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Abstract

We study a heterogeneous Rayleigh fading wireless sensor network (WSN) in which sensor nodes

surveil a field of interest and communicate their sensory data with base stations with the aid of access

points as relays. With the goal of improving the energy efficiency of the network, we consider both

large-scale and small-scale signal propagation effects in our system model and aim to optimize the

node deployment as an effective measure to reduce the wireless communication power consumption

of the WSN. We propose a new framework, in which hard deterministic connectivity constraints on

communication links are replaced with realistic limitations on outage due to severe stochastic fading.

We also consider a radio energy model that reflects the exponential dependence of the transmission power

on the rate. We derive the necessary conditions for the optimal deployment that not only minimize the

power consumption, but also guarantee all wireless links to have an outage probability below the given

threshold. Our theoretical findings are accompanied by simulations that indicate significant performance

gains compared to existing node deployment algorithms in the literature.

Index Terms

Deployment, heterogeneous wireless sensor networks, power optimization, outage, Rayleigh fading.

I. INTRODUCTION

Wireless sensor networks (WSNs) have attracted widespread attention due to their utilization

in numerous applications such as healthcare monitoring [1], surveillance [2], precision agriculture

[3], and industrial monitoring [4]. A WSN is mainly comprised of sensor nodes that are deployed

inside a field of interest to monitor physical phenomena such as environmental conditions,
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target positions, etc. Each sensor node is equipped with sensing and communication capabilities

and can transmit its sensed information back to dedicated base stations (BSs) through wireless

communications [5], [6]. Sensor nodes are susceptible to failure due to factors such as adverse

environmental conditions and breakdown in the onboard electronics [7]; however, battery power

exhaustion remains the major factor causing node failure because sensors operate on batteries

that cannot be replaced in most practical applications, especially in hostile regions where sensor

nodes are inaccessible [8]. Therefore, energy efficiency is considered the most crucial quality-of-

service (QoS) metric for functionality and longevity of WSNs [9]. Among different factors, such

as communication, computation, and sensing [10]–[12], that contribute to the network’s energy

consumption, communication energy has shown to be the dominating factor through empirical

studies [13]. Therefore, to preserve the sensor nodes’ batteries and increase the WSN’s lifetime,

access points (APs) are deployed as intermediary nodes to relay the sensory data to BSs.

Improving the energy-efficiency of WSNs has been the center of attention for numerous work

in the literature. Many ideas are leveraged for this purpose, such as arranging efficient active and

sleep cycles for sensors to preserve their energy [14]–[16] and optimizing the path that sensory

data takes to reach BSs [17]–[23]. Among these ideas, optimizing node deployment has been

the highlight of many existing work due to its critical role in network’s energy consumption

and lifetime. This is because the received signal strength is inversely proportional to a power

of distance between the transmitter and the receiver; thus, the required transmission energy

to guarantee a certain signal-to-noise ratio (SNR) at the receiver node highly depends on the

distance and placement of network nodes.

Node deployment algorithms can be categorized in many different ways based on network’s

setup, node’s mobility, hardware characteristics, etc. Some techniques are developed offline

and executed in a centralized manner [24] while others are distributed and are based on the

assumption that each node has only local information about the state of other nodes [25], [26].

Moreover, several node deployment algorithms are proposed for static networks where nodes

are manually deployed at their predetermined locations [27]–[30] while others are curated for

mobile networks and calculate the optimal location of nodes based on their respective initial

deployment and limited movement energy resources [24], [30], [31]. The optimal deployment

highly depends on the homogeneous [19], [32]–[34] or heterogeneous [27]–[30], [35], [36] nature

of the WSN. The problem of node deployment in homogeneous WSNs, where nodes have similar

hardware characteristics such as storage, computational power, sensitivity, and antenna gain, is
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studied in detail [33], [34], [37]. However, these studies do not account for challenges, such

as non-convexity and disconnectivity of optimal regions, that arise when network nodes are

heterogeneous and have different characteristics. Heterogeneous WSNs have been the subject

of study for several recent works [27]–[29]; however, these works along with the majority of

similar studies in the literature overlook the real-world properties of the field of interest and

do not account for the stochasticity of the communication channel due to the fading process.

Another shortcoming of these works is their use of an oversimplified communication energy

model in which the exponential dependence of the communication power on the rate is ignored.

As a result, these methods underestimate the actual energy consumption of nodes and lead to a

network configuration with considerably less reliability and lifetime. This in turn highlights the

need for further research and development of models and methods that can realistically reflect

the real-world characteristics of WSNs.

The primary motivation and distinguishing characteristics of this work is to address the

aforestated shortcomings. We propose a new paradigm in which we move from hard deter-

ministic connectivity constraints on communication links to stochastic schemes with desired low

probability of harmful outage. This is because in realistic networks, the transmitted signal can

experience severe power degradation before arriving at the receiver node if the communication

channel undergoes deep fading; thus, communication links can randomly experience outage due

to stochastic nature of the fading process. In our approach, we consider a link connected if its

communication channel experiences outage with a probability less than or equal to a desired ϵ

value. The choice of ϵ is application specific and in general, a lower ϵ value corresponds to a

lower outage probability and a higher chance of connectivity. We study the optimal deployment

in heterogeneous Rayleigh fading sensor networks with the aim of minimizing the wireless

communication power consumption in such networks. The main contributions of the paper are

summarized below:

• Instead of imposing a set of deterministic constraints on communication links, as done

in the literature, we consider stochastic constraints that take into account both large-scale

path-loss signal attenuation and small-scale signal variation due to Rayleigh fading.

• We consider a radio energy model that takes the heterogeneity of network nodes into account

and reflects the exponential dependence of the transmission power on the rate, a shortcoming

of the existing work in the literature.

• We provide a detail theoretical analysis of the problem and derive the necessary conditions
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of an optimal deployment. Based on the derived necessary conditions of optimality, we

propose an alternating optimization algorithm for an energy-efficient node deployment in

such networks.

The rest of the paper is organized as follows. The system model and problem formulation

are discussed in Section II. In Section III, the optimal deployment in heterogeneous Rayleigh

fading WSNs under outage probability constraints on communication channels is studied and

an alternating optimization algorithm based on the obtained necessary conditions is provided.

Simulation results and concluding remarks are provided in Sections IV and V, respectively.

II. SYSTEM MODEL

We consider a heterogeneous WSN that consists of homogeneous sensors, N heterogeneous

APs, and M heterogeneous BSs. The field of interest Ω ⊆ R2 is a convex polygon including its

interior. In particular, each sensor transmits its data to an AP which acts as a relay node and

forwards the collected information to BSs. We denote the set of node indices for APs and BSs by

IAP = {1, · · · , N} and IBS = {1, · · · ,M}, respectively. While access points and base stations

are characterized as a set of (N+M) discrete points within the field of interest, the distribution of

densely deployed sensors are described via a continuous and differentiable function f : Ω −→ R+

such that
∫
W
f(ω)dω is the total number of sensors within the region W ⊆ Ω. In this manuscript,

we make the assumption that the prior knowledge of the sensor deployment density f(ω) is

known. For applications such as surveillance, traffic management, and transportation monitoring

system that require continuous stream of visual and/or audio data, sensors transmit their sensed

information with the bit-rate Rb (bits/s) which is a constant due to sensors’ homogeneity [33].

The assumption of constant bit-rate can also be carried out for applications such as environmental

temperature and humidity monitoring, where sensors have sporadic activity, by considering time-

division multiplexing for sensors’ activity. Thus, the total amount of data gathered by sensors

within the region W in one time unit is equal to Rb

∫
W
f(ω)dω. Throughout this paper, we

assume that each sensor only transmits its data to one AP. Consequently, the field of interest Ω

is partitioned into N disjoint regions W = (W1, · · · ,WN) ⊆ ΩN such that for each n ∈ IAP ,

AP n collects data from sensors within the region Wn ⊆ Ω. For any n ∈ IAP and m ∈ IBS ,

let pn ∈ Ω and qm ∈ Ω denote the location of AP n and BS m, respectively. In addition, let

P = (p1, · · · , pN) ∈ RN×2 and Q = (q1, · · · , qM) ∈ RM×2 denote the collective deployment of

APs and BSs, respectively.
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Fig. 1: The system model and network architecture.

