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Event-related potentials (ERPs) can quantify brain responses to reveal the neural mechanisms of sensory
perception. However, ERPs often reflect nonlinear mixture responses to multiple sources of sensory stimuli, and
an accurate separation of the response to each stimulus remains a challenge. This study aimed to separate the
ERP into nonlinearly mixed source components specific to individual stimuli. We developed an unsupervised
learning method based on clustering of manifold structures of mixture signals combined with channel optimi-
zation for signal source reconstruction using non-negative matrix factorization (NMF). Specifically, we first
implemented manifold learning based on Local Tangent Space Alignment (LTSA) to extract the spatial manifold
structure of multi-resolution sub-signals separated via wavelet packet transform. We then used fuzzy entropy to
extract the dynamical process of the manifold structures and performed a k-means clustering to separate different
sources. Lastly, we used NMF to obtain the optimal contributions of multiple channels to ensure accurate source
reconstructions. We evaluated our developed approach using a simulated ERP dataset with known ground truth
of two components of ERP mixture signals. Our results show that the correlation coefficient between the
reconstructed source signal and the true source signal was 92.8 % and that the separation accuracy in ERP
amplitude was 91.6 %. The results show that our unsupervised separation approach can accurately separate ERP
signals from nonlinear mixture source components. The outcomes provide a promising way to isolate brain re-
sponses to multiple stimulus sources during multisensory perception.

1. Introduction effective separation from mixture ERPs and a comprehensive under-

standing of the interaction between different sensory perception sour-

Understanding brain responses through electroencephalograms
(EEG), magnetic resonance imaging (MRI), and functional magnetic
resonance imaging (fMRI) has proven to be an effective approach for
understanding neural mechanisms during brain processing of external
stimuli [1-4]. EEG, in particular, is extensively utilized due to its high
temporal resolution, non-invasive nature, and cost efficiency [5].
Event-related potentials (ERP) of EEG, a commonly used paradigm in
sensory response, provide insights into the brain’s response to external
sensory stimuli and facilitate the investigation of fundamental principles
of multisensory integration [6-8]. Sensory processing by the brain
typically results from the integration of multiple sources of sensory
stimuli. Isolating individual responses to individual stimuli requires

ces. Perceptual integration strategies in various models can be broadly
classified into two categories: neural responses to multisensory stimu-
lation are mixed without interaction [9], and neural responses are not
only nonlinearly mixed but also interactive. The interaction in audio-
visual perception exemplifies the first model [10], while tactile
perception (from afferent fibers below the skin and sensory receptors in
the skin) induced by transcutaneous electrical stimulation is represen-
tative of the latter [11]. However, understanding the interactive prin-
ciples and signal representation in these models remains a challenge,
particularly in distinguishing sources in nonlinearly interactive mixture
ERPs. These challenges include the poor spatial resolution due to the
volume conduction effect, where brain response signals become diffused
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and attenuated as they travel through head tissues to the scalp surface.
This leads to substantial signal overlap at scalp electrodes from different
brain regions, complicating the localization of source information [12].
In addition, unlike the separation of mixed stimuli in additive models,
certain stimuli (e.g., multisensory perception evoked by transcutaneous
electrical stimulation) exhibit complex interactions among sources
without ground truth of individual responses.

Over the past few years, various strategies have been developed for
mixture signal separation. For instance, Independent Component Anal-
ysis (ICA), a common technique for blind source separation, employs a
linear transformation to decompose mixed signals into statistically in-
dependent source signals [13]. In addition, time contrastive learning
and spatial filters [14-18] use matrix transformation or temporal feature
segmentation to separate source signals. However, these strategies may
not be suitable for non-linear mixing and source-interactive signals.
Wavelet transform, on the other hand, can decompose raw EEGs into
multi-resolution time and frequency representations, offering insights
into both local structures and global waveforms [19]. By extracting
potential features of source and channel correlations at different scales,
and employing clustering techniques to classify sub-signals, one can
effectively reconstruct source signals corresponding to individual brain
responses.

Recent studies have also explored various strategies for nonlinear
feature extraction [20]. Manifold learning, for instance, has proven to be
effective to uncover low-dimensional structures and intrinsic signal
features, better than traditional linear methods in identifying and
separating different patterns [21,22]. It can preserve local data prox-
imity and accurately reconstruct the inherent structure of source signals
[23]. Although manifold structures can reflect the spatial structure of
signals, they lack the capacity to describe the dynamic evolution of these
structures. Entropy, as a measure of dynamic properties, can reveal the
complexity and dynamic evolution of signals [24]. It has been shown to
be effective in evaluating dynamic processes in manifold structures [25],
extracting distinct information of various trajectories. By integrating the
strengths of manifold learning and entropy analysis, one could extract
nonlinear dynamic features of signals, providing a foundation for source
separation.

Computers in Biology and Medicine 178 (2024) 108700

In source signal reconstruction, the interaction between channels can
be significant. Multichannel signals often contain redundant and irrel-
evant components, and channel optimization can enhance the extraction
of original signals or specific stimulus-related feature components [26].
The representation of mixture signals can arise from the superposition of
different subcomponents and from the varying contributions of different
channels. Hence, channel optimization presents a promising approach to
enhancing the separation and reconstruction of source signals.

