
that the partial derivative in Eq. (13) has two components and
the second component is zero. This is because, according to
Eq. (34) in Appendix A, for any point g on the boundary of
neighboring regions V,, and V,,,, we have SINRgézn(q; O, pr) =
SINRggL(q; O.m, pm) and the unit outward normal vectors have
opposite directions [48]. Thus:

Ny

2 /me,p)nczu

u=1

‘)
Vi(©,p)NQc

Ag)dq

(g — On) - 10T5RSSE@0n 00)
Z#Z— 1058888 (@:05.05) + o2

6‘I’SINR(V7 0, P)
a0,

N (1)
os1nRY (¢q: ©,
/ i 10 p)/\(Q)dq
i—1/Vi(®,p

o 09,

0 n
- / 5 SINRY) (q;©, p)A\(q)dq
V’L(e7p) n

> 0 ST (4:©, p)Na)da. (14
i#n Vi(®,p) n
Eq. (13) is then derived via straightforward algebraic
operations on Eq. (14) and using the definition of SINR in
Eq. (9), which concludes the proof. |
Finally, for the third step, we optimize the BS transmission
power p for a given cell partitioning V' and vertical antenna
tilts ®. We utilize the gradient projection method, a variation
of the gradient ascent algorithm that keeps the power of each
BS lower than its maximum possible power. To this end, we
require the gradient formula given below.



Proposition 6. The derivative of Eq. (10) w.rt. the BS
transmission power p,, is given by:
00snr(V, ©, p) Sy,
SINRa 5 P) {Z/ \q)dg
pn u=1 Vn(e)ap)mQu
+f A(q)dq} = {
Vn(©,p)NQc itn
N n i
: / RS (q: 0 pn) X STNRYLL(4:©,p) | 1
u=1"Vi(©®:p)NQu RSSZ(Llll(q7017pl)
() (1)
RSS1in(q; 00, pn) X SINRy;1(q; ©, p
Vi(©.0)NQq RSS1in(q; 0s, pi)
15)

The proof of Proposition 6 is provided in Appendix B.

In the remainder of this section, we embed Propositions
4, 5, and 6 into an alternating optimization algorithm that
maximizes the average SINR across all network users.

C. Proposed Algorithm

Propositions 4, 5, and 6 provide the main ingredients
required for the three-step maximum-SINR power allocation
and vertical antenna tilt (Max-SINR-PA-VAT) optimization
process presented in Algorithm 2. While BS vertical antenna
tilts ® are optimized via gradient ascent, as shown in
Algorithm 2, the BS transmission powers p are optimized via
the gradient projection method with the projection operator
PA(.) that projects the updated p onto the subspace A =
(—o0, pmaX]N . This is done to make sure that the range of
all transmission power values remain in the feasible set and
satisfy the constraint in Eq. (11).

Proposition 7. The Max-SINR-PA-VAT algorithm is an
iterative improvement algorithm and converges.

Proof.  The Max-SINR-PA-VAT algorithm iteratively
updates the parameters V, ©®, and p. Updating the cell
partitioning V' according to Eq. (12) does not decrease the
performance function ®sryr because Proposition 4 guarantees
its optimality for a given ® and p. A similar argument to the
one presented in Proposition 3 suggests that updating @ and p
using the gradient ascent and the gradient projection methods,
respectively, will not result in a decrease in the performance
function. This indicates that Algorithm 2 produces a sequence
of performance function values that are non-decreasing and
upper-bounded, as a result of the finite transmission power at
each BS; thus, it converges. |

Next, we analyze the computational complexity of the Max-
SINR-PA-VAT algorithm. We denote the maximum number of
iterations for the convergence criteria of the Max-SINR-PA-
VAT algorithm and the two gradient ascent subroutines for
optimizing ® and p by K;, K>, and K3, respectively. Let M
denote the number of users in the network. The computational
complexity of calculating RSS(™(q) and SINR(™(q) values
for all users and base stations is O(MN) and O(MN?),
respectively. Thus, the gradient vectors Ve ®smyr and V ,Pgryg
are calculated in O(M N +MN?2+ MN) or simply O(MN?)

6

Algorithm 2: Maximum-SINR power allocation and
vertical antenna tilt (Max-SINR-PA-VAT) optimization

Result: Optimal cell partitioning V'*, BS antenna tilts
®* and transmission power p*.

