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Metabolismis the complex network of chemical reactions occurring within
every cell and organism, maintaining life, mediating ecosystem processes
and affecting Earth’s climate. Experiments and models of microbial

metabolism often focus on one specific scale, overlooking the connectivity
between molecules, cells and ecosystems. Here we highlight quantitative
metabolic principles that exhibit commonalities across scales, which we
argue could help to achieve anintegrated perspective on microbial life.
Mass, electron and energy balance provide quantitative constraints on
their flow within metabolic networks, organisms and ecosystems, shaping
how each responds toits environment. The mechanisms underlying these
flows, such as enzyme-substrate interactions, often involve encounter

and handling stages that are represented by equations similar to those for
cells and resources, or predators and prey. We propose that these formal
similarities reflect shared principles and discuss how their investigation
through experiments and models may contribute to acommon language for
studying microbial metabolism across scales.

Biological systems span and encompass many scales, from molecules to
organisms, communities, ecosystems and the whole Earth biosphere' ™.
The processesinvolved at each scale can seem very different, yet they
areintimately linked*”. Individual enzymes catalyse the chemical reac-
tionsthat enable organisms to grow and reproduce. These organisms
interact with their local environments and with each other, forming
populations and ecosystems. In turn, biological communities can alter
the environment beyond theirimmediate surroundings, shaping the
global cycles of climatically important elements, such as carbon and
nitrogen, as well as providing the resources that humans rely on®'°, This
presents a bewildering challenge. For example, to understand com-
plex phenomena such as climate change, we need to simultaneously
comprehend and quantitatively model processes from the organiza-
tion of a genome of a single bacterium to the global-scale flows in the
carboncycle.

A unique aspect of microbial and biogeochemical systems that
transcend scales is their metabolism: the network of enzymatic

chemical reactions that sustain life. It is responsible for the synthesis
of complex molecules from simple precursors and the breakdown of
these molecules to provide energy. The multi-scale nature of metabolic
flowis apparent fromthe fact that it can be quantified for anindividual
reaction in a single cell (for example, the rate of oxidation of glucose
by oxygen as part of respiration'), a whole multicellular organism
(for example, the oxygen consumption rate of an elephant®?) or a
planetary-scale ecosystem (for example, the annual rate of carbon fixa-
tion in the global ocean®) (Fig. 1). Studying each of these metabolic
fluxes (see the glossary in Box 1) would traditionally use different tools
and models, which could suggest that a unified view of metabolism s
achallenge too big for anyone to tackle and too remote from standard
practices to be effectively addressed.

Yet, metabolism at different scales exhibits conceptual similarity
and nested architecture, which can be organized around two simple
principles. We argue that these shared principles can serve as unify-
ing themes. The first is that each of the quantities transformed by a
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Fig.1| A cross-scale perspective of marine microbial systems. a, Agenome-
scale, FBA model can map changes in the cellular concentration of different
biomass components in a cyanobacterium during the day-night cycle. Data from
ref.14.b, A cell-scale model describes competition between toxic and non-toxic
cyanobacteria for bicarbonate during phytoplankton blooms in lakes over days.
Datafromref. 15. ¢, Atrophic-level (nutrient-phytoplankton-zooplankton)
model describes the temporal progression of spring phytoplankton and
zooplankton blooms over months. Highly simplified representations of

Hours

photosynthesis and predation are used, as well as a physical description of how
light changes with depth. Data from ref. 16. d, An ensemble of 13 climate models,
eachrepresenting the physics, chemistry and phytoplankton physiology of the
oceans, predicts changes in global marine primary production over the next
century. The different colours show three of the five different climate change
scenarios (thatis, Shared Socioeconomic Pathways (SSPs)) used by the IPCC and
the changes in mean temperatures they predict by the end of the century. DW, dry
weight. Data fromref.18.

metabolic flux (whether molecules, elements, electrons or energy) is
subject to fundamental conservation principles and must therefore
reconcile supply and demand. A second theme stems from the fact that
fluxes at different scales often emerge due to the interaction between

anagent of the transformation (anenzymein abiochemical reaction or
apredatorinanecosystem) and a substrate (ametabolite or preyitem,
respectively). This parallelin conceptual models leads to commonality
between their mathematical descriptions.
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BOX1

Glossary

Metabolic flux: The rate of conversion of substrates into products
along a biochemical reaction or metabolic pathway. It is typically
measured in units of the number of molecules per unit time, often
also normalized to the amount of microbial mass.

Allelopathy: A biological phenomenon whereby one organism
releases chemicals into the environment, affecting the growth
or physiology of another. It is typically used to describe negative
(inhibitory) interactions.

Monod equation: A mathematical model describing the growth
rate of microorganisms as a function of the concentration of their
limiting substrate in the local environment, commonly used in
microbial ecology and biotechnology.

IPCC climate model: A comprehensive framework used by the
IPCC to simulate and predict climate changes. It resolves multiple
factors, including greenhouse gas emissions, socioeconomic
scenarios, atmospheric and oceanic circulation, physics and
biogeochemical cycles, to assess the potential impacts of human
activities on Earth'’s climate.

FBA: An approach for predicting the metabolic fluxes of all reactions
in an organism, based on the assumptions that the system is at
steady state and has evolved towards an optimal metabolic goal.

Allosteric regulation: The modulation of an enzyme’s activity by
a molecule that binds to a site that is different from the active site,
inducing a conformational change that modifies the enzyme’s
catalytic properties.

Resource Ratio Theory: An ecological concept proposing that
the relative availability of multiple resources, such as nutrients,
influences the composition and dynamics of ecosystems by
determining the growth and competitive success of different
species.

Michaelis-Menten equation: A mathematical model describing the
rate of an enzymatic reaction as a function of substrate and enzyme
concentrations, based on the notion that the substrate and enzyme

form a complex before giving rise to the product.

Holling equations: A suite of three mathematical models that describe
different scenarios of how the rate of a predator’s consumption of prey
changes with prey density. They help to characterize the dynamics of
predator-prey interactions in ecological systems.

Nash equilibrium: In game theory, it is the solution of a game such
that each participant’s strategy is optimal given the strategies
chosen by the other.