To separate nonlinearly mixed and interactive signals from mixture
ERPs, this study developed a strategy based on manifold learning cluster
and non-negative matrix factorization (NMF) for ERP source separation
from a mixture signal (Fig. 1). Specifically, we employed manifold
learning based on Local Tangent Space Alignment (LTSA), which de-
lineates the spatial manifold configuration of multi-resolution sub-sig-
nals derived after wavelet packet decomposition. Subsequently, the
dynamic features of the manifold structure were extracted using fuzzy
entropy, followed by the application of unsupervised k-means clustering
for the separation of different sources. Additionally, we adopted NMF to
optimize the contribution from different EEG channels during source
reconstruction to consider the different impact of multiple channels.

The research framework is visualized in Fig. 1. The main contribu-
tion of this study was the development of a novel unsupervised method
to separate the source ERP of different stimuli from mixture ERP,
especially for nonlinear mixture responses. To accurately decompose the
ERP source signals, we employed nonlinear manifold learning and fuzzy
entropy to extract the inherent dynamic features of each source
component. The simulation results demonstrated that our method could
effectively reconstruct source signals in terms of ERP amplitude, latency,
and waveform. The outcomes provide a new approach that can help to
understand neural mechanisms of multi-sensory perceptions.

2. Methodology

In this section, we first describe the data acquisition steps. We then
describe the individual steps of the source separation algorithm. Lastly,
we describe the evaluation processes, including the comparison with
existing methods and an ablation study that evaluated the benefits of
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Fig. 1. Diagram of separation strategy. (a) Example of multisensory perception model. (b) EEG decomposition based on wavelet packet transform. (c) Using manifold
learning to obtain spatial manifold structure of sub-signals. (d) Performing fuzzy entropy to extract dynamic process of manifold structure and cluster separation. (e)

Applying NMF to obtain the optimal contributions of multiple channels.
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different processing steps.

2.1. Dataset simulation

Due to the lack of prior knowledge or ground-truth representation of
individual responses, it is difficult to validate our separation algorithms
without labeled information. To assess the performance of our separa-
tion strategy, we collected real EEG data from four healthy human
subjects (age range: 23-36 years) who participated in a tactile stimu-
lation experiment evoked by transcutaneous electrical stimulation. The
stimulation protocol details are provided in previous studies [27] and
are summarized in the Supplementary Material. They gave informed
consent with protocols approved by the Institutional Review Board of
Penn State University.

EEG data were acquired using a BrainAmp DC amplifier, with a
frequency range of 0.015-250 Hz and a sampling rate of 1000 Hz. Data
from 32 electrodes, including a reference electrode at the right mastoid,
were collected. The data were with a band-pass filter set at 0.1-100 Hz
and a 50 Hz notch filter. Additionally, a Butterworth band-pass filter was
applied to restrict the frequency range to 0.1-30 Hz, to eliminate elec-
trical stimulus artifacts and irrelevant noise. Independent Component
Analysis (ICA) was employed to remove artifacts related to blinking,
horizontal, and vertical eye movements.

Given the considerable variability in EEG representations across in-
dividuals, we treated the EEG data from each subject as a separate
source and generated six mixed datasets. This approach retained the
EEG feature inherent to each subject while simulating the complex in-
teractions in real EEG data. The data mixing procedure was calculated
by:

Su=a-06(s1)+ (1 —a)-o(s2)

1
0 (Stabet) = 1+ e Sam

Where siq¢; (label = 1, 2) represents the source signal with a dimension
of m x t, m, t represents the numbers of channels and sample data points,
sy is the mixture signal and « is the weight of the mixture. To simulate
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the interactive relation between different sources during mixture, we
calculated « as:

1 m t 1 m t
DELE ol SN TSI o o
mt m=1 t=1 mt m=1 t=1

__ sl
[s1+52]

Where 57 and 5; are mean values of signal sources. The above mixing
process not only satisfies the nonlinear mixing relation, but also meets
the requirement of interactive sources. The simulation strategy is shown
as Fig. 2:

Fig. 2 illustrates that the mixed EEG signals closely mirror the
waveform feature of the source ERPs, maintaining the integrity of the
original signal features. Notably, these signals preserved a significant
N300 peak and reliable latency features, indicating that the mixed sig-
nals meet essential criteria for our algorithm testing and evaluation.

2.2. Signal decomposition using wavelet packet transform

Continuous EEG could be decomposed into a convolution of a series
of basic functions (i.e. wavelets) with specific time and frequency
properties, which are widely used to obtain multi-resolution sub-signals
of EEG [28,29]. In our work, we obtained EEG signals with a mixed
signal matrix of 28 (channels) x 3000 (sample points), after removing
the ocular and reference electrodes. Then, the simulated mixed EEG
signals were decomposed into a set of wavelet packet nodes in the form
of a full binary tree by wavelet packet transform (WPT). Empirical Mode
Decomposition (EMD) is a commonly used method for the decomposi-
tion of bio-signals. EMG can decompose signals into a finite number of
Intrinsic Mode Functions (IMFs). Different IMF components represent
different oscillation scales of the signal, but the IMFs cannot be used to
represent the original signal waveforms of different sources, with each
source containing a range of frequency content. EMD does not rely on
any basis functions and can adaptively generate intrinsic modal func-
tions based on the analyzed signal. In contrast, the WPT employed in our
study involves the selection and optimization of basis function
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Fig. 2. EEG signal simulation strategy. (a). Apply ERP from individual subjects to simulate the brain responses for individual stimuli. Using a nonlinear function to
mix different sources. The signal mixture was then separated using our algorithm. (b). Representation of simulation ERP signals of all 32 channels. Different colors
indicate ERPs from different channels. (c). Representation of simulation ERP signals of a single representative channel.
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parameters. The decomposed components contain multiple frequency
bands with high frequency resolutions. The signal source decomposition
process in WPT can provide a relatively stable transformation and in-
verse transformation.
Firstly, define the wavelet packet function:
j .