In addition to AP deployment P, BS deployment Q, and cell partitioning W, the performance

of a WSN heavily depends on the routing protocol by which data is transferred from sensors

to base stations. It is important to note that while there may be scenarios where it is appro-

priate for a sensor to transmit its data directly to the nearby base station, or adhoc scenarios

that do not have any hierarchy, in many cases factors such as scalability, network topology,

bandwidth, interference reduction, security, and data aggregation favor the use of access points

as intermediary nodes. Therefore, in the remaining part of this manuscript, we adopt a routing

protocol that involves transmitting data through access points. Our network in this paper can be

regarded as a directed bipartite graph where the vertex set can be partitioned into two disjoint

subsets containing access points and base stations, respectively, and each edge from AP n to

BS m is associated with a non-negative value Fn,m (bits/s) denoting the flow of data from AP

n to BS m. An example of one such graph is depicted in Fig. 1. Thus, the routing protocol

can be characterized by a flow matrix F = [Fn,m]N×M where Fn,m denotes the amount of data

transmitted from AP n to BS m in one time unit. Since each AP, say n, transmits all the received

data, the in-flow value should be equal to the out-flow value, i.e., Rb

∫
Wn

f(ω)dω =
∑M

m=1 Fn,m.

Note that instead of directly specifying the flow Fn,m from AP n to BS m, we can specify

the ratio of out-flow from AP n that goes to BS m, i.e., rn,m = Fn,m∑M
j=1 Fn,j

. By definition, it

readily follows that rn,m ∈ [0, 1] and
∑M

m=1 rn,m = 1 since the in-flow to each AP is equal to

its out-flow. In particular, the flow matrix F can be uniquely determined by the cell partitioning

W and the normalized flow matrix R = [rn,m]N×M .
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In this paper, we consider a slow fading channel in which the channel gain is stochastic but

remains constant in each frame. We also assume that the receiver can track the fading process,

i.e., coherent reception and the transmitter has no knowledge of the channel realization except

for its statistical properties. For a channel realization h, the maximum communication rate with

arbitrarily small error probability is given by log (1 + |h|2γ) bits/s/Hz, where γ represents the

received signal-to-noise ratio (SNR) due to large-scale propagation effects. The relationship

denotes the necessary SNR which, in turn, allows sensors and APs to adjust their transmission

power accordingly for a successful data transfer at a given bit-rate and distance. We choose

Rayleigh fading for the small-scale propagation because of its applications in rich scattering non-

line-of-sight WSN environments although our general approach is independent of the distribution

and works for other channel statistics. For a Rayleigh fading channel, the small-scale channel

distribution is a standard complex normal random variable, i.e., h ∼ CN (0, 1); therefore, |h|2

has an exponential distribution with parameter 1. Due to stochasticity of the channel realization,

the decoding error probability cannot become arbitrarily small regardless of the code used by the

transmitter [38]. Hence, the primary objective in this paper is to find an optimal deployment that

minimizes the wireless transmission power consumption of the WSN subject to a given outage

probability threshold. For a given data flow Fn,m, the outage probability is given by [38]:

poutn,m (Fn,m) = P
{
B log

(
1 + |h|2γn,m

)
< Fn,m

}
. (1)

Similarly, the outage probability for the link between a sensor located at ω ∈ Ω and AP n is:

poutω,n (Rb) = P
{
B log

(
1 + |h|2γω,n

)
< Rb

}
. (2)

The received SNR is proportional to the transmit power, i.e., γ ∝ Pt × d−α where d is the

distance between the transmitter and receiver, and 2 ≤ α ≤ 5 is the large-scale path loss exponent

[39]. We consider the Friis free space loss equation, i.e., α = 2. More precisely, if AP n sends

a signal with transmission power P (n,m)
transmit, the received signal power at BS m, i.e., P (n,m)

receive , is

P
(n,m)
receive = P

(n,m)
transmit ×

GtnGrmλ
2
c

(4π)2 ∥pn − qm∥2Ln

, (3)

where Gtn is the transmitter antenna gain of AP n, Grm is the receiver antenna gain of BS m,

λc is the wavelength of the carrier signal, and Ln denotes all other losses that are not related to

the propagation loss such as loss at the antennas, filters, transmission line attenuation, etc. [40].
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Therefore, for the spectral noise density of σ Watts/Hz, the received SNR γn,m is given by:

γn,m =
P

(n,m)
receive

σB
= P

(n,m)
transmit ×

GtnGrmλ
2
c

σB (4π)2 ∥pn − qm∥2Ln

. (4)

Similarly, for a sensor located at ω ∈ Ω, sending a signal with transmission signal power P (ω,n)
transmit,

the received SNR γω,n at AP n is given by:

γω,n =
P

(ω,n)
receive

σB
= P

(ω,n)
transmit ×

GtsensorGrnλ
2
c

σB (4π)2 ∥pn − ω∥2Lsensor
, (5)

where Gtsensor and Lsensor are the common transmitter antenna gain and system loss of the

homogeneous sensors, respectively. For a given outage probability threshold of ϵ, our goal

is to find the optimal WSN deployment that minimizes the total wireless transmission power

consumption of the network subject to all channels having an outage probability of less than or

equal to ϵ. Thus, the network’s weighted communication power consumption can be written as:

P (P,Q,W,R) =
N∑

n=1

∫
Wn

P
(ω,n)
transmitf(ω)dω + λ

N∑
n=1

M∑
m=1

P
(n,m)
transmit (6)

s.t. poutn,m (Fn,m) ≤ ϵ and poutω,n (Rb) ≤ ϵ, ∀n ∈ IAP , m ∈ IBS, (7)

where the Lagrangian multiplier λ ≥ 0 provides a trade-off between the sensor transmission

power
∑N

n=1

∫
Wn

P
(ω,n)
transmitf(ω)dω and AP transmission power

∑N
n=1

∑M
m=1 P

(n,m)
transmit. Our goal is

to minimize the constrained objective function in Eqs. (6) and (7) over node deployments P and

Q, cell partitioning W, and normalized flow matrix R, which is the subject of the next section.

III. OPTIMAL DEPLOYMENT UNDER OUTAGE PROBABILITY CONSTRAINT

In this section, we focus on our primary objective function and aim to minimize the wireless

power consumption P in Eq. (6) subject to outage probability constraints given in Eq. (7).

Our goal is to find the optimal deployment P∗ = (p∗1, · · · , p∗N) and Q∗ = (q∗1, · · · , q∗M), cell

partitioning W∗ = (W ∗
1 , · · · ,W ∗

N), and the normalized flow matrix R∗ =
[
r∗n,m

]
N×M

that

minimize the wireless transmission power consumption of the network. Note that the optimal

value for each of the four variables P, Q, W, and R depends on the value of the other three

and this optimization problem is NP-hard. Our aim is to derive the necessary conditions of

optimality and devise an algorithm that iteratively optimizes the value of each variable while

the other variables are held fixed. We accomplish this goal in the following three steps:
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Step 1 [optimizing P and Q while W and R are fixed]: First, we rewrite the objective

function P according to the constraints given in Eq. (7). For a wireless link with flow Fn,m from

AP n to BS m, we have1:

P
{
|h|2 < 2

Fn,m
B − 1

γn,m

}
≤ ϵ =⇒ γn,m ≥ 2

Fn,m
B − 1

ln
(

1
1−ϵ

) , (8)

where the right-hand-side inequality follows from the exponential distribution of |h|2. Using Eq.

