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A B S T R A C T

The Optimal Power Shutoff (OPS) problem is an optimization problem that makes power line de-energization
decisions in order to reduce the risk of igniting a wildfire, while minimizing the load shed of customers. This
problem, with DC linear power flow equations, has been used in many studies in recent years. However,
using linear approximations for power flow when making decisions on the network topology is known
to cause challenges with AC feasibility of the resulting network, as studied in the related contexts of
optimal transmission switching or grid restoration planning. This paper explores the accuracy of the DC OPS
formulation and the ability to recover an AC-feasible power flow solution after de-energization decisions are
made. We also extend the OPS problem to include variants with the AC, Second-Order-Cone, and Network-Flow
power flow equations, and compare them to the DC approximation with respect to solution quality and time.
The results highlight that the DC approximation overestimates the amount of load that can be served, leading
to poor de-energization decisions. The AC and SOC-based formulations are better, but prohibitively slow to
solve for even modestly sized networks thus demonstrating the need for new solution methods with better
trade-offs between computational time and solution quality.

1. Introduction

Climate change is expected to increase the risk of wildfires in many
parts of the world [1]. In recent years, several large and devastating
fires ignited by power lines have increased scrutiny on utility practices
to avoid wildfire ignitions. In California, utilities are routinely lever-
aging de-energization of power lines – commonly referred to as public
safety power shutoffs (PSPS) – as a measure to prevent fires (and limit
their liability) during periods of extreme risk. While PSPS is effective at
reducing wildfire ignitions [2], it carries a significant cost in customer
outages. Prior work has considered how to optimally implement PSPS,
a problem called Optimal Power Shutoff (OPS), to balance the wildfire
risk reduction with the resulting load shed [3], reduce PSPS-caused
power outages through energy storage [4,5] or microgrids [6,7], or
transmission upgrades [8–10].

A common aspect of prior work is that they all rely on a DC power
flow approximation to reduce computational time. However, DC power
flow does not account for reactive power flows and voltage constraints,
and produces solutions that are not AC power flow feasible [11]. This is
particularly true when the system is operating under stress, as can be
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expected when a substantial number of lines are switched off during
a power shutoff. Some data-driven methods for power management
during periods of high wildfire risk use AC power flow, but only
considers up to three de-energizations in the network [12].

The goal of this paper is to assess how the choice of a power flow
representation in the OPS problem impacts solution quality, solution
time, and the trade-off between the two. While this is a question that
is important for the OPS problem, it also arises in many other power
system optimization problems which involve binary decisions regarding
whether or not certain transmission lines should be in operation. Exam-
ples include transmission switching [13], maintenance planning [14],
and transmission expansion [15]. It is known that using DC power flow
in transmission switching may produce infeasible or sub-optimal solu-
tions, and some methods correct DC models for AC-infeasiblility [16]
or use convex relaxations such as Second-Order-Cone (SOC) [17] to
address this limitation. It is worth noting that existing methods for
AC-feasibility recovery from DC-based solutions or heuristic solutions
to transmission switching [18–20] are not directly applicable to OPS
problems because OPS problems (1) tend to turn off many more power
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lines, (2) may involve load shed, and (3) may split the system into
multiple islands.

Other problems are more closely related to the OPS problem in
that large regions of the grid may be de-energized, the network may
contain islands, and load shed may be required to find feasible power
flow solutions. Examples include the Maximal Load Delivery (MLD)
problem in a severely damaged power system [21], where some lines
may have to be disconnected for feasibility, as well as the associated
problem of post-disaster restoration [22,23], which decides how a set
of damaged lines should be prioritized for repair. Both [21–23] include
investigations into the choice of power flow formulations. They demon-
strate that DC power flow may lead to sub-optimal binary decisions
due to lack of consideration of reactive power and voltage problems,
and that AC-based formulations may get stuck in local optima. SOC-
based formulations seem to provide the best accuracy-quality trade-off
given current solver technology, but can still be prohibitively slow. The
results in [22] also demonstrated the need to redispatch generation
with an AC-based optimal power flow after the binary decisions are
made.

In this paper, we leverage the experiences from prior work to study
the solution accuracy, ability to recover an AC feasible solution and
solution speed in the context of the OPS problem. This problem differs
from MLD and restoration problems in that we choose which power
lines to de-energize from all lines in the system (as opposed to outage
scenarios where a limited number of outaged lines are given) and that
it contains a different objective with multiple parts (i.e. to balance
wildfire risk reductions with load shed). Furthermore, prior work [24]
has shown that the partially de-energized grids tend to have a primarily
radial structure. These differences may have significant impact on the
solution speed and accuracy of approximations at the optimal solution,
and thus warrants an independent evaluation.

In summary, the contributions of the work are as follows. (1) We
develop OPS formulations that use the AC, SOC, Network Flow (NF),
and DC power flow formulations. Given the de-energization decisions
obtained by solving OPS with different (non-AC) power flow formula-
tions, we use an AC-Redispatch problem to recover AC-feasible power
flow solutions. (2) We perform a comprehensive analysis of solution
time and solution quality using 11 test networks with hundreds of risk
scenarios. We assess the objective values and accuracy of solutions
obtained with different power flow formulations, as well as the solution
time.