W, (t) = 22W°(2t — b)

Where j represents the leve_l oftreeandb (b=0,1, ..., 2/-1) is the node
index in level j. ¢=0, 1, ...2/ is the oscillation parameters. The process of
decomposition is subject to the following recursive relation:

WZc f Zb

0= V23", 0b)Ws (2t ~ b)

Where o (b) = IA/2(p(t),p(2t — b)) and 0(b) = /2 (y(t),y(2t — b))
are the filter coefficients of low-pass and high-pass filters respectively.
¢(t) and y(t) are scaling function and mother wavelet function respec-
tively. (-,-) is the inner product operator, which was used to calculate
the wavelet packet coefficients C;; using mixture EEG signal Sy(t) and

»(2t—b)

W2c+l (

wavelet packet functions W7, (t).

Cﬂ, = (SM

j.

w0 = [ " Su(tWr, (0t

The EEG data were decomposed using WPT into a series of frequency
bands. The decomposition levels were determined by the order of 2/,
where j represents the decomposition level. This decomposition is
depicted as a binary tree structure, comprising multiple nodes each with
equal bandwidth. At each level, the signal was divided into 2/ equal-
width frequency bands. We achieved a multi-resolution representation
of the EEG by sequentially reconstructing the coefficients at each node,
progressing layer by layer in the tree structure. The process of separating
distinct sub-signals through this method is illustrated in Fig. 3.

The selection of both the decomposition order and the wavelet basis
function is crucial for the efficacy of WPT. The Daubechies wavelet was
utilized in our study, particularly because of its ability to extract local-
ized time-frequency features and effectively capture spikes and
nonlinear EEG features [30]. Additional, the selection of decomposition
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order requires adequate frequency resolution, while keeping the
computational load reasonable. Specifically, j = 4, 5, or 6 are common
choices for EEG signals. Therefore, we chose the Daubechies 4 wavelet
with a decomposition order of j = 6.

2.3. Unsupervised cluster based on dynamics process of manifold learning

Multisensory interactions have traditionally been analyzed using
peak-based analyses of ERP voltage waveforms [31]. Therefore,
extracting a local geometric approximation of peaks from nonlinear
mixtures presents a promising approach for achieving accurate signal
separation. Previous research has demonstrated that manifold learning
can approximate the geometric structure of ERP data without
pre-existing knowledge, effectively capturing the dynamic features
inherent in the underlying neural phenomena [32]. Additionally,
manifold learning can extract locally linearized structures from
nonlinear signals, providing a pathway to discern discriminative infor-
mation from multi-resolution sub-signals.

Among various manifold learning strategies, Local Tangential Space
Alignment (LTSA) demonstrates superior clustering performance
compared to isometric feature mapping and locally linear embedding
methods. Its primary aim is to discover nonlinear embedding in a low-
dimensional representation of data that effectively preserves neighbor-
hood relations on the manifold. Therefore, we performed LTSA to
extract low-dimensional features embedded in nonlinear high-
dimensional feature matrix. The main steps of LSTA are.

(1) Local Tangent Space Establishment:

Consider a dataset MF = [wy,wy,...wy] constructed by WPT, for
each element w; within the dataset, its k-nearest neighbors were iden-
tified by calculating the Euclidean distance of similarity:

MF = [wy,,wy,, .. Wy, |

Where w is the I-th sub-signal decomposed from WPT, I1, I, ....I; denote
the indices of these nearest neighbors within the dataset. Then, a tangent
space was estimated based on the differences between neighboring
points and the central point. Within this tangent space, the coordinates
of each point could be linearly represented by computing d largest right
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Fig. 3. EEG signals by wavelet decomposition. (Level represents decomposition level of WPT, each sub-signal in different levels has the same sample points and

time duration).
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singular vector of wy.
Vi=lg1,8, &l

Where V; is vector that represents linear features, d is the intrinsic
dimensionality.

