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Quantitative principles of microbial 
metabolism shared across scales

Daniel Sher    1  , Daniel Segrè    2,3,4,5,6   & Michael J. Follows    7 

Metabolism is the complex network of chemical reactions occurring within 
every cell and organism, maintaining life, mediating ecosystem processes 
and affecting Earth’s climate. Experiments and models of microbial 
metabolism often focus on one specific scale, overlooking the connectivity 
between molecules, cells and ecosystems. Here we highlight quantitative 
metabolic principles that exhibit commonalities across scales, which we 
argue could help to achieve an integrated perspective on microbial life. 
Mass, electron and energy balance provide quantitative constraints on 
their flow within metabolic networks, organisms and ecosystems, shaping 
how each responds to its environment. The mechanisms underlying these 
flows, such as enzyme–substrate interactions, often involve encounter 
and handling stages that are represented by equations similar to those for 
cells and resources, or predators and prey. We propose that these formal 
similarities reflect shared principles and discuss how their investigation 
through experiments and models may contribute to a common language for 
studying microbial metabolism across scales.

Biological systems span and encompass many scales, from molecules to 
organisms, communities, ecosystems and the whole Earth biosphere1–3. 
The processes involved at each scale can seem very different, yet they 
are intimately linked4–7. Individual enzymes catalyse the chemical reac-
tions that enable organisms to grow and reproduce. These organisms 
interact with their local environments and with each other, forming 
populations and ecosystems. In turn, biological communities can alter 
the environment beyond their immediate surroundings, shaping the 
global cycles of climatically important elements, such as carbon and 
nitrogen, as well as providing the resources that humans rely on8–10. This 
presents a bewildering challenge. For example, to understand com-
plex phenomena such as climate change, we need to simultaneously 
comprehend and quantitatively model processes from the organiza-
tion of a genome of a single bacterium to the global-scale flows in the 
carbon cycle.

A unique aspect of microbial and biogeochemical systems that 
transcend scales is their metabolism: the network of enzymatic 

chemical reactions that sustain life. It is responsible for the synthesis 
of complex molecules from simple precursors and the breakdown of 
these molecules to provide energy. The multi-scale nature of metabolic 
flow is apparent from the fact that it can be quantified for an individual 
reaction in a single cell (for example, the rate of oxidation of glucose 
by oxygen as part of respiration11), a whole multicellular organism 
(for example, the oxygen consumption rate of an elephant6,12) or a 
planetary-scale ecosystem (for example, the annual rate of carbon fixa-
tion in the global ocean13) (Fig. 1). Studying each of these metabolic 
fluxes (see the glossary in Box 1) would traditionally use different tools 
and models, which could suggest that a unified view of metabolism is 
a challenge too big for anyone to tackle and too remote from standard 
practices to be effectively addressed.

Yet, metabolism at different scales exhibits conceptual similarity 
and nested architecture, which can be organized around two simple 
principles. We argue that these shared principles can serve as unify-
ing themes. The first is that each of the quantities transformed by a 
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an agent of the transformation (an enzyme in a biochemical reaction or 
a predator in an ecosystem) and a substrate (a metabolite or prey item, 
respectively). This parallel in conceptual models leads to commonality 
between their mathematical descriptions.

metabolic flux (whether molecules, elements, electrons or energy) is 
subject to fundamental conservation principles and must therefore 
reconcile supply and demand. A second theme stems from the fact that 
fluxes at different scales often emerge due to the interaction between 
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Fig. 1 | A cross-scale perspective of marine microbial systems. a, A genome-
scale, FBA model can map changes in the cellular concentration of different 
biomass components in a cyanobacterium during the day–night cycle. Data from 
ref. 14. b, A cell-scale model describes competition between toxic and non-toxic 
cyanobacteria for bicarbonate during phytoplankton blooms in lakes over days. 
Data from ref. 15. c, A trophic-level (nutrient–phytoplankton–zooplankton) 
model describes the temporal progression of spring phytoplankton and 
zooplankton blooms over months. Highly simplified representations of 

photosynthesis and predation are used, as well as a physical description of how 
light changes with depth. Data from ref. 16. d, An ensemble of 13 climate models, 
each representing the physics, chemistry and phytoplankton physiology of the 
oceans, predicts changes in global marine primary production over the next 
century. The different colours show three of the five different climate change 
scenarios (that is, Shared Socioeconomic Pathways (SSPs)) used by the IPCC and 
the changes in mean temperatures they predict by the end of the century. DW, dry 
weight. Data from ref. 18.
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In this Perspective, we expand on and discuss these two unifying 
themes in the context of microbial metabolism, highlighting the 
commonalities between conceptual and mathematical descrip-
tions at different scales. We suggest that recognition of these com-
mon themes has the potential to enhance multi-scale integration 
and decrease disciplinary barriers through the creation of new 
multi-scale models, the design of experiments linked more closely 

with theory, approachable cross-disciplinary education and the 
search for new cross-cutting principles in the study of Earth-level 
microbial metabolism.

Understanding metabolic flows from cells to 
ecosystems
We illustrate how microbial metabolism is interconnected across scales 
using the example of carbon and nitrogen cycles in the ocean, where 
tiny, photosynthetic marine microorganisms (phytoplankton) fix CO2 
into organic matter (Fig. 1). Although each individual microorganism 
typically contains 10−13 g of carbon, the aggregated activities of these 
organisms and others in marine food webs ultimately mediate very 
large reservoirs of oceanic and geologic carbon (1018 and 1022 g of car-
bon, respectively).