In this Perspective, we expand on and discuss these two unifying
themes in the context of microbial metabolism, highlighting the
commonalities between conceptual and mathematical descrip-
tions at different scales. We suggest that recognition of these com-
mon themes has the potential to enhance multi-scale integration
and decrease disciplinary barriers through the creation of new
multi-scale models, the design of experiments linked more closely

with theory, approachable cross-disciplinary education and the
search for new cross-cutting principles in the study of Earth-level
microbial metabolism.

Understanding metabolic flows from cells to
ecosystems

Weillustrate how microbial metabolismis interconnected across scales
using the example of carbon and nitrogen cycles in the ocean, where
tiny, photosynthetic marine microorganisms (phytoplankton) fix CO,
into organic matter (Fig. 1). Although each individual microorganism
typically contains 10 g of carbon, the aggregated activities of these
organisms and others in marine food webs ultimately mediate very
large reservoirs of oceanic and geologic carbon (10" and 102 g of car-
bon, respectively).

Atthe cellular scale (Fig.1a), carbon fixation canlead to either the
production of new functional cell biomass (for example, nitrogen-rich
protein) or the storage of carbon-rich compounds, including glyco-
gen™. This is determined by cellular allocation of metabolic fluxes
in response to the local environment and community, as well as the
genomic potential of each specific organism. Assuming that the
internal metabolism of individual organisms equilibrates faster
than environmental changes, steady-state genome-scale models
of cellular metabolism can be used to understand and predict such
fluxes. At the population level (Fig. 1b), competition for resources,
metabolite exchange, allelopathy (for example, through antibiotic or
toxin production; Box 1) and other processes determine the relative
fitness of different species, leading to changes in population struc-
ture®. Intheillustrated case, competition for common resources (for
example, bicarbonate) between toxic and non-toxic cyanobacteria
shapes the community composition. Dynamic changes can be reca-
pitulated using kinetic models where population growth is related
to the uptake rate of the limiting resource, described here using a
modification of the Monod equation (Box 1). At the ecosystem scale
(Fig. 1c), phytoplankton growth and primary production depend
on resources, including light intensity and nutrient concentration,
but phytoplankton are also preyed on by zooplankton'. Together,
these forces shape the relative fitness of different phytoplankton
phenotypes and determine the magnitude, timing and composition
of large-scale phytoplankton blooms. Finally, globally integrated
primary production (carbon fixation) in the ocean sustains marine
food webs and fisheries and mediates a large store of carbon in the
deep ocean, thus reducing atmospheric CO,. Future changes in this
store are of major societal interest and are thus represented in current
Intergovernmental Panel on Climate Change (IPCC) climate models”
(Box1).Figureldillustrates an ensemble of 13 mathematical models
that were used to predict future trends in global ocean primary pro-
duction under several scenarios for atmospheric CO, (ref. 18). Each
climate model in the ensemble includes different, highly simplified
representations of the carbon cycle, including phytoplankton growth
and death (biogeochemical components), which aim to model the
collective response of the ocean ecosystem’s metabolism.

Importantly, Fig. 1 also illustrates how—despite the cross-scale
perspective needed to understand complex processes—research is
still largely siloed within individual disciplines. The knowledge and
language of scientists addressing different scales, from micrometres
to kilometres, appear very different”. For example, understanding
the function or regulation of a microbial enzyme requires very differ-
ent experimental tools and training compared with those needed to
understand currents that disperse and merge the cells carrying this
enzyme in ocean microbial ecosystems (for example, refs. 20,21). Yet,
important challenges, such as predicting the response of the carbon
cycle to climate change, require a cross-scale perspective’?, Similar
questsforintegrationacross scales are evidentin other systems, includ-
ing terrestrial/soil ecosystems and the microbiomes of animals, plants
and humans® 2,
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Balancing supply and demand to constrain
complex metabolic fluxes

One of two core concepts that can serve as unifying themes across
these scales and systems is the stoichiometric balance of resource
supply and demand®?. All living organisms have a set of metabolic
demands. Specific elements and molecules serve as indispensable
resources that are essential for the optimal functioning of cells, organ-
isms and ecosystems. These resources are often needed in precise
ratios, or stoichiometries, that vary by reaction. For example, nitro-
gen, carbon and sulfur are required in a specific stoichiometry to
synthesize amino acids, whereas a different ratio of nitrogen, carbon
and phosphorus is required for nucleic acids***’. The environment
around a cell typically does not supply all of the essential elemen-
tal resources at the optimal ratios. The mismatch of availability and
requirements makesit necessary for cells, organisms or populations
to carefully balance the uptake of external resources and their final
fate. This balancing of resources imposes constraints on the metabolic
flows within the system.

Elemental supply and demand inindividual
chemical reactions and total biomass

Balancing resourcesis familiar at the level of individual reactions. For
example, hereisastandard, balanced chemical equation for oxygenic
photosynthesis, which leads to the production of carbohydrates:

C02 + H20 + phOtOnS - %C(,leoé + 02 (1)

Extending this notion to a whole cell, one can collectively write
asingle elementally balance equation to represent the reproduction
of an individual organism or the production of biomass in a whole
ecosystem:

106CO, + 16NOj + H,PO}™ +122H,0 o
+ photons d C106H2460110N16P + 13802

Theleftside of Eq. (2) represents the most common forms of inor-
ganic nutrients in the ocean: NO,~ asasource of nitrogenand PO,* as
asource of phosphorus, as well as the CO,, water and photons used for
the photosyntheticreactionshowninEq. (1). Ontheright-hand side of
the equation, C,o¢H,,s0110NcP represents the average composition of
living biomass in marine plankton. This empirical average, known as
the Redfield ratio®, reflects the summed contributions of elements
across the set of all molecules that form cellular biomass. These
moleculesinclude the carbohydrates from Eq. (1), as well as proteins,
nucleic acids, lipids and thousands of other macromolecular struc-
tures and small metabolites. Importantly, the element-by-element
conservation of mass (the same number of atoms on each side of Egs.
(1)and (2)) also imposes constraints on the fluxes of elements within
individual chemical reactions, cells or ecosystems. Conservation of
electrons and energy can also be accounted for (see, for example,
refs. 31,32).