(2) Alignment Matrix Construction:

This step finds a low-dimensional representation that could recon-
struct all coordinate vectors across all local tangent spaces. A matrix was
constructed where each block corresponds to the differences between a
specific point and its neighbors, which enables the minimization of
reconstruction error in the transformation from high-dimensional to
low-dimensional space. To construct the alignment matrix, we firstly
performed the calculation of 0-1 selection matrix:

H; = (MF) 'w,

Where H; is 0-1 selection matrix for w;. Then, compute correlation
matrix Z;:

)

Where I is the identity matrix, e, represents a column vector with all
identity elements of 1. Based on the previous calculation, the alignment
matrix B was constructed:

I=N
B=Y  HZZ'H

(3) Global Coordinates Alignment:

The objective of this step is to minimize the reconstruction error of
matrix B by solving a series of eigenvalue problems. D-dimensional
global coordinates were obtained by sorting eigenvalues and eigenvec-
tors and extracting the first d+1 eigenvectors:

MFM = [UQ,U37 ...,Ud+1]

Where MFM is d-dimensional global coordinates, u; is eigenvectors.
Eventually, we obtained the coordinates of the data points on the
manifold in a low-dimensional space.

The effectiveness of LTSA can be influenced by the intrinsic dimen-
sion d and neighborhood size k. Previous research [32] reported that the
first-dimensional space in the manifold features reveals the principal
nonlinear waveform structure of ERP. Consequently, in our work, we set
d = 1 to extract the waveform features. A larger neighborhood size
typically enhances the extraction of the global embedding of the mani-
fold, and we selected k = 30 for the neighborhood size based on a pre-
vious work [33]. By applying LTSA, all the decomposed sub-signals were
transformed into the manifold space, resulting in manifold structures
with distinct geometric characteristics.

Utilizing the outcomes of manifold dimensionality reduction allows
for an approximation of the linear local structure of the signals, effec-
tively extracting the manifold structure of various sub-signals. However,
the sensitivity to parameter selection and the phenomenon of trajectory
divergence of manifold structure makes it less effective in capturing
dynamic processes and generating cluster features. To accurately
discriminate different structure representation, we applied fuzzy en-
tropy [34] to enhance the discriminative capability of the manifold
structure. Thus, we calculated the fuzzy entropy of features extracted via
manifold learning to further differentiate sub-signals based on their
distinct energy and complexity index. The calculation process is
described as follows:

Given a series of coordinates of manifold in a low-dimensional space
[u(1), u(2) ... u(d)], the phase space dimension h (h < d-2) and the
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similarity capacity limit r are defined to reconstruct the phase space. Set
h as the window, which is used to divide the global coordinate series into
i=d-h+1.

Y(i)=[u(1),u(2)... ui+h—1) - u (i),
i=1,2,...,d-h+1

Where Y(i) presents h consecutive u values, commencing with the ith
point and generalized by removing a baseline:

L1
uo(l):ﬁ

J

M:‘

u(i+f)

Il
o

Where f =d—h+1,and f #1i.
Then, introducing the fuzzy membership function F(x):

1x=0
Fe) = exp{ - ln(2)-<§)2} x>0

Fori =1,2,...,d— h+ 1, the function is:
FAN
_ if
F;}—GXP —In(2)- (r)

Among them,

D}, =DIY(i). ¥() =

Dg‘, represents the maximum absolute distance between Y(i) and Y(f).
Calculate the average value for i:

N 1 dil Fh
Cl(r=-— if
d—h 57,
Define:
h 1 dil h
=" Gi(r)
d—h f=1f#

Then, the FuzzyEn of time series could be calculated as:
FuzzyEn(h,r) = dlim [n¢"(r) —In " (1))

The parameter choices of FuzzyEn include the embedding dimension
h, fuzzy power r and time delay t. In previous research [34], the
embedding dimension is recommended to set to h = 2. The choice of
fuzzy power is based on the standard deviation of the sequence to bal-
ance sensitivity and specificity. The time delay affects the boundary for
determining similarity tolerance, with smaller integer values often
preferred for fine-grained analysis. Thus, the parameters were set as h =
2,r=1and 7 = 1 to accurately capture the dynamic features without
high computation cost. Given that fuzzy entropy requires a vector as
input and the manifold structure contains three-dimensional spatial in-
formation, we extracted the first-dimensional structure within the
manifold space for subsequent fuzzy entropy calculations. This approach
enabled the assessment of the dynamical processes associated with the
manifold structure of each sub-signal.

2.4. Optimization of signal reconstruction based on NMF multi-channel
weighting

The optimal selection of EEG channels can impact the effectiveness
of feature extraction and source reconstruction [35-38]. Different
combinations of specific channels can affect the detection of ERPs.
Previous research has identified components that significantly
contribute to specific source signals derived from multiscale sub-signals
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[19]. However, the influence of different channel combinations on the
reconstruction of source signals has yet to be fully explored. ERP in-
volves processes such as trial averaging and channel averaging, which
are essential for feature representation and waveform construction.

The covariance matrix of EEG data typically indicates the correlation
of different brain region activities and reveals spatial patterns. These
patterns are often utilized to develop models for feature extraction.
Investigating these spatial superposition patterns for mixture signal
could facilitate the amplitude separation of mixed ERPs, which could be
achieved by determining the degree of channel contribution to different
components. Because our algorithm involved only unsupervised
learning, the decomposition process must rely on the intrinsic structure
of the data. NMF is a computational method widely used in biomedical
signal processing [39], particularly for decomposing data into compo-
nents with non-negative entries. This approach serves as an unsuper-
vised clustering method to extract components of different classes from
the original data. The features extracted through fuzzy entropy were
employed for clustering, resulting in the cluster of sub-signals into two
different categories. Subsequently, sub-signals from each category were
reconstructed to form the separated signal X, which retain the same
channels and sample data points with raw EEG. Furthermore, we applied
channel weighting to enhance the reconstruction of the source signal
based on NMF, drawing on methodologies from previous research [40].
The pseudocode of the calculation is depicted in Fig. 4.