At the cellular scale (Fig. 1a), carbon fixation can lead to either the 
production of new functional cell biomass (for example, nitrogen-rich 
protein) or the storage of carbon-rich compounds, including glyco-
gen14. This is determined by cellular allocation of metabolic fluxes 
in response to the local environment and community, as well as the 
genomic potential of each specific organism. Assuming that the 
internal metabolism of individual organisms equilibrates faster 
than environmental changes, steady-state genome-scale models 
of cellular metabolism can be used to understand and predict such 
fluxes. At the population level (Fig. 1b), competition for resources, 
metabolite exchange, allelopathy (for example, through antibiotic or 
toxin production; Box 1) and other processes determine the relative 
fitness of different species, leading to changes in population struc-
ture15. In the illustrated case, competition for common resources (for 
example, bicarbonate) between toxic and non-toxic cyanobacteria 
shapes the community composition. Dynamic changes can be reca-
pitulated using kinetic models where population growth is related 
to the uptake rate of the limiting resource, described here using a 
modification of the Monod equation (Box 1). At the ecosystem scale 
(Fig. 1c), phytoplankton growth and primary production depend 
on resources, including light intensity and nutrient concentration, 
but phytoplankton are also preyed on by zooplankton16. Together, 
these forces shape the relative fitness of different phytoplankton 
phenotypes and determine the magnitude, timing and composition 
of large-scale phytoplankton blooms. Finally, globally integrated 
primary production (carbon fixation) in the ocean sustains marine 
food webs and fisheries and mediates a large store of carbon in the 
deep ocean, thus reducing atmospheric CO2. Future changes in this 
store are of major societal interest and are thus represented in current 
Intergovernmental Panel on Climate Change (IPCC) climate models17 
(Box 1). Figure 1d illustrates an ensemble of 13 mathematical models 
that were used to predict future trends in global ocean primary pro-
duction under several scenarios for atmospheric CO2 (ref. 18). Each 
climate model in the ensemble includes different, highly simplified 
representations of the carbon cycle, including phytoplankton growth 
and death (biogeochemical components), which aim to model the 
collective response of the ocean ecosystem’s metabolism.

Importantly, Fig. 1 also illustrates how—despite the cross-scale 
perspective needed to understand complex processes—research is 
still largely siloed within individual disciplines. The knowledge and 
language of scientists addressing different scales, from micrometres 
to kilometres, appear very different19. For example, understanding 
the function or regulation of a microbial enzyme requires very differ-
ent experimental tools and training compared with those needed to 
understand currents that disperse and merge the cells carrying this 
enzyme in ocean microbial ecosystems (for example, refs. 20,21). Yet, 
important challenges, such as predicting the response of the carbon 
cycle to climate change, require a cross-scale perspective22,23. Similar 
quests for integration across scales are evident in other systems, includ-
ing terrestrial/soil ecosystems and the microbiomes of animals, plants 
and humans24–26.

Box 1

Glossary
Metabolic flux: The rate of conversion of substrates into products 
along a biochemical reaction or metabolic pathway. It is typically 
measured in units of the number of molecules per unit time, often 
also normalized to the amount of microbial mass.

Allelopathy: A biological phenomenon whereby one organism 
releases chemicals into the environment, affecting the growth 
or physiology of another. It is typically used to describe negative 
(inhibitory) interactions.

Monod equation: A mathematical model describing the growth 
rate of microorganisms as a function of the concentration of their 
limiting substrate in the local environment, commonly used in 
microbial ecology and biotechnology.

IPCC climate model: A comprehensive framework used by the 
IPCC to simulate and predict climate changes. It resolves multiple 
factors, including greenhouse gas emissions, socioeconomic 
scenarios, atmospheric and oceanic circulation, physics and 
biogeochemical cycles, to assess the potential impacts of human 
activities on Earth’s climate.

FBA: An approach for predicting the metabolic fluxes of all reactions 
in an organism, based on the assumptions that the system is at 
steady state and has evolved towards an optimal metabolic goal.

Allosteric regulation: The modulation of an enzyme’s activity by 
a molecule that binds to a site that is different from the active site, 
inducing a conformational change that modifies the enzyme’s 
catalytic properties.

Resource Ratio Theory: An ecological concept proposing that 
the relative availability of multiple resources, such as nutrients, 
influences the composition and dynamics of ecosystems by 
determining the growth and competitive success of different 
species.

Michaelis–Menten equation: A mathematical model describing the 
rate of an enzymatic reaction as a function of substrate and enzyme 
concentrations, based on the notion that the substrate and enzyme 
form a complex before giving rise to the product.

Holling equations: A suite of three mathematical models that describe 
different scenarios of how the rate of a predator’s consumption of prey 
changes with prey density. They help to characterize the dynamics of 
predator–prey interactions in ecological systems.

Nash equilibrium: In game theory, it is the solution of a game such 
that each participant’s strategy is optimal given the strategies 
chosen by the other.
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Balancing supply and demand to constrain 
complex metabolic fluxes
One of two core concepts that can serve as unifying themes across 
these scales and systems is the stoichiometric balance of resource 
supply and demand27,28. All living organisms have a set of metabolic 
demands. Specific elements and molecules serve as indispensable 
resources that are essential for the optimal functioning of cells, organ-
isms and ecosystems. These resources are often needed in precise 
ratios, or stoichiometries, that vary by reaction. For example, nitro-
gen, carbon and sulfur are required in a specific stoichiometry to 
synthesize amino acids, whereas a different ratio of nitrogen, carbon 
and phosphorus is required for nucleic acids28,29. The environment 
around a cell typically does not supply all of the essential elemen-
tal resources at the optimal ratios. The mismatch of availability and 
requirements makes it necessary for cells, organisms or populations 
to carefully balance the uptake of external resources and their final 
fate. This balancing of resources imposes constraints on the metabolic 
flows within the system.

Elemental supply and demand in individual 
chemical reactions and total biomass
Balancing resources is familiar at the level of individual reactions. For 
example, here is a standard, balanced chemical equation for oxygenic 
photosynthesis, which leads to the production of carbohydrates:

CO2 +H2O + photons → 1
6C6H12O6 +O2 (1)

Extending this notion to a whole cell, one can collectively write 
a single elementally balance equation to represent the reproduction 
of an individual organism or the production of biomass in a whole 
ecosystem:

106CO2 + 16NO−
3 +H2PO

3−
4 + 122H2O

+photons → C106H246O110N16P + 138O2

(2)

The left side of Eq. (2) represents the most common forms of inor-
ganic nutrients in the ocean: NO3

− as a source of nitrogen and PO4
3− as 

a source of phosphorus, as well as the CO2, water and photons used for 
the photosynthetic reaction shown in Eq. (1). On the right-hand side of 
the equation, C106H246O110N16P represents the average composition of 
living biomass in marine plankton. This empirical average, known as 
the Redfield ratio30, reflects the summed contributions of elements 
across the set of all molecules that form cellular biomass. These 
molecules include the carbohydrates from Eq. (1), as well as proteins, 
nucleic acids, lipids and thousands of other macromolecular struc-
tures and small metabolites. Importantly, the element-by-element 
conservation of mass (the same number of atoms on each side of Eqs. 
(1) and (2)) also imposes constraints on the fluxes of elements within 
individual chemical reactions, cells or ecosystems. Conservation of 
electrons and energy can also be accounted for (see, for example, 
refs. 31,32).

