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Abstract—Accurate finger force prediction is essential for
intuitive human-machine interactions. Various studies have
attempted to develop reliable decoders for multi-finger force
prediction for the control of assistive robotic hands. However,
most approaches were implemented in a supervised manner, i.e.,
data labels (e.g., finger forces) were needed to train or refine
models, which might not be appropriate in certain situations,
particularly in the cases of individuals with an arm amputation.
In addition, previous studies have not addressed interference
from the co-activations of unintended finger muscles. However,
finger co-activations occur naturally in daily activities.
Therefore, we developed an unsupervised neural-drive
approach for simultaneous and continuous multi-finger force
predictions, considering finger muscle co-activations instead of
avoiding them. To this end, we collected high-density surface
electromyogram (SEMG) signals from the forearm extensor
muscle during single- and multi-finger isometric contraction
tasks. Motor units (MUs) were extracted from sEMG signals of
the single-finger tasks. Considering the different contribution of
each MU, we assigned weights to MUs based on the firing
statistics of the MUs for the target finger across trials. Due to
the co-activation effect, where MUs from other fingers may
influence the force of the target finger, we introduced an MU
sharing procedure to incorporate these MUs. Compared with
the supervised sEMG-amplitude methods, our approach
demonstrated superior force prediction performance, as
evidenced by a higher R? (0.72+0.11 vs. 0.64+0.073) and a lower
root mean square error (5.95t1.43 %MVC vs. 7.47+1.81
%MVC). Our approach has the potential to enable intuitive
neural-machine interfaces, allowing a wide range of human-
machine system applications.

Keywords—unsupervised neural decoding, finger force
prediction, finger co-activations, biosignal processing

1. INTRODUCTION

Finger force prediction plays an important role in human-
machine systems, including advanced prosthetic control,
virtual reality, and remote surgical operations [1]. To
maximize the wide use of those applications, it is essential to
accurately predict finger forces for the natural and intuitive
interactions between humans and machines. Finger force
prediction based on surface electromyogram (sSEMG) signals
has gained increasing attention due to its noninvasive nature
and its capacity to predict both isometric and isotonic finger
forces in both extension and flexion directions [2], [3].

SsEMG signals are formed by the summation of motor unit
action potentials (MUAPSs) [4]. Previous studies [5], [6] have
applied models for continuous finger force prediction based
on the variation of macroscopic features (directly extracted
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from global SEMG signals, such as sEMG amplitude).
Intuitively, by placing electrodes on target muscle areas, it is
possible to capture the muscle activity related to the finger
movements. The captured information can then be translated
into input for machine control. However, the anatomical
proximity of individual finger muscle compartments poses a
challenge. An electrode channel may capture activities from
adjacent muscle compartments associated with different
fingers. These interferences greatly challenge the accurate
prediction of finger forces using macroscopic features.

With the development of wearable techniques, particularly
in the context of flexible high-density surface
electromyography (SEMG) electrode arrays, it is possible to
conduct sSEMG-related analysis at the microscopic level (via
decomposed neuronal discharge events) [7], not just limited to
using macroscopic features. Previous studies [5], [6], [8], [9]
have revealed the effectiveness of finger force prediction
using the neural drive, represented by the populational
discharge frequency of motor unit (MUs). Neural-drive
approaches can effectively address the potential interferences
encountered in macroscopic feature-based methods. However,
these studies utilized supervised approaches, necessitating
measured forces for model training and refinement
procedures, which are not suitable for individuals who have
lost hand functionality. In addition, most studies [8] made
efforts to isolate co-activations from unintended fingers for an
enhanced finger force prediction. However, given that co-
activations are Dboth inevitable and commonplace,
incorporating them into force prediction is more natural than
attempting to isolate them.

To address these challenges, we conducted the neural-
drive-based multi-finger force prediction in an unsupervised
manner. Considering that MU contributions vary for the target
finger, we implemented a weighting strategy. This strategy
assigns weights to each MU based on its firing frequency for
the target finger across trials. Due to the co-activation effect,
the movement of other fingers may also contribute to the force
of the target finger. We employed an MU sharing procedure,
by incorporating MUs from other fingers, to facilitate more
accurate and nature human-machine interaction. To be
specific, subjects were required to perform single-finger tasks
(for MU extraction) and multi-finger tasks (for MU weight
assignment, MU sharing procedure, and model performance
evaluation). Our model demonstrated superior force
prediction performance compared to supervised SEMG-
amplitude-based models. This holds promise for more
accurate human-machine interactions across a broader range
of applications.
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II. METHODS

A. Data Acquisition and Preprocessing

We recruited 8 participants (1 female and 7 males, aged 21
to 35 years) without known neuromuscular disorders. They
signed the informed consent for the protocols approved by the
Institutional Review Board of the Pennsylvania State
University.