The NMF decomposition involves selecting a separation factor v. The
channel optimization essentially entails multiplying different channels
by distinct weights. Different weights can lead to varying reconstruction
outcomes. We selected 14 different separation factors, ranging from 3 to
17, to calculate the weights of each channel after decomposition. Using a
set of separation weights with the largest variance for channel optimi-
zation could result in more effective decomposition, which was adopted
in our study.

Subsequently, we applied a hybrid channel optimization strategy to
two signals separated from the mixture. Specifically, for the separated
signal demonstrating higher correlation with the mixed signal, recon-
struction involved combining the target components (separated signal
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multiplied by the separation weight) of the current signal with the non-
target components (separated signal multiplied by the complement of
the separation weight) of another separated signal. For the separated
signal with lower correlation with the mixed signal, its target compo-
nents were directly utilized to represent the reconstructed source. De-
tails of the NMF optimization process are illustrated in Fig. 5.

2.5. Evaluation strategy for the developed method

To evaluate the performance of our approach, similarity of wave-
form, distance of latency and relative difference of amplitude (DA) were
calculated to compare the similarity between the true source signal and
our reconstructed source signal. Specifically, DA was employed to
determine if the separation algorithm displays a preference for signals
within certain temporal intervals. We selected time points ranging from
100 ms to 400 ms, averaging every 50 time points to calculate the
relative difference in amplitude (DA). This calculation was conducted to
ascertain the separation accuracy, as outlined in the following equation:

__ Compared Signal — Source signal

DA
Source signal

Moreover, we compared the separation accuracy of different ap-
proaches to validate the superiority of our algorithm in separating
mixture signal and verify the efficacy of NMF in enhancing amplitude
reconstruction accuracy. The separation accuracy was defined as:

1
Separation Accuracy = DA

For comparison, we also used fast independent component analysis
(FastICA) [41], FastICA combined with NMF, and manifold clustering
without NMF (MC) as benchmark methods. Specifically, FastICA is a
common blind source separation algorithm, capitalizing the
non-Gaussianity of the signals. The algorithm commences with the
preprocessing of observed data, involving centering and whitening,
followed by an iterative process that accentuates non-Gaussianity, pre-
dominantly quantified via negentropy, through a fixed-point iteration

Algorithm: Non-Negative Matrix Factorization for channel optimization of ERP

Input: X**™_ X represent separation
signal after manifold cluster
Output: X,

Condition: ¢« min[m, ]

1. Calculate the variance matrix of EEG

_ xxT
Y trace(Xx-XT)

2. Define the cost function
1
FC(E!P) ZEHXV_PXE”
3. Factorization
Xv = pNXqEqxn
4. Update rule

€ is sparsity parameter

. ZAEALX, + (RRP)P)]
! SAEL[R + (REP)P)]

P«

5. Normalize P,
B o= P — min(P])
1 R T ST
max(P;) — min(P))

6. Calculate root mean square
deviation (RMSD) between Py
and reference F; (P; 1is the
straight line of 0.5 amplitude)

Rs = RMSD (P, P)
7. Channel Optimization for EEG

Xy =max(Rs)

Fig. 4. Algorithm diagram of NMF for Channel Optimization. (Annotation: X, is covariance matrix of EEG; F, is the Euclidean cost function; P is the basis matrix; E is
the activation matrix and P, E > 0; q is the rank of matrices P and E; ° is the element wise multiplication; sparsity parameter is €; X,, is the calculated weights).
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Fig. 5. Diagram of NMF multi-channel weighting. The square grids in the first row are EEG channels and different colors represent different weights. In the second
row, the separation signal is reconstructed by sub-signals from each cluster. Target component is calculated after channel optimization, i.e., separation results
multiply channel weights. Non-target component is the separation results multiply complement of channel weights (1-channel weights). Source signal is the

reconstructed source signals after our separation method.

scheme. This approach effectively separates mixed signals into indi-
vidual components by exploiting their statistical independence and the
non-Gaussian nature of data. The calculation is as follows:

First, perform mean removal and whitening for mixture signal. Then,
iteratively find the demixing matrix A:

a=A[:J]
1¢ 1¢
A = > S tanh (A% - Sy(t)) — A, <t ) 1 —tanh *(A}- Sy(1))
t=1 t=1

Where A" and A, are new and old separation vectors; Sy(t) is obser-
vation vector at a particular point. The iteration process is terminated
when the absolute value of the difference between the old and new
weight vectors falls below a predefined convergence threshold.

To avoid validation testing bias, five datasets were prepared as the
training set, and one dataset served as the test set. Each dataset had the
opportunity to serve as the test set, through a five-fold cross validation.
Additionally, we conducted a repeated measures Analysis of Variance
(ANOVA) to quantify the significant differences of ERP features between
the separated signals and mixture signals and across different separation

algorithms.
3. Results
3.1. Visualization of the separation process

Unfolding sub-signals, derived from wavelet decomposition, in
manifold space forms distinct manifold structures characterized by local
linearity. The dynamic processes within these structures were quantified
using fuzzy entropy, with a focus on their projection onto the X-axis
(representing the first dimension in manifold space). The methodology
and detailed calculations for this process are further elucidated in Fig. 6.