The Redfield ratiois typically applied in global-scale biogeochemi-
cal models to simulate the linked dynamics of carbon, nitrogen and
other elements at the ecosystemscale. Yet, in any given environment,
itisunlikely that the supply of resources exactly balances the organis-
mal ratio, requiring modifications of Eq. (2). For example, in the case
where thereisinsufficient NO,”in the ecosystem to balance the amount
of CO,, PO,* and photons available, organisms will need to seek a dif-
ferent source of N, adding a new nitrogen source to the left-hand side
of Eq. (2). Alternatively, they could change their biomass composi-
tion (for example, overproduce C-rich storage compounds, such as
glycogen, resulting in a modified right-hand side of the equation) or
reduce growth.
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Fig. 2| Mass balance imposes constraints on fluxes. a, A kitchen sink with two
taps and one drain can be used as a simple analogy for balancing fluxes. This
sink can be at adynamical steady state, such that the amount of water in the
sink does not change, despite water flowing in from the faucets and out of the
drain. Conservation of (water) mass requires incoming and outgoing fluxes to
bebalanced, imposing a simple linear relationship between the fluxes. Note that
the flux is not necessarily proportional to the amount of water in the sink (that
is, there could be high flux with very little water or conversely a full sink with
little flow throughit) and that there are an infinite number of possible solutions.
b, Inametabolic network, agiven molecule can be produced and consumed by
different reactions. If the network is at steady state (that is, the concentration

of metabolites does not change in time), the flux producing a given metabolite
(V, +V,) must be equal to the sum of the fluxes consuming it (V;). This relationship
constitutes a constraint between the fluxes, meaning that once we choose

two of the three fluxes the third is constrained to have a specific value. The
metabolic network of a real bacterial cell comprises in the order of1,000-3,000
reactions. ¢, The stoichiometric matrix (S) summarizes the constraints on each
reaction (the balance of supply and demand) and is used (together with upper
and lower bounds on the flux through each reaction, R) to solve the metabolic
Sudoku. d, Examples of two possible solutions for the simplified network. a-KG,
o-ketoglutarate; ADP, adenosine diphosphate; ATP, adenosine triphosphate;
GLU, glutamate; NAD, nicotinamide adenine dinucleotide; NADH, reduced
nicotinamide adenine dinucleotide; PEP, phosphoenolpyruvate.

Balancing supply and demand in complex
metabolic networks using flux balance analysis
Although Egs. (1) and (2) balance atoms and electrons, what a cell is
actually directly controlling is the uptake, production and loss of func-
tional macromolecules (for example, amino acids, nucleotides, carbo-
hydrates and so on) that lock together atoms of different elements,
each with their own stoichiometry (for example, ref. 33). In fact, each
cell constantly manages acomplex metabolic network in which thou-
sands of individual chemical reactions (such as Eq. (1)) are connected
to each other through the usage of shared metabolites (substrates
and products; Fig. 2). Forexample, although many cells use glycolysis
and the tricarboxylic acid cycle to produce ATP and reducing power
(forexample, NADH/NADPH), the same pathways are also used to pro-
duce the macromolecular building blocks of biomass (for example,
pyruvate, acetyl-CoA and tricarboxylic acid cycle intermediates used
for the biosynthesis of amino acids). These equations all need to be
balanced (Fig. 2a).

To understand how cells manage this complex balancing of
resources, it is helpful to formulate the problem in terms of conser-
vation laws and constraints. In metabolism, multiple reactions can
concurrently contribute to the increase or decrease of a metabolite
pool, resembling multiple sources and sinks of water in a reservoir
(Fig. 2a). For the reservoir to be at steady state, all rates (or fluxes)
of sources and sinks must balance each other. Similarly, for a cell to
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maintain, onaverage, aninternal metabolite at a fixed concentration,
fluxes producing or consuming that metabolite must be balanced
(Fig. 2b). Thus, each metabolite is associated with a constraint on
fluxes. Extending this notion to all metabolites participating in a
network of metabolic reactions requires simultaneously imposing
multiple constraints. This gives rise to a large constraint satisfaction
problem that is reminiscent of a giant, multidimensional Sudoku
puzzle (Fig. 2b,c). As in a Sudoku, where the choice of a number in a
columnis constrained by the numbers we already have in that column,
the choice of values for the fluxes that transform a given metabolite
into downstream productsis constrained by the net sum of the fluxes
producing that metabolite.

This constraint satisfaction resource allocation approachis at the
core of one of the most common approaches for modelling metabo-
lism, known as stoichiometric modelling, constraint-based modelling
or flux balance analysis (FBA; Box 1). The starting point for FBA is the
construction of a stoichiometric matrix***°, which encapsulates the
detailed stoichiometry of all molecules (rows) participating in each
metabolic reaction (columns in Fig. 2b,c). Next, as illustrated above,
FBA makes the simplifying assumption thatall fluxes are in steady state
(that is, there are no changes over time in the concentrations of the
metabolites; Fig. 2a). This assumption implies that the flux variables,
constrained by stoichiometry, are related to each other through a
system of linear equations.

As this system of equations is typically under-determined, many
possible solutions with balanced fluxes are possible, giving rise to a
whole solution space called the feasible space (Fig. 2d). Additional
constraints can be used to narrow down the solution space. In par-
ticular, specific fluxes in the metabolic network can be constrained
to have values in a specified range. This type of constraint is gener-
ally used to limit the import of resources, based on availability in the
extracellular environment or on transport capacity. If the system is
stillunder-determined, an optimization step can be taken to identify,
within the feasible space, the set of fluxes that maximize abiologically
plausible objective function. Although the most commonly used func-
tion is the production of cell biomass (maximizing the growth rate),
other objectives can also be used, such as increasing the production
ofaspecific product (for example, in biotechnological applications®),
minimizing overall flux®® or maximizing ATP yield™.

