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Abstract4Accurate finger force prediction is essential for 

intuitive human-machine interactions. Various studies have 

attempted to develop reliable decoders for multi-finger force 

prediction for the control of assistive robotic hands. However, 

most approaches were implemented in a supervised manner, i.e., 

data labels (e.g., finger forces) were needed to train or refine 

models, which might not be appropriate in certain situations, 

particularly in the cases of individuals with an arm amputation. 

In addition, previous studies have not addressed interference 

from the co-activations of unintended finger muscles. However, 

finger co-activations occur naturally in daily activities. 

Therefore, we developed an unsupervised neural-drive 

approach for simultaneous and continuous multi-finger force 

predictions, considering finger muscle co-activations instead of 

avoiding them. To this end, we collected high-density surface 

electromyogram (sEMG) signals from the forearm extensor 

muscle during single- and multi-finger isometric contraction 

tasks. Motor units (MUs) were extracted from sEMG signals of 

the single-finger tasks. Considering the different contribution of 

each MU, we assigned weights to MUs based on the firing 

statistics of the MUs for the target finger across trials. Due to 

the co-activation effect, where MUs from other fingers may 

influence the force of the target finger, we introduced an MU 

sharing procedure to incorporate these MUs. Compared with 

the supervised sEMG-amplitude methods, our approach 

demonstrated superior force prediction performance, as 

evidenced by a higher �� (0.72±0.11 vs. 0.64±0.073) and a lower 

root mean square error (5.95±1.43 %MVC vs. 7.47±1.81 

%MVC). Our approach has the potential to enable intuitive 

neural-machine interfaces, allowing a wide range of human-

machine system applications. 

Keywords4unsupervised neural decoding, finger force 

prediction, finger co-activations, biosignal processing 

I. INTRODUCTION 

Finger force prediction plays an important role in human-
machine systems, including advanced prosthetic control, 
virtual reality, and remote surgical operations [1]. To 
maximize the wide use of those applications, it is essential to 
accurately predict finger forces for the natural and intuitive 
interactions between humans and machines. Finger force 
prediction based on surface electromyogram (sEMG) signals 
has gained increasing attention due to its noninvasive nature 
and its capacity to predict both isometric and isotonic finger 
forces in both extension and flexion directions [2], [3]. 

sEMG signals are formed by the summation of motor unit 
action potentials (MUAPs) [4]. Previous studies [5], [6] have 
applied models for continuous finger force prediction based 
on the variation of macroscopic features (directly extracted 

from global sEMG signals, such as sEMG amplitude). 
Intuitively, by placing electrodes on target muscle areas, it is 
possible to capture the muscle activity related to the finger 
movements. The captured information can then be translated 
into input for machine control. However, the anatomical 
proximity of individual finger muscle compartments poses a 
challenge. An electrode channel may capture activities from 
adjacent muscle compartments associated with different 
fingers. These interferences greatly challenge the accurate 
prediction of finger forces using macroscopic features.  

With the development of wearable techniques, particularly 
in the context of flexible high-density surface 
electromyography (sEMG) electrode arrays, it is possible to 
conduct sEMG-related analysis at the microscopic level (via 
decomposed neuronal discharge events) [7], not just limited to 
using macroscopic features. Previous studies [5], [6], [8], [9] 
have revealed the effectiveness of finger force prediction 
using the neural drive, represented by the populational 
discharge frequency of motor unit (MUs). Neural-drive 
approaches can effectively address the potential interferences 
encountered in macroscopic feature-based methods. However, 
these studies utilized supervised approaches, necessitating 
measured forces for model training and refinement 
procedures, which are not suitable for individuals who have 
lost hand functionality. In addition, most studies [8] made 
efforts to isolate co-activations from unintended fingers for an 
enhanced finger force prediction. However, given that co-
activations are both inevitable and commonplace, 
incorporating them into force prediction is more natural than 
attempting to isolate them. 