Fig. 6 demonstrates that, while multiscale signals may not capture
discriminative information in the time domain, they exhibit distinct
dynamic trajectory patterns within the manifold structure. Capitalizing
on these differences, the sub-signals were categorized into two distinct
groups. The reconstruction process for each group involved combining
inverse wavelet transformations with sub-band merging, iteratively
applied at each level of decomposition.
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Fig. 6. Dynamic process of the manifold structure of sub-signals. (a). Manifold structure of sub-signals. (b). Dynamics process of manifold structure.

3.2. Evaluation for separation results

3.2.1. Waveform visualization for separated source signals

To evaluate the efficacy of our method in separating mixed ERP
signals, we analyzed the waveform features of mixed ERP (red), real
source ERP (green), and separated ERP (blue) across various simulated
datasets. As Fig. 7 demonstrates, the separated signal (averaged across
channels) aligns more closely with the source signal in terms of wave-
form features and amplitude. This alignhment was particularly noticeable
in the N300 components.

3.2.2. Quantification of separation results

We further compared the waveform, latency, and amplitude features
of signals before and after separation against the source signal. We
utilized a time window from —100 ms to 500 ms relative to the stimulus
input to perform a correlation analysis based on the Pearson correlation.
Additionally, we computed the relative amplitude difference between
the 100 ms-400 ms intervals of the signal to quantify the accuracy of the
source reconstruction. Detailed performance of the ERP feature com-
parisons averaged from two sources are presented in Table 1.

As indicated in Table 1 and Fig. 8, the separated signals exhibit a
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closer resemblance to the source signal in terms of waveform, latency,
and amplitude compared with the mixture signals. The repeated mea-
sures Analysis of Variance (ANOVA) revealed that the relative amplitude
difference between the mixture signals and the source signal was
significantly smaller than that between the mixture signals and the
source signal (p < 0.01). The effectiveness of the separation process also
led to an enhancement in waveform correlation (p < 0.05) and a latency
that more closely approximated the source signal.

Fig. 9 shows the relative difference of amplitude at different time
segments of the ERP waveform. The results showed that, across various
temporal windows, the mixture signals closely replicated the source
signal in amplitude. Time windows corresponding to indices 5, 6, and 7,
aligning with the 200 ms-350 ms post-stimulus (the N300 component),
showed the highest accuracy in amplitude reconstruction. This sug-
gested that the algorithm was sensitive to ERP peaks during feature
extraction and amplitude reconstruction. However, in some datasets, the
amplitude difference in mixture signals appears smaller than in sepa-
rated signal. This discrepancy may be due to situations where signals
highly overlapped and the denominator was close zero, obscuring the
true differences between mixture signals and separated signal ampli-
tudes and potentially leading to inaccurate results.
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Fig. 7. Waveform of mixture ERP separated ERP and source ERP. Different panels represent different source signals of different simulated datasets. For the same
dataset, the mix signal was identical for both source 1 (S1) and source 2 (S2) panels.
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Table 1

Quantification of ERP feature difference between separation and source signals.
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Amplitude Difference

Latency Difference

Waveform Correlation

Amplitude Difference

Latency Difference

Waveform Correlation

Real vs Sep Real vs Sep Real vs Sep Real vs Mix Real vs Mix Real vs Mix
Dataset 1 0.15 2.00 0.93 0.77 5.50 0.88
Dataset 2 0.25 1.00 0.92 1.08 0.00 0.87
Dataset 3 0.14 5.50 0.91 2.15 6.50 0.79
Dataset 4 0.40 1.50 0.91 0.65 2.50 0.90
Dataset 5 0.33 4.00 0.90 0.44 7.50 0.90
Dataset 6 0.37 1.00 0.91 0.67 1.00 0.89
Average 0.27 2.50 0.91 0.96 3.83 0.87

*Real represents the source signal; Sep is the separated signal from mixture; Mix is the mixture signal.
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Fig. 8. Separation accuracy results (SS: Separation Signal VS source signal; MS: Mixture Signal VS source signal).
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datasets and source signals.

3.3. Results of comparative ablation study

We conducted an ablation study that compared the performance of
different computational steps. We also compared with an existing
method (FastICA). We calculated the correlation coefficient (R) to
quantify the waveform similarity between the separated signal and the
source signal (Fig. 10).

