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A B S T R A C T   

Event-related potentials (ERPs) can quantify brain responses to reveal the neural mechanisms of sensory 
perception. However, ERPs often reflect nonlinear mixture responses to multiple sources of sensory stimuli, and 
an accurate separation of the response to each stimulus remains a challenge. This study aimed to separate the 
ERP into nonlinearly mixed source components specific to individual stimuli. We developed an unsupervised 
learning method based on clustering of manifold structures of mixture signals combined with channel optimi-
zation for signal source reconstruction using non-negative matrix factorization (NMF). Specifically, we first 
implemented manifold learning based on Local Tangent Space Alignment (LTSA) to extract the spatial manifold 
structure of multi-resolution sub-signals separated via wavelet packet transform. We then used fuzzy entropy to 
extract the dynamical process of the manifold structures and performed a k-means clustering to separate different 
sources. Lastly, we used NMF to obtain the optimal contributions of multiple channels to ensure accurate source 
reconstructions. We evaluated our developed approach using a simulated ERP dataset with known ground truth 
of two components of ERP mixture signals. Our results show that the correlation coefficient between the 
reconstructed source signal and the true source signal was 92.8 % and that the separation accuracy in ERP 
amplitude was 91.6 %. The results show that our unsupervised separation approach can accurately separate ERP 
signals from nonlinear mixture source components. The outcomes provide a promising way to isolate brain re-
sponses to multiple stimulus sources during multisensory perception.   

1. Introduction 

Understanding brain responses through electroencephalograms 
(EEG), magnetic resonance imaging (MRI), and functional magnetic 
resonance imaging (fMRI) has proven to be an effective approach for 
understanding neural mechanisms during brain processing of external 
stimuli [1–4]. EEG, in particular, is extensively utilized due to its high 
temporal resolution, non-invasive nature, and cost efficiency [5]. 
Event-related potentials (ERP) of EEG, a commonly used paradigm in 
sensory response, provide insights into the brain’s response to external 
sensory stimuli and facilitate the investigation of fundamental principles 
of multisensory integration [6–8]. Sensory processing by the brain 
typically results from the integration of multiple sources of sensory 
stimuli. Isolating individual responses to individual stimuli requires 

effective separation from mixture ERPs and a comprehensive under-
standing of the interaction between different sensory perception sour-
ces. Perceptual integration strategies in various models can be broadly 
classified into two categories: neural responses to multisensory stimu-
lation are mixed without interaction [9], and neural responses are not 
only nonlinearly mixed but also interactive. The interaction in audio-
visual perception exemplifies the first model [10], while tactile 
perception (from afferent fibers below the skin and sensory receptors in 
the skin) induced by transcutaneous electrical stimulation is represen-
tative of the latter [11]. However, understanding the interactive prin-
ciples and signal representation in these models remains a challenge, 
particularly in distinguishing sources in nonlinearly interactive mixture 
ERPs. These challenges include the poor spatial resolution due to the 
volume conduction effect, where brain response signals become diffused 
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and attenuated as they travel through head tissues to the scalp surface. 
This leads to substantial signal overlap at scalp electrodes from different 
brain regions, complicating the localization of source information [12]. 
In addition, unlike the separation of mixed stimuli in additive models, 
certain stimuli (e.g., multisensory perception evoked by transcutaneous 
electrical stimulation) exhibit complex interactions among sources 
without ground truth of individual responses. 

Over the past few years, various strategies have been developed for 
mixture signal separation. For instance, Independent Component Anal-
ysis (ICA), a common technique for blind source separation, employs a 
linear transformation to decompose mixed signals into statistically in-
dependent source signals [13]. In addition, time contrastive learning 
and spatial filters [14–18] use matrix transformation or temporal feature 
segmentation to separate source signals. However, these strategies may 
not be suitable for non-linear mixing and source-interactive signals. 
Wavelet transform, on the other hand, can decompose raw EEGs into 
multi-resolution time and frequency representations, offering insights 
into both local structures and global waveforms [19]. By extracting 
potential features of source and channel correlations at different scales, 
and employing clustering techniques to classify sub-signals, one can 
effectively reconstruct source signals corresponding to individual brain 
responses. 

Recent studies have also explored various strategies for nonlinear 
feature extraction [20]. Manifold learning, for instance, has proven to be 
effective to uncover low-dimensional structures and intrinsic signal 
features, better than traditional linear methods in identifying and 
separating different patterns [21,22]. It can preserve local data prox-
imity and accurately reconstruct the inherent structure of source signals 
[23]. Although manifold structures can reflect the spatial structure of 
signals, they lack the capacity to describe the dynamic evolution of these 
structures. Entropy, as a measure of dynamic properties, can reveal the 
complexity and dynamic evolution of signals [24]. It has been shown to 
be effective in evaluating dynamic processes in manifold structures [25], 
extracting distinct information of various trajectories. By integrating the 
strengths of manifold learning and entropy analysis, one could extract 
nonlinear dynamic features of signals, providing a foundation for source 
separation. 

In source signal reconstruction, the interaction between channels can 
be significant. Multichannel signals often contain redundant and irrel-
evant components, and channel optimization can enhance the extraction 
of original signals or specific stimulus-related feature components [26]. 
The representation of mixture signals can arise from the superposition of 
different subcomponents and from the varying contributions of different 
channels. Hence, channel optimization presents a promising approach to 
enhancing the separation and reconstruction of source signals. 

