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Abstract
Choices made by individuals have widespread impacts—for instance, people choose between political can-
didates to vote for, between social media posts to share, and between brands to purchase—moreover, data
on these choices are increasingly abundant. Discrete choice models are a key tool for learning individual
preferences from such data. Additionally, social factors like conformity and contagion influence individ-
ual choice. Traditional methods for incorporating these factors into choice models do not account for
the entire social network and require hand-crafted features. To overcome these limitations, we use graph
learning to study choice in networked contexts. We identify three ways in which graph learning techniques
can be used for discrete choice: learning chooser representations, regularizing choice model parameters,
and directly constructing predictions from a network. We design methods in each category and test them
on real-world choice datasets, including county-level 2016 US election results and Android app installation
and usage data. We show that incorporating social network structure can improve the predictions of the
standard econometric choice model, the multinomial logit. We provide evidence that app installations are
influenced by social context, but we find no such effect on app usage among the same participants, which
instead is habit-driven. In the election data, we highlight the additional insights a discrete choice frame-
work provides over classification or regression, the typical approaches. On synthetic data, we demonstrate
the sample complexity benefit of using social information in choice models.
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1. Introduction
Predicting and understanding the decisions individuals make has a host of applications, including
modeling online shopping preferences (Ruiz et al., 2020), forecasting the demand for renewable
energy (Axsen & Kurani, 2012; Michelsen & Madlener, 2012), and analyzing elections (Dreher
et al., 2014; Glasgow, 2001). These and other scenarios are studied under the umbrella of discrete
choice (Train, 2009), which describes any setting where people select items from a set of available
alternatives. While discrete choice has its roots in econometrics, machine learning approaches
have recently found great success in discrete choice applications (Seshadri et al., 2019; Rosenfeld
et al., 2020; Tomlinson & Benson, 2021; Bower & Balzano, 2020). This recent interest is driven
by the increasing importance of Web-based choices (e.g., purchases on Amazon or bookings on
Expedia), which provide both motivating applications and benchmark datasets. These new meth-
ods extend existing econometricmodels—most notably the classic conditional ormultinomial logit
(CL/MNL) (McFadden, 1973)—by learning more complex effects, such as context-dependent and
nonlinear preferences.

One of the crucial aspects of human decision making is that, as fundamentally social crea-
tures, our preferences are strongly influenced by our social context. Viral trends, conformity,
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word-of-mouth, and signaling all play roles in behavior, including choices (Feinberg et al., 2020;
Axsen & Kurani, 2012). Additionally, people with similar preferences, beliefs, and identities are
more likely to be friends in the first place, a phenomenon known as homophily (McPherson et al.,
2001). Together, these factors indicate that social network structure could be very informative
in predicting choices. In economics and sociology, there has been growing interest in incorpo-
rating social factors into discrete choice models (McFadden, 2010; Maness et al., 2015; Feinberg
et al., 2020). However, the methods used so far in these fields have largely been limited to simple
feature-based summaries of social influence [e.g., what fraction of someone’s friends have selected
an item (Goetzke & Rave, 2011)].

On the other hand, the machine learning community has developed a rich assortment of graph
learning techniques that can incorporate entire social networks into predictive models (Kipf &
Welling, 2017; Jia & Benson, 2021; Wu et al., 2020), such as graph neural networks (GNNs)
and graph-based regularization. These approaches can handle longer-range interactions and are
less reliant on hand-crafted features. Because of the large gulf between the discrete choice and
machine learning communities, there has been almost no study of the application of graph learn-
ing methods to discrete choice, where they have the potential for major impact. Perhaps one
factor hindering the use of graph learning in discrete choice is that machine learning methods
are typically designed for either regression or classification. Discrete choice has several features
distinguishing it from multiclass classification (its closest analog)—for instance, each observation
can have a different set of available items. As a concrete example, any image could be labeled as a
cat in a classification setting, but people choosing between doctors may have their options dictated
by their insurance policy.

Motivated by this need, we adapt graph learning techniques to incorporate social network
structure into discrete choice modeling. By taking advantage of phenomena like homophily and
social contagion, these approaches improve the performance of choice prediction in a social con-
text. In particular, we demonstrate how GNNs can be applied to discrete choice, derive Laplacian
regularization for the multinomial logit model, and adapt label propagation for discrete choice.
We show in synthetic data that Laplacian regularization can improve sample complexity by orders
of magnitude in an idealized scenario.