Input: Initial cell partitioning V', BS vertical antenna
tilts ® and transmission power p, maximum BS
transmission power pmax, learning rates
Mo, My € (0,1), convergence error thresholds
€1,€2,€3 € RT, constant x € (0,1);

do

— Calculate ®09 = dgpy (V, 0, p);

— Update the cell V,, according to Eq. (12) for
eachn e {l,---,N};

— Set 1 < no;

do

— Calculate @5 = (DSINR (V, @, p),

— Calculate %‘:@’m according to Eq. (13)
foreachn e {1,--- ,N};

— NN XK
-0+~ 0+1nVelsm(V,0,p);
— Calculate &, = Pspyp (V, ©, p);
while (b"(;q)’ > €1;
- Set < 165
do

— Calculate &5 = gy (V, 0, p);

— Calculate %\:’@’m according to Eq. (15)
for eachn € {1,--- ,N};

—p Pa(p+nV,Psmr(V,0,p));

— Calculate &, = gy (V, O, p);

while 252 > ¢

— Calculate ®0 = ®gpp (V, O, p);

Prew) _ lold)
SINR .
> €35

while 73“'%,,,,4,

SINR

time complexity. The cell partitioning update in each iteration
involves calculating the RSS(™(q) values and finding their
maximum for each user location g, which takes (’)(M N +
MN log(N)) or simply O(MNlog(N)) time complexity.
Thus, the computational complexity of the Max-SINR-PA-
VAT algorithm is O (KM N log(N) + K1 (K2 + K3)MN?),
or equivalently O (K1 (K> + K3)MN?).

The above general framework, inspired by quantization
theory, works for any performance function for which the
required gradients can be calculated. To demonstrate the
general capability of our proposed solution, in the sequel,
we introduce and optimize two generalized performance
functions: the max-product SINR and the soft max-min
SINR [69]. These performance functions avoid the occasional
disparities among individual network users that can happen
when optimizing the performance function ®Pgryz.

D. Generalization to Max-Product SINR

1) Performance Function: The goal of the max-product
performance function is to maximize the product of the SINRs.



The max-product proxy performance function is defined as:

N
Pup(V,0,p) =Y / Yap (40, p)A(q)dg,  (16)
n=1 Vn

S.t. prn < Pmax Yne{l,---,N}, (17)
where
(a0, p) = —log |+ (18)
(SINR’lin(q; 65 p) + V)

The offset v prevents the performance from being dominated
by users with very low SINRs. The offset p plays a similar
role for high SINRs. Note that for the special case of y =
v =0, ®yp in (16) boils down to Pgryr in (10) except for a
constant multiplier. As a result, (16) can be considered as a
generalization of (10).

2) Optimal Configuration: The iterative process for
maximizing the constrained performance function described
in Egs. (16) and (17) over variables V, ®, and p is similar
to the one outlined in Section IV-C. This process requires
determining the optimality conditions for each variable while
keeping the other two variables constant.

Proposition 8. For a given BS vertical antenna tilts ©
and transmission powers p, the optimal cell partitioning
V*O,p) = (Vi*(©,p), - ,Vi(0O, p)) that maximizes Pyp
is given by:

Vi (©,p) = {q € Q| RSSEA(; O, pn) > RSSSon (a3 Oy pi)
forall1 <k< N}., (19)

for each n € {1,--- | N}. The ties can be broken arbitrarily.

Proof. Since p and v are constants, y,sﬂng(q;G,p) >

7&3 (q;0,p) for all k # n is the same as Eq. (34) in
Appendix A; therefore, the rest of the proof follows from that
of Proposition 4. ]

Next, we provide the partial derivative expression for ®yp
w.r.t. the BS n’s antenna tilt 6,,.

Proposition 9. The partial derivative of the performance
function ®yp w.rt. the BS n’s vertical antenna tilt 0, is given
by Eq. (20), on top of the next page, where for the sake
of brevity of the notation, the dependence of the variables
SINR{" RSS&?I)I, and V,, on © and p is omitted.

1lin’

The proof is similar to that of Proposition 5 and is omitted.
Next, we provide the partial derivative of ®yp w.r.t. p,,.

Proposition 10. The partial derivative of ®up w.rt. the
BS transmission power p, is given by Eq. (21), on top
of the next page, where SINR:(L?I)I(q; O, p), RSSY;)(q;Hmpn),
and V,(©, p) are abbreviated as SINRE?I)P RSSIZI)” and V,,
respectively.