Itisimportant to note, however, that behind the apparent sim-
plicity of the FBA algorithm lie several complex and unresolved chal-
lenges. These include the process of constructing accurate microbial
metabolic models based on genomic data. Most computationally
generated metabolic networks have gaps that can either be real (for
example, due to gene loss) or artefactual, caused by missing or erro-
neous annotation of gene function. Identifying and filling these gaps
constitutes the subject of active research**"*2. Moreover, for FBA to
accurately predict growth, itisimportant to know the composition and
abundance of the building blocks that compose biomass*’. Biomass
composition is taxon specific and requires different experimental
techniques to characterize its different fractions (lipids, proteins,
nucleotides and cofactors**). Additionally, although relationships
between fluxesin FBA are linear, each individual flux depends on mul-
tiple factors adding hidden complexity. These include the expression
level of relevant enzymes, their kinetic properties (for example, the
half-saturation constant (K,,,) and the maximum rate of the reaction
whenall of theenzyme's active sites are saturated with substrate (V,,,);
see below), post-translational modifications, allosteric regulation
(Box 1) and the concentrations of reactants and products, none of
which are explicitly considered in FBA. Thus, the elegance and value
of steady-state stoichiometric models such as those used in FBA come
ataprice, namely theimpossibility of predicting intracellular metabo-
lite concentrations (but see refs. 45,46) and lack of representation
of many of the mechanisms that are fundamental to the regulation
of metabolism.

Environmental changes reorganize metabolic
flux

Despite the internal constraints imposed by mass balance, cells and
ecosystems respond to changing environments. In both cases, this is
done by modulating the relative flow of metabolites through different
parts of the network. For example, fertilizer overuse or other forms of
pollution canlead to much more phosphorus entering lakes or coastal
ecosystems relative to nitrogen, resulting in an imbalance of supply
and demand for these two elemental resources. Under the resulting
nitrogen-limited conditions, some organisms (including some toxic
cyanobacteria) may assimilate or fix abundant atmospheric N, gas
rather than utilize the limited amounts of fixed or reduced nitrogen
(for example, in the form of NH,*, NO,~, urea or amino acids). Mole
for mole, N, fixation is expensive relative to the assimilation of more
reduced nitrogen forms, and most microorganisms do not have this
metabolic capability””. For those that do, the extra costs may be worth-
while, enabling them to grow and consume other resources, such as
phosphorus*. In this situation, at the cellular level, individuals with
genomically encoded nitrogen fixing capability may reconfigure their
internal metabolic network viachanges in gene expression, leading to
increased flux through the nitrogen-fixing pathway*’ (Fig. 3a). Nitro-
gen limitation also increases the relative fitness of nitrogen-fixing
specialists (Fig. 3b), causing themto bloom, leading to a system-scale
metabolic shift and enhanced nitrogen flow through a changein com-
munity composition®. Thus, both enzymes in an organism and organ-
ismsinacommunity canbe viewed as dynamically adaptable catalysts
of metabolic flux.

Stoichiometric models can capture some fundamental aspects of
the physiological adaptation of organisms and the ecological changes
incommunities in response to different environmental conditions. In
cellular FBA, constraints on the environmental availability (uptake
fluxes) of specific metabolites translate into distinct sets of possible
steady-state solutions that include or exclude, for example, nitrogen
fixation®*2, Accurate estimation of environment-dependent redistri-
bution of fluxes remains challenging because microbial cells alter not
only their metabolic network but also their biomass composition as
they acclimatize to different conditions®*~*. Ecologists have developed
similar modelling approaches, where equations describe the equilib-
rium fluxes of elements through organisms in an ecosystem. One key
difference is that ecologists are often interested in how community
composition shiftsinresponse to external forcing and therefore focus
on standing stocks (the concentrations or abundances of specific
organisms or resources) and the process of competitive exclusion
(Resource Ratio Theory*®; Box 1). In contrast, cellular stoichiometry
formulations typically focus on fluxes and do not delve into molecular
abundances. Overall, although an aquatic microbial ecologist evaluat-
ing the water quality and plankton community in alake and a bioengi-
neer evaluating the production efficiency of acompound may consider
different metrics and scales, they are probably using mathematical
modelling frameworks that are remarkably similar.

Innature, environment-dependent regulation of genes within cells
and dynamical changes of species abundances within ecosystems occur
simultaneously and affect each other. In principle, these processes at
different scales canbe represented by asingle underlying mathematical
framework and used to implement more accurate predictive models.
Extensions of mathematical frameworks that were developed for single
organisms canbe used to explore questions about ecosystem dynam-
ics (for example, by simulating the emergent behaviour of multiple
species, each of which is seeking to maximize its own growth rate)**".
To bridge genome and ecosystem scales, however, several challenges
need to be overcome. One of themis the differences in timescales, with
chemical reactions taking fractions of seconds but cell reproduction
taking minutes or hours. Anapproach called dynamic FBA*® addresses
this by calculating the steady-state, optimized fluxes within an organ-
ism at discrete time steps, assuming fast equilibration of intracellular
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a, Many nitrogen-fixing cells can assimilate fixed nitrogen to build new biomass
(shown here as NH," uptake) and fix N, only when the advantage outweighs the
extrametabolic expense. These cells are essentially tackling an optimization
problem and configuring the intracellular metabolic network to maximize the
growthrate (see refs. 52,125 for examples of FBA simulations). In the illustrated
cell, the expression of nitrogen fixation enzymes depends on the relative
availability of phosphorus and ammonium; when the available NH,*:PO,* ratio
islow relative to demand (16:1), nitrogen fixation is cost effective provided that
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sunlight energy (hv) is plentiful. Usage of ATP for non-metabolic processes

can be takeninto account through a maintenance reaction flux (V). b, The
cellular-scale metabolic reconfiguration is paralleled at the ecosystem scale (for
example, inalake). In this case, when the supply ratio of fixed N to bioavailable P
(often measured as NO, :PO,*") is less than cellular demand (16:1), the extra cost
of nitrogen fixation enables the assimilation of otherwise unused phosphate.
This situation permits the co-existence of specialist nitrogen-fixing cells with
relatively high growth costs alongside the fixed nitrogen users. When the supply
ratiois less than demand, nitrogen-fixing cells are outcompeted.

metabolism**°. This approach can track the abundance of different
microbial populations and extracellular metabolites as a function of
time, in simplified structured space®"*>. Efforts have been made to
implement FBA in complex natural ocean environments®’. FBA can also
beusedto characterize and map metabolic niches, encoded in the abil-
ity of an organism to grow under different environmental conditions,
and ongoing work aims to investigate how such niches canbe mapped
into an environmental space®*®.