To address these challenges, we conducted the neural-
drive-based multi-finger force prediction in an unsupervised 
manner. Considering that MU contributions vary for the target 
finger, we implemented a weighting strategy. This strategy 
assigns weights to each MU based on its firing frequency for 
the target finger across trials. Due to the co-activation effect, 
the movement of other fingers may also contribute to the force 
of the target finger. We employed an MU sharing procedure, 
by incorporating MUs from other fingers, to facilitate more 
accurate and nature human-machine interaction. To be 
specific, subjects were required to perform single-finger tasks 
(for MU extraction) and multi-finger tasks (for MU weight 
assignment, MU sharing procedure, and model performance 
evaluation). Our model demonstrated superior force 
prediction performance compared to supervised sEMG-
amplitude-based models. This holds promise for more 
accurate human-machine interactions across a broader range 
of applications. 

This study was supported in part by the National Science Foundation 
(CBET-2246162, IIS-2330862, IIS-2319139) and the Department of 
Defense (W81XWH2110185). 
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II. METHODS 

A. Data Acquisition and Preprocessing 

We recruited 8 participants (1 female and 7 males, aged 21 
to 35 years) without known neuromuscular disorders. They 
signed the informed consent for the protocols approved by the 
Institutional Review Board of the Pennsylvania State 
University. 

Before data collection, we allowed subjects to adjust their 
chair height for comfort. The wrist was held in a neutral 
position, and the four involved fingers (index, middle, ring, 
and little) were secured to four load cells (SM-200N, 
Interface). Finger forces were recorded at a sampling 
frequency of 1000 Hz and were displayed in real time to better 
track designed target force trajectories, as shown in Fig. 1. To 
record sEMG, we covered the extensor digitorum communis 
(EDC) muscle with an 8 × 20-electrode array (electrode 
diameter: 3 mm, inter-electrode distance: 10 mm). The 
monopolar sEMG signals were sampled at 2048 Hz using the 
EMG-USB2+ (OT Bioelettronica, Torino, Italy), with a gain 
of 1000, and a pass band of 103900 Hz.  

A large enslaving effect between the ring and little fingers 
has been revealed by previous studies. Based on the 
observation of sEMG signals, the activation patterns of EDC 
muscle compartments related to the ring and little fingers were 
also similar. Therefore, we required subjects to concurrently 
extend the ring and little fingers. The measured forces of the 
two fingers were summed up as the ring-little finger force. 

We first obtained the maximum voluntary contraction 
(MVC) forces of each finger by asking subjects to separately 
perform the maximum isometric extension of individual 
fingers. Subsequently, subjects performed both single-finger 
and multi-finger isometric extension tasks. In each single-
finger trial (see Fig. 1(a)), subjects followed a 21-second 
trapezoid force trajectory with a target finger (the ring and 
little fingers were considered as one finger due to the 
enslaving effect). A total of 15 single-finger trials (3 fingers × 
5 trials/finger) were recorded. For multi-finger tasks, subjects 
used at least two fingers, as illustrated in Fig. 1(b) and 1(c). 
The three-finger tasks lasted 18 seconds, and the two-finger 
tasks lasted 12 seconds. Correspondingly, a total of 32 trials 
were performed. Co-contractions of unintended fingers were 

allowed for the multi-finger tasks, getting close to practical 
scenarios. 

B. Unsupervised Neural-Drive Approach 

As shown in Fig. 2, the unsupervised neural-drive 
approach mainly included: 1) Initial MU extraction. We 
extracted MUs from single-finger trials, and MUs extracted 
from same-finger trials were pooled together, termed raw 
MUs. 2) MU weight assignment and sharing. To prevent in-
sample optimization bias, we adopted a two-fold validation 
protocol to divide 3-finger trials into two sets. One set was 
used as the refinement dataset. The other set and all two-finger 
trials were used as the testing dataset. In the refinement phase, 
we assigned weights to MUs, including those contributing to 
the target finger's force from other fingers, termed shared 
MUs. 3) Force prediction. The force prediction was performed 
using shared MUs and their corresponding weights.  