The proof is similar to that of Proposition 6 and is omitted.

3) Proposed Algorithm: Using Propositions 8, 9, and 10,
after a random initialization for the values of V', ®, and p, our
max-product power allocation and vertical antenna tilt (MP-
PA-VAT) optimization algorithm, iterates over the following
main three steps until its convergence criterion is met:

e Adjust the cell V;, according to Eq. (19) for each n €
{1,---, N} while ©® and p are fixed;

o Calculate the gradient Vg®mp according to
Proposition 9 and apply the gradient ascent algorithm to
optimize ® while V' and p are fixed;

o Compute the gradient vector V,®yp according to
Proposition 10 and use the projected gradient ascent
algorithm to optimize p within the confined space
(—00, pmax|™ while V' and © are fixed.

Proposition 11. The MP-PA-VAT algorithm is an iterative
improvement algorithm and converges.

The proof is similar to that of Proposition 7 and is omitted.

E. Generalization to Soft Max-Min SINR

1) Performance Function: The soft max-min performance
function is formulated as:

N
Psu(V.0.p) = > / Y (@ ©.p)Mg)dg,  (22)
Vn

n=1

S.t. pn < Pmax VYne{l,---,N}, (23)
where
«Q
4 (4:©,p) = —exp [ = | @4
(SINR}.(q; ©, p) + V)

The hyperparameter « controls the softness of the max-
min policy, with larger values resulting in the domination
of the smallest SINR in ~sy. Thus, for large « values,
optimizing sy reduces to maximizing the minimum SINR.
Conversely, smaller o values involve more SINR values in the
performance function. To prevent users with very low SINR
from dominating the performance, a small offset parameter v
is introduced. The exponent ¢ < 1 compresses the dynamic
range and enhances performance in the high-SINR regime.

2) Optimal Configuration: As before, we derive the
necessary optimality conditions for each variable while
holding the other two variables fixed to optimize the
performance function ®g(V', O, p) over cell partitioning, BS
antenna tilts, and transmission powers.

Proposition 12. The optimal cell partitioning V*(©,p) =

(V¥ (©,p), -, VX(©, p)) that maximizes the performance

Sfunction ®sy for a given © and p is given by:

V(©,p) = {q € Q| RSSEA(q; 0, pn) > RSSSEN(q; O, o),
forall1 <k< N}, (25)

foreach n € {1,---,N}. The ties can be broken arbitrarily.

Proof. Since «, v, and £ are constants, ’yéﬁ/l) (q;0,p) >

'yél,f/?(q;@,p) for all k¥ # n is the same as Eq. (34) in
Appendix A; therefore, the rest of the proof follows from that
of Proposition 4. |
The following proposition provides the gradient of the
performance function w.r.t. the vertical antenna tilts.

Proposition 13. The partial derivative of ®sm w.rt. the BS
vertical antenna tilt 0,, is given by Eq. (26), on top of the
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next page, where SINR:(L?I)l(q; O, p), RSS:(L?I)l( i0n,pn), and using a practical case study. The subsequent sections

V,.(©, p) are written as SINRy},, RSSLBL, and V,,, respectively,
for the brevity of notation.

The proof is similar to that of Proposition 5 and is omitted.
Next, we provide the expression for the gradient of gy
w.r.t. the BS transmission powers p.

Proposition 14. The partial derivative of ®sy w.rt. the
BS transmission power p, is glven by E? (27), on top
of the next page, where SINR" m, RSSh and 'V, are
shorts for SINR:(Lil)l(q7 0, p), Rssgin(q, On, prn), and V,(©, p),
respectively, for the brevity of notation.

The proof is similar to that of Proposition 6 and is omitted.

3) Proposed Algorithm: Using Propositions 12, 13, and 14,
we design an alternating optimization algorithm, called the soft
max-min power allocation and vertical antenna tilt (SMM-PA-
VAT) optimization algorithm, similar to Algorithm 2.

Proposition 15. The SMM-PA-VAT algorithm is an iterative
improvement algorithm and converges.

The proof resembles the one of Proposition 7 and is omitted.

V. CASE STUDY

To evaluate the effectiveness and performance of the
theoretical frameworks proposed, simulations were conducted

begin by introducing the network configuration. Then, the
numerical optimization results are presented, followed by a
generalization to the case of probabilistic line-of-sight (LoS)
condition for ground user links.