As depicted in Fig. 10 (a), manifold clustering (MC) exhibited a
significant improvement after channel optimization via NMF (p < 0.001)
and showed a higher accuracy than FastICA and FastICA with NMF (p <
0.001). The results showed that the reconstructed signals based on our

method achieved the highest accuracy in amplitude reconstruction.
Fig. 10 (b) demonstrated that MC could effectively reconstruct the
waveform features of the source signal with a higher correlation coef-
ficient compared to FastICA (p < 0.001). Furthermore, NMF contributed
to a more accurate waveform representation, achieving a correlation
coefficient up to 0.9286. Without employing manifold learning and
fuzzy entropy for feature extraction of sub-signals, it was difficult to
obtain satisfactory performance of separation accuracy. The results
demonstrated the necessity and advantages of combining the processing
steps for improved outcomes. It should be noted that the amplitude
reconstruction performance of signals using MC alone was found to be
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without entropy and MC; C_4: FastICA; C_5: FastICA with NMF). (b) Waveform correlation coefficient between the separated signal and the mixture signal. (c) An
example of the source ERP waveform. (d) Separated ERP waveform calculated by FastICA. (e) Separated ERP waveform calculated by MCNMF. (f) Separated ERP
waveform calculated by MC. (g) Separated ERP waveform calculated by MCNMF without Entropy. (h) Separated ERP waveform calculated by NMF without MC

and Entropy.

inferior to the decomposition results of FastICA. However, Fig. 10(c) and
(d) showed that the separation waveform of FastICA was inaccurate
even though the amplitude was closer to the source signal. As illustrated
in Fig. 10 (f), (g) and (h), the reconstructed waveform was similar to the
source signal, even though the accuracy of amplitude reconstruction was
not satisfactory.

4. DiscussioN

This study sought to separate the individual brain responses from
mixture EEG with interactive sources mixed nonlinearly. In contrast to
the ICA, which separates mixed signals into additive subcomponents,
our newly developed method decomposed mixed signals into source
signals across different temporal and frequency scales. Subsequently, we
employed source reconstruction through unsupervised clustering of sub-
signals based on their intrinsic nonlinear features. Additionally, NMF
was implemented to optimize each channel’s contribution to the source
components during reconstruction, thereby ensuring a closer resem-
blance of the separation results to the actual source signals. Our algo-
rithm was validated using mixed EEG signals obtained experimentally.
Our results demonstrated that the mixture ERP signals were more
closely aligned with the real source signals, In comparison with existing
source separation algorithms.

4.1. Comparison of separation methods

In the field of neural signal identification for sensory stimulation,
previous research has rarely focused on the distinct neural responses and
interactions among different tactile receptors during simultaneous
activation [6,42,43]. These studies often neglect the neural responses
induced by non-target activations, blending the effects of co-activation
with those of target activations. For instance, in tasks aimed at evalu-
ating neural responses from finger tactile stimulation, the responses
typically represent an integrated outcome of both finger and local skin
tactile sensations at the site of stimulus. In EEG analysis, particularly in
source interactive separation tasks, numerous research studies have
advocated for various strategies employing spatial filters [44]. These
filters aim to separate mixed-source stimuli by spatial projection and
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linear transformation, extracting discriminative information for effec-
tive source separation. Nevertheless, the success of spatial filtering is
greatly dependent on the depth of neurophysiological understanding.
This includes, for example, generating template signals to decode
steady-state visual evoked potentials using canonical correlation anal-
ysis [45] or understanding event-related synchronization and desynch-
ronization dynamics for motor intention extraction from EEG using
common spatial patterns [46]. Unsupervised Deep learning methods
indeed have demonstrated promising performance in classifying
nonlinear signals. However, our research objective was to isolate the
source ERPs for individual stimuli from mixture ERP without any prior
knowledge or label. The method developed in this study, along with the
comparative method (FastICA), are analytical approaches that do not
require any knowledge to extract the source components from mixture
signals. In contrast, deep learning models learn the underlying structure,
patterns, and features of signal through a large dataset. The output of
this type of black-box models typically cannot be used to directly cap-
ture the source component signal. Additionally, without any target
orientation or loss function, deep learning models also face challenges
during implementation for source separation. Our current work devel-
oped an alternative approach focusing on isolating individual neural
responses through source signal reconstruction, rather than spatial
filtering, which presents a new paradigm in EEG source separation.

In this study, we employed a function characterized by nonlinear and
interactive mixing strategy to simulate our EEG dataset. This function
was selected for its effectiveness in preserving source mixing relations
and generating highly realistic ERPs, notably featuring a typical N/P
component and reasonable latency. A key concept in our work is the
extraction of intrinsic features of sub-signals across time-frequency
scales, a process that does not inherently necessitate the solving of
nonlinear equations. Therefore, simulation with multiple nonlinear
functions may not substantially contribute to the results of our algorithm
validation.

Traditional blind source separation methods are proficient in
handling linear stationary processes, but they are often inadequate for
capturing the complexities of biological systems like the human brain,
which tend to function as nonlinear dynamical systems [6]. These
methods typically fail to account for the complex nonlinear behaviors
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exhibited in EEG signals. Linear and stationary analyses usually over-
look the variations in manifold morphology that are characteristic of
nonlinear EEG time series. This oversight presents a significant chal-
lenge in developing effective discriminative boundaries for clustering. In
our research, we have addressed this limitation by unraveling
sub-signals of various scales into manifold structures through manifold
learning. Subsequently, these structures were transformed into dynamic
trajectories using fuzzy entropy. By examining the dynamic properties of
these trajectories, we could extract discriminative information accu-
rately. This methodology provides a new perspective in analyzing the
dynamics of EEG signals and contributes to the development of more
sophisticated clustering or classification models for complex neural
signals of different modalities.