The remainder of the paper is organized as follows: Section 2
introduces the OPS problem formulations and Section 3 introduce the
AC-feasible power flow recovery. Section 4 analyzes the impact of
power flow formulation on OPS, and Section 5 concludes the work.

2. Optimal power shutoff problem formulation

In this section we introduce the OPS problem with AC, SOC, DC, and
NF power flow formulations. The formulation is based on the DC-OPS
problem that was first presented in [3], while the adaptation to AC,
SOC and NF formulations are new.

Across formulations, we consider a network with buses i À B,
generators g À G, lines ij À L, load d À D, and shunts s À S. Subsets of
components (such as generators) at bus i are defined as BG

i . Parameters
are bold while variables are non-bold. Binary variables representing the
energization state of a component are z À {0, 1} and indexed according
to the component. If z=1, the component is energized, otherwise z=0.

2.1. AC optimal power shutoff

We start by defining the OPS problem with AC power flow equa-
tions, then show how the formulation must adapt for the other power
flow formulations.

2.1.1. Objective function
The objective of the OPS problem seeks to maximize the power

delivered while minimizing the risk of a wildfire ignition, with a pre-
specified weighting factor ↵ À [0, 1] to determine a trade-off between
load delivery and risk reduction. The objective function is given by

max (1 * ↵)
≥

dÀD xdwdPD
d

PD
tot

* ↵
≥

ijÀL zijRij

Rtot
(1)

The first term represents the total power delivered in the system. The
power delivered to each node d is given by the power demand PD

d
multiplied by the continuous variable xd À [0, 1]. The weighting factor
wd can be used to prioritize loads such as emergency services and
community centers.

The second term represents the risk of wildfire ignitions. The risk
associated with an ignition from line ij is given by parameter Rij ,
which is multiplied by the binary energization status of a power line zij .
The risk parameter Rij represents the wildfire risk in the area around
the power line, reflecting external factors such as vegetation, geogra-
phy, and weather. This underlying wildfire risk represents the potential
for large and damaging wildfires to occur, and is not impacted by the
power system operations. What is impacted by power system operations
is the probability of ignitions caused by power lines. Specifically, if a
line is de-energized, i.e. zij = 0, the risk of a wildfire ignition is zero
as a de-energized power line cannot ignite a wildfire. Conversely, if
the line remains energized, i.e. zij = 1, the line has a non-zero risk of
igniting a fire. If the line remains energized, zij = 1 and the line has a
non-zero risk. The total wildfire ignition risk is the summation over all
power lines. The two terms are normalized by the total load demand
PD

tot =
≥

dÀD PD
d and total wildfire risk Rtot =

≥

ijÀL Rij in the system,
respectively.

2.1.2. Energization constraints
Most power line de-energizations are aimed at reducing wildfire

risk. However, additional components may have to be de-energized to
enable a feasible power flow solution, and as a result we include de-
energization decisions for all buses, loads and generators as well. In
some cases, the energization status of a component are constrained by
the energization status of the components they are connected to. For
example, if a bus i is de-energized zi = 0, any connected loads and
shunts have to be shed (i.e. xd = 0 and xs = 0), and all generators
and lines have to be de-energized (i.e. zg = 0 and zij = 0). These
relationships are described by the following constraints,

zig f zi ≈g À BG
i , ≈i À B (2a)

zij f zi ≈ij À BL
i , ≈i À B (2b)

xd f zi ≈d À BD
i , ≈i À B (2c)

xs f zi ≈s À BS
i , ≈i À B (2d)

As stated previously each of these variables vary from fully de-
energized 0 to fully-energized 1. The z variables are binary, while
x variables are continuous allowing continuous load and shunt shed.
These variables bounds are shown in Eq. (3)

zg À {0, 1} ≈g À G (3a)

zij À {0, 1} ≈ij À L (3b)

zi À {0, 1} ≈i À B (3c)

0 f xd f 1 ≈d À D (3d)

0 f xs f 1 ≈s À S (3e)



Electric Power Systems Research 234 (2024) 110713

3

E. Haag et al.

2.1.3. Generation constraints
The active power output of a generator PG

g is constrained between is

upper PG
g and lower P

G
g power limits when the generator is energized,

and constrained to 0 when the generator is de-energized, shown in
Eq. (4). The reactive power QG

g is similarly constrained in Eq. (5).

zgPG
g f PG

g f zgPG
g ≈g À G (4)

zgQG
g f QG

g f zgQG
g ≈g À G (5)

2.1.4. Power flow constraints
Active and reactive power balance at each node are given by

…

gÀBG
i

P G
g *

…

(i,j)ÀBL
i

P L
ij *

…

dÀBD
i

xdPD
d *

…

sÀBS
i

gsV 2
i xs = 0 ≈i À B (6)

…

gÀBG
i

QG
g *

…

(i,j)ÀBL
i

QL
ij *

…

dÀBD
i

xdQD
d +

…

sÀBS
i

bsV 2
i xs = 0 ≈i À B (7)

where PL
ij ,Q

L
ij represent the active and reactive power flow on line ij

and QD
d is the reactive power demand. The shunt conductance and

susceptance is given by gs and bs respectively, and are multiplied by
the square of the node voltage magnitude Vi and the shunt shed variable
xs.