To evaluate our methods, we perform experiments on real-world election data and Android
app installations, with networks derived from Facebook friendships, geographic adjacency, and
Bluetooth pings between phones. We find that such network structures can improve the pre-
dictions of discrete choice models in a semi-supervised learning task. For instance, Laplacian
regularization improves the mean relative rank (MRR)1 of predictions by up to a 6.8% in the
Android app installation data and up to 2.6% in the 2016 US election data. In contrast with our
results on app installations, we find no evidence of social influence in app usage among the same
participants: social factors appear to influence the apps people get, but less so the apps they actually
use. Instead, we find that app usage is dominated by personal habit. Another interesting insight
provided by our discrete choice models in the app installation data is the discovery of two sepa-
rate groups of participants, one in which Facebook is popular, while the other prefers Myspace.2
We further showcase the power provided by a discrete choice approach by making counterfac-
tual predictions in the 2016 US election data with different third-party candidates on the ballot.
While a common narrative is that Clinton’s loss was due to spoiler effects by third-party can-
didates (Chalabi, 2016; Rothenberg, 2019), our results do not support this theory, although we
emphasize the likelihood of confounding factors. Our tools enable us to rigorously analyze these
types of questions.

2. Related work
There is a long line of work in sociology and network science on social behavior, including effects
like contagion and herding (Centola & Macy, 2007; Easley & Kleinberg, 2010; Banerjee, 1992).
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More recently, there has been interest in the use of discrete choice in conjunction with network-
based analysis (Feinberg et al., 2020) enabled by rich data with both social and choice components
(Aharony et al., 2011). The traditional econometric approach to discrete choice modeling with
social effects is to add terms to an individual’s utility that depend on the actions or preferences of
others (Brock & Durlauf, 2001; McFadden, 2010; Maness et al., 2015). For instance, this approach
can account for an individual’s desire for conformity (Bernheim, 1994). This is done by treating
the choices made by a chooser’s community as a feature of the chooser and applying a standard
multinomial logit (Páez et al., 2008; Kim et al., 2014; Goetzke & Rave, 2011; Walker et al., 2011;
Kim et al., 2018). In contrast, we focus on methods that employ the entire graph rather than
derived features. This enables methods to account for longer-range interactions and phenom-
ena such as network clustering without hand-crafting features. We are aware of one econometric
paper that uses preference correlations over a full network in a choice model (Leung, 2019), but
inference under this method requires Monte Carlo simulation. Laplacian regularization, on the
other hand, allows us to find our model’s maximum likelihood estimator with straightforward
convex optimization. Mixture models are another way of incorporating structured preference
heterogeneity into discrete choice, such as the mixed logit (McFadden & Train, 2000) and hierar-
chical Bayes models with mixture priors (Allenby & Rossi, 2006; Burda et al., 2008). Again, these
approaches present significant challenges for inference, requiring Monte Carlo methods, varia-
tional approximations, or expectation maximization. Additionally, in positing unknown latent
populations, mixture models ignore the key information provided by the structure of the network.
Another large area of research in discrete choice concerns models that allow deviations from the
axiom of independence of irrelevant alternatives (IIA) (Luce, 1959). Many of these models, such
as the multinomial probit (Hausman & Wise, 1978), are very challenging to estimate. To keep
our focus on incorporating network effects, we use tractable logit models obeying IIA. However,
there are recent non-IIA models admitting efficient inference to which we could apply our meth-
ods (Seshadri et al., 2019; Bower & Balzano, 2020; Tomlinson & Benson, 2021); this is beyond the
scope of the present work, but we expand further on this idea in the discussion.

In another direction, there are many machine learning methods that use network structure
in predictive tasks; GNNs (Kipf & Welling, 2017; Xu et al., 2019; Wu et al., 2020) are a popular
example. Discrete choice is related to classification tasks, but the set of available items (i.e., labels)
is specific to each observation—additionally, discrete choice models are heavily informed by eco-
nomic notions of preference and rationality (McFadden, 1973; Train, 2009). A more traditional
machine learning method of exploiting network structure for classification is label propagation
(Zhu & Ghahramani, 2002), which we extend to the discrete choice setting. Recent work has
shown how to combine label propagation with GNNs for improved performance (Jia & Benson,
2020) and presented a unified generative model framework for label propagation, GNNs, and
Laplacian regularization (Jia & Benson, 2021). The present work can be seen as an adaptation
and empirical study of the methods from (Jia & Benson, 2021) for discrete choice rather than
regression.