Before data collection, we allowed subjects to adjust their
chair height for comfort. The wrist was held in a neutral
position, and the four involved fingers (index, middle, ring,
and little) were secured to four load cells (SM-200N,
Interface). Finger forces were recorded at a sampling
frequency of 1000 Hz and were displayed in real time to better
track designed target force trajectories, as shown in Fig. 1. To
record SEMG, we covered the extensor digitorum communis
(EDC) muscle with an 8 x 20-electrode array (electrode
diameter: 3 mm, inter-electrode distance: 10 mm). The
monopolar sSEMG signals were sampled at 2048 Hz using the
EMG-USB2+ (OT Bioelettronica, Torino, Italy), with a gain
of 1000, and a pass band of 10-900 Hz.

A large enslaving effect between the ring and little fingers
has been revealed by previous studies. Based on the
observation of SEMG signals, the activation patterns of EDC
muscle compartments related to the ring and little fingers were
also similar. Therefore, we required subjects to concurrently
extend the ring and little fingers. The measured forces of the
two fingers were summed up as the ring-little finger force.

We first obtained the maximum voluntary contraction
(MVC) forces of each finger by asking subjects to separately
perform the maximum isometric extension of individual
fingers. Subsequently, subjects performed both single-finger
and multi-finger isometric extension tasks. In each single-
finger trial (see Fig. 1(a)), subjects followed a 21-second
trapezoid force trajectory with a target finger (the ring and
little fingers were considered as one finger due to the
enslaving effect). A total of 15 single-finger trials (3 fingers x
5 trials/finger) were recorded. For multi-finger tasks, subjects
used at least two fingers, as illustrated in Fig. 1(b) and 1(c).
The three-finger tasks lasted 18 seconds, and the two-finger
tasks lasted 12 seconds. Correspondingly, a total of 32 trials
were performed. Co-contractions of unintended fingers were
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allowed for the multi-finger tasks, getting close to practical
scenarios.

B. Unsupervised Neural-Drive Approach

As shown in Fig. 2, the unsupervised neural-drive
approach mainly included: 1) Initial MU extraction. We
extracted MUs from single-finger trials, and MUs extracted
from same-finger trials were pooled together, termed raw
MUs. 2) MU weight assignment and sharing. To prevent in-
sample optimization bias, we adopted a two-fold validation
protocol to divide 3-finger trials into two sets. One set was
used as the refinement dataset. The other set and all two-finger
trials were used as the testing dataset. In the refinement phase,
we assigned weights to MUs, including those contributing to
the target finger's force from other fingers, termed shared
MUs. 3) Force prediction. The force prediction was performed
using shared MUs and their corresponding weights.

e MU Extraction

The fast independent component analysis (FastICA)
algorithm [10], known for its high decomposition efficiency,
is widely used in sEMG decomposition. Therefore, we
extracted MUs from single-finger tasks using the FastICA
algorithm. To be specific, we calculated mean root mean
square (RMS) values of 160-channel sEMG signals using
single tasks of the same finger. For each finger, we selected
60 channels that exhibited the highest RMS values. Then, we
obtained the union of the three sets for the following analyses.
Signals of selected channels were duplicated by a factor of 10
and were further whitened for the FastICA-based
decomposition with up to 200 iteration procedures. The
decomposed MUs with a low silhouette measure (SIL<<0.5)
were excluded. Lastly, MUs from the same-finger tasks were
pooled together. Accordingly, we obtained the separation
matrixes, By 1, By v and By gy, where I, M and RL represent
index, middle and ring-little fingers, respectively.

e MU Weight Assignment and Sharing

Co-activations of unintended fingers are inevitable, even
when we attempt to isolate the force of intended fingers.
Instead of attempting to eliminate the co-activations in
algorithms, it is more natural to control the human-machine
systems by incorporating an MU weighting and sharing
strategy. This approach can accommodate and harness these
involuntary movements for enhanced precision and control.