The thermal power limit for a power line T ij is expressed in terms
of the squared magnitude of complex power, which must be less than
the squared thermal limit of the power line when energized zij = 1, or
set to 0 when the line is de-energized zij = 0. This limit is applied to
power flow in both directions,

0 f (PL
ij )

2 + (QL
ij )

2 f T 2
ijzij ≈ij À L (8a)

0 f (PL
ji )

2 + (QL
ji)

2 f T 2
ijzij ≈ij À L (8b)

The bus voltage magnitude Vi must be within the upper V i and lower
V i limits when bus i is energized, and 0 otherwise,

ziV i f Vi f ziV i ≈i À B (9)

The AC power flow equations with line switching are

PL
ij = zij

H

gij + gi
tij 2

V 2
i +

*gij tRij+bij t
I
ij

tij 2
ViVj cos

�

✓i*✓j
�

+
*bij tRij*gij t

I
ij

tij 2
ViVj sin

�

✓i*✓j
�

I

≈ij À L
(10a)

PL
ji = zij

H

�

gij + gj
�

V 2
j +

*gij tRij*bij t
I
ij

tij 2
VjVi cos

�

✓j*✓i
�

+
*bij tRij+gij t

I
ij

tij 2
VjVi sin

�

✓j*✓i
�

I

≈ij À L
(10b)

QL
ij = zij

H

*
bij + bi
tij 2

V 2
i *

*bij tRij*gij t
I
ij

tij 2
ViVj cos

�

✓i*✓j
�

+
*gij tRij+bij t

I
ij

tij 2
ViVj sin

�

✓i*✓j
�

I

≈ij À L
(10c)

QL
ji = zij

H

*
�

bij + bj
�

V 2
j *

*bij tRij+gij t
I
ij

tij 2
VjVi cos

�

✓j*✓i
�

+
*gij tRij*bij t

I
ij

tij 2
VjVi sin

�

✓j*✓i
�

I

≈ij À L
(10d)

Parameters gij and bij are the conductance and susceptance, and
Vi,Vj and ✓i, ✓j are the voltage magnitudes and angles at either end
of the power line. Transformers are lossless and located at the i side
of the line with a fixed, complex-value voltage transformation tij . The
real component of the transformation R(tij ) is tRij , and the imaginary
component of the transformation I(tij ) is tIij . When a power line is

energized zij = 1 the equations represent ordinary AC power flow,
while the power flow across the line is constrained to 0 when the line
is de-energized zij = 0.

The voltage angle difference between two ends of a line must be
between the maximum angle difference limits of the power line ✓ij
when the line is energized, and should be unconstrained when the line
is de-energized. This is expressed by the following big-M constraint,

✓i * ✓j f ✓ij + ✓�max(1 * zij ) ≈ij À L (11a)

✓i * ✓j g *✓ij * ✓�max(1 * zij ) ≈ij À L (11b)

Here, ✓�max is pre-computed to be the maximum angle difference
between any two buses in the power system and used as the big-M
value. The above equations are used to define the AC Optimal Power
Shutoff (AC-OPS) problem, i.e.

max Objective (1)

s.t.: Component relationships: (2), (3) (AC-OPS)
Generation constraints: (4), (5)
AC power flow constraints: (6)–(11)

This is a mixed-integer non-linear (and non-convex) problem (MINLP),
which is a challenging class of problems to solve.

2.2. SOC optimal power shutoff

We next describe the SOC-OPS problem, which uses the SOC relax-
ation of AC power flow, such that the objective value of the formulation
is an upper bound on the optimal solution. The SOC power flow
equations with component switching are adopted from [21], including
several implementation aspects (i.e. specific formulations of constraints
and extra variables that improve the MIP solver performance) that
are derived in [25]. Here we focus on describing the variables and
constraints that differ from the AC power flow formulation, and refer
the reader to [26] for details on the derivation of the SOC relaxation.
To obtain a convex relaxation of the power flow equations, the SOC
formulation represents products between voltages using a set of lifted
voltage squared variables such that ViV <

i = Wii for bus voltage. Voltage
products across a power line are ViV <

j = Wij , where the variables in
the model are the real and imaginary components given by W R

ij , W
I
ij .

Additional variables that are added to improve the performance of a
MIP solver are W Fr

ij and W To
ij which represent the squared bus voltage

on either side of a line. The variablesW Fr
ij andW To

ij are equal toWii and
Wjj when a line is energized, but differs in the case of de-energization.
A variable for the voltage at a shunt W S

s is also required to allow a
convex relaxation of shedding shunt power. Note that the formulation
does not contain any voltage angle variables.