(4), we can rewrite Eq. (8) as

P
(n,m)
transmit ≥

σB (4π)2 Ln∥pn − qm∥2
(
2

Fn,m
B − 1

)
GtnGrmλ

2
c × ln

(
1

1−ϵ

) =
bn,m

ln
(

1
1−ϵ

)∥pn − qm∥2 ×
(
2

Fn,m
B − 1

)
, (9)

where bn,m = σB×(4π)2×Ln

Gtn×Grm×λ2
c
. Hence, Eq. (9) yields a lower bound on the required transmission

power at AP n that guarantees an outage probability no greater than ϵ at the corresponding

base station. Note that the minimum transmission power occurs when P
(n,m)
transmit is equal to its

lower bound in Eq. (9) which corresponds to having an outage probability of poutn,m (Fn,m) = ϵ.

Similarly, for a sensor located at ω that transmits its data to AP n, we have:

P
(ω,n)
transmit ≥

σB (4π)2 Lsensor × ∥pn − ω∥2 ×
(
2

Rb
B − 1

)
GtsensorGrnλ

2
c × ln

(
1

1−ϵ

) =
an

ln
(

1
1−ϵ

)∥pn − ω∥2
(
2

Rb
B − 1

)
, (10)

where an = σB×(4π)2×Lsensor
Gtsensor×Grn×λ2

c
. Using Eqs. (9) and (10), we can rewrite the objective function P in

Eq. (6) as follows:

P (P,Q,W,R) =
N∑

n=1

∫
Wn

an

ln
(

1
1−ϵ

)∥pn − ω∥2
(
2

Rb
B − 1

)
f(ω)dω

1By implementing a Time Division Multiple Access (TDMA) protocol at the network’s access point layer, we can minimize the
impact of interference caused by simultaneous transmissions to base stations. This effectively prevents a significant decrease in
the received SINR and enables efficient communication between multiple access points and the same base station. At the sensor
layer of the network, two types of interference can occur: intra-region interference and inter-region interference. To address
intra-region interference, a TDMA scheduling scheme can be devised to allocate non-overlapping time slots to different sensors
within the same region, thus reducing such interference. As for inter-region interference, established methods for managing co-
channel interference in cellular networks can be utilized. A common approach, which we also employ, involves implementing
fixed frequency re-use patterns [41]. This method aims to minimize inter-region interference while maximizing the efficient
utilization of the available frequency bandwidth by assigning the same radio frequencies to regions that are significantly distant
from each other. It is important to note that more sophisticated techniques such as advanced MAC protocols, OFDMA, Space
Division Multiple Access (SDMA) methods, decoding and re-transmission schemes, and others can further enhance the network’s
interference management capabilities. However, our framework, methodology, and algorithm remain independent of the specific
physical layer or higher layer networking solutions employed, as long as they ensure interference avoidance within the network
and maintain the logarithmic relationship between the power and the rate. Therefore, while assuming higher-level coordination
for interference mitigation in the rest of this manuscript, the design of specific protocols depends on the application and falls
beyond the manuscript’s scope.
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+ λ
N∑

n=1

M∑
m=1

bn,m

ln
(

1
1−ϵ

)∥pn − qm∥2
(
2

Fn,m
B − 1

)
. (11)

The objective function P in Eq. (11) incorporates the ϵ−threshold constraints on outage prob-

abilities, which were previously expressed as Eq. (7). These constraints are now included as a

constant factor 1

ln( 1
1−ϵ)

within the objective function.

The Lagrangian dual equivalent of the objective function described in Eq. (11) minimizes the

total sensor powers while imposing a constraint on the total power consumption of access points.

Equivalently, one can minimize the total power consumption of access points while forcing a

constraint on the total sensor powers. Both scenarios will result in the same tradeoffs as shown in

Fig. 5. In addition, it is important to highlight that the total power constraint can be modified to

incorporate specific individual power constraints. This can be achieved by introducing separate

Lagrangian multipliers for each access point.

Now, for a fixed W and R, the optimal deployment is given by the following proposition.

Proposition 1: The necessary conditions for the optimal AP and BS deployments P∗ and Q∗

in a heterogeneous WSN with the wireless transmission power consumption defined in Eq. (6)

and the outage probability constraint ϵ on all wireless links are given by:

p∗n =
an

(
2

Rb
B − 1

)
vncn + λ

∑M
m=1 bn,m

(
2

Fn,m
B − 1

)
q∗m

an

(
2

Rb
B − 1

)
vn + λ

∑M
m=1 bn,m

(
2

Fn,m
B − 1

) , ∀n ∈ IAP , (12)

q∗m =

∑N
n=1 bn,m

(
2

Fn,m
B − 1

)
p∗n∑N

n=1 bn,m

(
2

Fn,m
B − 1

) , ∀m ∈ IBS, (13)

where vn =
∫
Wn

f(ω)dω and cn =
∫
Wn

ωf(ω)dω∫
Wn

f(ω)dω
are the volume and centroid of the region Wn,

respectively. The proof of Proposition 1 is provided in Appendix A.

Step 2 [optimizing W while P, Q, and R are fixed]: First, we study the properties of region

boundaries in an optimal cell partitioning W∗. Note that while F can be uniquely determined

by W and R, it only depends on the region volumes and not their actual geometric shape. More

precisely, if we let V = (v1, · · · , vN) where vn is the volume of region Wn, then F can be

uniquely calculated by V and R as well. Therefore, Eq. (11) indicates that APs’ transmission

power only depends on the region volumes and not their geometrical shape. In other words, we

can manipulate region boundaries to reduce the sensors’ power consumption in Eq. (11) and

by extension the total power consumption P since by keeping the region volumes fixed, APs’
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power consumption remains unchanged. Using this intuition, we have:

Lemma 1: Let W∗ = (W ∗
1 , · · · ,W ∗

N) be an optimal cell partitioning that minimizes the

constrained objective function P in Eqs. (6) and (7) for a given node deployment and data

routing. Let δ∗i,j = W ∗
i ∩W ∗

j be the boundary between neighboring regions W ∗
i and W ∗

j . Then,

δ∗i,j is either a segment perpendicular to the line pipj if ai = aj or an arc with its center placed

at c = aipi−ajpj
ai−aj

if ai ̸= aj .

The proof of Lemma 1 is provided in Appendix B.

Let h∗
i,j be the intersection point between the optimal boundary δ∗i,j and the segment pipj in

Lemma 1. The following proposition provides the necessary condition on the location of h∗
i,j .

Proposition 2: Let W∗ = (W ∗
1 , · · · ,W ∗

N) be an optimal cell partitioning that minimizes the

constrained objective function P in Eqs. (6) and (7) for a given node deployment P, Q, and

data routing R. Let δ∗i,j = W ∗
i ∩W ∗

j be the boundary between neighboring regions W ∗
i and W ∗

j

which intersects the line pipj at point h∗
i,j . Then, we have

ai
∣∣∣∣pi − h∗

i,j

∣∣∣∣2 (2Rb
B − 1

)
+ λ

M∑
t=1

ln(2)

B
×Rb × ri,t × bi,t

∣∣∣∣pi − qt
∣∣∣∣2 × 2

ri,tRbv
∗
i

B

=aj
∣∣∣∣pj − h∗

i,j

∣∣∣∣2 (2Rb
B − 1

)
+ λ

M∑
t=1

ln(2)

B
×Rb × rj,t × bj,t

∣∣∣∣pj − qt
∣∣∣∣2 × 2

rj,tRbv
∗
j

B . (14)

The proof of Proposition 2 is provided in Appendix C.