A two-fold validation protocol was used to divide 3-finger
trials into two sets. Each set, in turn, served as the refinement
data. The other set, along with all 2-finger trials, formed the
testing dataset. Due to the co-activations, some MUs were
activated for more than one finger. Weights were assigned to
each MU based on its contribution to different fingers.
Specifically, the following steps were conducted.
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1) SEMG decomposition. Given that the computational
efficiency of SEMG decomposition via the FastICA algorithm
does not suffice for real-time daily use, we directly employed
the separation matrix By ; (1€ {I, M, RL}) to decompose the
refinement dataset. After the decomposition, low-quality MUs
(SIL<0.5) were removed.

2) Weight assignment. The rationale for the weight
assignment is that if one MU is dominant for a finger, the
average firing rate during the plateau period of the finger is
expected to be greater than that during plateau periods of other
fingers. The plateau time periods of the three-finger trials in
Fig. 1(c) were 2s-4s, 8s-10s, 14s-16s for the three fingers,
respectively. After SEMG decomposition using the separation
matrix B, of the target finger [, we calculated weights of the
MUs to the target finger | based on the proportion of
dominances for this finger over trials.

3) MU sharing. MUs extracted using separation matrixes
of other fingers may contribute to the force of target finger due
to the co-activation effect. Those MUs were weighted based
on their proportion of dominances over trials for the target
finger. All MUs and weights for the target finger were pooled
together, termed shared MUs. The corresponding separation
matrixes and weight vectors were B, ; and wy, respectively.

e Force Prediction

Similar to the previous study [8], we built three individual
linear models for the force prediction of each of the three
fingers. It is worth noting that the measured forces were only
used for the force prediction without participating in the MU
extraction, weighting and sharing procedures. The linearity of
neural-drive signals with finger force allows users to
intuitively adjust the force prediction models based on their
own sense of the force level they're applying with their fingers.
Therefore, the force prediction model can be easily built
without measured force in practical use.

For the finger [, we computed high-quality source signals
(SIL > 0.6) using B, ;. After the duplicated source signal
removal procedure, the time courses of firing rate (calculated
by a fixed-window strategy with 0.5s window size and 0.1s
moving step) and weight vector were updated as F; =
Ui fip e Foal and wy = [wy g, -, wyy, - wy, ], where
n; denotes the number of retained MUs for the force
prediction of finger I, f;, and w; ; represent the time course of
firing rate and the weight for the ith MU. Correspondingly,
the neural-drive signals D; = }; f;; -w;;. The neural-drive
signals were then smoothed by a Kalman filter and was
mapped for force prediction using a linear regression model,
depicted as Force; = a;D; + b;, where Force; denotes the
prediction force of finger [, a; and b; denote slope coefficient
and intercept of the linear regression model, respectively.

Two prevailing indexes, R? and the root mean square error
(RMSE) between the measured force and predicted force,
were employed for prediction performance evaluation.

C. Alternative Approaches for Comparison

The sEMG amplitude has been a prevalent feature for
finger force prediction [11]. Two supervised approaches based
on sSEMG amplitude were explored for comparison.

In the first method, termed the SEMG60-Amp method, we
selected 60 channels with top average amplitudes (RMS) for
each finger using corresponding single-finger tasks. The

testing dataset included all two-finger and three-finger trials.
For each trial in the testing dataset, we calculated sSEMG
amplitude of each channel using the same fixed window
sliding strategy. Subsequently, we averaged the sEMG
amplitudes of the selected 60 channels, generating a time
course of overall amplitude for the target finger, denoted as
Ago L € {I, M,RL}. Lastly, the Agp; was used to build a
linear regression for force prediction after the Kalman
filtering.

In the second approach, we introduced a channel
refinement strategy to reduce the sSEMG amplitude bias. This
approach was termed SEMG-Amp method. The cross-
validation strategy, which involves constructing the
refinement and testing datasets, was kept consistent with the
unsupervised neural-drive approach to ensure a fair
comparison. In the channel pool of a given finger, we
calculated the R? value between the time course of that
channel's amplitude and the measured forces of the three
fingers across refinement trials. If the R? value of one channel
with the target finger force was higher than that with forces of
other fingers, the channel was retained for the final force
prediction. Lastly, we conducted the force prediction using the
refined channel pool rather than the 60 channel pool.