The upper and lower bounds of the squared nodal voltages Wii are

ziV 2
i f Wii f ziV

2
i ≈i À B (12)

Similarly, the bounds of the W Fr
ij and W To

ij are

zijV 2
i f W Fr

ij f zijV
2
i ≈ij À L (13a)

zijV 2
j f W To

ij f zijV
2
j ≈ij À L (13b)

The relationship betweenWii andW Fr
ij (and betweenWjj andW To

ij )
is given in the following equations.

Wii g W Fr
ij g Wii * V

2
i (1 * zij ) ≈ij À L (14a)

Wjj g W To
ij g Wjj * V

2
j (1 * zij ) ≈ij À L (14b)

This constraint requires that the variables are equal when a power
line is energized, but sets the value of W Fr

ij to 0 (in combination
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with Eq. (13)) without restricting the bus voltage when the line is de-
energized. The same argument applies to W To

ij and Wjj . The voltage
product ViV <

j for each power line are given in rectangular form, with
the real and imaginary parts having the following bounds.

zijW R
ij f W R

ij f zijW
R
ij ≈ij À L (15a)

zijW
I
ij f W I

ij f zijW I
ij ≈ij À L (15b)

The value of the upper and lower limits depends on the volt-
age angle limit of the line. The calculation of these parameters is
shown in Appendix. Limits on the voltage angle difference introduces
constraints on the relationship between W R

ij and W I
ij , given by

tan
⇠

✓ij
⇡

W R
ij f W I

ij f tan
⇠

✓ij
⇡

W R
ij ≈ij À L (16)

The line voltage variables are linked with the nodal voltage vari-
ables, and their relationship depends on the energization state of the
line. The relationship is described by the equation

⇠

W R
ij

⇡2
+
⇠

W I
ij

⇡2
=

WiiWjjzij ≈ij À L, however, this equation is nonconvex and introduces
a cubic equation on the right hand side of the constraint. To ensure
convexity, the constraint is first relaxed by replacing the equality with
an inequality

⇠

W R
ij

⇡2
+
⇠

W I
ij

⇡2 f WiiWjjzij ≈ij À L, before the cubic
term is removed by introducing the following relaxed inequalities

⇠

W R
ij

⇡2
+
⇠

W I
ij

⇡2 f WiiWjj ≈ij À L (17a)
⇠

W R
ij

⇡2
+
⇠

W I
ij

⇡2 f WiiW jjzij ≈ij À L (17b)
⇠

W R
ij

⇡2
+
⇠

W I
ij

⇡2 f W iiWjjzij ≈ij À L (17c)

The voltage across a shunt element varies according the amount the
shunt is shed xs. The exact equation W S

s = Wiixs is nonconvex, and
instead a McCormick relaxation is used

W S
s g 0 ≈s À BS

i , ≈i À B (18a)

W S
s g V

2
i (xs * 1) +Wii ≈s À BS

i , ≈i À B (18b)

W S
s f Wii ≈s À BS

i , ≈i À B (18c)

W S
s f V

2
i xs ≈s À BS

i , ≈i À B (18d)

In the SOC nodal power balance constraints, V 2
i is replaced by W S

s
to describe the voltage across shunt elements,

…

gÀBG
i

P G
g *

…

(i,j)ÀBL
i

P L
ij *

…

dÀBD
i

xdPD
d * giW S

s = 0 ≈i À B (19)

…

gÀBG
i

QG
g *

…

(i,j)ÀBL
i

QL
ij *

…

dÀBD
i

xdQD
d + biW S

s = 0 ≈i À B (20)

The SOC power flow equations with line switching use theW variables,
and are given by the following equations,

PL
ij =

gij + gi
tij 2

W Fr
ij +

*gij tRij+bij t
I
ij

tij 2
W R

ij

+
*bij tRij*gij t

I
ij

tij 2
W I

ij ≈ij À L
(21a)

PL
ji =

�

gij + gj
�

W To
ij +

*gij tRij*bij t
I
ij

tij 2
W R

ij

+
*bij tRij+gij t

I
ij

tij 2
W I

ij ≈ij À L
(21b)

QL
ij = *

bij + bi
tij 2

W Fr
ij *

*bij tRij*gij t
I
ij

tij 2
W R

ij

+
*gij tRij+bij t

I
ij

tij 2
W I

ij ≈ij À L
(21c)

QL
ji = *

�

bij + bj
�

W To
ij *

*bij tRij+gij t
I
ij

tij 2
W R

ij

+
*gij tRij*bij t

I
ij

tij 2
W I

ij ≈ij À L
(21d)

Note that when the power line is de-energized zij = 0, the voltage
variables W Fr

ij , W
To
ij , W

R
ij , and W I

ij also go to zero, correctly resulting
in no power flow while de-energized.

With this, the full SOC-OPS formulation is

max Objective (1)

s.t.: Component relationships: (2), (3) (SOC-OPS)

Generation constraints: (4), (5)

SOC power flow: (8), (12)–(15), (16)–(21)

This is a mixed-integer second-order cone problem (MISOCP). It is
convex and thus easier to solve than the AC-OPS, but is still a very
challenging problem class.