• MU Extraction 

The fast independent component analysis (FastICA) 
algorithm [10], known for its high decomposition efficiency, 
is widely used in sEMG decomposition. Therefore, we 
extracted MUs from single-finger tasks using the FastICA 
algorithm. To be specific, we calculated mean root mean 
square (RMS) values of 160-channel sEMG signals using 
single tasks of the same finger. For each finger, we selected 
60 channels that exhibited the highest RMS values. Then, we 
obtained the union of the three sets for the following analyses. 
Signals of selected channels were duplicated by a factor of 10 
and were further whitened for the FastICA-based 
decomposition with up to 200 iteration procedures. The 

decomposed MUs with a low silhouette measure (SILÿ0.5) 
were excluded. Lastly, MUs from the same-finger tasks were 
pooled together. Accordingly, we obtained the separation 
matrixes, ��,�, ��,� and ��,	
, where I, M and RL represent 

index, middle and ring-little fingers, respectively. 

• MU Weight Assignment and Sharing 

Co-activations of unintended fingers are inevitable, even 
when we attempt to isolate the force of intended fingers. 
Instead of attempting to eliminate the co-activations in 
algorithms, it is more natural to control the human-machine 
systems by incorporating an MU weighting and sharing 
strategy. This approach can accommodate and harness these 
involuntary movements for enhanced precision and control.  

A two-fold validation protocol was used to divide 3-finger 
trials into two sets. Each set, in turn, served as the refinement 
data. The other set, along with all 2-finger trials, formed the 
testing dataset. Due to the co-activations, some MUs were 
activated for more than one finger. Weights were assigned to 
each MU based on its contribution to different fingers. 
Specifically, the following steps were conducted. 

 
Fig. 2. Framework of the unsupervised neural-drive approach. �, � *{I, M, RL}. 

 
Fig. 1. Force trajectories. Each color denotes one finger. 
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1) sEMG decomposition. Given that the computational 
efficiency of sEMG decomposition via the FastICA algorithm 
does not suffice for real-time daily use, we directly employed 

the separation matrix ��,� (l*{I, M, RL}) to decompose the 

refinement dataset. After the decomposition, low-quality MUs 
(SIL<0.5) were removed.  

2) Weight assignment. The rationale for the weight 
assignment is that if one MU is dominant for a finger, the 
average firing rate during the plateau period of the finger is 
expected to be greater than that during plateau periods of other 
fingers. The plateau time periods of the three-finger trials in 
Fig. 1(c) were 2s-4s, 8s-10s, 14s-16s for the three fingers, 
respectively. After sEMG decomposition using the separation 
matrix ��,�of the target finger �, we calculated weights of the 

MUs to the target finger �  based on the proportion of 
dominances for this finger over trials.  

3) MU sharing. MUs extracted using separation matrixes 
of other fingers may contribute to the force of target finger due 
to the co-activation effect. Those MUs were weighted based 
on their proportion of dominances over trials for the target 
finger. All MUs and weights for the target finger were pooled 
together, termed shared MUs. The corresponding separation 
matrixes and weight vectors were ��,� and �� , respectively. 

• Force Prediction 

Similar to the previous study [8], we built three individual 
linear models for the force prediction of each of the three 
fingers. It is worth noting that the measured forces were only 
used for the force prediction without participating in the MU 
extraction, weighting and sharing procedures. The linearity of 
neural-drive signals with finger force allows users to 
intuitively adjust the force prediction models based on their 
own sense of the force level they're applying with their fingers. 
Therefore, the force prediction model can be easily built 
without measured force in practical use. 

For the finger �, we computed high-quality source signals 

(SILÿ 0.6) using ��,� . After the duplicated source signal 

removal procedure, the time courses of firing rate (calculated 
by a fixed-window strategy with 0.5s window size and 0.1s 
moving step) and weight vector were updated as �� =
[��,�, ï , ��,�, ï ���,�] and �� = [��,� , ï , ��,� , ï ���,�], where 

��  denotes the number of retained MUs for the force 
prediction of finger �, ��,� and ��,�  represent the time course of 

firing rate and the weight for the �th MU. Correspondingly, 
the neural-drive signals  � = 3 ��,� ;� ��,� . The neural-drive 
signals were then smoothed by a Kalman filter and was 
mapped for force prediction using a linear regression model, 
depicted as #$%&'� =  (� � + *� , where #$%&'�  denotes the 
prediction force of finger �, (� and *� denote slope coefficient 
and intercept of the linear regression model, respectively. 