The idea of applying Laplacian regularization to discrete choice models appeared several years
ago in an unpublished draft (Zhang et al., 2017). However, the draft did not provide experiments
beyond binary choices [which reduces to standard semi-supervised node classification (Kipf &
Welling, 2017)]. In contrast, we compare Laplacian regularization with other methods of incor-
porating social network structure (GNNs and propagation) on real-world multialternative choice
datasets.

There is a large body of existing research on predicting app usage and installation, including
using social network structure (Baeza-Yates et al., 2015; Pan et al., 2011; Xu et al., 2013), but our
use of network-based discrete choice models for this problem is novel. Our approach has the
advantage of being applicable to both usage and installation with minimal differences, allowing
us to compare the relative importance of social structure in these settings. Another line of related
work applies discrete choice models to networks in order to model edge formation (Overgoor
et al., 2019; Tomlinson & Benson, 2021; Gupta & Porter, 2020; Overgoor et al., 2020).
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3. Preliminaries
In a discrete choice setting, we have a universe of items U and a set of choosers A. In each choice
instance, a chooser a ∈A observes a choice set C⊂ U and chooses one item i ∈ C. Each item i ∈ U
may be described by a vector of features yi ∈Rdy . Similarly, a chooser a may have a vector of
features xa ∈Rdx . In the most general form, a choice model assigns choice probabilities for a to
each item i ∈ C:

Pr (i | a, C)= exp(uθ (i, C, a))∑
j∈C exp(uθ (i, C, a))

, (1)

where uθ (i, C, a) is the utility of item i to chooser a when seen in choice set C, a function
with parameters θ . Note that since the utilities in Equation (1) can depend on the choice set,
this general form can express choice probabilities that vary arbitrarily across choice sets (this is
sometimes called the universal logit). When constructing more useful parsimonious models, the
utilities uθ (i, C, a) can depend on xa, yi, both, or neither. In the simplest case—the traditional logit
model—uθ (i, C, a)= ui is constant over choosers and sets. This formulation is attractive from an
econometric perspective, since it corresponds to a rationality assumption: if we suppose a chooser
has underlying utilities u1, . . . , uk and observes a perturbation of their utilities ui + εi (where εi
follows a Gumbel distribution) before selecting the maximum observed utility item, then their
resulting choice probabilities take the form of a logit (McFadden, 1973).

When we add a linear term in chooser features to the logit model, the result is themultinomial
logit (MNL) (Hoffman & Duncan, 1988; McFadden, 1973), with utilities uθ (i, C, a)= ui + γ T

i xa,
where ui are item-specific utilities and γ i is a vector of item-specific coefficients capturing inter-
actions with the chooser features xa. Similarly, when we add a linear term in item features, the
result is a conditional logit (CL), with utilities ui + ϕTyi. The conditional multinomial logit (CML)
has both the chooser and item feature terms: ui + ϕTyi + γ T

i xa. In order to capture heteroge-
neous preferences among a group of choosers, one natural approach is to allow each chooser a
to have different logit utilities. We call this a per-chooser logit, which is specified by per-chooser
utilities uθ (i, C, a)= uia. Similarly, a per-chooser CL has varying item feature coefficients ϕa for
each chooser a, with uθ (i, C, a)= uia + ϕT

a yi. More generally, we call any choice model parameter
that varies across choosers a per-chooser parameter.

In addition to this standard discrete choice setup, our settings also have a network describing
the relationships between choosers. Choosers are nodes in an undirected graph G= (A, E) where
the presence of an edge (a, b) ∈ E indicates a connection between a and b (e.g., a friendship). We
assume G is connected. The Laplacian of G is L=D−A, where D is the diagonal degree matrix
of G and A is the adjacency matrix. The Laplacian has a number of useful applications, including
graph clustering (Hagen & Kahng, 1991) and counting spanning trees (Merris, 1994). For our
purposes, the key property of the Laplacian is that quadratic forms of L measure how much a
node-wise vector differs across edges of the graph (we elaborate on this property below). We use
n= |A|,m= |E|, and k= |U|. Finally, I denotes the identity matrix.