There are additional barriers to overcome before genome-scale
models and Earth system models can be fully integrated, including
differencesin the molecular resolution at which organic matteris rep-
resented (for example, specific metabolites in genome-scale models
and aggregated terms such as dissolved organic matter for Earth system
models). Yet, the fact that researchers studying microbial metabolism
at different scales share the use of flux as afundamental quantity and
mass balance as a universal constraint offers the opportunity to build
increasingly efficient and insightful multi-scale models. Growth of this
interdisciplinary area will require full partnership with experimental
microbiologists and microbial ecologists, who could collaborate with
theorists to incorporate estimates of metabolic supply and demand
(budgeting) as standard components of experimental design (Box 2).

Understanding kinetics through encounter and
handling

A second unifying conceptis how the regulation of biological rates at
differentscales follows similar mechanistic constraints. Almost every
processinbiology requires an encounter between two entities, where

one entity modifies (or handles) the other (Fig. 4)°°. For example, an
enzyme binds to and modifies its substrate, a cell takes up nutrients
andincorporatestheminto macromolecules (growing) and a predator
captures and eats its prey. Many biological questions revolve around
how encounter and handling processes affect the concentrations of
molecules, cells or organisms, and how these concentrations change
over time, affecting the metabolic fluxes discussed above.

A common basis for kinetic modelling of
enzymes, cells and predators
As shown in Fig. 4, enzymatic reactions, cellular nutrient acquisition
and prey capture are often characterized by asaturating curve, where
the rate of the process is determined by the concentration of a limit-
ing factor. Here we emphasize that these functional response curves,
which underlie several of the studies illustrated in Fig. 1, are qualita-
tively very similar across different processes: phenomena that were
separately described for enzymes (the Michaelis-Menten equation®’;
Box 1), growing bacterial cells (the Monod equation®) and predator-
prey interactions (Holling type Il functional response®’; Box 1) end up
being represented by very similar—if not identical—equations*s7%”!
(Fig. 4). Despite taking place at distinct temporal and spatial scales,
therelationships between fluxes and abundances inthese phenomena
can be viewed as special cases of the general concept of encounter
and handling.

The generality of this concept, and of the ensuing saturation
curve for enzymes, cells and predators, may be described in the
form of a two-step process illustrated in Fig. 4. It is captured by the
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BOX2

Practical steps to integrate models and experiments for the study

of multi-scale microbial processes

The concepts of mass balance and encounter and handling can be
incorporated into the workflow of microbial ecosystem research in
multiple ways, facilitating interactions between experimental and
theoretical groups.

Write a mass balance (or budget) equation during experimental
planning

The very act of writing an equation describing aspects of the supply
and demand of a system, or formally describing its components

as part of an overall budget (that is, resource allocation), helps to
determine its key components and what is known about them'”.
Such an exercise may also help to identify which components can
be measured easily, assess whether other components can be
indirectly assessed (for example, based on mass balance) and identify
gaps or inconsistencies that can hint at unconstrained or missing
components.

Perform experiments in defined media where the limiting factors
are known

Many microbiological experiments are performed under conditions
designed to maximize experimental simplicity or biomass yield

(for example, at the end of exponential growth in complex media).
However, under these conditions, the environmental conditions
sensed by the cells and their physiological adaptations are often
unclear. Performing experiments in simple, defined media (for
example, under conditions where the limiting nutrients are known)
aids the calculation of fluxes or mass budget and, more generally,
relates cell physiology to specific resources, including in the context
of mathematical models.

Collect easily measurable data that can constrain mass balance
even if they do not seem immediately useful

For example, protein, DNA and RNA concentrations can be relatively
easily and sensitively measured using dyes and, being major
components of biomass, can help to constrain resource allocation to
other types of macromolecules (for example, ref. 127, but see ref. 128).
The uptake, release or intracellular fluxes of metabolites or elements
can be difficult to measure, but can sometimes be constrained by
measurements of their concentrations in extracellular sources or
sinks (for example, ref. 129) and can be extremely useful for testing
and refining models™°. Making such data findable, accessible,
interoperable and reusable (that is, FAIR™') is also important.

Employ commonly used and/or experimentally measurable model
parameters or variables

Many intellectually stimulating, informative and influential models
explore fundamental aspects of biological systems using parameters
that are either abstract (for example, generalized Lotka-Volterra
interaction terms) or difficult to measure. A related issue is the use of

following equation, whichisrelated to that used in the derivation of the
Michaelis-Menten equation:

ke K
C+X->CX->C+Y
Encounter Handling

@)

radically different units in different fields, which can mask underlying
similarities and natural connections (Fig. 5). For example, fluxes from
genome-scale models are typically expressed in units of millimoles
of metabolite transformed per gram of dry mass per hour. These units
are very different from those used in biogeochemical models (for
example, millimoles of carbon per m® per day). In some cases, the
choice of units is dictated by technical limitations (for example, the
availability of biomass or analytical limits of detection), whereas in
other cases units are chosen to fit in a specific theoretical framework
(for example, writing mass conservation equations for estimating
carbon flow in an ecosystem). Overcoming these language barriers
can be simple (for example, by clearly describing conversion factors
in publications), but in some cases may require a concerted effort
from scientists across disciplines to provide a community-approved
set of standards and conversion utilities.

Use theory and computation to identify the mostimportant
variables to measure experimentally

A strength of computational models that can be leveraged in
experimentation is the ability to perform thousands of in silico
experiments, testing the sensitivity of a system to changes in
individual parameters or conditions. This can help to prioritize
specific experimental measurements, which account for the
overall goal of the model. For example, although the importance
of K., for assessing competitive exclusion in ecosystems is clear
(for example, refs. 132,133), sensitivity analyses show that this
parameter (which is often difficult to measure experimentally)
may be less important than loss processes, such as excretion, for
describing growth in a batch bioreactor™*. Sensitivity analyses can
also be used to optimize experiments (for example, in identifying
the minimum number of measurement points required to constrain
a model parameter)'®.