Two prevailing indexes, +� and the root mean square error 
(RMSE) between the measured force and predicted force, 
were employed for prediction performance evaluation. 

C. Alternative Approaches for Comparison 

The sEMG amplitude has been a prevalent feature for 
finger force prediction [11]. Two supervised approaches based 
on sEMG amplitude were explored for comparison.  

In the first method, termed the sEMG60-Amp method, we 
selected 60 channels with top average amplitudes (RMS) for 
each finger using corresponding single-finger tasks. The 

testing dataset included all two-finger and three-finger trials. 
For each trial in the testing dataset, we calculated sEMG 
amplitude of each channel using the same fixed window 
sliding strategy. Subsequently, we averaged the sEMG 
amplitudes of the selected 60 channels, generating a time 
course of overall amplitude for the target finger, denoted as 
,-.,�, � * {I, M, RL} . Lastly, the ,-.,�  was used to build a 
linear regression for force prediction after the Kalman 
filtering. 

In the second approach, we introduced a channel 
refinement strategy to reduce the sEMG amplitude bias. This 
approach was termed sEMG-Amp method. The cross-
validation strategy, which involves constructing the 
refinement and testing datasets, was kept consistent with the 
unsupervised neural-drive approach to ensure a fair 
comparison. In the channel pool of a given finger, we 
calculated the +�  value between the time course of that 
channel's amplitude and the measured forces of the three 
fingers across refinement trials. If the +� value of one channel 
with the target finger force was higher than that with forces of 
other fingers, the channel was retained for the final force 
prediction. Lastly, we conducted the force prediction using the 
refined channel pool rather than the 60 channel pool. 

D. Statistical Analysis 

If the groups being compared satisfied the requirements 
for parametric analysis, we adopted the Repeated Measures 
Analysis of Variance (RM ANOVA) and the paired t-test for 
statistical analysis. If not, we employed the Friedman test and 
Wilcoxon signed-rank test for the statistical analysis. Holm-
Bonferroni correction was applied when necessary to avoid 
multiple comparison errors. We only reported the corrected 5 
values, with the significance level set at 0.05. 

III. RESULTS AND DISCUSSION 

A. Overall Force Prediction Performance 

We compared the finger force predictions across the 
unsupervised neural-drive, sEMG-Amp, and sEMG60-Amp 
approaches. As shown in Fig. 3(a), the overall average +� 
values were 0.72±0.11 (Neural-Drive), 0.64±0.073 (sEMG-
Amp), and 0.50±0.10 (sEMG60-Amp). A significant 
difference in +�  values among the three approaches was 
revealed by the Friedman test (6�(2) =13, 5=0.0015). Further 
post-hoc analysis using the Wilcoxon signed-rank test showed 
that the overall +�  value achieved using the neural-drive 
approach was significantly higher than that obtained using 
either sEMG-Amp (5=0.039) or sEMG60-Amp (5=0.012). In 
addition, the sEMG-Amp approach was significantly better 
than the sEMG60-Amp method in +� value (5=0.012). 

 
Fig. 3. Comparison of overall force prediction performances using the 
unsupervised neural-drive, sEMG-Amp, and sEMG60-Amp approaches. * 

denotes 0.01<5<0.05, ** denotes 0.001<5<0.01, *** denotes 5<0.001. 
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The overall average RMSE values (Fig. 3(b)) were 
5.95±1.43 %MVC (Neural-Drive), 7.47±1.81 %MVC 
(sEMG-Amp), and 9.74±2.43 %MVC (sEMG60-Amp). The 
one-way RM ANOVA demonstrated that the RMSE values 
obtained using three approaches were significantly different 

(#(2,14) =12.49, 5ÿ0.001). Further paired t-test showed that 
the RMSE value achieved using the neural-drive approach 
was significantly lower than that obtained using either sEMG-
Amp (7(7)=-2.01, 5= 0.042) or sEMG60-Amp (7(7)=-3.68, 
p=0.0078). Compared with the sEMG60-Amp method, the 
sEMG-Amp approach achieved a significantly lower RMSE 

value (7(7)=-7.10, 5ÿ0.001). 