Step 3 [optimizing R while P, Q, and W are fixed]: Note that for a given deployment P, Q,

and cell partitioning W, the sensor power consumption is fixed and R only affects the AP power

consumption in Eq. (11). Since the cell partitioning W is fixed and each AP directly transmits

its data to base stations, the optimization problem can be split into N objective functions, one

for each AP, and they can be optimized separately. More specifically, for AP n, we need to

optimize the following objective function

argmin
Fn,1···Fn,M

M∑
m=1

bn,m

ln
(

1
1−ϵ

)∣∣∣∣pn − qm
∣∣∣∣2 × (

2
Fn,m

B − 1
)
, (15)

s.t.
M∑

m=1

Fn,m =

∫
Wn

Rbf(ω)dω = Rbvn , Fn,m ≥ 0 for all m ∈ IBS. (16)

Note that when the sum of exponents is fixed, the minimum of the sum of exponentials with the

same base occurs when all exponents are equal. For instance, if for three variables x, y, and z

we have x+y+z = c, then the minimum of 2x+2y+2z occurs when x = y = z = c
3
. Using this



11

Algorithm 1: Optimal routing in heterogeneous WSNs with outage probability constraint

intuition and the fact that all elements of the flow matrix are non-negative, we propose Algorithm

1 that yields the optimal solution of the constrained optimization problem in Eqs. (15)-(16) for



12

each AP n. Note that once the optimal flow matrix F∗ is obtained, the corresponding normalized

flow matrix R∗ can be calculated from the definition.

Algorithm 2: Power-Optimized Outage-aware Lloyd Algorithm

Proposition 3: For a given node deployment P, Q, and cell partitioning W, Algorithm 1 yields
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the optimal normalized flow matrix R∗ = argminR P (P,Q,W,R) for the heterogeneous WSN

under the outage probability constraints in Eq. (7).

The proof of Proposition 3 is provided in Appendix D.

Now, inspired by the Lloyd Algorithm [41], we propose Algorithm 2, named Power-Optimized

Outage-aware Lloyd (POOL) Algorithm, to optimize node deployment, cell partitioning, and data

routing in our heterogeneous WSN and minimize the wireless communication power consumption

in Eq. (6) under outage probability constraints given in Eq. (7).

Proposition 4: The POOL algorithm is an iterative improvement algorithm, i.e., the objective

function P is non-increasing and the algorithm converges.

The proof of Proposition 4 is provided in Appendix E.

We conclude this section by analyzing the complexity of the POOL algorithm. Let’s denote

the maximum number of iterations for the three convergence criteria in the POOL algorithm

as T1, T2, and T3 respectively. Additionally, let L represent the maximum number of points to

consider in the line search. The initial loop in the POOL algorithm performs N operations per

iteration, and the maximum number of iterations is T1. Hence, its complexity can be expressed

as O(T1N). The subsequent Lloyd algorithm has a computational complexity of O(MN) for a

fixed number of iterations. The inner loop of Algorithm 1 repeats at most M times. Consequently,

updating R according to Algorithm 1 requires O(MN) operations. Updating P and Q using

Equations (12) and (13) also involves O(MN) operations. Each point in the line search has

a complexity of O(M). The complexity of O(T2LM) arises when we take into account the

maximum of L points and T2 pairs of randomly selected neighboring regions. The procedure

continues by updating the data routing R using Algorithm 1 and repeating the outer loop for a

maximum of T3 iterations. Consequently, the overall computational complexity can be expressed

as O
(
T1N + MN + MN + T3(MN + T2LM + MN)

)
, or simply O(MN) in terms of the

number of access points and base stations.

IV. EXPERIMENTS

Simulations are performed for a heterogeneous Rayleigh fading sensor network consisting of

15 APs, 3 BSs, and 1000 sensors. The field of interest Ω is a square area of size 10km× 10km.

The bit-rate and the carrier wavelength are set to Rb = 30Kbps and λc = 3m, respectively. We

consider no system loss, i.e., Lsensor = Ln = 1 for all n ∈ IAP , and a transmitter antenna gain of

Gtsensor = 1 for all homogeneous sensors. We denote the transmitter and receiver antenna gains
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of AP n by G(AP)
tn and G(AP)

rn , respectively, and the receiver antenna gain of BS m by G(BS)
rm . Let

us denote S1 = {1, 2, 3, 4, 8, 9, 10}, S2 = {1, 2, 5, 6, 8, 9, 12, 13}, and S3 = {1, 2}. These indices

are generated at random to ensure fairness and avoid any biased preference towards specific

antenna gain values. Then, we set

G(AP)
tn =

2 if n ∈ S1

4 otherwise
, G(AP)

rn =

2 if n ∈ S2

4 otherwise
, G(BS)

rm =

2 if m ∈ S3

4 otherwise.
(17)

We assume that all communication channels have a spectral width of B = 500KHz and

a spectral noise density of σ = 2 × 10−17 Watts/Hz. Note that the parameters an and bn,m

can be calculated from the experimental setup that is outlined above. For instance, we have

b6,2 = σB×(4π)2×L6

G(AP)
t6

×G(BS)
r2

×λ2
c

≃ 2.19 × 10−11 Watts/m2. We restrict all wireless links to have an outage

probability less than or equal to ϵ = 1%. Note that the choice of the Lagrangian multiplier λ is

application specific and it encodes the priority level of minimizing the AP power consumption

over the sensor power consumption in P . In particular, larger λ corresponds to higher priority

of minimizing the AP power consumption for the constrained objective function in Eqs. (6) and

(7). Here, we set λ = 0.25, which is less than one, to encode the preference that minimizing the

sensor power consumption has higher priority over the AP power consumption. Later on, we

illustrate how to systematically select λ for an exemplary application requirement. Finally, we

conduct the experiments for two sensor density functions: (1) Uniform PDF; and (2) Gaussian

mixture PDF given as:

f(ω) =
1

2
×N

3× 103

3× 103

 ,

1.5× 106 0

0 1.5× 106


+

1

4
×N

6× 103

7× 103

 ,

2× 106 0

0 2× 106


+

1

4
×N

7.5× 103

2.5× 103

 ,

106 0

0 106

 .

We compare our proposed POOL Algorithm with cluster formation (CF) Algorithm [42],

Genetic Algorithm (GA) [43], heterogeneous two-tier Lloyd (HTTL) Algorithm [27], particle

swarm optimization (PSO) Algorithm [44], and virtual force Algorithm (VFA) [45]. The main

motivation behind choosing these methods for comparison purposes is that they represent state-
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TABLE I: Weighted power comparison between different methods (P)

Method CF GA HTTL POOL PSO VFA
Weighted Power (W) for the uniform PDF 3.57 1.75 1.27 0.59 2.93 1.95

Weighted Power (W) for the Gaussian mixture PDF 7.74 2.76 1.18 0.50 2.04 3.65

of-the-art node deployment methods in different strategy categories. The CF algorithm falls

within the category of methods that take a graph-theoretic approach for load balancing and

energy efficiency. The Genetic Algorithm belongs to the category of evolutionary algorithms

and employs optimization techniques inspired by biology, utilizing operations such as mutation,

crossover, and selection. The HTTL algorithm belongs to the family of geometric-based methods

in which the field of interest is partitioned into several regions, one for each network node, based

on a predefined measure of closeness. The PSO algorithm represents the class of meta-heuristic

node deployment techniques in which optimization tools are used to find optimal node positions.

Finally, VFA is a prominent example of force-based techniques and has inspired numerous

methods that achieve optimal deployment by applying virtual forces to relocate nodes. For all

these algorithms, the final deployment and the resulting weighted power consumption value

depend on the initial deployment from which these algorithms start. Hence, except for our

POOL algorithm which is run only once, we run other methods ten times (corresponding to ten

different random initial deployments) and report the one that yields the best weighted power

consumption.

Table I summarizes the weighted transmission power consumption of the heterogeneous WSN

outlined above for the CF, GA, HTTL, POOL, PSO, and VFA algorithms. For the uniform and

Gaussian mixture sensor distributions, the POOL algorithm leads to weighted power consumption

values of 590mW and 496mW, respectively, and outperforms all other methods. Notably, the

POOL algorithm achieves a power consumption value that is less than half of the second best

algorithm, i.e., the HTTL algorithm, which in turn leads to a more sustainable WSN architecture.