The Redfield ratio is typically applied in global-scale biogeochemi-
cal models to simulate the linked dynamics of carbon, nitrogen and 
other elements at the ecosystem scale. Yet, in any given environment, 
it is unlikely that the supply of resources exactly balances the organis-
mal ratio, requiring modifications of Eq. (2). For example, in the case 
where there is insufficient NO3

− in the ecosystem to balance the amount 
of CO2, PO4

3− and photons available, organisms will need to seek a dif-
ferent source of N, adding a new nitrogen source to the left-hand side 
of Eq. (2). Alternatively, they could change their biomass composi-
tion (for example, overproduce C-rich storage compounds, such as 
glycogen, resulting in a modified right-hand side of the equation) or 
reduce growth.

Balancing supply and demand in complex 
metabolic networks using flux balance analysis
Although Eqs. (1) and (2) balance atoms and electrons, what a cell is 
actually directly controlling is the uptake, production and loss of func-
tional macromolecules (for example, amino acids, nucleotides, carbo-
hydrates and so on) that lock together atoms of different elements, 
each with their own stoichiometry (for example, ref. 33). In fact, each 
cell constantly manages a complex metabolic network in which thou-
sands of individual chemical reactions (such as Eq. (1)) are connected 
to each other through the usage of shared metabolites (substrates 
and products; Fig. 2). For example, although many cells use glycolysis 
and the tricarboxylic acid cycle to produce ATP and reducing power  
(for example, NADH/NADPH), the same pathways are also used to pro-
duce the macromolecular building blocks of biomass (for example, 
pyruvate, acetyl-CoA and tricarboxylic acid cycle intermediates used 
for the biosynthesis of amino acids). These equations all need to be 
balanced (Fig. 2a).

To understand how cells manage this complex balancing of 
resources, it is helpful to formulate the problem in terms of conser-
vation laws and constraints. In metabolism, multiple reactions can 
concurrently contribute to the increase or decrease of a metabolite 
pool, resembling multiple sources and sinks of water in a reservoir 
(Fig. 2a). For the reservoir to be at steady state, all rates (or fluxes) 
of sources and sinks must balance each other. Similarly, for a cell to 
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maintain, on average, an internal metabolite at a fixed concentration, 
fluxes producing or consuming that metabolite must be balanced 
(Fig. 2b). Thus, each metabolite is associated with a constraint on 
fluxes. Extending this notion to all metabolites participating in a 
network of metabolic reactions requires simultaneously imposing 
multiple constraints. This gives rise to a large constraint satisfaction 
problem that is reminiscent of a giant, multidimensional Sudoku 
puzzle (Fig. 2b,c). As in a Sudoku, where the choice of a number in a 
column is constrained by the numbers we already have in that column, 
the choice of values for the fluxes that transform a given metabolite 
into downstream products is constrained by the net sum of the fluxes 
producing that metabolite.

This constraint satisfaction resource allocation approach is at the 
core of one of the most common approaches for modelling metabo-
lism, known as stoichiometric modelling, constraint-based modelling 
or flux balance analysis (FBA; Box 1). The starting point for FBA is the 
construction of a stoichiometric matrix34–36, which encapsulates the 
detailed stoichiometry of all molecules (rows) participating in each 
metabolic reaction (columns in Fig. 2b,c). Next, as illustrated above, 
FBA makes the simplifying assumption that all fluxes are in steady state 
(that is, there are no changes over time in the concentrations of the 
metabolites; Fig. 2a). This assumption implies that the flux variables, 
constrained by stoichiometry, are related to each other through a 
system of linear equations.

As this system of equations is typically under-determined, many 
possible solutions with balanced fluxes are possible, giving rise to a 
whole solution space called the feasible space (Fig. 2d). Additional 
constraints can be used to narrow down the solution space. In par-
ticular, specific fluxes in the metabolic network can be constrained 
to have values in a specified range. This type of constraint is gener-
ally used to limit the import of resources, based on availability in the 
extracellular environment or on transport capacity. If the system is 
still under-determined, an optimization step can be taken to identify, 
within the feasible space, the set of fluxes that maximize a biologically 
plausible objective function. Although the most commonly used func-
tion is the production of cell biomass (maximizing the growth rate), 
other objectives can also be used, such as increasing the production 
of a specific product (for example, in biotechnological applications37), 
minimizing overall flux38 or maximizing ATP yield39.

It is important to note, however, that behind the apparent sim-
plicity of the FBA algorithm lie several complex and unresolved chal-
lenges. These include the process of constructing accurate microbial 
metabolic models based on genomic data. Most computationally 
generated metabolic networks have gaps that can either be real (for 
example, due to gene loss) or artefactual, caused by missing or erro-
neous annotation of gene function. Identifying and filling these gaps 
constitutes the subject of active research40–42. Moreover, for FBA to 
accurately predict growth, it is important to know the composition and 
abundance of the building blocks that compose biomass43. Biomass 
composition is taxon specific and requires different experimental 
techniques to characterize its different fractions (lipids, proteins, 
nucleotides and cofactors44). Additionally, although relationships 
between fluxes in FBA are linear, each individual flux depends on mul-
tiple factors adding hidden complexity. These include the expression 
level of relevant enzymes, their kinetic properties (for example, the 
half-saturation constant (Km) and the maximum rate of the reaction 
when all of the enzyme's active sites are saturated with substrate (Vmax); 
see below), post-translational modifications, allosteric regulation 
(Box 1) and the concentrations of reactants and products, none of 
which are explicitly considered in FBA. Thus, the elegance and value 
of steady-state stoichiometric models such as those used in FBA come 
at a price, namely the impossibility of predicting intracellular metabo-
lite concentrations (but see refs. 45,46) and lack of representation 
of many of the mechanisms that are fundamental to the regulation  
of metabolism.