2.3. DC optimal power shutoff

The DC-OPS problem is the original version of the OPS problem
first proposed in [3]. It uses the DC power flow linear approximation
to model the power flow, which only considers real power and does
not model reactive power or voltage constraints. The power flow PL

ij
is constrained be lower than the thermal limit T ij when the line is
energized, and to 0 when the power line is de-energized, as described
by

*T ijzij f PL
ij f T ijzij ≈ij À L (22)

The DC power flow equations with line switching are

PL
ij f *bij (✓i * ✓j + ✓�max(1 * zij )) ≈ij À L (23a)

PL
ij g *bij (✓i * ✓j * ✓�max(1 * zij )) ≈ij À L, (23b)

which simplify to the standard DC power flow when the line is ener-
gized zij = 1, and ensures that the voltage angle difference ✓i * ✓j is
unconstrained when the line is de-energized by introducing the big-M
value from Eq. (11).

The DC power balance equation uses a fixed voltage magnitude of
1 p.u. for shunt element power. We multiply the shunt power by xs in
this formulation to model the shunt de-energization.

…

gÀBG
i

P G
g *

…

(i,j)ÀBL
i

P L
ij *

…

dÀBD
i

xdPD
d * gixs = 0 ≈i À B (24)

The full DC OPS problem is given by

max Objective (1)

s.t.: Component relationships: (2), (3) (DC-OPS)

Generation constraints: (4)

DC power flow constraints: (11), (22), (23), (24)

The DC-OPS is a mixed-integer linear problem (MILP) which is easier
to solve than the above two problems, but still challenging to solve for
large power system cases.

2.4. NF optimal power shutoff

The Network Flow OPS problem replaces the physics based power
flow equations with a network flow model [27]. This model considers
active power conservation on each node and assumes that power can be
sent along any edge as long as the transmission capacity constraint (22)
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is respected. We include this formulation to represent the most simplis-
tic way to model the power network when accounting for wildfire risk.
The resulting optimization model is given by

max (1)

s.t.: Component relationships: (2), (3) (NF-OPS)
Generation constraints: (4)
Network flow constraints: (22), (24)

Similar to the DC-OPS, the NF-OPS is also a mixed-integer linear
program (MILP), though with fewer constraints.

3. Recovering AC feasible solutions

The above OPS formulations determine a set of binary de-
energization decisions for each line, as well as a set of continuous
variables that describe the generation, load and power flow in the
system. Since the solutions obtained with SOC, DC and NF formulations
are typically not AC-feasible, the load shed predicted by the optimiza-
tion problem for the given de-energization solution may be wrong. To
evaluate the true load shed amount, we seek to identify the minimum
AC-feasible load shed (or, conversely, the maximum AC-feasible load
delivery) for the set of de-energization decisions determined by those
formulations. Our approach to recover an AC feasible solution leverages
the AC-Redispatch problem [22] to find an AC-feasible power flow.

The AC-Redispatch problem is a continuous AC optimal power flow
problem which maximizes the load served, i.e.,

max
…

dÀD
xdwdP d (25)

We solve this problem with the de-energization decisions fixed to the
values Çz from an OPS solution,

zij = Çzij ≈ij À L (26a)

zi = Çzi ≈i À B (26b)

zg = Çzg ≈g À G (26c)

For conciseness of notation, we use the same equations used in the
AC-OPS problem, with added constraints to fix the binary values to
the energization state from the solution of an OPS problem, shown in
(26). In practice, this problem is modeled as a continuous NLP problem
rather than a MINLP problem. The full AC-Redispatch problem is given
by

max (25) (AC-Redispatch)
s.t.: Component relationships: (26), (3d), (3e)

Generation constraints: (4), (5)
AC Power flow constraints: (6)–(11)

4. Case study

We investigate the solution quality and solution time for the nor-
malized OPS problem with different power flow formulations across a
range of different power system test cases, wildfire values and choices
of the trade-off parameter ↵.

4.1. Case study set-up

(1) Software Implementation The OPS problem is implemented using
the Julia programming language [28] with the JuMP optimization
package [29]. We leverage the DC-OPS implementation in Power-
ModelsWildfire.jl [3], and extended the package to allow for AC, NF
and SOC power flow formulations. These implementations are now
publicly available. We use the solvers Gurobi [30] for the NF-, DC-
and SOC-OPS problems, which are mixed-integer convex (linear or

quadratic) programs, Juniper [31] as a solver for the AC-OPS which is
mixed-integer non-convex (non-linear) problems, and Ipopt [32] for the
AC-Redispatch problem, which is a continuous non-linear problem. We
use Distributions.jl [33] to generate random values for our input data
(as further described below) and PowerPlots.jl [34] and Plots.jl [35]
for visualization.

(2) Test systems We use 11 cases from PGLib [36], ranging from 3 to
118 buses. The names of the systems are listed along with the results
in Table 1.

(3) Wildfire data The PGLib test cases do not include any detailed
geographical information, and therefore there is no wildfire power line
risk data available. To enable testing on a variety of systems and a large
number of scenarios per system, we use randomly generated wildfire
risk coefficients Rij drawn from a Rayleigh distribution. We chose a
Rayleigh distribution because it is a good approximation of wind speed
variation [37], and local wildfire risk is closely correlated with wind
speed [38].