A. Network Setup

1) Deployment Setup: We examine a practical cellular
network that consists of 19 sites arranged in a hexagonal
layout, where the inter-site distance (ISD) is 500 meters.
The configuration of this network and the BS deployment
site indices are depicted in Fig. 2d. Each site, here denoted
by k, is associated with three sectors or cells. These cells
have BSs located at the same positions (denoted by vector
P3xk—2 P3xk—1 Psxk), but they have different
azimuth orientations. Specifically, the azimuth orientations are
P3xk—2 = 0° ¢d3xr_1 = 120°, and @3« = 240°. Hence, a
total of NV = 57 BSs are present, each requiring optimization
of its vertical antenna tilt and transmission power values. All
BSs share a common height of h,, g = 25m for n ranging from
1 to N = 57. The maximum transmission power allowed for
all BSs is 43dBm.

The ground users are spatially distributed across a square
area Qg = [—750,750] x [—750,750] as shown in Fig. 2a.
Their distribution follows a uniform density function Ag(q)



and they are assumed to have a fixed height of hg = 1.5m.
The UAVs are distributed over four vertical aerial corridors,
represented by Qp = Q1 U Q2 U Q3 U @4, following a
uniform density function Ay(q). These corridors, illustrated in
Fig. 2d, are defined as @Q; = [—770,—730] x [—1000, 1000],
Q2 = [—1000, 1000] x [-770,—730], Q3 = [—1000,1000] x
[730,770], and Q4 = [730,770] x [—1000, 1000]. The heights
of the corridors are set to hy = hy = 150m and hy = hy =
120 m. The overall density function A(q), which represents the
user distribution in @ = Q¢ UQy, is a mixture of Ag(q) and
Au(q). Specifically, A(qg) = rAg(q) + (1 —)Au(q), where r
is the mixing ratio. Throughout the study, we consider three
different values for the parameter r, namely 1, 0, and 0.5.
These values correspond to optimizing the cellular network
exclusively for ground users, exclusively for UAVs, and for
both ground users and UAVs with equal priority, respectively.

2) Channel Setup: According to the specifications provided
by 3GPP [15], [63], for a carrier frequency of 2GHz and under
line-of-sight conditions, the values of aq and bg are set as
follows:

34.02dB, if q € Qu,
aq = . (28)
38.42dB, if g € Qg,
_J 22 (for a pathloss exponent of 2.2), if g € Qu,
77130 (for a pathloss exponent of 3.0), if g € Q¢.
(29)

Furthermore, the directional antennas have the vertical half-
power beamwidth of f335 = 10°, the horizontal half-power
beamwidth of ¢3qg = 65°, and the maximum antenna gain of
Amax = 14 dBi at the boresight.

B. Experimental Results

Each of the proposed algorithms is initialized with a random
cell partitioning where each user at location q € @ is assigned
to a BS in a random manner. Additionally, the initial values of
0, foralln € 1,--- N are set to 0°. In the case of the BS-
VAT algorithm, which optimizes RSS across network users, all
prn, values are set at a fixed level of 43 dBm. This power value
is chosen because it is the straightforward optimal transmission
power in the absence of interference. Conversely, for all other
algorithms, the initial values of all p,, are initialized to 0 dBm.
The learning rate 1y and the constant x are set as 0.01 and
0.999, respectively. Finally, the convergence error thresholds,
€1, €9, and €3 are chosen to be 1078,

1) Optimal Vertical Antenna Tilts: Figs. 3a and 3b display
the optimal vertical antenna tilts, 8, for the Max-RSS-VAT
and the MP-PA-VAT algorithms. Each figure showcases the
optimal tilts for three scenarios: r = 0 (represented by blue
circles), r = 0.5 (depicted by red crosses), and r = 1
(illustrated by green triangles). As anticipated, in the Max-
RSS-VAT algorithm, where the BS antenna tilts are configured
to optimize the average RSS across network users, prioritizing
the optimization process for either ground users (r = 1)
or UAVs (r = 0) leads to all BSs to be either downtilted
or uptilted, respectively. This outcome stems from the fact
that interference effects are not taken into account when the
objective is to maximize the average RSS. However, in the case

of r = 0.5, a tradeoff is achieved, resulting in a combination
of uptilted and downtilted antennas. When it comes to the
MP-PA-VAT algorithm, adjusting the vertical antenna tilts to
optimize the system for any of the three scenarios (r = 0,
r = 0.5, and r = 1) leads to a combination of uptilted and
downtilted base stations. Similar observations were made for
the Max-SINR-PA-VAT and SMM-PA-VAT algorithms. This
is due to the fact that interference plays a substantial role
in influencing the performance functions of these algorithms.
In addition, in certain network configurations, certain BSs
may not have an impact on the performance functions. This
situation is exemplified in Fig. 3a, where BSs that do not
contribute to the performance function in any of the three
simulated scenarios (r = 0,0.5, and 1) are depicted as black
squares.