Environmental changes reorganize metabolic 
flux
Despite the internal constraints imposed by mass balance, cells and 
ecosystems respond to changing environments. In both cases, this is 
done by modulating the relative flow of metabolites through different 
parts of the network. For example, fertilizer overuse or other forms of 
pollution can lead to much more phosphorus entering lakes or coastal 
ecosystems relative to nitrogen, resulting in an imbalance of supply 
and demand for these two elemental resources. Under the resulting 
nitrogen-limited conditions, some organisms (including some toxic 
cyanobacteria) may assimilate or fix abundant atmospheric N2 gas 
rather than utilize the limited amounts of fixed or reduced nitrogen 
(for example, in the form of NH4

+, NO3
−, urea or amino acids). Mole 

for mole, N2 fixation is expensive relative to the assimilation of more 
reduced nitrogen forms, and most microorganisms do not have this 
metabolic capability47. For those that do, the extra costs may be worth-
while, enabling them to grow and consume other resources, such as 
phosphorus48. In this situation, at the cellular level, individuals with 
genomically encoded nitrogen fixing capability may reconfigure their 
internal metabolic network via changes in gene expression, leading to 
increased flux through the nitrogen-fixing pathway49 (Fig. 3a). Nitro-
gen limitation also increases the relative fitness of nitrogen-fixing 
specialists (Fig. 3b), causing them to bloom, leading to a system-scale 
metabolic shift and enhanced nitrogen flow through a change in com-
munity composition50. Thus, both enzymes in an organism and organ-
isms in a community can be viewed as dynamically adaptable catalysts 
of metabolic flux.

Stoichiometric models can capture some fundamental aspects of 
the physiological adaptation of organisms and the ecological changes 
in communities in response to different environmental conditions. In 
cellular FBA, constraints on the environmental availability (uptake 
fluxes) of specific metabolites translate into distinct sets of possible 
steady-state solutions that include or exclude, for example, nitrogen 
fixation51,52. Accurate estimation of environment-dependent redistri-
bution of fluxes remains challenging because microbial cells alter not 
only their metabolic network but also their biomass composition as 
they acclimatize to different conditions53–55. Ecologists have developed 
similar modelling approaches, where equations describe the equilib-
rium fluxes of elements through organisms in an ecosystem. One key 
difference is that ecologists are often interested in how community 
composition shifts in response to external forcing and therefore focus 
on standing stocks (the concentrations or abundances of specific 
organisms or resources) and the process of competitive exclusion 
(Resource Ratio Theory48; Box 1). In contrast, cellular stoichiometry 
formulations typically focus on fluxes and do not delve into molecular 
abundances. Overall, although an aquatic microbial ecologist evaluat-
ing the water quality and plankton community in a lake and a bioengi-
neer evaluating the production efficiency of a compound may consider 
different metrics and scales, they are probably using mathematical 
modelling frameworks that are remarkably similar.

In nature, environment-dependent regulation of genes within cells 
and dynamical changes of species abundances within ecosystems occur 
simultaneously and affect each other. In principle, these processes at 
different scales can be represented by a single underlying mathematical 
framework and used to implement more accurate predictive models. 
Extensions of mathematical frameworks that were developed for single 
organisms can be used to explore questions about ecosystem dynam-
ics (for example, by simulating the emergent behaviour of multiple 
species, each of which is seeking to maximize its own growth rate)56,57. 
To bridge genome and ecosystem scales, however, several challenges 
need to be overcome. One of them is the differences in timescales, with 
chemical reactions taking fractions of seconds but cell reproduction 
taking minutes or hours. An approach called dynamic FBA58 addresses 
this by calculating the steady-state, optimized fluxes within an organ-
ism at discrete time steps, assuming fast equilibration of intracellular 
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metabolism59,60. This approach can track the abundance of different 
microbial populations and extracellular metabolites as a function of 
time, in simplified structured space61,62. Efforts have been made to 
implement FBA in complex natural ocean environments63. FBA can also 
be used to characterize and map metabolic niches, encoded in the abil-
ity of an organism to grow under different environmental conditions, 
and ongoing work aims to investigate how such niches can be mapped 
into an environmental space64,65.

There are additional barriers to overcome before genome-scale 
models and Earth system models can be fully integrated, including 
differences in the molecular resolution at which organic matter is rep-
resented (for example, specific metabolites in genome-scale models 
and aggregated terms such as dissolved organic matter for Earth system 
models). Yet, the fact that researchers studying microbial metabolism 
at different scales share the use of flux as a fundamental quantity and 
mass balance as a universal constraint offers the opportunity to build 
increasingly efficient and insightful multi-scale models. Growth of this 
interdisciplinary area will require full partnership with experimental 
microbiologists and microbial ecologists, who could collaborate with 
theorists to incorporate estimates of metabolic supply and demand 
(budgeting) as standard components of experimental design (Box 2).

Understanding kinetics through encounter and 
handling
A second unifying concept is how the regulation of biological rates at 
different scales follows similar mechanistic constraints. Almost every 
process in biology requires an encounter between two entities, where 

one entity modifies (or handles) the other (Fig. 4)66. For example, an 
enzyme binds to and modifies its substrate, a cell takes up nutrients 
and incorporates them into macromolecules (growing) and a predator 
captures and eats its prey. Many biological questions revolve around 
how encounter and handling processes affect the concentrations of 
molecules, cells or organisms, and how these concentrations change 
over time, affecting the metabolic fluxes discussed above.

A common basis for kinetic modelling of 
enzymes, cells and predators
As shown in Fig. 4, enzymatic reactions, cellular nutrient acquisition 
and prey capture are often characterized by a saturating curve, where 
the rate of the process is determined by the concentration of a limit-
ing factor. Here we emphasize that these functional response curves, 
which underlie several of the studies illustrated in Fig. 1, are qualita-
tively very similar across different processes: phenomena that were 
separately described for enzymes (the Michaelis–Menten equation67; 
Box 1), growing bacterial cells (the Monod equation68) and predator–
prey interactions (Holling type II functional response69; Box 1) end up 
being represented by very similar—if not identical—equations48,70,71 
(Fig. 4). Despite taking place at distinct temporal and spatial scales, 
the relationships between fluxes and abundances in these phenomena 
can be viewed as special cases of the general concept of encounter 
and handling.