4.2. Numerical experiment set-up

We generate 500 scenarios for each PGLib test case by sampling
wildfire risk coefficients Rij for each power line from the Rayleigh
distribution. We also sample an ↵ trade-off parameter from a uniform
distribution for each scenario, which allows us to study the variation
of these scenarios as alpha changes. In practice, the selection of ↵ to
weigh the trade off of load shed and wildfire ignition risk is a policy
decision based on the priorities of the grid operator or regulator [3].
We study a wide range of values of ↵ to understand how it may impact
solution quality in addition to its primary purpose of a trade off of
priorities in the objective function. For each of these scenarios, we solve
the NF-, DC-, SOC- and AC-OPS formulations. To maintain a reasonable
computational time when solving 500 scenarios, we enforce a 30 min
time limit for each optimization problem and include the results from
the time limited scenarios. We do not include results for the AC-OPS
on test cases larger than 14-buses and for the SOC-OPS on test cases
larger than 39 buses, as a significant number of scenarios (more than
75 of 500) could not be solved within the time limit. For each solution,
we record the objective value, load delivered, total power line wildfire
risk, and solution time.

After solving the OPS problem, we use AC-Redispatch to recover
an AC-feasible solution, and record the resulting load delivered. We
note that the AC-Redispatch problem always found a locally optimal
solution, however, that solution may be a trivial AC-feasible solution
with no power flow on any lines.

We first present detailed analysis on the IEEE 14 bus case before
showing summarized results for the remaining systems.

4.3. IEEE 14 bus case

A collection of results for the IEEE 14-bus case are detailed in Fig. 1,
where different values on the y-axis are plotted against the range of ↵
values on the x-axis. Individual solutions (corresponding to a set of risk
coefficients and an ↵ value) are shown as points in the scatter plots.
The lines represent rolling averages of the nearest 30 data points to
illustrate trends.

4.3.1. Optimization problem results
We first discuss the results obtained by solving the OPS. The upper

row shows the objective value in Fig. 1(a), load delivered in Fig. 1(b)
and wildfire risk in Fig. 1(c). We first observe from Fig. 1(a) that
all power flow formulations find solutions with objective values in
a similar range. However, the AC- and SOC-OPS solutions appear to
have a slightly lower total objective value than the DC- and NF-OPS
solutions. A closer look at Figs. 1(b) and 1(c), explain why. At ↵ values
> 0.5, the AC- and SOC-OPS solutions serve slightly less load while
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Fig. 1. Case IEEE-14 Fig. 1(a) shows a scatterplot of the OPS objective (Load and Risk) for 500 risk scenarios, solved with four different power flow formulations, as a function
of the ↵ parameter. The power delivered to loads is shown in Fig. 1(b) while the wildfire risk is shown in Fig. 1(c). Fig. 1(d) shows the re-calculated objective after an AC-feasible
power flow is found. The reduction in load served is shown in Fig. 1(e). Fig. 1(f) shows the solution time of the OPS problem for each formulation.

the power line risk is slightly higher. At ↵ values < 0.5, the AC- and
SOC-OPS solutions have similar power line risk and serve a similar
amount of load as the DC- and NF-OPS solutions. This indicates that
when conducting a small or moderate PSPS, the solutions obtained
with AC- and SOC-power flow require a larger number of lines to be
remain energized, thus finding solutions with a higher wildfire risk.
At large-scale PSPS when most of the grid id de-energized, there is
little difference between the linear formulations and the SOC or AC
formulations, as the ability to delivery load is almost entirely due to
the connectivity of the power grid.

4.3.2. AC-feasible load delivery
Next, we investigate how the load delivery changes after we re-

cover an AC-feasible load delivery solution. The results are shown in
Figs. 1(d) and 1(e), which shows the re-calculated objective value and
AC-feasible load delivery. By comparing the AC-feasible load delivery in
Fig. 1(e) with the load delivery predicted by the optimization solution
in Fig. 1(b), we observe that the load delivery achieved with the NF
and DC solutions is significantly reduced for ↵<0.85. The load delivery
remains largely the same for the SOC solution across all ↵ values (and
the AC solution is already AC feasible). As a result, the objective values
of the NF and DC-OPS solutions are significantly reduced, as seen in
Fig. 1(d). This indicates that while the NF-, DC-OPS solutions initially
produced similar (or even slightly better) objective values, the de-
energization decisions were significantly different due to inaccuracies
in the NF and DC power flow formulations. As a result, the NF- and
DC-OPS solutions only deliver half as much load as the AC and SOC
solutions once we recover an AC-feasible solution. This demonstrates
that using a more detailed power flow model significantly improves
the results.

4.3.3. Solution time
Finally, Fig. 1(f) shows the solution time needed to obtain the

solution for each instance. Note that we plot the different problems on
three separate scales. We observe that the NF- and DC-OPS problems
have similar solution times, while the SOC-OPS take an order of mag-
nitude, i.e., 10x longer to solve. The AC-OPS is slowest, taking 1000x

longer to solve than the DC and NF solutions. Interestingly, the NF,
DC, and SOC formulations are most challenging to solve when ↵ < 0.5
where solutions have little load shed and moderate risk reduction. The
solution time reduces significantly as ↵ ô 1 where the solution is total
de-energization. The trend is not the same for the AC-OPS problem,
where the solution time increases as ↵ ô 1.