To separate nonlinearly mixed and interactive signals from mixture 
ERPs, this study developed a strategy based on manifold learning cluster 
and non-negative matrix factorization (NMF) for ERP source separation 
from a mixture signal (Fig. 1). Specifically, we employed manifold 
learning based on Local Tangent Space Alignment (LTSA), which de-
lineates the spatial manifold configuration of multi-resolution sub-sig-
nals derived after wavelet packet decomposition. Subsequently, the 
dynamic features of the manifold structure were extracted using fuzzy 
entropy, followed by the application of unsupervised k-means clustering 
for the separation of different sources. Additionally, we adopted NMF to 
optimize the contribution from different EEG channels during source 
reconstruction to consider the different impact of multiple channels. 

The research framework is visualized in Fig. 1. The main contribu-
tion of this study was the development of a novel unsupervised method 
to separate the source ERP of different stimuli from mixture ERP, 
especially for nonlinear mixture responses. To accurately decompose the 
ERP source signals, we employed nonlinear manifold learning and fuzzy 
entropy to extract the inherent dynamic features of each source 
component. The simulation results demonstrated that our method could 
effectively reconstruct source signals in terms of ERP amplitude, latency, 
and waveform. The outcomes provide a new approach that can help to 
understand neural mechanisms of multi-sensory perceptions. 

2. Methodology 

In this section, we first describe the data acquisition steps. We then 
describe the individual steps of the source separation algorithm. Lastly, 
we describe the evaluation processes, including the comparison with 
existing methods and an ablation study that evaluated the benefits of 

Fig. 1. Diagram of separation strategy. (a) Example of multisensory perception model. (b) EEG decomposition based on wavelet packet transform. (c) Using manifold 
learning to obtain spatial manifold structure of sub-signals. (d) Performing fuzzy entropy to extract dynamic process of manifold structure and cluster separation. (e) 
Applying NMF to obtain the optimal contributions of multiple channels. 
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different processing steps. 

2.1. Dataset simulation 

Due to the lack of prior knowledge or ground-truth representation of 
individual responses, it is difficult to validate our separation algorithms 
without labeled information. To assess the performance of our separa-
tion strategy, we collected real EEG data from four healthy human 
subjects (age range: 23–36 years) who participated in a tactile stimu-
lation experiment evoked by transcutaneous electrical stimulation. The 
stimulation protocol details are provided in previous studies [27] and 
are summarized in the Supplementary Material. They gave informed 
consent with protocols approved by the Institutional Review Board of 
Penn State University. 

EEG data were acquired using a BrainAmp DC amplifier, with a 
frequency range of 0.015–250 Hz and a sampling rate of 1000 Hz. Data 
from 32 electrodes, including a reference electrode at the right mastoid, 
were collected. The data were with a band-pass filter set at 0.1–100 Hz 
and a 50 Hz notch filter. Additionally, a Butterworth band-pass filter was 
applied to restrict the frequency range to 0.1–30 Hz, to eliminate elec-
trical stimulus artifacts and irrelevant noise. Independent Component 
Analysis (ICA) was employed to remove artifacts related to blinking, 
horizontal, and vertical eye movements. 

Given the considerable variability in EEG representations across in-
dividuals, we treated the EEG data from each subject as a separate 
source and generated six mixed datasets. This approach retained the 
EEG feature inherent to each subject while simulating the complex in-
teractions in real EEG data. The data mixing procedure was calculated 
by: 
SM =α ⋅ σ(s1)+ (1 − α)⋅σ(s2)

σ(slabel)=
1

1 + e−slabel  

Where slabel (label = 1, 2) represents the source signal with a dimension 
of m × t, m, t represents the numbers of channels and sample data points, 
sM is the mixture signal and α is the weight of the mixture. To simulate 

the interactive relation between different sources during mixture, we 
calculated α as: 

s1 =
1
mt
∑

m

m=1

∑

t

t=1
s1mt , s2 = 1

mt
∑

m

m=1

∑

t

t=1
s2mt  

α= |s1|
|s1 + s2|

Where s1 and s2 are mean values of signal sources. The above mixing 
process not only satisfies the nonlinear mixing relation, but also meets 
the requirement of interactive sources. The simulation strategy is shown 
as Fig. 2: 

Fig. 2 illustrates that the mixed EEG signals closely mirror the 
waveform feature of the source ERPs, maintaining the integrity of the 
original signal features. Notably, these signals preserved a significant 
N300 peak and reliable latency features, indicating that the mixed sig-
nals meet essential criteria for our algorithm testing and evaluation. 

2.2. Signal decomposition using wavelet packet transform 

Continuous EEG could be decomposed into a convolution of a series 
of basic functions (i.e. wavelets) with specific time and frequency 
properties, which are widely used to obtain multi-resolution sub-signals 
of EEG [28,29]. In our work, we obtained EEG signals with a mixed 
signal matrix of 28 (channels) × 3000 (sample points), after removing 
the ocular and reference electrodes. Then, the simulated mixed EEG 
signals were decomposed into a set of wavelet packet nodes in the form 
of a full binary tree by wavelet packet transform (WPT). Empirical Mode 
Decomposition (EMD) is a commonly used method for the decomposi-
tion of bio-signals. EMG can decompose signals into a finite number of 
Intrinsic Mode Functions (IMFs). Different IMF components represent 
different oscillation scales of the signal, but the IMFs cannot be used to 
represent the original signal waveforms of different sources, with each 
source containing a range of frequency content. EMD does not rely on 
any basis functions and can adaptively generate intrinsic modal func-
tions based on the analyzed signal. In contrast, the WPT employed in our 
study involves the selection and optimization of basis function 

Fig. 2. EEG signal simulation strategy. (a). Apply ERP from individual subjects to simulate the brain responses for individual stimuli. Using a nonlinear function to 
mix different sources. The signal mixture was then separated using our algorithm. (b). Representation of simulation ERP signals of all 32 channels. Different colors 
indicate ERPs from different channels. (c). Representation of simulation ERP signals of a single representative channel. 
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parameters. The decomposed components contain multiple frequency 
bands with high frequency resolutions. The signal source decomposition 
process in WPT can provide a relatively stable transformation and in-
verse transformation. 