2) Optimal Transmission Power: Figs. 4a and 4b present
the optimal transmission power values, p}, for the Max-SINR-
PA-VAT and MP-PA-VAT algorithms. In each of the three
scenarios, namely » = 0, r = 0.5, and » = 1, a subset of
BSs operates at the maximum power level of 43 dBm, while
another subset utilizes lower power levels, and the remaining
BSs are deactivated. While not shown, similar observations
are made for the SMM-PA-VAT algorithm. This is in contrast
to the Max-RSS-VAT algorithm where all BSs are set to the
optimal transmission power value of 43 dBm. However, as the
target region and ISD grow larger, the impact of interference
diminishes and more BSs become active. This is demonstrated
in Fig. 2 where the Max-SINR-PA-VAT algorithm is utilized to
determine the most favorable network configuration for three
distinct combinations of GUE and UAV target region sizes and
ISD values in the case of » = 0.5. The initial pair, depicted
in Figs. 2a and 2d, corresponds to the setup described in
Section V-A. For the second pair, showcased in Figs. 2b and
2e, the GUE target region, distance between UAV corridors,
and their respective widths, along with the BS ISD, are all
doubled. Consequently, the optimal partitioning of the GUE
target region in Fig. 2b reveals an increased number of cells
and more active BSs. Finally, expanding the setup in Figs. 2b
and 2e by an additional factor of two yields the configuration
depicted in Figs. 2c and 2f. The second expansion results in
a further increase in the number of cells for both the optimal
GUE and UAV target region partitioning. This is primarily
due to the reduced impact of interference at larger distances,
allowing more BSs to efficiently serve users in their vicinity.

3) Performance Improvement: Fig. 5a shows the
cumulative distribution function (CDF) of the RSS perceived
by ground users (solid line) and UAVs (dash-dash line) when
the antenna tilts are optimized through the Max-RSS-VAT
algorithm for ground users only (r = 1, green), UAVs
only (r = 0, blue), and both (r = 0.5, red). Note that the
ground user performance for r = 1 (green solid line) and
the UAV performance for r = 0 (blue dash-dash line) can
be regarded as respective upper bounds (in mean) since
they entail optimizing all vertical tilts for ground users only
and for UAVs only, respectively. Conversely, the ground
user performance for » = 0 (blue solid line) and the UAV
performance for » = 1 (green dash-dash line) can be regarded
as respective baselines obtained when the vertical tilts are
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Fig. 2: Optimized GUEs and UAVs cell partitioning for the Max-SINR-PA-VAT algorithm with = 0.5. Simulations are carried

out for three different target region sizes and BS intersite distances.

chosen ignoring ground users and UAVs, respectively. Fig.
S5a shows that for » = 0.5 the proposed Max-RSS-VAT
algorithm reaches a satisfactory tradeoff by: (i) significantly
boosting the RSS at UAVs (red dash-dash line) compared to
the baseline (green dash-dash line) and approaching the upper
bound (blue dash-dash line), and (ii) nearly preserving the
RSS at ground users (red solid line) compared to the upper
bound (green solid line). Specifically, the average RSS gain
at UAVs amounts to 12dB and comes at the expense of an
average loss of only 0.7dB at ground users.

Similarly, Fig. 5b shows the CDF of the SINR perceived
by ground users and UAVs when antenna tilts and transmit
power are optimized through the MP-PA-VAT algorithm with
pw = v = 0.1, for ground users only, UAVs only, and both.
Fig. 5b shows that the proposed algorithm reaches an SINR
tradeoff, boosting the average SINR at UAVs by 13 dB while
only incurring an average loss of 2dB at ground users.