The generality of this concept, and of the ensuing saturation 
curve for enzymes, cells and predators, may be described in the 
form of a two-step process illustrated in Fig. 4. It is captured by the 
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Fig. 3 | Parallel metabolic organization of a schematic cell and ecosystem.  
a, Many nitrogen-fixing cells can assimilate fixed nitrogen to build new biomass 
(shown here as NH4

+ uptake) and fix N2 only when the advantage outweighs the 
extra metabolic expense. These cells are essentially tackling an optimization 
problem and configuring the intracellular metabolic network to maximize the 
growth rate (see refs. 52,125 for examples of FBA simulations). In the illustrated 
cell, the expression of nitrogen fixation enzymes depends on the relative 
availability of phosphorus and ammonium; when the available NH4

+:PO4
3− ratio 

is low relative to demand (16:1), nitrogen fixation is cost effective provided that 

sunlight energy (hv) is plentiful. Usage of ATP for non-metabolic processes 
can be taken into account through a maintenance reaction flux (VM). b, The 
cellular-scale metabolic reconfiguration is paralleled at the ecosystem scale (for 
example, in a lake). In this case, when the supply ratio of fixed N to bioavailable P 
(often measured as NO3

−:PO4
3−) is less than cellular demand (16:1), the extra cost 

of nitrogen fixation enables the assimilation of otherwise unused phosphate. 
This situation permits the co-existence of specialist nitrogen-fixing cells with 
relatively high growth costs alongside the fixed nitrogen users. When the supply 
ratio is less than demand, nitrogen-fixing cells are outcompeted.
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following equation, which is related to that used in the derivation of the  
Michaelis–Menten equation:

C + X
kE→C⋅

Encounter
X

kH→ C + Y
Handling (3)

Here, C is the catalyst (for example, predator), X is the reactant 
(or prey) and Y is the product (for example, new predator biomass). 
C·X is a complex in which the catalyst and reactant physically interact 
(for example, an enzyme–substrate complex or live prey in a pred-
ator’s mouth; Fig. 4a) and has a short life span compared with the 
turnover times of the catalyst, reactant and product. kE and kH are the 

Box 2

Practical steps to integrate models and experiments for the study 
of multi-scale microbial processes
The concepts of mass balance and encounter and handling can be 
incorporated into the workflow of microbial ecosystem research in 
multiple ways, facilitating interactions between experimental and 
theoretical groups.

Write a mass balance (or budget) equation during experimental 
planning
The very act of writing an equation describing aspects of the supply 
and demand of a system, or formally describing its components 
as part of an overall budget (that is, resource allocation), helps to 
determine its key components and what is known about them126. 
Such an exercise may also help to identify which components can 
be measured easily, assess whether other components can be 
indirectly assessed (for example, based on mass balance) and identify 
gaps or inconsistencies that can hint at unconstrained or missing 
components.

Perform experiments in defined media where the limiting factors 
are known
Many microbiological experiments are performed under conditions 
designed to maximize experimental simplicity or biomass yield 
(for example, at the end of exponential growth in complex media). 
However, under these conditions, the environmental conditions 
sensed by the cells and their physiological adaptations are often 
unclear. Performing experiments in simple, defined media (for 
example, under conditions where the limiting nutrients are known) 
aids the calculation of fluxes or mass budget and, more generally, 
relates cell physiology to specific resources, including in the context 
of mathematical models.

Collect easily measurable data that can constrain mass balance 
even if they do not seem immediately useful
For example, protein, DNA and RNA concentrations can be relatively 
easily and sensitively measured using dyes and, being major 
components of biomass, can help to constrain resource allocation to 
other types of macromolecules (for example, ref. 127, but see ref. 128). 
The uptake, release or intracellular fluxes of metabolites or elements 
can be difficult to measure, but can sometimes be constrained by 
measurements of their concentrations in extracellular sources or 
sinks (for example, ref. 129) and can be extremely useful for testing 
and refining models130. Making such data findable, accessible, 
interoperable and reusable (that is, FAIR131) is also important.

Employ commonly used and/or experimentally measurable model 
parameters or variables
Many intellectually stimulating, informative and influential models 
explore fundamental aspects of biological systems using parameters 
that are either abstract (for example, generalized Lotka–Volterra 
interaction terms) or difficult to measure. A related issue is the use of 

radically different units in different fields, which can mask underlying 
similarities and natural connections (Fig. 5). For example, fluxes from 
genome-scale models are typically expressed in units of millimoles 
of metabolite transformed per gram of dry mass per hour. These units 
are very different from those used in biogeochemical models (for 
example, millimoles of carbon per m3 per day). In some cases, the 
choice of units is dictated by technical limitations (for example, the 
availability of biomass or analytical limits of detection), whereas in 
other cases units are chosen to fit in a specific theoretical framework 
(for example, writing mass conservation equations for estimating 
carbon flow in an ecosystem). Overcoming these language barriers 
can be simple (for example, by clearly describing conversion factors 
in publications), but in some cases may require a concerted effort 
from scientists across disciplines to provide a community-approved 
set of standards and conversion utilities.

Use theory and computation to identify the most important 
variables to measure experimentally
A strength of computational models that can be leveraged in 
experimentation is the ability to perform thousands of in silico 
experiments, testing the sensitivity of a system to changes in 
individual parameters or conditions. This can help to prioritize 
specific experimental measurements, which account for the 
overall goal of the model. For example, although the importance 
of Km for assessing competitive exclusion in ecosystems is clear 
(for example, refs. 132,133), sensitivity analyses show that this 
parameter (which is often difficult to measure experimentally) 
may be less important than loss processes, such as excretion, for 
describing growth in a batch bioreactor134. Sensitivity analyses can 
also be used to optimize experiments (for example, in identifying 
the minimum number of measurement points required to constrain 
a model parameter)135.