The final node deployment for uniform and Gaussian mixture sensor distributions are shown in

Figs. 2 and 3, respectively, where APs are denoted by red squares and BSs are depicted by

black circles. Areas for which the sensory data ends up in the same BS are shown using the

same color. Note that in Figs. 2c and 3c, some regions are split into two or three colors since,

following the optimal routing protocol in Algorithm 1, the corresponding APs are transmitting



16

to multiple BSs instead of a single BS.

(a) (b) (c)

(d) (e) (f)

Fig. 2: Node deployment for uniform PDF. (a) CF (b) GA (c) HTTL (d) POOL (e) PSO (f) VFA.

Some key factors contributing to the superior performance of the POOL algorithm are worth

noting: While according to the Shannon’s capacity formula, the required SNR for an error-

free information transmission grows exponentially with the required bit-rate, most methods

in the literature consider a linear approximation to this exponential behavior. Such a linear

approximation results in an underestimation of the actual power consumption and a network

configuration that is suboptimal and consumes higher power when evaluated based on the

network’s actual power consumption. In contrast, our approach in this work takes the exponential

relationship between SNR and bit-rate into account. Another contributing factor is that this

exponential relationship between the required transmission power and the flow of data is exploited

in finding the optimal routing for data transfer in Algorithm 1 using Lemma 3.

Designing a wireless sensor network necessitates careful consideration of several factors to

ensure optimal performance. One crucial aspect is determining the number of APs required
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Node deployment for Gaussian mixture PDF. (a) CF (b) GA (c) HTTL (d) POOL (e) PSO (f) VFA.

as it plays a vital role in achieving adequate signal strength and minimizing communication

bottlenecks. In Figure 4, the POOL algorithm is executed on the same network configuration as

before, with the exception of setting λ = 1.0 for which P (P,Q,W,R) represents the total power

consumption of the network. The algorithm is applied to a uniform distribution of sensors, but

with varying numbers of APs. Figure 4 visually illustrates the relationship between the number

of APs and the network’s power consumption, offering a quantitative measure for selecting the

appropriate number of APs to achieve specific performance objectives. For instance, based on

Figure 4, it is observed that a minimum of 40 APs is required to ensure that the total power

consumption of the network remains below 3.5W.

Next, we study the trade-off between sensors’ and APs’ power consumption that is param-

eterized by λ in Eq. (6). For small values of λ, sensor power consumption is the dominant

component of P; thus, it is more paramount to reduce the sensors’ power consumption rather

than APs’ power consumption to minimize P . However, increasing λ puts more weight on the
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Fig. 4: The network power consumption as a function of the number of APs. Simulations for the POOL algorithm
are carried out for the uniform distribution of sensors and λ = 1.

APs’ power consumption. This effect is demonstrated in Fig. 5 where for the same initial node

deployment, we increase the value of λ from 0 to 1. As expected, increasing λ reduces the

APs’ power consumption but increases the sensors’ power consumption. Eq. (12) provides an

alternative intuitive explanation for this observation because as λ increases, APs tend to be

closer to BSs and farther away from centroids and sensors. As shown in Fig. 5, the Gaussian

mixture requires less power compared to the uniform sensor distribution. This is because sensors

are concentrated around the mean values of mixture components and can be covered with less

average distances compared to the uniform distribution.

Finally, we illustrate how to systematically select the Lagrangian multiplier λ. There is a one-

to-one correspondence between a point on the sensor-AP power curve in Fig. 5 and the value of λ.

For example, the value of λ = 0.4 corresponds to the point on the Gaussian mixture curve in Fig.

5 with the sensor and AP power consumption of 404mW and 464mW, respectively. This means if

there is a 404mW constraint on the sensor power, the minimum possible AP power consumption

will be 464mW. Now, if a lower power constraint on the sensors is desirable, for example,

318mW, then a choice of smaller λ, i.e., λ = 0.2 results in a minimum possible AP power

consumption of 733mW. The sensor-AP power curve in Fig. 5 contains enough information about



19

Fig. 5: AP-Sensor power trade-off in POOL Algorithm for both uniform and mixture of Gaussian PDFs. For the
uniform PDF case, the blue square points represent the values of λ ranging from 0 to 1 in increments of 0.05,
specifically: 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and
1. Similarly, for the mixture of Gaussian PDF case, the black circle points correspond to the values of λ ranging
from 0 to 1, with the following specific values: 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,
0.65, 0.9, and 1.

the tradeoff between the optimal sensor and AP power consumption to select the appropriate λ

value given an additional application specific constraint on the sensor or AP power.

V. CONCLUSION

A heterogeneous Rayleigh fading sensor network is presented and discussed in which a set of

access points acts as relay nodes to facilitate the transfer of sensory data from sensors to base

stations by the means of wireless communication. By considering both large-scale and small-

scale propagation effects on the communication channels, our goal is to minimize the wireless

transmission power consumption of the network subject to outage probability constraints on all

wireless links. We derive the theoretical necessary conditions for the optimal deployment, cell

partitioning, and data routing that minimizes the network’s power consumption and accordingly

devise an iterative algorithm to deploy nodes. Simulation results show that our proposed node

deployment algorithm significantly reduces the communication power consumption in such

networks and achieves superior performance compared to other techniques in the literature. It is
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crucial to acknowledge that although the main emphasis of this manuscript has been on reducing

the overall communication power consumption of the network, which can enhance the energy

efficiency of the entire network, it does not automatically guarantee an optimal network lifetime.

To achieve a specific network lifetime, it becomes necessary to modify the objective function

accordingly, aiming for a more equitable power distribution among sensor nodes instead of solely

minimizing the overall power consumption. This aspect represents an intriguing extension to our

present research and is the subject of our future study.

APPENDIX A

PROOF OF PROPOSITION 1

For a fixed cell partitioning W and data routing R, we can rewrite the objective function P

in Eq. (11) using the parallel axis theorem [46] as follows:

P(P,Q,W,R) =
N∑

n=1

∫
Wn

an

ln
(

1
1−ϵ

)∥cn − ω∥2
(
2

Rb
B − 1

)
f(ω)dω

+
N∑

n=1

an

ln
(

1
1−ϵ

)∥pn − cn∥2
(
2

Rb
B − 1

)
vn

+ λ
N∑

n=1

M∑
m=1

bn,m

ln
(

1
1−ϵ

)∥pn − qm∥2
(
2

Fn,m
B − 1

)
, (18)

where vn and cn are the volume and centroid of region Wn, respectively. Since the optimal

deployment satisfies the zero gradient condition, we take the partial derivatives of Eq. (18) with

respect to AP and BS locations as follows. For each n ∈ IAP , we have:

∂P
∂p∗n

=
2an

ln
(

1
1−ϵ

)(p∗n − cn
)(

2
Rb
B − 1

)
vn + λ

M∑
m=1

2bn,m

ln
(

1
1−ϵ

)(p∗n − q∗m
)(

2
Fn,m

B − 1
)
= 0. (19)

By solving Eq. (19), we directly obtain Eq. (12). Now, for each m ∈ IBS , we have:

∂P
∂q∗m

= λ
N∑

n=1

2bn,m

ln
(

1
1−ϵ

)(q∗m − p∗n
)(

2
Fn,m

B − 1
)
= 0. (20)

By solving Eq. (20), we obtain Eq. (13) and the proof is complete. ■

APPENDIX B

PROOF OF LEMMA 1

First, we prove the following lemma.
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Lemma 2: For a constant d ∈ R, the geometric locus of points ω ∈ R2 that satisfy the equation

ai∥pi − ω∥2 − aj∥pj − ω∥2 = d, (21)

is a line perpendicular to pipj in case ai = aj , and either a circle centered at c = aipi−ajpj
ai−aj

or an

empty set in case ai ̸= aj .