D. Statistical Analysis

If the groups being compared satisfied the requirements
for parametric analysis, we adopted the Repeated Measures
Analysis of Variance (RM ANOVA) and the paired t-test for
statistical analysis. If not, we employed the Friedman test and
Wilcoxon signed-rank test for the statistical analysis. Holm-
Bonferroni correction was applied when necessary to avoid
multiple comparison errors. We only reported the corrected p
values, with the significance level set at 0.05.

III. RESULTS AND DISCUSSION

A. Overall Force Prediction Performance

We compared the finger force predictions across the
unsupervised neural-drive, SEMG-Amp, and sSEMG60-Amp
approaches. As shown in Fig. 3(a), the overall average R?
values were 0.72+0.11 (Neural-Drive), 0.64+0.073 (SEMG-
Amp), and 0.50+£0.10 (sEMG60-Amp). A significant
difference in R? values among the three approaches was
revealed by the Friedman test (y2(2) =13, p=0.0015). Further
post-hoc analysis using the Wilcoxon signed-rank test showed
that the overall R? value achieved using the neural-drive
approach was significantly higher than that obtained using
either SEMG-Amp (p=0.039) or sSEMG60-Amp (p=0.012). In
addition, the sSEMG-Amp approach was significantly better
than the SEMG60-Amp method in R? value (p=0.012).
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Fig. 3. Comparison of overall force prediction performances using the
unsupervised neural-drive, SEMG-Amp, and SEMG60-Amp approaches. *
denotes 0.01<p<0.05, ** denotes 0.001<p<0.01, *** denotes p<0.001.
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The overall average RMSE values (Fig. 3(b)) were
595143 %MVC (Neural-Drive), 7.47+1.81 9%MVC
(sEMG-Amp), and 9.74+2.43 %MVC (sEMG60-Amp). The
one-way RM ANOVA demonstrated that the RMSE values
obtained using three approaches were significantly different
(F(2,14)=12.49, p<<0.001). Further paired t-test showed that
the RMSE value achieved using the neural-drive approach
was significantly lower than that obtained using either SEMG-
Amp (t(7)=-2.01, p= 0.042) or sSEMG60-Amp (t(7)=-3.68,
p=0.0078). Compared with the SEMG60-Amp method, the
sEMG-Amp approach achieved a significantly lower RMSE
value (t(7)=-7.10, p<<0.001).

From the results in Fig. 3, we can infer that the channel-
refinement procedure was effective in removing channels with
large cross-talk of different fingers, resulting in an
improvement in the force prediction performance. The force
prediction performance can be further improved using the
developed unsupervised neural-drive approach, which may
fall into the following explanations: 1) Compared to sSEMG
amplitudes, decomposed binary firing events were less
impacted by various interferences, including motion artifacts,
signal amplitude cancellation from MU action potential
waveform superimposition, background noise, etc. 2) Despite
conducting a channel-refinement procedure for the SEMG-
Amp method, some channels might still receive cross-talk
from other fingers due to the proximity of finger muscle
compartments, resulting in inaccurate force estimations. 3)
Rather than attempting to eliminate co-activations from other
fingers, we acknowledged their inevitable contribution to the
target force, which led to more practical force predictions.

B. Finger-Specific force prediction performance

Fig. 4 presents the force prediction performances of the
three approaches on each finger. As shown in Fig. 4(a), a
significant overall difference in R? values was found for the
index finger (One-way RM ANOVA: F(2,14) =25.14, p<
0.001) and the ring-little finger (Friedman test: y%(2) =10.75,
p=0.0046). Further post-hoc analysis showed that the R?
value obtained using the unsupervised neural-drive approach
was significantly higher than that obtained using either the
SEMG-Amp approach (index: t(7)=4.64, p= 0.0015; ring-
little: p = 0.039) or the SEMG60-Amp method (index:
t(7)=5.34, p= 0.0016; ring-little: p=0.016).