Firstly, define the wavelet packet function: 

Wc
j,b(t)= 2 j

2Wc(2jt − b)

Where j represents the level of tree and b (b = 0, 1, …, 2j-1) is the node 
index in level j. c=0, 1, …2j is the oscillation parameters. The process of 
decomposition is subject to the following recursive relation: 
W2c(t)= ̅̅̅2√ ∑

bω(b)Wc
1,b(2t − b)

W2c+1(t)= ̅̅̅2√ ∑

bθ(b)Wc
1,b(2t − b)

Where ω (b) = 1 / ̅̅̅2√
〈φ(t),φ(2t − b)〉 and θ(b) = 1 / ̅̅̅2√

〈ψ(t),ψ(2t − b)〉 

are the filter coefficients of low-pass and high-pass filters respectively. 
φ(t) and ψ(t) are scaling function and mother wavelet function respec-
tively. 〈⋅, ⋅〉 is the inner product operator, which was used to calculate 
the wavelet packet coefficients Cc

j,b using mixture EEG signal SM(t) and 
wavelet packet functions Wc

j,b(t). 

Cc
j,b = 〈SM,Wc

j,b(t)〉 =
∫ ∞

−∞

SM(t)Wc
j,b(t)dt 

The EEG data were decomposed using WPT into a series of frequency 
bands. The decomposition levels were determined by the order of 2j, 
where j represents the decomposition level. This decomposition is 
depicted as a binary tree structure, comprising multiple nodes each with 
equal bandwidth. At each level, the signal was divided into 2j equal- 
width frequency bands. We achieved a multi-resolution representation 
of the EEG by sequentially reconstructing the coefficients at each node, 
progressing layer by layer in the tree structure. The process of separating 
distinct sub-signals through this method is illustrated in Fig. 3. 

The selection of both the decomposition order and the wavelet basis 
function is crucial for the efficacy of WPT. The Daubechies wavelet was 
utilized in our study, particularly because of its ability to extract local-
ized time-frequency features and effectively capture spikes and 
nonlinear EEG features [30]. Additional, the selection of decomposition 

order requires adequate frequency resolution, while keeping the 
computational load reasonable. Specifically, j = 4, 5, or 6 are common 
choices for EEG signals. Therefore, we chose the Daubechies 4 wavelet 
with a decomposition order of j = 6. 

2.3. Unsupervised cluster based on dynamics process of manifold learning 

Multisensory interactions have traditionally been analyzed using 
peak-based analyses of ERP voltage waveforms [31]. Therefore, 
extracting a local geometric approximation of peaks from nonlinear 
mixtures presents a promising approach for achieving accurate signal 
separation. Previous research has demonstrated that manifold learning 
can approximate the geometric structure of ERP data without 
pre-existing knowledge, effectively capturing the dynamic features 
inherent in the underlying neural phenomena [32]. Additionally, 
manifold learning can extract locally linearized structures from 
nonlinear signals, providing a pathway to discern discriminative infor-
mation from multi-resolution sub-signals. 

Among various manifold learning strategies, Local Tangential Space 
Alignment (LTSA) demonstrates superior clustering performance 
compared to isometric feature mapping and locally linear embedding 
methods. Its primary aim is to discover nonlinear embedding in a low- 
dimensional representation of data that effectively preserves neighbor-
hood relations on the manifold. Therefore, we performed LTSA to 
extract low-dimensional features embedded in nonlinear high- 
dimensional feature matrix. The main steps of LSTA are.  

(1) Local Tangent Space Establishment: 

Consider a dataset MF =
[w1,w2,…w2j

] constructed by WPT, for 
each element wI within the dataset, its k-nearest neighbors were iden-
tified by calculating the Euclidean distance of similarity: 
MF=

[wI1 ,wI2 ,…wIk
]

Where wI is the I-th sub-signal decomposed from WPT, I1, I2,….Ik denote 
the indices of these nearest neighbors within the dataset. Then, a tangent 
space was estimated based on the differences between neighboring 
points and the central point. Within this tangent space, the coordinates 
of each point could be linearly represented by computing d largest right 

Fig. 3. EEG signals by wavelet decomposition. (Level represents decomposition level of WPT, each sub-signal in different levels has the same sample points and 
time duration). 
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singular vector of wI. 
VI = [g1, g2, ..gd]

Where VI is vector that represents linear features, d is the intrinsic 
dimensionality.  

(2) Alignment Matrix Construction: 

This step finds a low-dimensional representation that could recon-
struct all coordinate vectors across all local tangent spaces. A matrix was 
constructed where each block corresponds to the differences between a 
specific point and its neighbors, which enables the minimization of 
reconstruction error in the transformation from high-dimensional to 
low-dimensional space. To construct the alignment matrix, we firstly 
performed the calculation of 0–1 selection matrix: 
Hi =(MF)−1wI  

Where HI is 0–1 selection matrix for wI. Then, compute correlation 
matrix Zi: 

Zi = I −
[ ek̅
̅̅k√ ,VI

][ ek̅
̅̅k√ ,VI

]T  

Where I is the identity matrix, ek represents a column vector with all 
identity elements of 1. Based on the previous calculation, the alignment 
matrix B was constructed: 

B=
∑I=N

I=1 HIZIZITHIT    

(3) Global Coordinates Alignment: 

The objective of this step is to minimize the reconstruction error of 
matrix B by solving a series of eigenvalue problems. D-dimensional 
global coordinates were obtained by sorting eigenvalues and eigenvec-
tors and extracting the first d+1 eigenvectors: 
MFM= [u2, u3,…, ud+1]

Where MFM is d-dimensional global coordinates, ui is eigenvectors. 
Eventually, we obtained the coordinates of the data points on the 
manifold in a low-dimensional space. 