Proof: First, we consider the case where ai = aj = a. Let h be the projection of the point ω

on the line pipj . Using Pythagoras’ theorem, we can rewrite Eq. (21) as follows:

(
∥pi − h∥2 + ∥h− ω∥2

)
−

(
∥pj − h∥2 + ∥h− ω∥2

)
=

(
∥pi − h∥2 − ∥pj − h∥2

)
=

d

a
, (22)

thus, any point ω whose projection on the line pipj is h satisfies Eq. (21). Therefore, the geometric

locus of the point ω is a line perpendicular to the line pipj . Now, we consider the case where

ai ̸= aj . Let p = (px, py) and ω = (ωx, ωy). We can rewrite Eq. (21) as:

(ai−aj)
(
ω2
x + ω2

y

)
− 2 (aipix−ajpjx)ωx − 2 (aipiy−ajpjy)ωy = d−

(
ai∥pi∥2 − aj∥pj∥2

)
(23)

or equivalently: [
ωx −

aipix − ajpjx
ai − aj

]2
+

[
ωy −

aipiy − ajpjy
ai − aj

]2
= d′, (24)

where d′ =
d−(ai∥pi∥2−aj∥pj∥2)

ai−aj
+

(aipix−ajpjx)
2+(aipiy−ajpjy)

2

(ai−aj)2
. Hence, the geometric locus of the

point ω is either an empty set if d′ < 0 or a circle centered at c = aipi−ajpj
ai−aj

with radius κ =
√
d′

and Lemma 2 is proved. ■

Now, we use proof by contradiction to establish Lemma 1. Let v∗i and v∗j be the volume of

the neighboring regions W ∗
i and W ∗

j , respectively, and assume that the optimal boundary δ∗i,j is

neither a segment if ai = aj , nor an arc in case ai ̸= aj . Let mi,j(α) = αpi + (1 − α)pj , for

α ∈ R, be a point on the line pipj and define two regions W ′
i and W ′

j as:

W ′
i =

{
ω | ω ∈ Ω∗

i,j, ai∥pi−ω∥2 − aj∥pj−ω∥2 ≤ ai∥pi−mi,j(α)∥2 − aj∥pj−mi,j(α)∥2
}
, (25)

W ′
j =

{
ω | ω ∈ Ω∗

i,j, ai∥pi−ω∥2 − aj∥pj−ω∥2 ≥ ai∥pi−mi,j(α)∥2 − aj∥pj−mi,j(α)∥2
}
, (26)

where Ω∗
i,j = W ∗

i ∪W ∗
j , and let v′i(α) and v′j(α) be the volume of regions W ′

i and W ′
j , respectively.

Note that since the sensor density function f(ω) is a continuous and differentiable function, both

v′i(α) and v′j(α) are continuous functions of α. The geometric implications of Lemma 2 can be
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understood as follows: the locus of points ω ∈ R2 satisfying the equation ai∥pi−ω∥2− aj∥pj −

ω∥2 = ai∥pi − mi,j(α)∥2 − aj∥pj − mi,j(α)∥2 can be described differently depending on the

values of ai and aj . When ai = aj , the locus forms a line perpendicular to pipj at the point

mi,j(α), according to Lemma 2. On the other hand, when ai ̸= aj , the locus becomes a circle

centered at ci,j =
aipi−ajpj
ai−aj

with a radius of κi,j(α) = ∥ci,j −mi,j(α)∥. We can further deduce

that for ai < aj , if α is sufficiently large, v′i(α) becomes zero, and if α = ai
ai−aj

, then v′j(α)

becomes zero, resulting in κi,j(α) = 0. Likewise, for ai > aj , if α = ai
ai−aj

, κi,j(α) and v′i(α)

becomes zero, and if α is sufficiently large, v′j(α) becomes zero. Finally, when ai = aj , for large

α values, v′i(α) becomes zero, and for small α values, v′j(α) becomes zero.

Using the above argument and the fact that v′i(α)+v′j(α) = v∗i +v∗j , it follows that there exists

an α∗ for which we have v′i(α
∗) = v∗i and v′j(α

∗) = v∗j . Now, we define a new cell partitioning

W′′ = (W ′′
1 , · · · ,W ′′

N) where W ′′
t = W ∗

t for t /∈ {i, j}, W ′′
i = W ′

i (α
∗), and W ′′

j = W ′
j(α

∗).

Then, substituting W∗ with W′′ will increase the objective function by:

∆ =

[
N∑

n=1

∫
W ′′

n

an

ln
(

1
1−ϵ

)∥pn − ω∥2
(
2

Rb
B − 1

)
f(ω)dω

+ λ
N∑
i=1

M∑
j=1

bi,j

ln
(

1
1−ϵ

)∥pi − qj∥2
(
2

ri,j×Rb×v′′i
B − 1

)]

−

[
N∑

n=1

∫
W ∗

n

an

ln
(

1
1−ϵ

)∥pn − ω∥2
(
2

Rb
B − 1

)
f(ω)dω

+ λ
N∑
i=1

M∑
j=1

bi,j

ln
(

1
1−ϵ

)∥pi − qj∥2
(
2

ri,j×Rb×v∗i
B − 1

)]
. (27)

Note that W ′′
t = W ∗

t for t /∈ {i, j} and v′′t = v∗t for all t ∈ {1, · · · , N}. Hence, we have:

∆× ln
(

1
1−ϵ

)(
2

Rb
B − 1

) =

[ ∫
W ′′

i

ai∥pi − ω∥2f(ω)dω +

∫
W ′′

j

aj∥pj − ω∥2f(ω)dω
]

−
[ ∫

W ∗
i

ai∥pi − ω∥2f(ω)dω +

∫
W ∗

j

aj∥pj − ω∥2f(ω)dω
]
. (28)

Let V1 = W ′′
i ∩W ∗

j and V2 = W ′′
j ∩W ∗

i . Note that both V1 and V2 are non-empty; otherwise,

we have W ′′
i = W ∗

i and W ′′
j = W ∗

j which contradicts the assumption that the optimal boundary
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δ∗i,j is not a segment or an arc. Now, we can rewrite Eq. (28) as follows:

∆× ln
(

1
1−ϵ

)(
2

Rb
B − 1

) =

[ ∫
V1

ai∥pi − ω∥2f(ω)dω +

∫
V2

aj∥pj − ω∥2f(ω)dω
]

−
[ ∫

V2

ai∥pi − ω∥2f(ω)dω +

∫
V1

aj∥pj − ω∥2f(ω)dω
]

(29)

=

∫
V1

(
ai∥pi − ω∥2 − aj∥pj − ω∥2

)
f(ω)dω

+

∫
V2

(
aj∥pj − ω∥2 − ai∥pi − ω∥2

)
f(ω)dω (30)

<

∫
V1

(
ai
∣∣∣∣pi −mi,j(α

∗)
∣∣∣∣2 − aj

∣∣∣∣pj −mi,j(α
∗)
∣∣∣∣2) f(ω)dω

+

∫
V2

(
aj
∣∣∣∣pj −mi,j(α

∗)
∣∣∣∣2 − ai

∣∣∣∣pi −mi,j(α
∗)
∣∣∣∣2) f(ω)dω (31)

=
(
ai
∣∣∣∣pi−mi,j(α

∗)
∣∣∣∣2 − aj

∣∣∣∣pj−mi,j(α
∗)
∣∣∣∣2)×(∫

V1

f(ω)dω −
∫
V2

f(ω)dω

)
(32)

= 0, (33)

where the inequality in (31) follows from Lemma 2 and the fact that both V1 and V2 are non-

empty. Also, Eq. (33) follows from the fact that V1 and V2 have the same volume because

v′′i = v∗i and v′′j = v∗j . Since 0 < ϵ < 1 and Rb > 0, it follows from Eqs. (29)−(33) that

∆× ln
(

1
1−ϵ

)(
2

Rb
B − 1

) < 0 =⇒ ∆ < 0, (34)

i.e., the increase in the objective function is negative. Thus, W′′ yields a lower objective function

than that of W∗ which contradicts the optimality of W∗ and the proof is complete. ■

APPENDIX C

PROOF OF PROPOSITION 2

According to Lemma 1, the optimal boundary δ∗i,j , which intersects the line pipj at h∗
i,j , is

either a segment if ai = aj , or an arc with its center placed at c = aipi−ajpj
ai−aj

if ai ̸= aj . Let α∗

be the scalar that satisfies the equation α∗pi + (1− α∗)pj = h∗
i,j . For an infinitesimal γ > 0, let