Use fluxes and encounter and handling to teach about quantitative 
principles in biology
The relative simplicity and universality of the two notions discussed 
above—flux balancing and encounter and handling—offer a unique 
opportunity to motivate and foster better cross-talk between theory 
and experiment through education that fosters mathematical literacy 
in biology. For example, revisiting the Michaelis–Menten equation in 
basic microbiology courses and expanding the discussion to include 
a broader description of encounter and handling, as well as the 
Monod and Holling equations, can provide a concrete example 
for how mathematical principles apply across scales. Similarly, 
discussing the challenges of linking molecular genetic data and 
intracellular molecular fluxes, and relating these cell-scale views 
of metabolism to elemental fluxes, has the potential to motivate 
students to seek more opportunities for research at the junction 
between levels of organization.
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rate constants, which characterize the two stages—encounter and  
handling—respectively. In this simplified form, both reactions are 
assumed to be irreversible.

The first stage of this process is the encounter between the catalyst  
and reactant. In enzymatic reactions, the encounter rate depends on 
the diffusion of the enzyme and substrate; for microbial cells taking 
up nutrients, the encounter rate may additionally depend on the 
size of the cells, their motility and fluid flow66,72. In predator–prey 

interactions, the encounter rate depends on predator and prey motil-
ity, perception range and behavioural factors (for example, ref. 66).  
Following a successful encounter (production of the C·X complex), 
there is a handling stage during which the catalyst processes its  
reactant: the enzyme processes the substrate and releases it, or the 
predator consumes the prey.

Through a generic representation of a two-phase process (found in 
most biochemistry textbooks; for example, ref. 73), one can infer from 
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Fig. 4 | Encounter and handling processes and their representation in 
mathematical models. a, Schematic of biological encounter and handling 
processes at different scales, along with their characteristic graphs and 
equations. The catalysts are foxes (Holling type II equation), cells (Monod 
equation) and enzymes (Michaelis–Menten equation) and the reactants are prey, 
nutrients and substrates, respectively. In each case, the maximum rate of the 
process is the product of the total catalyst concentration and the rate at which it 
handles its reactant. The steepness with which the rate increases at low resource 

concentrations is characterized by the half-saturation coefficient, Km = kH
kE
, 

which is the ratio between handling and encounter rate coefficients (Eq. (3) in the 
main text). The encounter rate depends on, for example, the speed at which the 
fox searches its territory, the rate of diffusion of nutrient molecules in a medium 
and the rate at which substrate molecules diffuse within the cytoplasm of a cell. 
Increasing the encounter rate (kE; see Eq. (3) in the main text) steepens the slope 
of rate versus resource. Hence, a fox increasing the speed at which it hunts might 

increase the rate of encounter with hares and its feeding rate at low hare 
densities. Note that in the Holling type II equation the parameters are explicitly 
described as encounter/attack (a) and handling (h) rates, while N is the prey 
density (equivalent to substrate concentration [X] in the Michaelis–Menten and 
Monod equations) and i is the ingestion rate. b, The Holling type III equation and 
Hill function describe similar S-shaped relationships. The Holling type III form 
emerges when the encounter rate, kE, is proportional to the resource density,  
[X]: for example, if the fox reduces its hunting effort at low prey densities. Other 
mechanisms lead to similar modifications of the rate–substrate relationship in 
enzyme kinetics. The Hill equation, for example, describes the fraction of a 
cooperative enzyme (Y) bound to its substrate, which depends on the 
cooperativity or Hill coefficient, n. The sigmoidal graphs shown here are for a Hill 
equation with n = 4 (when n = 2, the Hill and Holling Type III equations are 
identical). In the Holling Type III equation, ao is the density-dependent attack 
rate, defined by a = aoN.
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Eq. (3) a version of the commonly employed expression that relates 
rate, V, to the concentration of the limiting resource, [X]:

V = Vmax
[X ]

[X ] + Km
(4)

Here, Vmax is the maximum flux, which depends on the handling 
rate of the catalyst. Km is the concentration of the resource at which the 
flux is half of the Vmax (the half-saturation). This expression has the form 
of a saturating function (Fig. 4) and variations of this equation have 
been used equally well to describe enzyme kinetics67, predation rate 
as a function of prey density69 and photosynthesis as a function of 
light intensity74. The Monod equation68, which captures the empirical 
relationship between microbial growth rate and limiting resource  
concentration, is another well-known phenomenological law with the 
same functional shape, although its origin was entirely empirical rather 
than theoretical (see ref. 75 for extensive discussion on possible mecha-
nistic interpretations). We note that for each of these equations the rate 
of generation of the product V is the flux through the reaction itself, 
which as discussed above is subject to mass conservation constraints 
when embedded in a steady-state network.

Extending the basic encounter and handling 
processes
Despite the commonalities highlighted above (and previously noted 
by refs. 48,70,71), each of these specific embodiments of the encounter 
and handling process (Michaelis–Menten, Monod and Holling type 
II) is associated with unique details and assumptions and its own rich 
literature. For example, for Michaelis–Menten kinetics to accurately 
capture real metabolic processes, it is often necessary to incorporate 
aspects such as reversibility, product inhibition, cooperativity and 
specific mechanisms for multi-substrate reactions, which modify the 
basic equation and behaviour of the saturation curve73. In some cases, 
similar modifications to the basic encounter and handling process were 
developed independently in different fields. For example, in biochem-
istry and pharmacology, the Hill equation captures the S-shaped func-
tional responses when multiple substrates bind to the same enzyme 
or transporter (for example, haemoglobin; Fig. 4b)59,76–78. In ecology, 
a similar form, termed the Holling type III functional response, can 
describe predator–prey interactions affected by, for example, the 
predator’s adaptive search effort, multiple prey types or spatial het-
erogeneity66,70,79,80. Recognizing that encounter and handling processes 
can provide a conceptual framework for biological processes across 
scales can provide the opportunity for researchers to apply knowledge 
gained in one field to a different one (for example, by expanding the 
possible variants of the relevant equations and their modulation by 
molecular and environmental factors).