4.4. PGLib test cases

We next show summary results for each of the PGLib test cases.
Table 1 reports the summary metrics of solving the 500 scenarios on
each of the 11 cases from PGLib using all formulations of the OPS prob-
lem. For each network and formulation, we show the average objective
value, the average objective value after finding an AC-feasible power
flow, and the difference between the two. The number of scenarios
where the AC-feasible solution has significant additional load-shed is
shown in Table 3.

4.4.1. Accuracy of predicted load shed
We first discuss the ability of the power flow formulations to accu-

rately predict the load shed value, i.e. have a small difference between
the optimization objective of the OPS problem and the objective value
after the AC-feasibility recovery is solved. For NF-OPS and DC-OPS, the
difference between the objective value of the OPS problem and the re-
evaluated objective using AC-feasible power flow range from 0.001 on
the PJM 5 bus network, to 0.168 on IEEE 14 bus network. This indicates
that on some networks, DC-OPF and NF-OPF are reasonably accurate
on average, but on other networks they can serve less than half the
estimated power delivery. SOC-OPS finds solutions that are very close
to AC-feasible, with an average difference of less than 0.001 for most
networks.

4.4.2. Quality of solutions
Next, we analyze the solution quality by comparing the amount of

load shed after recovering an AC-feasible solution. Table 2 shows the
average objective value difference of the formulations, after finding
an AC-feasible power flow. We compare the solutions pairwise, with
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Table 1
Average OPS objective, AC-Feasible objective, and Difference on 500 scenarios.
Case NF DC SOC AC

Obj. AC-Feas. Obj. Diff. Obj. AC-Feas. Obj. Diff. Obj. AC-Feas. Obj. Diff. Obj.

LMBD 3 Bus .433293 .413538 .019755 .433293 .413538 .019755 .442606 .442415 .000191 .436549
PJM 5 Bus .391419 .389826 .001593 .391419 .389810 .001610 .391288 .391088 .000200 .345657
IEEE 14 Bus .369441 .200461 .168981 .369441 .200444 .168998 .359717 .359597 .000120 .355732
IEEE RTS 24 Bus .433100 .367518 .065582 .433100 .363706 .069394 .425365 .424801 .000564 –
AS 30 Bus .351774 .300583 .051191 .351774 .300586 .051188 .348536 .347950 .000585 –
IEEE 30 Bus .350683 .194934 .155749 .350683 .194945 .155738 .343981 .342727 .001253 –
EPRI 39 Bus .348876 .325593 .023284 .348876 .325941 .022935 .345620 .344390 .001231 –
IEEE 57 Bus .410583 .374980 .035603 .410583 .374980 .035603 – – – –
IEEE RTS 73 Bus .410938 .311074 .099864 .410938 .310687 .100251 – – – –
PEGASE 89 Bus .636862 .503009 .133853 .636860 .503633 .133227 – – – –
IEEE 118 Bus .342006 .286755 .055252 .342007 .286680 .055326 – – – –

Table 2
Difference of AC-Feasible objectives.
Case DC-NF SOC-DC AC-DC SOC-AC

LMBD 3 Bus 0.0 .028876 .023011 .005866
PJM 5 Bus *.000016 .001279 *.044152 .045431
IEEE 14 Bus *.000017 .159154 .155288 .003866
IEEE RTS 24 Bus *.003812 .061095 – –
AS 30 Bus .000003 .047364 – –
IEEE 30 Bus .000011 .147783 – –
EPRI 39 Bus .000348 .018449 – –
IEEE 57 Bus *0.0 – – –
IEEE RTS 73 Bus *.000387 – – –
PEGASE 89 Bus .000623 – – –
IEEE 118 Bus *.000074 – – –

Table 3
Number of scenarios where OPS overestimates AC-Feasible load delivery by greater
than 20%.
Case NF DC SOC

LMBD 3 Bus 0 0 0
PJM 5 Bus 0 0 0
IEEE 14 Bus 379 379 0
IEEE RTS 24 Bus 77 79 2
AS 30 Bus 36 36 0
IEEE 30 Bus 366 366 0
EPRI 39 Bus 17 17 1
IEEE 57 Bus 1 1 –
IEEE RTS 73 Bus 160 168 –
PEGASE 89 Bus 144 144 –
IEEE 118 Bus 1 1 –

positive values indicating that the formulation listed first performs
better. From the results, we first observe that the DC and NF objective
values are nearly identical across all cases, with an average difference
close to 0. We therefore compare only the DC formulation with the
other power flow formulations. The difference between the DC and SOC
objective values shows that the DC formulations performs worse that
the SOC solution on all networks. Interestingly, the SOC-OPS with AC-
feasibility recovery outperforms the AC-OPS problem on all cases, while
even the DC-OPS performs better than the AC-OPS on the PJM 5 bus
case. This is because the AC-OPS finds locally optimal shutoff solutions
when using the Juniper solver.