Use fluxes and encounter and handling to teach about quantitative
principles in biology

The relative simplicity and universality of the two notions discussed
above—flux balancing and encounter and handling—offer a unique
opportunity to motivate and foster better cross-talk between theory
and experiment through education that fosters mathematical literacy
in biology. For example, revisiting the Michaelis-Menten equation in
basic microbiology courses and expanding the discussion to include
a broader description of encounter and handling, as well as the
Monod and Holling equations, can provide a concrete example

for how mathematical principles apply across scales. Similarly,
discussing the challenges of linking molecular genetic data and
intracellular molecular fluxes, and relating these cell-scale views

of metabolism to elemental fluxes, has the potential to motivate
students to seek more opportunities for research at the junction
between levels of organization.

Here, Cis the catalyst (for example, predator), Xis the reactant
(or prey) and Yis the product (for example, new predator biomass).
C-Xisacomplexinwhich the catalyst and reactant physically interact
(for example, an enzyme-substrate complex or live prey in a pred-
ator’s mouth; Fig. 4a) and has a short life span compared with the
turnover times of the catalyst, reactant and product. k; and k,, are the
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Fig. 4| Encounter and handling processes and their representationin
mathematical models. a, Schematic of biological encounter and handling
processes at different scales, along with their characteristic graphs and
equations. The catalysts are foxes (Holling type Il equation), cells (Monod
equation) and enzymes (Michaelis—-Menten equation) and the reactants are prey,
nutrients and substrates, respectively. In each case, the maximum rate of the
processis the product of the total catalyst concentration and the rate at which it
handlesits reactant. The steepness with which the rate increases at low resource

concentrationsis characterized by the half-saturation coefficient, K, = ’;—” s
E

which s theratio between handling and encounter rate coefficients (Eq. (3) in the
main text). The encounter rate depends on, for example, the speed at which the
fox searchesits territory, the rate of diffusion of nutrient molecules in amedium
and the rate at which substrate molecules diffuse within the cytoplasm of a cell.
Increasing the encounter rate (kg; see Eq. (3) in the main text) steepens the slope
of rate versus resource. Hence, a fox increasing the speed at which it hunts might
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increase the rate of encounter with hares and its feeding rate at low hare
densities. Note that in the Holling type Il equation the parameters are explicitly
described as encounter/attack (a) and handling (k) rates, while Nis the prey
density (equivalent to substrate concentration [X] in the Michaelis-Menten and
Monod equations) and i is the ingestion rate. b, The Holling type lll equation and
Hill function describe similar S-shaped relationships. The Holling type Il form
emerges when the encounter rate, kg, is proportional to the resource density,
[X]: for example, if the fox reduces its hunting effort at low prey densities. Other
mechanisms lead to similar modifications of the rate-substrate relationship in
enzyme kinetics. The Hill equation, for example, describes the fraction of a
cooperative enzyme (¥) bound to its substrate, which depends on the
cooperativity or Hill coefficient, n. The sigmoidal graphs shown here are for a Hill
equation with n =4 (when n =2, the Hilland Holling Type lll equations are
identical). In the Holling Type Ill equation, a° is the density-dependent attack
rate, defined by a = a°N.

rate constants, which characterize the two stages—encounter and
handling—respectively. In this simplified form, both reactions are
assumed to beirreversible.

Thefirststage of this processisthe encounter between the catalyst
and reactant. In enzymatic reactions, the encounter rate depends on
the diffusion of the enzyme and substrate; for microbial cells taking
up nutrients, the encounter rate may additionally depend on the
size of the cells, their motility and fluid flow®*’% In predator-prey

interactions, the encounter rate depends on predator and prey motil-
ity, perception range and behavioural factors (for example, ref. 66).
Following a successful encounter (production of the C-X complex),
there is a handling stage during which the catalyst processes its
reactant: the enzyme processes the substrate and releases it, or the
predator consumes the prey.

Through ageneric representation of atwo-phase process (foundin
most biochemistry textbooks; for example, ref. 73), one caninfer from
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Eq. (3) a version of the commonly employed expression that relates
rate, V, to the concentration of the limiting resource, [X]:

[X]

V=Y x5 K,

“@)

Here, V., is the maximum flux, which depends on the handling
rate of the catalyst. K, isthe concentration of the resource at which the
fluxis half of the V,,,, (the half-saturation). This expression has the form
of a saturating function (Fig. 4) and variations of this equation have
been used equally well to describe enzyme kinetics®, predation rate
as a function of prey density® and photosynthesis as a function of
lightintensity”. The Monod equation®, which captures the empirical
relationship between microbial growth rate and limiting resource
concentration, is another well-known phenomenological law with the
same functional shape, althoughits origin was entirely empirical rather
thantheoretical (see ref. 75 for extensive discussion on possible mecha-
nisticinterpretations). We note that for each of these equations therate
of generation of the product Vis the flux through the reaction itself,
which as discussed above is subject to mass conservation constraints
when embedded in asteady-state network.

Extending the basic encounter and handling
processes

Despite the commonalities highlighted above (and previously noted
by refs.48,70,71), each of these specific embodiments of the encounter
and handling process (Michaelis—-Menten, Monod and Holling type
II) is associated with unique details and assumptions and its own rich
literature. For example, for Michaelis—Menten kinetics to accurately
capture real metabolic processes, it is often necessary to incorporate
aspects such as reversibility, product inhibition, cooperativity and
specific mechanisms for multi-substrate reactions, which modify the
basic equationand behaviour of the saturation curve”. Insome cases,
similar modifications to the basic encounter and handling process were
developedindependently indifferent fields. For example, in biochem-
istry and pharmacology, the Hill equation captures the S-shaped func-
tional responses when multiple substrates bind to the same enzyme
or transporter (for example, haemoglobin; Fig. 4b)**7*7%, In ecology,
asimilar form, termed the Holling type Ill functional response, can
describe predator-prey interactions affected by, for example, the
predator’s adaptive search effort, multiple prey types or spatial het-
erogeneity®®’%7% Recognizing that encounter and handling processes
can provide a conceptual framework for biological processes across
scales can provide the opportunity for researchers to apply knowledge
gained in one field to a different one (for example, by expanding the
possible variants of the relevant equations and their modulation by
molecular and environmental factors).