A unified perspective for understanding 
microbial metabolism
We have revisited two fundamental quantitative principles of biology, 
highlighting their relevance across different scales and showing that the 
corresponding mathematical representations have much in common 
despite having developed independently in different fields. The con-
cept of mass, electron and energy balance has led to constraint-based 
models of metabolic organization at scales from cells (at genomic reso-
lution) to ecosystems, whereas the concept of encounter and handling 
lies at the core of mechanistic models for rate laws used in biochemistry, 
cell biology and ecology. Beyond their conceptual roots and intellectual 
appeal, can these similarities help to provide a common language for 
microbiologists across research areas and biological scales? Can they 
be utilized to focus experiments and provide a starting point for future 
efforts to construct multi-scale models of biology? We propose four 
practical steps that microbiologists can take to inform future research, 
as discussed below (see Box 2 for additional suggestions).

Using fluxes as universal connectors in metabolic modelling
Consider again the ocean carbon cycle example illustrated in Fig. 1d. 
Current Earth system models, which are used to simulate the coupled 
global carbon cycle and climate system (for example, ref. 81), typi-
cally use coarse parameterizations of the processes that are studied—
and modelled—with more detail at the ecosystem, microorganism or 
enzyme scales (Fig. 1a–c). Although in principle it is possible to develop 
a highly resolved, genome-scale model of an organism and embed it 
within an ecological setting (for example, using dynamic FBA), this is 
currently computationally infeasible for global-scale models. More 
importantly, it is difficult to envisage a conceptually tractable model 
that captures every molecular process across hundreds or thousands 
of interacting organisms in a dynamic ocean setting. Moreover, many 
of the key currencies used in models of different scales are inherently 
different (for example, FBA resolves specific molecules, whereas bio-
geochemical models currently represent broader concepts, such as dis-
solved organic matter, which comprise thousands of (mostly unknown) 
molecules). As a result, models at the genome and ecosystem scale are 
not compatible; they require some form of translation or connection.

We propose that as Earth system models move towards incorpo-
rating more biological detail, carefully selected fluxes can serve as key 
connectors to mediate cross-scale integration (Fig. 5). For example, 
most current ocean simulations (for example, refs. 82,83) represent 
photosynthetic reactions using an idealized parameterization that 
takes into account temperature and nutrient inhibition, based on 
small laboratory populations84. To increase the biological realism of 
photosynthesis in ocean models, recent biophysical or molecular 
observations can be used (for example, ref. 85), as well as more detailed 
representations of photo-physiology. This could be achieved through 
a dedicated, high-resolution photosynthesis module, which connects 
to the main cell or ecosystem model via a compatible flux that can be 
used at both scales. For example, fluxes of glucose could provide a link 
between photosystem and cell scales, whereas a flux of fixed carbon 
could link photosystems and communities86 (Fig. 5). An appropriate 
plug and play architecture, which builds on modular sub-models, each 
with its own relevant level of detail, could help to promote the incorpo-
ration of more detailed models that bridge scales, where appropriate, 
in an efficient and conceptually unified framework87,88.

Importantly, this will require coordination between modellers and 
experimentalists to decide on the relevant, measurable fluxes and their 
units. Enforcing mass (and other) conservation laws brings powerful 
constraints to mathematical models of cells and ecosystems; hence, we 
root models in currencies for which we can enforce conservation (for 
example, carbon biomass or fluxes of carbon). In contrast, although 
molecular and genomic techniques are rapidly becoming the tools of 
choice with which to obtain a detailed molecular view of metabolism 
(for example, through changes in gene expression), these measure-
ments cannot currently be used in the framework of mass conserva-
tion. Quantitative proteomics and metabolomics can, in principle, 
be translated into units of macromolecules or elements and are thus 
better suited for informing mass conservation89. Additionally, many 
measurements often collected as metadata for molecular or genomic 
experiments are in fact conservable currencies useful for modelling 
(see Box 2). Collaborative design of experiments, including theorists 
at the outset, could help to select appropriate measurements and 
maximize the longevity and overall value of both observations and the 
associated model development.

Exploring approaches to integrating stoichiometry and 
regulation
Beyond measuring conservable currencies, integrating gene and pro-
tein expression data with stoichiometric models of metabolism seems 
an obvious way of unifying metabolic and transcriptional networks 
towards a global predictive understanding of physiology. Unfortu-
nately, this integration is very challenging for several reasons90. Gene 
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expression and protein abundance do not always correlate and are 
rarely expressed as absolute concentrations (for example, the catalyst 
concentration in Eq. (3))91. Additionally, flux through an enzymatic reac-
tion depends not only on enzyme concentration but also on its turnover 
rate and substrate affinity, which are often unknown, as well as on the 
substrate concentration, which is not modelled in FBA. Finally, enzyme 
activity is often allosterically modulated by its product or products of 
other reactions in the same metabolic pathway (for example, ref. 92).

The inherent limitations that hinder the integration of -omics data 
with flux-based models are very challenging but perhaps not unsur-
mountable. For example, systematic measurements of gene expres-
sion, protein abundance and metabolic fluxes from the same system 
may help to identify whether there are specific metabolic pathways in 
which gene expression or protein abundance measurements are con-
sistently correlated with fluxes. Such pathways can serve as the focus 
of initial integration efforts. Moreover, theoretical and experimental 

approaches should explore new ways of integrating allosteric regu-
lation in metabolic models (for example, by using thermodynamic 
constraints93 and incorporating metabolite concentrations and their 
effects on enzymes for selected compounds). Systematic exploration 
of allosteric interaction networks and their representation in databases 
may enable an approximation of their effect on metabolic fluxes, pos-
sibly though modifying flux constraints in FBA (as is currently explored 
for kinetic parameters using algorithms such as GECKO94). Finally, it 
is possible that the rising amount of high-throughput data on gene 
expression, protein abundance and metabolic fluxes will help to build a 
new generation of hybrid machine learning–mechanistic models. Such 
approaches could, for example, use data-driven inference of regulation 
to impose constraints on metabolic fluxes in stoichiometric models of 
metabolism. The challenge of integrating -omics data is exacerbated 
in current ecosystem-scale models, where the link between the tran-
scription rate of specific enzymes, for example, and coarse-grained 

Course-scale 
phytoplankton 
cell model

Flux photons
Flux CO2

Flux O2

Flux H2O

Global ocean 
biodiversity model

Unit transformer
Input:
• g glucose per g

chlorophyll a per second
Output:
• fg carbon per cell per day

Unit transformer
Input:

Output:
• Cells per day per ml

• gC m–3 yr–1

• gN m–3 yr–1 
• gP m–3 yr–1

C N

Biomass

P

N2 PO4

NO3

NO3

N2CO2 CO2

GlucoseG3P

CBC

3PG RuBP
ATPADP + P

H2O

NADP+ NADPH

H+

2H + O2

a

b

c

Photosynthesis 
detailed model
Input:
• Genome sequence
• Flux constraints
• Km and Vmax for
  exchange reactions

Fig. 5 | Examples of using fluxes and kinetics to connect models at different 
scales. a, A detailed biophysical model of photosynthesis coupled with a 
genome-scale model of metabolism could predict the flux of glucose produced 
per reaction centre. b, This flux could be used to link between this model (as a 
sub-module) and a coarse-scale model of a phytoplankton cell, but would require 

translation to carbon per cell. c, In turn, such a phytoplankton cell model could be 
linked with a global biogeochemical model, but again would require appropriate 
translation of fluxes. 3PG, 3-phosphoglyceric acid; CBC, Calvin–Benson cycle; 
G3P, glyceraldehyde 3-phosphate; RuBP, ribulose 1,5-bisphosphate.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Perspective https://doi.org/10.1038/s41564-024-01764-0

modelled flows of organic matter is even more tenuous and challeng-
ing to quantify. Yet, the potential for efficient, systematic sampling at 
the ecosystem scale using molecular metrics is clearly immense, and 
continued efforts to intercalibrate molecular and mass-based metrics 
of population are important95–97.

Embracing evolutionary principles
In addition to aiding our understanding of the dynamics of molecules, 
cells and ecosystems, some of the mathematical approaches described 
above are strongly related to the role of evolutionary adaptation in 
shaping metabolism. For example, in its most frequent formulation, 
FBA describes the metabolic fluxes of an organism under the hypothesis 
that its regulatory mechanisms have evolved to support the objec-
tive of a maximally efficient production of biomass43,98,99. However, 
this hypothesis falls short of describing the incredibly diverse set of 
strategies employed by living organisms alone or in communities. 
In addition to environment-dependent variations in the composi-
tion of biomass, and alternative objectives that may best capture 
cellular goals during growth in noisy environments, fundamentally 
different optimization processes may occur during stress and starva-
tion. Answering some of these questions will require broader defini-
tions of condition-dependent objective functions that can be tested 
directly or inferred from experimentally measured fluxes39,100. This 
will require carefully designed experiments (for example, combining 
laboratory-controlled evolutionary experiments with detailed flux 
and biomass measurements)99,101.

The role of evolutionary adaptation in shaping metabolism has 
also been explored at the ecosystem level. Extending the notion of 
optimality used in FBA, microbial community dynamics has been 
studied as an emergent property of multiple organisms each pursu-
ing its own evolutionary objective56,102. However, the evolutionary 
trajectories of community members can be strongly coupled with 
each other. For example, key metabolic functions can be lost by some 
organisms, as long as others can still perform this function (a process 
termed the black queen hypothesis103). This kind of process can be 
studied using evolutionary game theory104 and has been combined 
with flux balance modelling to predict Nash equilibria of multiple 
strains sharing resources105. At even larger scales, other approaches 
have asked whether optimality principles based on non-equilibrium 
thermodynamics can be identified for ecosystems and their metabo-
lism106,107. This raises the question of how to reconcile the bottom-up 
view of ecosystems being shaped by Darwinian selection acting on 
individuals with the top-down notion of physical laws dominating the 
outcome at the ecosystem level108.

Finally, it is not only the ecosystem-level flux that can be shaped by 
evolutionary adaptation, but also the structure of metabolism itself. 
In addition to modulating the regulation of gene expression or enzy-
matic kinetic parameters to affect fluxes101, evolutionary processes can 
modify the shape of the metabolic network (for example, through gene 
gain or loss and through the acquisition of new functions). This can be 
investigated by performing simulations of horizontal gene transfer and 
adaptive gain or loss of metabolic functions109. Such analyses are begin-
ning to explore both reductive evolution of organisms (for example, 
symbiosis within a host organism)110 and expansion of metabolism on 
ecological and geologic timescales4,111–117.

Seeking new principles
Beyond the recommendations discussed above, these formal similari-
ties could suggest the existence of novel fundamental principles waiting 
to be discovered. Here, we can only speculate about the existence and 
nature of such principles. The scales described here are discrete levels 
within a much richer continuum of scales, for which a formal descrip-
tion is yet to be invented. It is possible that data-driven approaches 
will gradually help scientists to identify flux variables that are the most 
helpful descriptor of a system for each research question. These flux 

variables may encode aggregates of molecular fluxes constrained by 
environmental, metabolic or ecological constraints, somewhere in 
between detailed molecular fluxes and broad elemental fluxes (for 
example, fluxes of specific proportions of N and C). Natural candi-
dates for such aggregates are metabolic pathways or modules, but 
one could envision other units of metabolism, perhaps evolving 
under similar driving forces (for example, ref. 118). One could then 
ask whether such fluxes satisfy specific flux balance constraints and if 
they can be expressed as the effective outcome of encounter and han-
dling processes. Similarly, an ecological resource ratio model could be 
formed around consortia of organisms with different trophic strategies 
instead of single functional types (for example, mutualistic autotrophs 
and heterotrophs), yet similarly formulated in principles of flux bal-
ance and encounter and handling kinetics. Flux balance and kinetic 
equations may operate at any scale we may be interested in or are able 
to experimentally assess.

Conclusion
As the importance, challenges and ramifications of multi-scale models 
are becoming apparent in microbial ecology, we propose that two con-
cepts—balancing supply and demand, and the ubiquity of encounter 
and handling processes—provide a common language for discussing 
metabolism across scales and disciplines. Clearly, we have not been 
able to cover every aspect of how metabolism operates and evolves 
(for example, group selection119,120 and eco-evolutionary dynamics121,122) 
or other important concepts, such as the scaling of organism size and 
metabolic rates123,124 and how they have evolved6. Yet, we hope that our 
effort to consider concepts and equations that are typically taught in 
different classes and discussed at different conferences will inspire new 
creative ways of understanding how metabolism links the microbial 
and planetary scales.
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