α′ = α∗ − γ. Then, we define a new cell partitioning W′ =
(
W ′

1, · · · ,W ′
N

)
as follows:

W ′
i =

{
ω | ω ∈ Ω∗

i,j, ai∥pi − ω∥2 − aj∥pj − ω∥2 ≤ ai∥pi − h′
i,j∥2 − aj∥pj − h′

i,j∥2
}
, (35)
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W ′
j =

{
ω | ω ∈ Ω∗

i,j, ai∥pi − ω∥2 − aj∥pj − ω∥2 ≥ ai∥pi − h′
i,j∥2 − aj∥pj − h′

i,j∥2
}
, (36)

and W ′
t = W ∗

t for t /∈ {i, j}, where Ω∗
i,j = W ∗

i ∪W ∗
j and h′

i,j = α′pi + (1−α′)pj . Note that the

infinitesimal difference between α∗ and α′ leads to an infinitesimal difference between volumes

of these new regions, i.e., v′i = v∗i + dv and v′j = v∗j − dv, where v′i and v′j are the volumes of

W ′
i and W ′

j , respectively, and dv is the volume of the region dW = W ′
i −W ∗

i = W ∗
j −W ′

j . By

substituting W∗ with W′, the increase in the sensor power consumption can be written as:

∆1=

∫
W ′

i

ai

ln
(

1
1−ϵ

)∥pi−ω∥2
(
2

Rb
B −1

)
f(ω)dω +

∫
W ′

j

aj

ln
(

1
1−ϵ

)∥pj−ω∥2
(
2

Rb
B −1

)
f(ω)dω

−
∫
W ∗

i

ai

ln
(

1
1−ϵ

)∥pi−ω∥2
(
2

Rb
B −1

)
f(ω)dω −

∫
W ∗

j

aj

ln
(

1
1−ϵ

)∥pj−ω∥2
(
2

Rb
B −1

)
f(ω)dω (37)

which can be simplified as follows:

∆1=

∫
dW

ai

ln
(

1
1−ϵ

)∥pi−ω∥2
(
2

Rb
B −1

)
f(ω)dω −

∫
dW

aj

ln
(

1
1−ϵ

)∥pj−ω∥2
(
2

Rb
B −1

)
f(ω)dω (38)

=

∫
dW

1

ln
(

1
1−ϵ

)[ai∥pi − ω∥2 − aj∥pj − ω∥2
](

2
Rb
B − 1

)
f(ω)dω. (39)

It follows from Lemma 2 and the definition of W ′
i and W ′

j in Eqs. (35) and (36) that for an

infinitesimal region dW , we have:

∆1 =

∫
dW

1

ln
(

1
1−ϵ

)[ai∥pi − h∗
i,j∥2 − aj∥pj − h∗

i,j∥2
](

2
Rb
B − 1

)
f(ω)dω +O(dv2) (40)

=
1

ln
(

1
1−ϵ

)[ai∥pi − h∗
i,j∥2 − aj∥pj − h∗

i,j∥2
](

2
Rb
B − 1

)
dv +O(dv2). (41)

Now, substituting W∗ with W′ results in the following increase in the AP power consumption:

∆2 =
M∑
t=1

bi,t

ln
(

1
1−ϵ

)∥pi − qt∥2
(
2

ri,tRbv
′
i

B − 1
)
+

M∑
t=1

bj,t

ln
(

1
1−ϵ

)∥pj − qt∥2
(
2

rj,tRbv
′
j

B − 1
)

−
M∑
t=1

bi,t

ln
(

1
1−ϵ

)∥pi − qt∥2
(
2

ri,tRbv
∗
i

B − 1
)
−

M∑
t=1

bj,t

ln
(

1
1−ϵ

)∥pj − qt∥2
(
2

rj,tRbv
∗
j

B − 1
)

(42)

=
M∑
t=1

bi,t

ln
(

1
1−ϵ

)∥pi − qt∥2 × 2
ri,tRbv

∗
i

B ×
(
2

ri,tRbdv

B − 1
)

+
M∑
t=1

bj,t

ln
(

1
1−ϵ

)∥pj − qt∥2 × 2
rj,tRbv

∗
j

B ×
(
2

−rj,tRbdv

B − 1
)
, (43)
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where Eq. (43) follows from the relations v′i = v∗i + dv and v′j = v∗j − dv. Using the Taylor

series expansion, we can write Eq. (43) as follows:

∆2 =
M∑
t=1

bi,t

ln
(

1
1−ϵ

)∥pi − qt∥2 × 2
ri,tRbv

∗
i

B × ln (2)× ri,tRbdv

B

−
M∑
t=1

bj,t

ln
(

1
1−ϵ

)∥pj − qt∥2 × 2
rj,tRbv

∗
j

B × ln (2)× rj,tRbdv

B
+O(dv2), (44)

where O(dv2) contains terms of second and higher orders in the Taylor series approximation.

By combining Eqs. (41) and (44), the total increase in the objective function due to substituting

W∗ with W′ is given by ∆ = ∆1 + λ∆2, that is:

∆ =
1

ln
(

1
1−ϵ

)[ai∥pi − h∗
i,j∥2 − aj∥pj − h∗

i,j∥2
](

2
Rb
B − 1

)
dv

+ λ
M∑
t=1

bi,t

ln
(

1
1−ϵ

)∥pi − qt∥2 × 2
ri,tRbv

∗
i

B × ln (2)× ri,tRbdv

B

− λ
M∑
t=1

bj,t

ln
(

1
1−ϵ

)∥pj − qt∥2 × 2
rj,tRbv

∗
j

B × ln (2)× rj,tRbdv

B
+O(dv2) ≥ 0, (45)

where the last inequality follows from the optimality of W∗. By dividing ∆ by dv and taking

the limit dv −→ 0, the term O(dv2) vanishes and we have:[
ai∥pi − h∗

i,j∥2 − aj∥pj − h∗
i,j∥2

](
2

Rb
B − 1

)
+ λ

M∑
t=1

bi,t∥pi − qt∥2 × 2
ri,tRbv

∗
i

B × ln (2)× ri,tRb

B

− λ
M∑
t=1

bj,t∥pj − qt∥2 × 2
rj,tRbv

∗
j

B × ln (2)× rj,tRb

B
≥ 0. (46)

By defining α′′ = α∗+γ for an infinitesimal γ > 0 and repeating the same procedure, we obtain:[
ai∥pi − h∗

i,j∥2 − aj∥pj − h∗
i,j∥2

](
2

Rb
B − 1

)
+ λ

M∑
t=1

bi,t∥pi − qt∥2 × 2
ri,tRbv

∗
i

B × ln (2)× ri,tRb

B

− λ

M∑
t=1

bj,t∥pj − qt∥2 × 2
rj,tRbv

∗
j

B × ln (2)× rj,tRb

B
≤ 0. (47)

By combining Eqs. (46) and (47), we obtain Eq. (14) and the proof is complete. ■
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APPENDIX D

PROOF OF PROPOSITION 3

First, we prove the following lemma.

Lemma 3: Let g(x) = ax + aC−x where x ∈ [0, C] for a, C ∈ R+ and a > 1. Then, g(.) is

symmetric around the point x = C
2

and strictly decreasing in the interval
[
0, C

2

)
.

Proof: Function g(.) is symmetric because g(x) = g(C − x). Now, by taking the derivative

w.r.t. x, we have d
dx
g(x) = ln(a)×

(
ax−aC−x

)
. Since a > 1, we have d

dx
g(x) < 0 for x ∈

[
0, C

2

)
and the proof is complete. ■

Lemma 3 leads to the following conclusion.

Corollary 1: Let x1 and x2 be two non-negative real numbers such that x1 + x2 = C is a

constant. Then, for a > 1, decreasing |x1 − x2| results in smaller ax1 + ax2 values.