A unified perspective for understanding
microbial metabolism

We haverevisited two fundamental quantitative principles of biology,
highlighting their relevance across different scales and showing that the
corresponding mathematical representations have muchincommon
despite having developed independently in different fields. The con-
ceptofmass, electronand energy balance has led to constraint-based
models of metabolic organization at scales from cells (at genomic reso-
lution) to ecosystems, whereas the concept of encounter and handling
lies at the core of mechanistic models for rate laws used inbiochemistry,
cellbiology and ecology. Beyond their conceptual roots and intellectual
appeal, can these similarities help to provide acommon language for
microbiologists across research areas and biological scales? Canthey
be utilized to focus experiments and provide a starting point for future
efforts to construct multi-scale models of biology? We propose four
practical steps that microbiologists can take to inform future research,
as discussed below (see Box 2 for additional suggestions).

Using fluxes as universal connectors in metabolic modelling

Consider again the ocean carbon cycle example illustrated in Fig. 1d.
Current Earth system models, which are used to simulate the coupled
global carbon cycle and climate system (for example, ref. 81), typi-
cally use coarse parameterizations of the processes that are studied—
and modelled—with more detail at the ecosystem, microorganism or
enzymescales (Fig.1a-c). Althoughin principleitis possible to develop
a highly resolved, genome-scale model of an organism and embed it
within an ecological setting (for example, using dynamic FBA), this is
currently computationally infeasible for global-scale models. More
importantly, it is difficult to envisage a conceptually tractable model
that captures every molecular process across hundreds or thousands
of interacting organismsin adynamic ocean setting. Moreover, many
of the key currencies used in models of different scales are inherently
different (for example, FBA resolves specific molecules, whereas bio-
geochemical models currently represent broader concepts, such as dis-
solved organic matter, which comprise thousands of (mostly unknown)
molecules). Asaresult, models at the genome and ecosystem scale are
not compatible; they require some form of translation or connection.

We propose that as Earth system models move towards incorpo-
rating more biological detail, carefully selected fluxes can serve as key
connectors to mediate cross-scale integration (Fig. 5). For example,
most current ocean simulations (for example, refs. 82,83) represent
photosynthetic reactions using an idealized parameterization that
takes into account temperature and nutrient inhibition, based on
small laboratory populations®. To increase the biological realism of
photosynthesis in ocean models, recent biophysical or molecular
observations canbe used (for example, ref. 85), as well as more detailed
representations of photo-physiology. This could be achieved through
adedicated, high-resolution photosynthesis module, which connects
to the main cell or ecosystem model via a compatible flux that can be
used atbothscales. For example, fluxes of glucose could provide alink
between photosystem and cell scales, whereas a flux of fixed carbon
could link photosystems and communities® (Fig. 5). An appropriate
plug and play architecture, which builds on modular sub-models, each
withits ownrelevant level of detail, could help to promote the incorpo-
ration of more detailed models that bridge scales, where appropriate,
in an efficient and conceptually unified framework®,

Importantly, thiswill require coordination between modellersand
experimentalists to decide on the relevant, measurable fluxes and their
units. Enforcing mass (and other) conservation laws brings powerful
constraints to mathematical models of cells and ecosystems; hence, we
root modelsin currencies for which we can enforce conservation (for
example, carbon biomass or fluxes of carbon). In contrast, although
molecular and genomic techniques are rapidly becoming the tools of
choice with which to obtain a detailed molecular view of metabolism
(for example, through changes in gene expression), these measure-
ments cannot currently be used in the framework of mass conserva-
tion. Quantitative proteomics and metabolomics can, in principle,
be translated into units of macromolecules or elements and are thus
better suited for informing mass conservation®’, Additionally, many
measurements often collected as metadata for molecular or genomic
experiments are in fact conservable currencies useful for modelling
(see Box 2). Collaborative design of experiments, including theorists
at the outset, could help to select appropriate measurements and
maximize the longevity and overall value of both observations and the
associated model development.

Exploring approaches to integrating stoichiometry and
regulation

Beyond measuring conservable currencies, integrating gene and pro-
teinexpression datawith stoichiometric models of metabolism seems
an obvious way of unifying metabolic and transcriptional networks
towards a global predictive understanding of physiology. Unfortu-
nately, thisintegration is very challenging for several reasons’’. Gene
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Fig. 5| Examples of using fluxes and kinetics to connect models at different
scales. a, A detailed biophysical model of photosynthesis coupled with a
genome-scale model of metabolism could predict the flux of glucose produced
perreaction centre. b, This flux could be used to link between this model (as a
sub-module) and a coarse-scale model of a phytoplankton cell, but would require

translation to carbon per cell. ¢, In turn, such a phytoplankton cellmodel could be
linked with aglobal biogeochemical model, but again would require appropriate
translation of fluxes. 3PG, 3-phosphoglyceric acid; CBC, Calvin-Benson cycle;
G3P, glyceraldehyde 3-phosphate; RuBP, ribulose 1,5-bisphosphate.

expression and protein abundance do not always correlate and are
rarely expressed as absolute concentrations (for example, the catalyst
concentrationin Eq. (3))”". Additionally, flux through an enzymatic reac-
tion depends not only on enzyme concentration butalso onits turnover
rate and substrate affinity, which are often unknown, as well as on the
substrate concentration, whichis not modelled in FBA. Finally, enzyme
activity is often allosterically modulated by its product or products of
otherreactions in the same metabolic pathway (for example, ref. 92).