The amplitude reconstruction results indicate that the source signal
reconstruction accuracy is the highest near the characteristic N/P wave
peak of ERP signals. This high accuracy is likely attributed to the
deterministic nature of the evoked responses in ERP signals. Notably, the
waveform of the characteristic N/P wave peak remains consistent across
various sub-signals, as opposed to the more variable waveforms
observed at other intervals. As a result, the manifold structure features
predominantly represent the nonlinear characteristics near the peak
values. This finding also explains the trend observed in the fuzzy entropy
profiles, which mirrors the waveform representation of the N/P peaks.

4.2. Necessity for the separation steps

It is important to note that independently observing responses from
targeted electrical stimulation in sensory stimulation tasks pose signif-
icant challenges from an experimental standpoint. Specifically, it is
difficult to activate tactile sensation in the fingers independently
without stimulating the local skin receptors. Therefore, the task of
separating individual neural responses essentially represents an unsu-
pervised learning process, devoid of any label information. Conse-
quently, while current deep learning models are advantageous in feature
extraction for nonlinear signals, they also face challenges in separating
individual responses, particularly when dealing with limited and unla-
beled datasets. This limitation highlights the complexity involved in
accurately isolating neural responses in the context of sensory stimula-
tion tasks that activate multiple neural sources (sensory nerves and skin
receptors).

Even though brain signals derived from scalp electrode arrays have
limited spatial resolution and the signals measured from the scalp reflect
the superposed activities of various neural generators, which cannot be
fully delineated as mechanisms of individual neural sources. This
question pertains to whether the observed neural activity represents the
cumulative effect of multisensory integration in sensory coding and
decision formation [47,48]. Our findings show that, compared with the
mixture ERP signals, the separated ERP source signals offer a closer
approximation to the actual response patterns. Our developed algorithm
provides a novel tool for understanding the neural effects of individual
sensory perception.

4.3. Selection of evaluation methods

Our objective was to reconstruct the ERP waveforms for individual
stimuli. The most significant features of the ERP include the ERP
amplitude (wave peak), latency, and waveform profiles. Therefore,
three evaluation metrics (difference of amplitude, difference of latency,
and similarity of waveform based on correlation) were used in this
study. These metrics are the intuitive ways to evaluate the separation
performance. In addition, the relative difference of amplitude directly
quantified separation errors in amplitude differences after averaging
time domain sample points, thereby segmenting the ERP signals into
different time segments to highlight the waveform reconstruction ac-
curacy of ERP components. Consequently, the assessment metrics uti-
lized in this study are intuitive and comprehensive. Previous studies
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have applied similar evaluation metrics to assess the performance of
neural decoders. For example, earlier studies have utilized waveform
correlation to measure the relation between decoder predicted motor
output and the ground truth. This evaluation facilitated the optimization
of decoders, enabling the continuous prediction of motor output in real-
time with high levels of robustness [49]. Paul et al. implemented
adaptive segmentation of EEG and then compared amplitude differences
across different sub-segments for the classification of distinct sleep
modes [50]. Thus, these methods have been demonstrated to be reliable
in the processing of neural signals.

4.4. Limitations

One limitation of our study is that the reconstruction method for
source signals relies on sub-signals from various observational scales,
which rely on the performance of the decomposition algorithm. Because
the decomposition process does not undergo transformation or separa-
tion at the feature level, the reconstructed source components may not
fully capture the real source components. Therefore, improving and
optimizing the decomposition strategy for more accurate source recon-
struction is necessary in future studies. Another limitation involves the
algorithm’s dependency on parameter settings. The effectiveness of
manifold learning, fuzzy entropy, and NMF is directly related to the
choice of parameters. Consequently, the selection and optimization of
these parameters entail a certain computational cost in practical appli-
cations. Furthermore, given the significant variability in EEG represen-
tation across different subjects and tasks, there is a need to explore
strategies that reduce parameter dependency and enhance robustness
and performance in various separation tasks. Another limitation lies in
the EEG signals, which contain collective activities of brain response.
The brain responses to external events will likely be multi-modal in
addition to the experimental stimuli, and the brain responses are also
sensitive to cognitive state of the subjects. Previous work has suggested
that a crucial aspect of isolating brain responses induced by external
inputs involves distinguishing the neural dynamics inherent to specific
brain regions from those dynamics merely resulting from external
stimuli [46]. Therefore, our developed approach does not account for
the potential influence of the intrinsic dynamic characteristics on the
separation process. A potential improvement could involve using EEG
signals during rest as a reference to extract the intrinsic dynamic fea-
tures, thereby further refining the separation algorithm.

5. Conclusion

In summary, our study developed an algorithm to separate individual
components of EEG from mixture models with nonlinear and interactive
sources. An unsupervised learning strategy combined with manifold
cluster and NMF were performed to extract discriminative features from
the perspective of nonlinear dynamics and eventually achieved an ac-
curate signal separation. ERP simulated datasets and quantification
analysis were executed to validate the performance and effectiveness of
our method. Our results showed that source components from complex
mixed models could be accurately reconstructed by clustering dynamic
features of multi-resolution sub-signals with various time and frequency
scales. Our method provides a promising way to extract individual
components of brain responses from stimulus-induced responses tasks
during multisensory perception.
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