The effectiveness of LTSA can be influenced by the intrinsic dimen-
sion d and neighborhood size k. Previous research [32] reported that the 
first-dimensional space in the manifold features reveals the principal 
nonlinear waveform structure of ERP. Consequently, in our work, we set 
d = 1 to extract the waveform features. A larger neighborhood size 
typically enhances the extraction of the global embedding of the mani-
fold, and we selected k = 30 for the neighborhood size based on a pre-
vious work [33]. By applying LTSA, all the decomposed sub-signals were 
transformed into the manifold space, resulting in manifold structures 
with distinct geometric characteristics. 

Utilizing the outcomes of manifold dimensionality reduction allows 
for an approximation of the linear local structure of the signals, effec-
tively extracting the manifold structure of various sub-signals. However, 
the sensitivity to parameter selection and the phenomenon of trajectory 
divergence of manifold structure makes it less effective in capturing 
dynamic processes and generating cluster features. To accurately 
discriminate different structure representation, we applied fuzzy en-
tropy [34] to enhance the discriminative capability of the manifold 
structure. Thus, we calculated the fuzzy entropy of features extracted via 
manifold learning to further differentiate sub-signals based on their 
distinct energy and complexity index. The calculation process is 
described as follows: 

Given a series of coordinates of manifold in a low-dimensional space 
[u(1), u(2) … u(d)], the phase space dimension h (h ≤ d-2) and the 

similarity capacity limit r are defined to reconstruct the phase space. Set 
h as the window, which is used to divide the global coordinate series into 
i = d− h+ 1. 
Y(i)= [u(1), u(2)… u(i+ h − 1) − u0(i)],

i=1, 2,…., d − h + 1  

Where Y(i) presents h consecutive u values, commencing with the ith 
point and generalized by removing a baseline: 

u0(i)= 1
h
∑

h−1

j=0
u(i+ f)

Where f = d− h+ 1, and f ∕= i. 
Then, introducing the fuzzy membership function F(x): 

F(x)=
⎧

⎨

⎩

1 x = 0
exp
[

− ln(2)⋅
(x

r
)2] x > 0 

For i = 1,2,…,d− h+ 1, the function is: 

Fh
ij = exp

⎡

⎣− ln(2) ⋅

(dh
if
r

)2⎤

⎦

Among them, 
Dh

if =D[Y(i),Y(f)]= max
p=1,2,…h

(|u(i+ p − 1) − |u(f + p − 1) − u0(f))

Dh
if represents the maximum absolute distance between Y(i) and Y(f). 

Calculate the average value for i: 

Ch
i (r)=

1
d − h

∑

d−h+1

f=1,f∕=i
Fh

if 

Define: 

φh(r)= 1
d − h

∑

d−h+1

f=1,f∕=i
Ch

i (r)

Then, the FuzzyEn of time series could be calculated as: 
FuzzyEn(h, r)= lim

d→∞

[ln φh(r) − ln φh+1(r)]

The parameter choices of FuzzyEn include the embedding dimension 
h, fuzzy power r and time delay τ. In previous research [34], the 
embedding dimension is recommended to set to h = 2. The choice of 
fuzzy power is based on the standard deviation of the sequence to bal-
ance sensitivity and specificity. The time delay affects the boundary for 
determining similarity tolerance, with smaller integer values often 
preferred for fine-grained analysis. Thus, the parameters were set as h =
2, r = 1 and τ = 1 to accurately capture the dynamic features without 
high computation cost. Given that fuzzy entropy requires a vector as 
input and the manifold structure contains three-dimensional spatial in-
formation, we extracted the first-dimensional structure within the 
manifold space for subsequent fuzzy entropy calculations. This approach 
enabled the assessment of the dynamical processes associated with the 
manifold structure of each sub-signal. 

2.4. Optimization of signal reconstruction based on NMF multi-channel 
weighting 

The optimal selection of EEG channels can impact the effectiveness 
of feature extraction and source reconstruction [35–38]. Different 
combinations of specific channels can affect the detection of ERPs. 
Previous research has identified components that significantly 
contribute to specific source signals derived from multiscale sub-signals 
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[19]. However, the influence of different channel combinations on the 
reconstruction of source signals has yet to be fully explored. ERP in-
volves processes such as trial averaging and channel averaging, which 
are essential for feature representation and waveform construction. 

The covariance matrix of EEG data typically indicates the correlation 
of different brain region activities and reveals spatial patterns. These 
patterns are often utilized to develop models for feature extraction. 
Investigating these spatial superposition patterns for mixture signal 
could facilitate the amplitude separation of mixed ERPs, which could be 
achieved by determining the degree of channel contribution to different 
components. Because our algorithm involved only unsupervised 
learning, the decomposition process must rely on the intrinsic structure 
of the data. NMF is a computational method widely used in biomedical 
signal processing [39], particularly for decomposing data into compo-
nents with non-negative entries. This approach serves as an unsuper-
vised clustering method to extract components of different classes from 
the original data. The features extracted through fuzzy entropy were 
employed for clustering, resulting in the cluster of sub-signals into two 
different categories. Subsequently, sub-signals from each category were 
reconstructed to form the separated signal X, which retain the same 
channels and sample data points with raw EEG. Furthermore, we applied 
channel weighting to enhance the reconstruction of the source signal 
based on NMF, drawing on methodologies from previous research [40]. 
The pseudocode of the calculation is depicted in Fig. 4. 