Similarly, Fig. 4(b) shows a significant overall difference
in RMSE values for the index finger (One-way RM ANOVA:
F(2,14)=20.95, p<<0.001) and the ring-little finger (Friedman
test: x2(2) =10.75, p =0.0046). Further post-hoc analysis
showed that the RMSE value obtained using the unsupervised
neural-drive approach was significantly higher than that
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Fig. 4. Comparison of the force prediction performances for each finger. **
denotes 0.001<p<0.01, *** denotes p<0.001.

obtained using either the SEMG-Amp approach (index: t(7)=-
3.35, p= 0.0061; ring-little: p= 0.012) or the SEMG60-Amp
method (index: t(7)=-4.67, p= 0.0022; ring-little: p= 0.012).

For the middle finger, no significant differences using the
three methods were detected in both R? values (Friedman test:
x%(2) =4, p=0.14) and RMSE values (One-way RM ANOVA:
F(2,14) =1.01, p=0.39). This may be due to a relatively large
spatial distance between the forearm activation areas for the
middle finger and that of the other two fingers, resulting in
minimal crosstalk from the other fingers [8].

IV. CONCLUSION

In this study, we developed an unsupervised neural-drive
approach with consideration of finger muscle co-activations
for simultancous and concurrent multi-finger predictions.
MU extracted from single-finger trials were directly used for
the MU extraction of multi-finger tasks. We implemented the
MU weight assignment and sharing procedures to better align
the force contribution of each MU to corresponding fingers,
and then applied these weighted and shared MUs to predict
finger forces. Consequently, our method significantly
surpassed both supervised sEMG-amplitude approaches,
which showed great potential to broaden application scopes,
including aiding individuals with hand disabilities. In the
future, we will validate our developed model for other types
of motor tasks, such as finger flexion movements.
Furthermore, we will test the effectiveness of our approach on
subjects with hand disabilities, such as arm amputees.

REFERENCES

[1] H. P. Singh and P. Kumar, “Developments in the human machine
interface technologies and their applications: a review,” J. Med. Eng.
Technol., vol. 45, no. 7, pp. 552-573, Oct. 2021.

[2] L. Meng et al., “User-Tailored Hand Gesture Recognition System for
Wearable  Prosthesis and Armband Based on  Surface
Electromyogram,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1-16,
2022.

[3] L. Zongxing et al., “Human-machine interaction technology for
simultaneous gesture recognition and force assessment: A Review,”
IEEE Sens. J., 2023.

[4] L. Meng et al., “Evaluation of decomposition parameters for high-
density surface electromyogram using fast independent component
analysis algorithm,” Biomed. Signal Process. Control, vol. 75, p.
103615, 2022.

[51 R. Roy, Y. Zheng, D. G. Kamper, and X. Hu, “Concurrent and
Continuous Prediction of Finger Kinetics and Kinematics via
Motoneuron Activities,” IEEE Trans. Biomed. Eng., vol. 70, no. 6, pp.
1911-1920, 2023.

[6] Y. Zheng and X. Hu, “Concurrent estimation of finger flexion and
extension forces using motoneuron discharge information,” /EEE
Trans. Biomed. Eng., vol. 68, no. 5, Art. no. 5, 2021.

[7] D.Farina et al., “Man/machine interface based on the discharge timings
of spinal motor neurons after targeted muscle reinnervation,” Nat.
Biomed. Eng., vol. 1, no. 2, Art. no. 2, 2017.

[8] Y. Zheng and X. Hu, “Concurrent prediction of finger forces based on
source separation and classification of neuron discharge information,”
Int. J. Neural Syst., vol. 31, no. 06, Art. no. 06, 2021.

[91 N. Rubin, Y. Zheng, H. Huang, and X. Hu, “Finger force estimation
using motor unit discharges across forearm postures,” IEEE Trans.
Biomed. Eng., vol. 69, no. 9, pp. 2767-2775, 2022.

[10] A. Hyvérinen and E. Oja, “Independent component analysis:
algorithms and applications,” Neural Netw., vol. 13, no. 4-5, Art. no.
4-5,2000.

[11] E. A. Clancy and N. Hogan, “Probability density of the surface

electromyogram and its relation to amplitude detectors,” IEEE Trans.
Biomed. Eng., vol. 46, no. 6, Art. no. 6, 1999.

Authorized licensed use limited to: Penn State University. Downloaded on August 29,2024 at 02:24:39 UTC from IEEE Xplore. Restrictions apply.