C. Generalization to Probabilistic Line-of-Sight Conditions

While the channel setup used for simulations in Section V-B
assumed all GUEs to experience a non-line-of-sight (NLoS)
condition, our framework is applicable to any given LoS and
NLoS set up. Indeed, as per 3GPP channel modeling, the
presence or absence of LoS conditions between a user at g
and its corresponding BS only impacts the specific values of

agq and bg for that particular user. Our framework is designed
to accommodate generic values for these parameters. For
instance, following the 3GPP model [63], if the user location
q is in the LoS of its corresponding BS, we can take that into
account by changing the values of 38.42dB and 30 in Egs.
(28) and (29) to 34.02dB and 22, respectively.

Throughout this section, we update the notation from a4 and
bq t0 aq.n and bg ,,, respectively, to accommodate the presence
or absence of LoS conditions between the user at ¢ and BS
n. In the remainder of this section, we assume that UAVs
are consistently in a LoS condition because of their elevated
altitude [15]; however, the same reasoning can also be applied
to user locations g € Qu. Let 74, be a binary label taking
the value of 1 if the user location q is in LoS with BS n and
0 otherwise. Then, we have:

34.02dB, if q € Qu,

agn = { 34.02dB, if g € Q¢ and 74, =1, (30)
38.42dB, if g € Q¢ and 74, =0,
22, if q € Qy,

bgn =422, ifqeQqgand 7, =1, 3D
30, ifge€ Qg and 74, =0.

The pathloss in Eq. (3) is then given by:
Ly,q = agn + bgnlogyg (Hq - Pn“)a (32)
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Fig. 3: Optimized vertical tilts, 8;: (a) Max-RSS-VAT and (b)
MP-PA-VAT Algorithm with ¢ = v = 0.1. Optimized for:
GUE:s only (green triangles, » = 1), UAVs only (blue circles,
r = 0), and both GUEs and UAVs (red crosses, r = 0.5).

while all other notations remain unaltered and all propositions
still hold.

A practical case study for probabilistic LoS conditions
follows from the 3GPP standard guideline in which the
probability of LoS between the GUE at ¢ € Q¢ and BS n
located at p,, is given by:

if dg,p, < 18m,
otherwise.
(33)

1,
P'I‘LOS = 18 1 18 7dqé§n
d + "~ da,py € ’

q,Pn

where dg p, = \/(¢x — Pnx)? + (¢y — Pn,y)?. For each q €
Q¢ and n € {1,---, N}, the label 74, is then created as
follows: a scalar u is sampled at random from the uniform
distribution u ~ U[0, 1]. The label 74 ,, is set to 1 if u < Pryg,
and 0 otherwise. Once labels are created, the Max-SINR-PA-
VAT algorithm is executed for three scenarios: r = 0, r = 0.5,
and r = 1. Fig. 5c illustrates the CDF of the SINR experienced
by GUEs and UAVs in the three different scenarios. Similar
observations as the ones in Section V-B3 can be made from
this figure, i.e., for » = 0.5, there is a tradeoff between
optimizing GUE and UAV performance. This tradeoff results
in a substantial overall improvement in the SINR perceived by
UAVs without a severe degradation in the GUE SINR. This
finding showcases the broad versatility of our framework and
its ability to deal with varying link conditions between users
and BSs. Moreover, the algorithms could potentially extract
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Fig. 4: Optimized transmission powers p; for: (a) Max-SINR-
PA-VAT Algorithm and (b) MP-PA-VAT Algorithm with p =
v = 0.1. Optimized for: GUEs only (green triangles, r = 1),
UAVs only (blue circles, » = 0), and both GUEs and UAVs
(red crosses, 7 = 0.5).

link conditions from existing radio coverage datasets, making
our algorithms well-suited for diverse real-world applications.

D. Generalization to UAVs Flying at Flexible Heights

While the network setup described in Section V-A assumes
fixed heights for corridors through which UAVs travel, the
framework presented in this manuscript is versatile and not
bound by such assumptions. Here, we extend the network
setup in Section V-A such that UAVs are not restricted to fly at
fixed altitudes. In particular, we have Qu = Q1UQ2UQ3UQ4
where @ = [-770,—730] x [—-1000,1000] x [135,150],
Q2 = [-1000,1000] x [-770,—730] x [105,120], Q3 =
[—1000, 1000] % [730, 770] x [105, 120], and Q4 = [730, 770] x
[—1000,1000] x [135,150], i.e., UAVs in corridors Q; and
Q4 fly between altitudes 135m and 150m while UAVs in
corridors Q2 and Qs travel at altitudes between 105m and
120m. We keep the remaining network and channel setup
outlined in Section V-A unchanged. Furthermore, each of the
proposed algorithms uses the same set of hyperparameters and
initialization scheme, as outlined in Section V-B.