4.4.3. Recovering an AC-feasible solution
We next discuss the challenges involved with recovering AC-

Feasible solutions. Table 3 reports how many scenarios for each
network had over a 20% difference between the predicted OPS load

Fig. 2. OPS solve speed: Distribution of solution time for the PGLib cases at ↵ = 0.25
and ↵ = 0.5. The triangles denote the mean value.

shed and the AC-Redispatch load shed, meaning that if the planned
PSPS was implemented it could result in over 20% extra load shed
for customers. We observe that the NF and DC formulations often
significantly underestimate levels of load shed on most networks. For
example, the IEEE 89 bus network contains more than 20% extra load
shed when solved with AC-Redispatch in 144 out of the 500 scenarios,
while the IEEE 30 bus network has high additional load shed in 366
out of 500 scenarios.

However, this is not the case on all networks. The solutions from
the 57-bus and 118-bus networks only differ by greater than 20% from
the AC-feasible solution in 1 scenario out of 500 for each network. The
5-bus, and 3-bus networks never differ from the AC-Feasible solution
by more than 20%. It is surprising that some of these networks can
be modeled somewhat accurately with the linear formulations while
other networks, while others have significant load estimate errors in
over 70% of the scenarios. It is however clear that the SOC formu-
lation is more accurate than the DC or NF formulations. Across all
seven networks, the SOC formulation has only three scenarios (out of
3500) where the AC-feasible solution was contained more than 20%
additional load shed.

4.4.4. Solution times
Finally, we discuss the solution time. As seen for the IEEE 14 bus

system, the solve time can vary greatly depending on the trade-off
parameter ↵ and the risk coefficients Rij . To evaluate solution speed
for the PGLib test cases, we solve 50 scenarios at ↵ = 0.25 and ↵ = 0.5.
We again use a solution time limit of 30 min.

Fig. 2 shows the distribution of solution times for different OPS
formulations, with a logarithmic y-axis. The results show that solution
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times for NF- and DC-OPS are generally similar and at least an order of
magnitude lower than for SOC-OPS and several orders of magnitude
lower than for the AC-OPS, validating the results from the IEEE 14
bus system. We also see that the solution times tend to increase as the
systems size increases, making AC- and SOC-OPS too time consuming
for the larger test cases. The difference in solve time when ↵=0.25 and
↵=0.5 becomes significant in scenarios with more than 24 buses, with
↵=0.25 leading to more time consuming problems.

5. Conclusion

In this paper, we evaluate the trade-off in solution quality and
solution time when modeling the OPS problem with the NF, DC, SOC
and AC power flow formulations. To assess the solution quality for the
NF, DC and SOC solutions, we find an AC-feasible power-flow solution
given the de-energization decisions from the respective OPS problems.

We find that solving the OPS problem with the linear NF and
DC power flow formulations tend to significantly overestimate the
amount of load that can be served in a given network configuration,
thus resulting in solutions with high levels of load shed once the de-
energization solutions are checked for AC feasibility. In comparison,
the SOC-based OPS problems tend to more accurately assess the level of
load shed, leading to better de-energization decisions. In our case study,
SOC-OPS solutions even outperform the AC-OPS solutions, because the
AC-OPS becomes stuck at local optima. In terms of solution time, NF
and DC based formulations are orders of magnitude faster than SOC
and AC power flow.

Overall, results indicate that current solver technology forces us to
pick between low solution quality with DC or NF power flow, or long
solution time with SOC or AC power flow. Future work is needed to
devise algorithms that can produce high quality solution in reasonable
computational time.

CRediT authorship contribution statement

Eric Haag: Investigation, Methodology, Visualization, Writing –
review & editing. Noah Rhodes: Conceptualization, Investigation,
Methodology, Software, Supervision, Validation, Writing – original
draft, Writing – review & editing. Line Roald: Conceptualization, Fund-
ing acquisition, Investigation, Methodology, Project administration,
Resources, Supervision, Validation, Writing – original draft, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Appendix

The variable bounds for variables W I
ij and W R

ij depend on the
voltage angle difference bound for a line. In particular, the calculation
changes if the minimum angle difference is greater than zero, or if the
maximum angle difference is less than zero. Algorithm 1 shows the
calculation of these variables bounds.

Algorithm 1 Bounds calculation for W R
ij and W I

ij

1: if ✓ij g 0 then

2: W
R
ij = V iV j cos(✓ij)

3: W R
ij = V iV j cos(✓ij)

4: W
I
ij = V iV jsin(✓ij)

5: W I
ij = V iV jsin(✓ij)

6: else if ✓ij f 0 then

7: W
R
ij = V iV j cos(✓ij)

8: W R
ij = V iV j cos(✓ij)

9: W
I
ij = V iV jsin(✓ij)

10: W I
ij = V iV jsin(✓ij)

11: else
12: W

R
ij = V iV j

13: W R
ij = V iV j min{cos(✓ij), cos(✓ij)}

14: W
I
ij = V iV jsin(✓ij)

15: W I
ij = V iV jsin(✓ij)

16: end if
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