The NMF decomposition involves selecting a separation factor v. The 
channel optimization essentially entails multiplying different channels 
by distinct weights. Different weights can lead to varying reconstruction 
outcomes. We selected 14 different separation factors, ranging from 3 to 
17, to calculate the weights of each channel after decomposition. Using a 
set of separation weights with the largest variance for channel optimi-
zation could result in more effective decomposition, which was adopted 
in our study. 

Subsequently, we applied a hybrid channel optimization strategy to 
two signals separated from the mixture. Specifically, for the separated 
signal demonstrating higher correlation with the mixed signal, recon-
struction involved combining the target components (separated signal 

multiplied by the separation weight) of the current signal with the non- 
target components (separated signal multiplied by the complement of 
the separation weight) of another separated signal. For the separated 
signal with lower correlation with the mixed signal, its target compo-
nents were directly utilized to represent the reconstructed source. De-
tails of the NMF optimization process are illustrated in Fig. 5. 

2.5. Evaluation strategy for the developed method 

To evaluate the performance of our approach, similarity of wave-
form, distance of latency and relative difference of amplitude (DA) were 
calculated to compare the similarity between the true source signal and 
our reconstructed source signal. Specifically, DA was employed to 
determine if the separation algorithm displays a preference for signals 
within certain temporal intervals. We selected time points ranging from 
100 ms to 400 ms, averaging every 50 time points to calculate the 
relative difference in amplitude (DA). This calculation was conducted to 
ascertain the separation accuracy, as outlined in the following equation: 

DA=Compared Signal − Source signal
Source signal 

Moreover, we compared the separation accuracy of different ap-
proaches to validate the superiority of our algorithm in separating 
mixture signal and verify the efficacy of NMF in enhancing amplitude 
reconstruction accuracy. The separation accuracy was defined as: 

Separation Accuracy= 1
DA 

For comparison, we also used fast independent component analysis 
(FastICA) [41], FastICA combined with NMF, and manifold clustering 
without NMF (MC) as benchmark methods. Specifically, FastICA is a 
common blind source separation algorithm, capitalizing the 
non-Gaussianity of the signals. The algorithm commences with the 
preprocessing of observed data, involving centering and whitening, 
followed by an iterative process that accentuates non-Gaussianity, pre-
dominantly quantified via negentropy, through a fixed-point iteration 

Fig. 4. Algorithm diagram of NMF for Channel Optimization. (Annotation: Xv is covariance matrix of EEG; Fc is the Euclidean cost function; P is the basis matrix; E is 
the activation matrix and P, E ≥ 0; q is the rank of matrices P and E; ◦ is the element wise multiplication; sparsity parameter is ε; Xw is the calculated weights). 
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scheme. This approach effectively separates mixed signals into indi-
vidual components by exploiting their statistical independence and the 
non-Gaussian nature of data. The calculation is as follows: 

First, perform mean removal and whitening for mixture signal. Then, 
iteratively find the demixing matrix A: 
a=A[:, ∂]

Aγ+1
∂ =1

t
∑

t

t=1
SM tanh (Aγ

∂ ⋅ SM(t)
)

− A∂

(

1
t
∑

t

t=1
1 − tanh 2(Aγ

∂ ⋅ SM(t)
)

Where Aγ+1
∂ and Aγ

∂ are new and old separation vectors; SM(t) is obser-
vation vector at a particular point. The iteration process is terminated 
when the absolute value of the difference between the old and new 
weight vectors falls below a predefined convergence threshold. 

To avoid validation testing bias, five datasets were prepared as the 
training set, and one dataset served as the test set. Each dataset had the 
opportunity to serve as the test set, through a five-fold cross validation. 
Additionally, we conducted a repeated measures Analysis of Variance 
(ANOVA) to quantify the significant differences of ERP features between 
the separated signals and mixture signals and across different separation 

algorithms. 

3. Results 

3.1. Visualization of the separation process 

Unfolding sub-signals, derived from wavelet decomposition, in 
manifold space forms distinct manifold structures characterized by local 
linearity. The dynamic processes within these structures were quantified 
using fuzzy entropy, with a focus on their projection onto the X-axis 
(representing the first dimension in manifold space). The methodology 
and detailed calculations for this process are further elucidated in Fig. 6. 

Fig. 6 demonstrates that, while multiscale signals may not capture 
discriminative information in the time domain, they exhibit distinct 
dynamic trajectory patterns within the manifold structure. Capitalizing 
on these differences, the sub-signals were categorized into two distinct 
groups. The reconstruction process for each group involved combining 
inverse wavelet transformations with sub-band merging, iteratively 
applied at each level of decomposition. 

Fig. 5. Diagram of NMF multi-channel weighting. The square grids in the first row are EEG channels and different colors represent different weights. In the second 
row, the separation signal is reconstructed by sub-signals from each cluster. Target component is calculated after channel optimization, i.e., separation results 
multiply channel weights. Non-target component is the separation results multiply complement of channel weights (1-channel weights). Source signal is the 
reconstructed source signals after our separation method. 
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3.2. Evaluation for separation results 

3.2.1. Waveform visualization for separated source signals 
To evaluate the efficacy of our method in separating mixed ERP 

signals, we analyzed the waveform features of mixed ERP (red), real 
source ERP (green), and separated ERP (blue) across various simulated 
datasets. As Fig. 7 demonstrates, the separated signal (averaged across 
channels) aligns more closely with the source signal in terms of wave-
form features and amplitude. This alignment was particularly noticeable 
in the N300 components. 