Figure 6a plots the CDF for the RSS perceived by ground
and UAV users, following the execution of the MAX-RSS-
VAT algorithm. Similarly, Figs. 6b and 6c depict the CDF
plots representing the SINR observed by GUEs and UAVs after
applying the MP-PA-VAT and Max-SINR-PA-VAT algorithms,
respectively. These figures illustrate that irrespective of the
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(b) MP-PA-VAT algorithm with p = v = 0.1.
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(c) Max-SINR-PA-VAT algorithm under probabilistic LoS/NLoS.

Fig. 5: CDF of (a) the RSS for the Max-RSS-VAT algorithm,
(b) the SINR for the MP-PA-VAT algorithm with 4t = v = 0.1,
and (c) the SINR for the Max-SINR-PA-VAT algorithm under
probabilistic LoS/NLoS condition. Dash-dash and solid curves
represent UAVs and GUEs, respectively. Three optimization
scenarios are shown: GUEs only (r = 1), UAVs only (r = 0),
and both GUEs and UAVs (r = 0.5).

particular operational altitude, it is feasible to configure
the cellular network to ensure coverage for UAVs without
significantly compromising signal quality for GUEs. This
can be accomplished by adjusting the hyperparameter 7,
which controls the balance between signal quality for GUEs
and UAVs. This highlights the adaptability of our proposed
framework and its ability to provide coverage for UAVs
regardless of their trajectory or altitude. The resulting cell
partitioning from the Max-RSS-VAT, MP-PA-VAT, and Max-
SINR-PA-VAT algorithms for » = 0.5 are showcased in Fig.
7.
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Fig. 6: CDF of (a) the RSS for the Max-RSS-VAT algorithm,
(b) the SINR for the MP-PA-VAT algorithm, and (c) the SINR
for the Max-SINR-PA-VAT algorithm. Simulations are carried
out for the experimental setup outlined in Section V-D where
UAVs are not bound to operate at a fixed height.

E. Performance Comparison

Similar to the comparisons conducted in prior studies [70]-
[72], we compare our proposed Max-SINR-PA-VAT algorithm
with:

e A 3GPP default setting, using a single configuration in
which 0,, = —12° and p,, = 43 dBm for all base stations
ne{l,---,N} [63].

o A restricted exhaustive search, generating 1,000 random
candidate values for ® and p and choosing those yielding
the best performance, i.e., the highest ®gnr.

In both cases, unlike prior studies, we employ the optimal cell
partitioning as per Proposition 4.

Figure 8a shows the CDF curves for the SINR values

at both ground and UAV users for » = 0.5. As expected,
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Fig. 7: Optimized cell partitioning of GUEs and UAVs for (a) Max-RSS-VAT Algorithm; (b) MP-PA-VAT Algorithm; and (c)
Max-SINR-PA-VAT Algorithm. Simulations are carried out for » = 0.5 and the network setup described in Section V-D where

UAVs are not bound to operate at fixed altitudes.

the 3GPP default setting (black) performs poorly along UAV
corridors since antennas are primarily configured for GUEs,
i.e., down-tilted. As a result, 96.5% of the GUEs (solid
black) achieve SINRs exceeding -5dB, often regarded as a
minimum threshold for coverage [2], but none of the UAV
users do (dashed black). The exhaustive search method boosts
the performance along UAV corridors (dashed red), with all
UAVs experiencing SINRs above -2.4dB. However, it does
so at the expense of the performance on the ground, with
12.5% of the GUEs now in outage (solid red). Unlike these
two benchmarks, the proposed Max-SINR-PA-VAT algorithm
successfully reaches a tradeoff by achieving SINRs of at
least -1.5dB for all UAVs (dashed blue) and all GUEs (solid
blue), thereby guaranteeing reliable coverage on the ground
as well as along aerial corridors. The progression of the
performance function, i.e. ®snr, achieved by these methods
is depicted in Fig. 8b. The 3GPP default setting deploys a
single network configuration and does not iterate. The red
curve in Fig. 8b corresponds to the restricted exhaustive search
method and consists of several jumps, each representing a new
network configuration with better performance function value.
On the other hand, the blue curve continuously increases until
convergence, as shown in Proposition 7.