From the results in Fig. 3, we can infer that the channel-
refinement procedure was effective in removing channels with 
large cross-talk of different fingers, resulting in an 
improvement in the force prediction performance. The force 
prediction performance can be further improved using the 
developed unsupervised neural-drive approach, which may 
fall into the following explanations: 1) Compared to sEMG 
amplitudes, decomposed binary firing events were less 
impacted by various interferences, including motion artifacts, 
signal amplitude cancellation from MU action potential 
waveform superimposition, background noise, etc. 2) Despite 
conducting a channel-refinement procedure for the sEMG-
Amp method, some channels might still receive cross-talk 
from other fingers due to the proximity of finger muscle 
compartments, resulting in inaccurate force estimations. 3) 
Rather than attempting to eliminate co-activations from other 
fingers, we acknowledged their inevitable contribution to the 
target force, which led to more practical force predictions. 

B. Finger-Specific force prediction performance 

Fig. 4 presents the force prediction performances of the 
three approaches on each finger. As shown in Fig. 4(a), a 
significant overall difference in +� values was found for the 

index finger (One-way RM ANOVA: #(2,14) =25.14, 5ÿ
0.001) and the ring-little finger (Friedman test: 6�(2) =10.75, 
5 =0.0046). Further post-hoc analysis showed that the +� 
value obtained using the unsupervised neural-drive approach 
was significantly higher than that obtained using either the 
sEMG-Amp approach (index: 7 (7)=4.64, 5 = 0.0015; ring-
little: 5 = 0.039) or the sEMG60-Amp method (index: 
7(7)=5.34, 5= 0.0016; ring-little: 5= 0.016). 

 Similarly, Fig. 4(b) shows a significant overall difference 
in RMSE values for the index finger (One-way RM ANOVA: 

#(2,14) =20.95, 5ÿ0.001) and the ring-little finger (Friedman 

test: 6� (2) =10.75, 5 =0.0046). Further post-hoc analysis 
showed that the RMSE value obtained using the unsupervised 
neural-drive approach was significantly higher than that 

obtained using either the sEMG-Amp approach (index: 7(7)=-
3.35, 5= 0.0061; ring-little: 5= 0.012) or the sEMG60-Amp 
method (index: 7(7)=-4.67, 5= 0.0022; ring-little: 5= 0.012). 

For the middle finger, no significant differences using the 
three methods were detected in both +� values (Friedman test: 
6�(2) =4, p=0.14) and RMSE values (One-way RM ANOVA: 
#(2,14) =1.01, 5=0.39). This may be due to a relatively large 
spatial distance between the forearm activation areas for the 
middle finger and that of the other two fingers, resulting in 
minimal crosstalk from the other fingers [8]. 

IV. CONCLUSION 

In this study, we developed an unsupervised neural-drive 
approach with consideration of finger muscle co-activations 
for simultaneous and concurrent multi-finger predictions. 
MUs extracted from single-finger trials were directly used for 
the MU extraction of multi-finger tasks. We implemented the 
MU weight assignment and sharing procedures to better align 
the force contribution of each MU to corresponding fingers, 
and then applied these weighted and shared MUs to predict 
finger forces. Consequently, our method significantly 
surpassed both supervised sEMG-amplitude approaches, 
which showed great potential to broaden application scopes, 
including aiding individuals with hand disabilities. In the 
future, we will validate our developed model for other types 
of motor tasks, such as finger flexion movements. 
Furthermore, we will test the effectiveness of our approach on 
subjects with hand disabilities, such as arm amputees. 
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