3.2.2. Quantification of separation results 
We further compared the waveform, latency, and amplitude features 

of signals before and after separation against the source signal. We 
utilized a time window from −100 ms to 500 ms relative to the stimulus 
input to perform a correlation analysis based on the Pearson correlation. 
Additionally, we computed the relative amplitude difference between 
the 100 ms–400 ms intervals of the signal to quantify the accuracy of the 
source reconstruction. Detailed performance of the ERP feature com-
parisons averaged from two sources are presented in Table 1. 

As indicated in Table 1 and Fig. 8, the separated signals exhibit a 

closer resemblance to the source signal in terms of waveform, latency, 
and amplitude compared with the mixture signals. The repeated mea-
sures Analysis of Variance (ANOVA) revealed that the relative amplitude 
difference between the mixture signals and the source signal was 
significantly smaller than that between the mixture signals and the 
source signal (p < 0.01). The effectiveness of the separation process also 
led to an enhancement in waveform correlation (p < 0.05) and a latency 
that more closely approximated the source signal. 

Fig. 9 shows the relative difference of amplitude at different time 
segments of the ERP waveform. The results showed that, across various 
temporal windows, the mixture signals closely replicated the source 
signal in amplitude. Time windows corresponding to indices 5, 6, and 7, 
aligning with the 200 ms–350 ms post-stimulus (the N300 component), 
showed the highest accuracy in amplitude reconstruction. This sug-
gested that the algorithm was sensitive to ERP peaks during feature 
extraction and amplitude reconstruction. However, in some datasets, the 
amplitude difference in mixture signals appears smaller than in sepa-
rated signal. This discrepancy may be due to situations where signals 
highly overlapped and the denominator was close zero, obscuring the 
true differences between mixture signals and separated signal ampli-
tudes and potentially leading to inaccurate results. 

Fig. 6. Dynamic process of the manifold structure of sub-signals. (a). Manifold structure of sub-signals. (b). Dynamics process of manifold structure.  

Fig. 7. Waveform of mixture ERP separated ERP and source ERP. Different panels represent different source signals of different simulated datasets. For the same 
dataset, the mix signal was identical for both source 1 (S1) and source 2 (S2) panels. 
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3.3. Results of comparative ablation study 

We conducted an ablation study that compared the performance of 
different computational steps. We also compared with an existing 
method (FastICA). We calculated the correlation coefficient (R) to 
quantify the waveform similarity between the separated signal and the 
source signal (Fig. 10). 

As depicted in Fig. 10 (a), manifold clustering (MC) exhibited a 
significant improvement after channel optimization via NMF (p＜0.001) 
and showed a higher accuracy than FastICA and FastICA with NMF (p＜ 
0.001). The results showed that the reconstructed signals based on our 

method achieved the highest accuracy in amplitude reconstruction. 
Fig. 10 (b) demonstrated that MC could effectively reconstruct the 
waveform features of the source signal with a higher correlation coef-
ficient compared to FastICA (p＜0.001). Furthermore, NMF contributed 
to a more accurate waveform representation, achieving a correlation 
coefficient up to 0.9286. Without employing manifold learning and 
fuzzy entropy for feature extraction of sub-signals, it was difficult to 
obtain satisfactory performance of separation accuracy. The results 
demonstrated the necessity and advantages of combining the processing 
steps for improved outcomes. It should be noted that the amplitude 
reconstruction performance of signals using MC alone was found to be 

Table 1 
Quantification of ERP feature difference between separation and source signals.   

Amplitude Difference Latency Difference Waveform Correlation Amplitude Difference Latency Difference Waveform Correlation 
Real vs Sep Real vs Sep Real vs Sep Real vs Mix Real vs Mix Real vs Mix 

Dataset 1 0.15 2.00 0.93 0.77 5.50 0.88 
Dataset 2 0.25 1.00 0.92 1.08 0.00 0.87 
Dataset 3 0.14 5.50 0.91 2.15 6.50 0.79 
Dataset 4 0.40 1.50 0.91 0.65 2.50 0.90 
Dataset 5 0.33 4.00 0.90 0.44 7.50 0.90 
Dataset 6 0.37 1.00 0.91 0.67 1.00 0.89 
Average 0.27 2.50 0.91 0.96 3.83 0.87 

*Real represents the source signal; Sep is the separated signal from mixture; Mix is the mixture signal. 

Fig. 8. Separation accuracy results (SS: Separation Signal VS source signal; MS: Mixture Signal VS source signal).  

Fig. 9. Reconstruction evaluation at different time segments based on relative differences of amplitude. Different panels represent the results of different simulated 
datasets and source signals. 
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inferior to the decomposition results of FastICA. However, Fig. 10(c) and 
(d) showed that the separation waveform of FastICA was inaccurate 
even though the amplitude was closer to the source signal. As illustrated 
in Fig. 10 (f), (g) and (h), the reconstructed waveform was similar to the 
source signal, even though the accuracy of amplitude reconstruction was 
not satisfactory. 

4. DISCUSSION 

This study sought to separate the individual brain responses from 
mixture EEG with interactive sources mixed nonlinearly. In contrast to 
the ICA, which separates mixed signals into additive subcomponents, 
our newly developed method decomposed mixed signals into source 
signals across different temporal and frequency scales. Subsequently, we 
employed source reconstruction through unsupervised clustering of sub- 
signals based on their intrinsic nonlinear features. Additionally, NMF 
was implemented to optimize each channel’s contribution to the source 
components during reconstruction, thereby ensuring a closer resem-
blance of the separation results to the actual source signals. Our algo-
rithm was validated using mixed EEG signals obtained experimentally. 
Our results demonstrated that the mixture ERP signals were more 
closely aligned with the real source signals, In comparison with existing 
source separation algorithms. 