VI. CONCLUSION

In this paper, we took the first step towards creating
a mathematical framework for optimizing antenna tilts
and transmit power in cellular networks, with the goal
of providing the best quality of service to both legacy
ground users and UAVs flying along corridors. By applying
quantization theory and designing iterative algorithms, we
modeled realistic features of network deployment, antenna
radiation patterns, and propagation channel models. Our
proposed algorithms offer the capability to optimize coverage
and signal quality while allowing for trade-offs between
performance on the ground and along UAV corridors through
adjustable hyperparameters. The optimal combinations of
antenna tilts and transmit power, which are non-obvious
and challenging to design, were shown to significantly
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setting, and the restricted exhaustive search method.
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Fig. 8 Comparison between the Max-SINR-PA-VAT

algorithm, the 3GPP default setting, and the restricted
exhaustive search method: (a) CDF of the SINR, where
solid and dash-dash curves correspond to GUEs and UAVs,
respectively; (b) performance function, i.e. ®gnr, versus
iteration.

enhance performance along UAV corridors. Importantly, these
improvements come at a negligible-to-moderate sacrifice in
ground user performance compared to scenarios without
UAVs.



To the best of our knowledge, this is the first work that
determines the necessary conditions and designs iterative
algorithms to optimize cellular networks for UAV corridors
using quantization theory. Our findings open avenues for
further exploration and extensions from multiple standpoints,
some of which are listed as follows: (i) Performance metric,
optimizing for capacity per user, rather than SINR, thus
aligning more closely with the objectives of real-world
mobile network operators; (ii) Antenna pattern, considering
BSs transmitting multiple beamformed synchronization signal
blocks (SSBs), instead of a single beam, and addressing the
optimization of the SSB codebooks; (iii) Cellular deployment,
exploring the optimization of BS locations, in addition to their
antenna tilts and transmit power; and (iv) Channel model,
replacing the statistical 3GPP model with a scenario-specific
map-based channel model, providing a more accurate, ad-hoc
representation of the channel characteristics. Progress along
any of the above directions would extend the applicability
and scope of our work, paving the way for advancements
in optimizing cellular networks for UAV corridors and
addressing emerging challenges in air-to-ground wireless
communications.

APPENDIX A
PROOF OF PROPOSITION 4

The equivalence between Eqs. (12) and (34) is shown on top
of the next page, where I' = Z;\[zl RSSﬂL(q; 6;,pj)+0? and
.1in denotes linear units (as opposed to dBm). For any arbitrary
cell partitioning W = (Wy,--- ,Wy), we can write:

N
(W, 0,p) = 3 / SINR® (¢:©, p)A(g)dg  (39)
n=1 n

N
<Y [ max s (0. 0) Aa)da

n=1

- / max STV (: ©. )| A(g)dg
Q k'r
N

= Z/ max [SINRQ?(q; ®,p))}k(q)dq
n=1 iy

N
n=1 Vi

where (a) follows from the definition of V,* in Eq. (12) and
its equivalency to Eq. (34), and the proof is complete. |

APPENDIX B
PROOF OF PROPOSITION 6

First, we derive the partial derivative of the SINR w.r.t. the
BS transmission power p,,:

(n)
n 6101 Rsslin.(qﬁn ,Pn)
OSTNRG (¢; ©, p) o810 (E#n Rss\]) (4:0;.05)+0°
apn 8pn

( ZJ#W, RSSS.Z(Q%@‘ -,Pj)+‘72 >

BSST) (q30.0n)
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> 2n RSSS (g5 605, ;) + 02

(n)
RSS4p7 (250m,0n)
010 10 101o e A CHA
o glO( ) % 10 10

dpn B85S (q: O )
In(10)  ORSSE (450, p)
10 Opn

and for ¢ # n, we have:

X

=1, (36)

1),
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(3) 2
. RSSin(g;05,p5) + 0
= —10 10g10(€) X (Zj#z 2‘1) (q . p]) )
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RSS{ih (g 05 pi)
Similar to the proof of Proposition 5, the partial derivative
component corresponding to the integral over the boundary of
regions will sum to zero. Hence, we have:

005 (V,©,p) _ o OSTNRE (¢; ©, p)
— o, F) AMq)dg.
Pn i=1 7 Vi(®,p) Pn
(38)
Eq. (15) then follows from substitution of Eqgs. (36) and (37)
into Eq. (38). |
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