Now, we proceed to establish Proposition 3. Note that the constrained objective function

formulation in Eqs. (15)−(16) is equivalent to

argmin
Fn,1,··· ,Fn,M

M∑
i=1

2

[
Fn,i
B

+log2

(
bn,i∥pn−qi∥2

)]
, (48)

s.t.
M∑
i=1

Fn,i =

∫
Wn

Rbf(ω)dω = Rbvn, and Fn,i ≥ 0 for all i ∈ IBS, (49)

which is equivalent to the following constrained objective function formulation:

argmin
xn,1,··· ,xn,M

M∑
i=1

2xn,i , (50)

s.t.
M∑
i=1

xn,i =
Rbvn
B

+
M∑
i=1

log2
(
bn,i∥pn − qi∥2

)
= C, (51)

xn,i ≥ log2
(
bn,i∥pn − qi∥2

)
for all i ∈ {1, · · · ,M}, (52)

where xn,i =
Fn,i

B
+ log2

(
bn,i∥pn − qi∥2

)
. Corollary 1 indicates that for any two indices i and

j, we can decrease the objective function in Eq. (50) by decreasing |xn,i − xn,j| while keeping

their summation constant. Thus, the minimum occurs when we have xn,1 = · · · = xn,M = C
M

.

However, this may contradict the constraint in Eq. (52) for some indices i ∈ {1, · · · ,M}.

Therefore, we can always improve the objective function in Eq. (50) and achieve a lower value

by decreasing the distance between any pair of xn,i and xn,j while keeping their summation

constant as long as the constraints in Eq. (52) is not contradicted. This observation results in
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Corollary 2: Let X∗
n = (x∗

n,1, · · · , x∗
n,M) be the optimal solution to the constrained objective

function in Eqs. (50)−(52). Then, there exist unique sets I∗L and I∗U such that

x∗
n,i = x∗

n,j = x∗ for ∀i, j ∈ I∗U , and x∗
n,i = log2

(
bn,i∥pn − qi∥2

)
for ∀i ∈ I∗L, (53)

and x∗
n,i > x∗ for all i ∈ I∗L.

To see why the last property holds, first, let us assume that we have x∗
n,j = log2

(
bn,j∥pn− qj∥2

)
for all j ∈ I∗U . Since vn > 0, it follows that

M∑
t=1

x∗
n,t =

∑
t∈I∗U

x∗
n,t +

∑
t∈I∗L

x∗
n,t =

M∑
t=1

log2
(
bn,t∥pn − qt∥2

)
< C, (54)

which is in contradiction with Eq. (51). Hence, there exists an index j′ ∈ I∗U for which x∗
n,j′ >

log2
(
bn,j′∥pn − qj′∥2

)
. Now, assume that there exists an index i such that x∗

n,i = log2
(
bn,i∥pn −

qi∥2
)
< x∗ = x∗

n,j′ . Then, according to Corollary 1, we can achieve a lower objective function by

replacing x∗
n,i and x∗

n,j′ with x∗
n,i+η and x∗

n,j′ −η for any 0 < η < x∗
n,j′ − log2

(
bn,j′∥pn− qj′∥2

)
,

which contradicts the optimality of X∗
n. Thus, we have x∗

n,i > x∗ for all i ∈ I∗L.

Corollary 2 indicates that in an optimal solution, all x∗
n,t values should be equal to some value

x∗ except for those that cannot get close enough to x∗ without contradicting Eq. (52). Hence,

the optimal solution can be found using a water filling algorithm as follows. By initializing IL

to an empty set and starting from the case in which all xn,t values are equal to the mean value

x = C
M

, we can identify those indices such as i ∈ I for which xn,i < log2
(
bn,i∥pn− qi∥2

)
. Thus,

I provides the first series of indices for which the value of xn,i cannot be reduced enough to

the mean value x without contradicting the constraint in Eq. (52). Therefore, the optimal value

for each i ∈ I is x∗
n,i = log2

(
bn,i∥pn − qi∥2

)
and we update the set IL by taking its union

with the set I . Now, we can update the mean value x such that
∑

i∈IBS\IL x +
∑

i∈IL x
∗
n,i or

equivalently
(
M − |IL|

)
× x +

∑
i∈IL log2

(
bn,i∥pn − qi∥2

)
still sums to C. By using the new

mean value x, we can determine the next series of indices that would belong to IL and the same

procedure can be repeated. Note that in each iteration, the mean value x either decreases or

stays the same and the set IL either increases in size or stays the same. If IL stays the same,

meaning that there has been no other index that would contradict Eq. (52), then we have found

the optimal solution and the algorithm terminates. Since |IL| ≤ M , the process of IL increasing

in size can continue for at most M iterations and the algorithm will finally converge to the

optimal value X∗
n that satisfies Eq. (53) in Corollary 2. The above procedure is summarized in
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Algorithm 1. Note that the optimal values F ∗
n,1, · · · , F ∗

n,M in Eqs. (48) and (49) can then be

found as F ∗
n,i = B ×

[
x∗
n,i − log2

(
bn,i∥pn − qi∥2

)]
and the proof is complete. ■

APPENDIX E

PROOF OF PROPOSITION 4

First, we aim to prove the convergence of the initialization step that is outlined in Algorithm 2.

Note that the generalized Voronoi diagram V in Algorithm 2 provides the optimal cell partitioning

for the following cost function:

D′(P,W) =
N∑

n=1

∫
Wn

an∥pn − ω∥2f(ω)dω. (55)

Thus, for a fixed AP deployment P, updating W according to V does not increase the cost

function D′. Now, using the parallel axis theorem, we can rewrite Eq. (55) as follows:

D′(P,W) =
N∑

n=1

∫
Wn

an∥pn − cn∥2f(ω)dω +
N∑

n=1

∫
Wn

an∥cn − ω∥2f(ω)dω. (56)

Hence, for a fixed cell partitioning W, updating P according to the rule pn = cn =
∫
Wn

ωf(ω)dω∫
Wn

f(ω)dω

does not increase the cost function D′ in Eq. (56) either. Therefore, by iterating this process, a

sequence of non-increasing D′ values are generated and since D′ ≥ 0, it will converge.

Note that base stations are initialized by applying the Lloyd algorithm to the set of AP points,

which is known to converge. Finally, the normalized flow matrix R is updated by applying

Algorithm 1, which we showed to converge in Appendix D. Thus, the initialization step which

is outlined in Algorithm 2 will eventually converge.

To establish the convergence of the POOL algorithm, we show that none of the three steps

corresponding to updating the node deployment, cell partitioning, and normalized flow matrix

will increase the objective function P . Note that when W, R, Q, and {pj}j ̸=i are fixed, the

objective function P is a convex function of pi; thus, updating pi according to Eq. (12), which

is the solution to the zero-gradient equation, does not increase the objective function. Similarly,

once W, R, P, and {qj}j ̸=i are fixed, P is a convex function of qi. Therefore, updating qi

according to Eq. (13), which is the solution to the zero-gradient equation, does not increase

P . Hence, the node deployment step of the POOL algorithm does not increase the objective

function. Note that the cell partitioning is updated through an iterative process where at each

step, two neighboring regions such as Wi and Wj are selected and their boundary is adjusted.
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More precisely, in each iteration, all Wt regions for t /∈ {i, j} are held fixed and only the

boundary δi,j between regions Wi and Wj is adjusted to provide another partitioning of the

region Ωi,j = Wi ∪Wj . According to Proposition 2, this new partitioning is optimal; hence, the

objective function P will not increase as a result of updating δi,j . Finally, Proposition 3 indicates

that updating the normalized flow matrix according to Algorithm 1 yields the optimal value of

R and as such, P will either remain the same or decrease. Therefore, Algorithm 2 generates a

non-increasing sequence of P values in each iteration, i.e., the POOL algorithm is an iterative

improvement algorithm and since P ≥ 0, it will converge. ■
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