4.1. Comparison of separation methods 

In the field of neural signal identification for sensory stimulation, 
previous research has rarely focused on the distinct neural responses and 
interactions among different tactile receptors during simultaneous 
activation [6,42,43]. These studies often neglect the neural responses 
induced by non-target activations, blending the effects of co-activation 
with those of target activations. For instance, in tasks aimed at evalu-
ating neural responses from finger tactile stimulation, the responses 
typically represent an integrated outcome of both finger and local skin 
tactile sensations at the site of stimulus. In EEG analysis, particularly in 
source interactive separation tasks, numerous research studies have 
advocated for various strategies employing spatial filters [44]. These 
filters aim to separate mixed-source stimuli by spatial projection and 

linear transformation, extracting discriminative information for effec-
tive source separation. Nevertheless, the success of spatial filtering is 
greatly dependent on the depth of neurophysiological understanding. 
This includes, for example, generating template signals to decode 
steady-state visual evoked potentials using canonical correlation anal-
ysis [45] or understanding event-related synchronization and desynch-
ronization dynamics for motor intention extraction from EEG using 
common spatial patterns [46]. Unsupervised Deep learning methods 
indeed have demonstrated promising performance in classifying 
nonlinear signals. However, our research objective was to isolate the 
source ERPs for individual stimuli from mixture ERP without any prior 
knowledge or label. The method developed in this study, along with the 
comparative method (FastICA), are analytical approaches that do not 
require any knowledge to extract the source components from mixture 
signals. In contrast, deep learning models learn the underlying structure, 
patterns, and features of signal through a large dataset. The output of 
this type of black-box models typically cannot be used to directly cap-
ture the source component signal. Additionally, without any target 
orientation or loss function, deep learning models also face challenges 
during implementation for source separation. Our current work devel-
oped an alternative approach focusing on isolating individual neural 
responses through source signal reconstruction, rather than spatial 
filtering, which presents a new paradigm in EEG source separation. 

In this study, we employed a function characterized by nonlinear and 
interactive mixing strategy to simulate our EEG dataset. This function 
was selected for its effectiveness in preserving source mixing relations 
and generating highly realistic ERPs, notably featuring a typical N/P 
component and reasonable latency. A key concept in our work is the 
extraction of intrinsic features of sub-signals across time-frequency 
scales, a process that does not inherently necessitate the solving of 
nonlinear equations. Therefore, simulation with multiple nonlinear 
functions may not substantially contribute to the results of our algorithm 
validation. 

Traditional blind source separation methods are proficient in 
handling linear stationary processes, but they are often inadequate for 
capturing the complexities of biological systems like the human brain, 
which tend to function as nonlinear dynamical systems [6]. These 
methods typically fail to account for the complex nonlinear behaviors 

Fig. 10. (A) Separation accuracy from different strategies (C_1: Manifold Clustering (MC); C_2: Manifold Clustering and NMF (MCNMF) without entropy; C_3: NMF 
without entropy and MC; C_4: FastICA; C_5: FastICA with NMF). (b) Waveform correlation coefficient between the separated signal and the mixture signal. (c) An 
example of the source ERP waveform. (d) Separated ERP waveform calculated by FastICA. (e) Separated ERP waveform calculated by MCNMF. (f) Separated ERP 
waveform calculated by MC. (g) Separated ERP waveform calculated by MCNMF without Entropy. (h) Separated ERP waveform calculated by NMF without MC 
and Entropy. 
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exhibited in EEG signals. Linear and stationary analyses usually over-
look the variations in manifold morphology that are characteristic of 
nonlinear EEG time series. This oversight presents a significant chal-
lenge in developing effective discriminative boundaries for clustering. In 
our research, we have addressed this limitation by unraveling 
sub-signals of various scales into manifold structures through manifold 
learning. Subsequently, these structures were transformed into dynamic 
trajectories using fuzzy entropy. By examining the dynamic properties of 
these trajectories, we could extract discriminative information accu-
rately. This methodology provides a new perspective in analyzing the 
dynamics of EEG signals and contributes to the development of more 
sophisticated clustering or classification models for complex neural 
signals of different modalities. 

The amplitude reconstruction results indicate that the source signal 
reconstruction accuracy is the highest near the characteristic N/P wave 
peak of ERP signals. This high accuracy is likely attributed to the 
deterministic nature of the evoked responses in ERP signals. Notably, the 
waveform of the characteristic N/P wave peak remains consistent across 
various sub-signals, as opposed to the more variable waveforms 
observed at other intervals. As a result, the manifold structure features 
predominantly represent the nonlinear characteristics near the peak 
values. This finding also explains the trend observed in the fuzzy entropy 
profiles, which mirrors the waveform representation of the N/P peaks. 

4.2. Necessity for the separation steps 

It is important to note that independently observing responses from 
targeted electrical stimulation in sensory stimulation tasks pose signif-
icant challenges from an experimental standpoint. Specifically, it is 
difficult to activate tactile sensation in the fingers independently 
without stimulating the local skin receptors. Therefore, the task of 
separating individual neural responses essentially represents an unsu-
pervised learning process, devoid of any label information. Conse-
quently, while current deep learning models are advantageous in feature 
extraction for nonlinear signals, they also face challenges in separating 
individual responses, particularly when dealing with limited and unla-
beled datasets. This limitation highlights the complexity involved in 
accurately isolating neural responses in the context of sensory stimula-
tion tasks that activate multiple neural sources (sensory nerves and skin 
receptors). 