Theinherentlimitations that hinder the integration of -omics data
with flux-based models are very challenging but perhaps not unsur-
mountable. For example, systematic measurements of gene expres-
sion, protein abundance and metabolic fluxes from the same system
may help toidentify whether there are specific metabolic pathwaysin
which gene expression or protein abundance measurements are con-
sistently correlated with fluxes. Such pathways can serve as the focus
of initial integration efforts. Moreover, theoretical and experimental

approaches should explore new ways of integrating allosteric regu-
lation in metabolic models (for example, by using thermodynamic
constraints® and incorporating metabolite concentrations and their
effects onenzymes for selected compounds). Systematic exploration
ofallostericinteraction networks and their representationin databases
may enable an approximation of their effect on metabolic fluxes, pos-
sibly though modifying flux constraintsin FBA (asis currently explored
for kinetic parameters using algorithms such as GECKO®*). Finally, it
is possible that the rising amount of high-throughput data on gene
expression, protein abundance and metabolic fluxes will help to build a
new generation of hybrid machine learning-mechanistic models. Such
approaches could, for example, use data-driveninference of regulation
toimpose constraints on metabolic fluxes in stoichiometric models of
metabolism. The challenge of integrating -omics data is exacerbated
in current ecosystem-scale models, where the link between the tran-
scription rate of specific enzymes, for example, and coarse-grained
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modelled flows of organic matter is even more tenuous and challeng-
ing to quantify. Yet, the potential for efficient, systematic sampling at
the ecosystem scale using molecular metrics is clearly immense, and
continued efforts to intercalibrate molecular and mass-based metrics
of population areimportant™ .

Embracing evolutionary principles

Inaddition toaiding our understanding of the dynamics of molecules,
cells and ecosystems, some of the mathematical approaches described
above are strongly related to the role of evolutionary adaptation in
shaping metabolism. For example, in its most frequent formulation,
FBA describes the metabolic fluxes of an organism under the hypothesis
that its regulatory mechanisms have evolved to support the objec-
tive of a maximally efficient production of biomass****?°. However,
this hypothesis falls short of describing the incredibly diverse set of
strategies employed by living organisms alone or in communities.
In addition to environment-dependent variations in the composi-
tion of biomass, and alternative objectives that may best capture
cellular goals during growth in noisy environments, fundamentally
different optimization processes may occur during stress and starva-
tion. Answering some of these questions will require broader defini-
tions of condition-dependent objective functions that can be tested
directly or inferred from experimentally measured fluxes®*'°°, This
will require carefully designed experiments (for example, combining
laboratory-controlled evolutionary experiments with detailed flux
and biomass measurements)’*'",

The role of evolutionary adaptation in shaping metabolism has
also been explored at the ecosystem level. Extending the notion of
optimality used in FBA, microbial community dynamics has been
studied as an emergent property of multiple organisms each pursu-
ing its own evolutionary objective’®'°>. However, the evolutionary
trajectories of community members can be strongly coupled with
each other. For example, key metabolic functions can be lost by some
organisms, as long as others can still perform this function (a process
termed the black queen hypothesis'®®). This kind of process can be
studied using evolutionary game theory'** and has been combined
with flux balance modelling to predict Nash equilibria of multiple
strains sharing resources'®. At even larger scales, other approaches
have asked whether optimality principles based on non-equilibrium
thermodynamics can be identified for ecosystems and their metabo-
lism'°1%7, This raises the question of how to reconcile the bottom-up
view of ecosystems being shaped by Darwinian selection acting on
individuals with the top-down notion of physical laws dominating the
outcome at the ecosystem level'®,

Finally, itisnot only the ecosystem-level flux that can be shaped by
evolutionary adaptation, but also the structure of metabolism itself.
In addition to modulating the regulation of gene expression or enzy-
matickinetic parameters to affect fluxes'”, evolutionary processes can
modify the shape of the metabolic network (for example, through gene
gainorlossand through the acquisition of new functions). This can be
investigated by performing simulations of horizontal gene transfer and
adaptive gainorloss of metabolic functions'®’. Such analyses are begin-
ning to explore both reductive evolution of organisms (for example,
symbiosis within a host organism)"° and expansion of metabolismon
ecological and geologic timescales*",

Seeking new principles

Beyond the recommendations discussed above, these formal similari-
ties could suggest the existence of novel fundamental principles waiting
tobediscovered. Here, we can only speculate about the existence and
nature of such principles. The scales described here are discrete levels
within amuchricher continuum of scales, for which aformal descrip-
tionis yet to be invented. It is possible that data-driven approaches
will gradually help scientists to identify flux variables that are the most
helpful descriptor of a system for each research question. These flux

variables may encode aggregates of molecular fluxes constrained by
environmental, metabolic or ecological constraints, somewhere in
between detailed molecular fluxes and broad elemental fluxes (for
example, fluxes of specific proportions of N and C). Natural candi-
dates for such aggregates are metabolic pathways or modules, but
one could envision other units of metabolism, perhaps evolving
under similar driving forces (for example, ref. 118). One could then
ask whether such fluxes satisfy specific flux balance constraints and if
they canbe expressed as the effective outcome of encounter and han-
dling processes. Similarly, an ecological resource ratiomodel could be
formed around consortia of organisms with different trophic strategies
instead of single functional types (for example, mutualistic autotrophs
and heterotrophs), yet similarly formulated in principles of flux bal-
ance and encounter and handling kinetics. Flux balance and kinetic
equations may operate at any scale we may be interested in or are able
to experimentally assess.

Conclusion

Astheimportance, challenges and ramifications of multi-scale models
arebecomingapparentin microbial ecology, we propose that two con-
cepts—balancing supply and demand, and the ubiquity of encounter
and handling processes—provide a common language for discussing
metabolism across scales and disciplines. Clearly, we have not been
able to cover every aspect of how metabolism operates and evolves
(forexample, group selection"*?° and eco-evolutionary dynamics'*"'??)
or otherimportant concepts, such as the scaling of organismsize and
metabolic rates'>*'** and how they have evolved®. Yet, we hope that our
effort to consider concepts and equations that are typically taught in
different classes and discussed at different conferences will inspire new
creative ways of understanding how metabolism links the microbial
and planetary scales.
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