Even though brain signals derived from scalp electrode arrays have 
limited spatial resolution and the signals measured from the scalp reflect 
the superposed activities of various neural generators, which cannot be 
fully delineated as mechanisms of individual neural sources. This 
question pertains to whether the observed neural activity represents the 
cumulative effect of multisensory integration in sensory coding and 
decision formation [47,48]. Our findings show that, compared with the 
mixture ERP signals, the separated ERP source signals offer a closer 
approximation to the actual response patterns. Our developed algorithm 
provides a novel tool for understanding the neural effects of individual 
sensory perception. 

4.3. Selection of evaluation methods 

Our objective was to reconstruct the ERP waveforms for individual 
stimuli. The most significant features of the ERP include the ERP 
amplitude (wave peak), latency, and waveform profiles. Therefore, 
three evaluation metrics (difference of amplitude, difference of latency, 
and similarity of waveform based on correlation) were used in this 
study. These metrics are the intuitive ways to evaluate the separation 
performance. In addition, the relative difference of amplitude directly 
quantified separation errors in amplitude differences after averaging 
time domain sample points, thereby segmenting the ERP signals into 
different time segments to highlight the waveform reconstruction ac-
curacy of ERP components. Consequently, the assessment metrics uti-
lized in this study are intuitive and comprehensive. Previous studies 

have applied similar evaluation metrics to assess the performance of 
neural decoders. For example, earlier studies have utilized waveform 
correlation to measure the relation between decoder predicted motor 
output and the ground truth. This evaluation facilitated the optimization 
of decoders, enabling the continuous prediction of motor output in real- 
time with high levels of robustness [49]. Paul et al. implemented 
adaptive segmentation of EEG and then compared amplitude differences 
across different sub-segments for the classification of distinct sleep 
modes [50]. Thus, these methods have been demonstrated to be reliable 
in the processing of neural signals. 

4.4. Limitations 

One limitation of our study is that the reconstruction method for 
source signals relies on sub-signals from various observational scales, 
which rely on the performance of the decomposition algorithm. Because 
the decomposition process does not undergo transformation or separa-
tion at the feature level, the reconstructed source components may not 
fully capture the real source components. Therefore, improving and 
optimizing the decomposition strategy for more accurate source recon-
struction is necessary in future studies. Another limitation involves the 
algorithm’s dependency on parameter settings. The effectiveness of 
manifold learning, fuzzy entropy, and NMF is directly related to the 
choice of parameters. Consequently, the selection and optimization of 
these parameters entail a certain computational cost in practical appli-
cations. Furthermore, given the significant variability in EEG represen-
tation across different subjects and tasks, there is a need to explore 
strategies that reduce parameter dependency and enhance robustness 
and performance in various separation tasks. Another limitation lies in 
the EEG signals, which contain collective activities of brain response. 
The brain responses to external events will likely be multi-modal in 
addition to the experimental stimuli, and the brain responses are also 
sensitive to cognitive state of the subjects. Previous work has suggested 
that a crucial aspect of isolating brain responses induced by external 
inputs involves distinguishing the neural dynamics inherent to specific 
brain regions from those dynamics merely resulting from external 
stimuli [46]. Therefore, our developed approach does not account for 
the potential influence of the intrinsic dynamic characteristics on the 
separation process. A potential improvement could involve using EEG 
signals during rest as a reference to extract the intrinsic dynamic fea-
tures, thereby further refining the separation algorithm. 

5. Conclusion 

In summary, our study developed an algorithm to separate individual 
components of EEG from mixture models with nonlinear and interactive 
sources. An unsupervised learning strategy combined with manifold 
cluster and NMF were performed to extract discriminative features from 
the perspective of nonlinear dynamics and eventually achieved an ac-
curate signal separation. ERP simulated datasets and quantification 
analysis were executed to validate the performance and effectiveness of 
our method. Our results showed that source components from complex 
mixed models could be accurately reconstructed by clustering dynamic 
features of multi-resolution sub-signals with various time and frequency 
scales. Our method provides a promising way to extract individual 
components of brain responses from stimulus-induced responses tasks 
during multisensory perception. 
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[7] M. Gondan, B. Röder, A new method for detecting interactions between the senses 
in event-related potentials, Brain Res. 1073 (2006) 389–397. 

[8] C. Magri, U. Schridde, Y. Murayama, et al., The amplitude and timing of the BOLD 
signal reflects the relationship between local field potential power at different 
frequencies, J. Neurosci. 32 (4) (2012) 1395–1407. 

[9] S. Di, B. Brett, D.S. Barth, Polysensory evoked potentials in rat parietotemporal 
cortex: combined auditory and somatosensory responses, Brain Res. 642 (1–2) 
(1994) 267–280. 

[10] J. Vroomen, J.J. Stekelenburg, Visual anticipatory information modulates 
multisensory interactions of artificial audiovisual stimuli, J. Cognit. Neurosci. 22 
(7) (2010) 1583–1596. 

[11] L. Vargas, G. Whitehouse, H. Huang, et al., Evoked haptic sensation in the hand 
with concurrent Non-Invasive nerve simulation, IEEE Trans. Biomed. Eng. 66 (10) 
(2019) 2761–2767. 

[12] S.P. van den Broek, F. Reinders, M. Donderwinkel, et al., Volume conduction 
effects in EEG and MEG, Electroencephalogr. Clin. Neurophysiol. 106 (6) (1998) 
522–534. 
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