4. Graph-basedmethods for discrete choice
We identify three phases in choice prediction where networks can be incorporated: networks can
be used (1) to inform model parameters, (2) to learn chooser representations, or (3) to directly
produce predictions. In this section, we develop representative methods in each category. We
briefly describe each method before diving into more detail.

First, networks can inform inference for a model that already accounts for chooser heterogene-
ity. This is done by incorporating the correlations in utilities (or other choice model parameters)
of individuals who are close to each other in the network; we refer to these as preference cor-
relations for simplicity. Our Laplacian regularization approach (described in Section 4.1) does
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exactly this, and we show that it corresponds to a Bayesian prior on network-based preference
correlations. Second, networks can be used to learn latent representations of choosers that are
then used as features in a choice model like the MNL. GNNs have been extensively studied as
representation-learning tools—in Section 4.2, we focus on how to incorporate them into choice
models, using graph convolutional networks (GCNs) (Kipf & Welling, 2017) as our canonical
example. Third, direct network-based methods (such as label propagation (Zhu & Ghahramani,
2002), which repeatedly averages a node’s neighboring labels) can also be used as a simple baseline
for choice predictions. While this approach is simple and efficient, it lacks the proper handling of
choice sets of the previous probabilistic approaches. Nonetheless, we find it a useful and effective
baseline, and we adapt label propagation for discrete choice in Section 4.3.

4.1. Laplacian regularization
We begin by describing how to incorporate network information in a choice model like MNL
through Laplacian regularization (Ando & Zhang, 2007). Laplacian regularization encourages
parameters corresponding to connected nodes to be similar through a loss term of the form
λαTLα, where L is the graph Laplacian (as defined in Section 3), α is the vector of parame-
ter values for each node, and λ is the scalar regularization strength. A famous identity is that
αTLα = ∑

(i,j)∈E (αi − αj)2, which more clearly shows the regularization of connected nodes’
parameters towards each other. This also shows that the Laplacian is positive semi-definite, since
αTLα ≥ 0, which will be useful to preserve the convexity of the multinomial logit’s (negative)
log-likelihood.

The idea of using Laplacian regularization for discrete choice was proposed in (Zhang et al.,
2017) (although they focused on regularizing intercept terms in binary logistic regression). We
generalize the idea to be applicable to any logit-based choice model and show that it corresponds
to Bayesian inference with a network correlation prior. We then specialize to the models we use in
our experiments. Laplacian regularization is simple to implement, can be added to any logit-based
choice model with per-chooser parameters, and only requires training one extra hyperparameter.
Laplacian regularization also carries a number of advantages over another approach to accounting
for structured preference heterogeneity, mixture modeling.

4.1.1. Theory of Laplacian-regularized choice models
Consider a general choice model, as in Equation (1). We split the parameters θ into two sets θA
and θG, where parameters α ∈ θA, α ∈Rn vary over choosers and parameters β ∈ θG, β ∈R are
constant over choosers. The log-likelihood of a general choice model is

%(θ ;D)=
∑

(i,a,C)∈D

[
log (uθ (i, C, a))− log

∑

j∈C
exp(uθ (j, C, a))

]
. (2)

The Laplacian- and L2-regularized log-likelihood (with L2 regularization strength γ ) is then

%L(θ ;D)= %(θ ;D)− λ

2
∑

α∈θA
αTLα− γ

2
∑

α∈θA
||α||22. (3)

We show that regularized maximum likelihood estimation of θ corresponds to Bayesian infer-
ence with a prior on per-chooser parameters that encourages smoothness over the network. In
contrast, existing results on priors for semi-supervised regression (Xu et al., 2010; Chin et al.,
2019) typically split the nodes into observed and unobserved, fixing the observed values and only
considering randomness over unobserved nodes. In choice modeling, observing choices at a node
only updates our beliefs about their preferences, leaving some uncertainty. Our result also allows
some parameters of the choice model to be chooser dependent and others to be constant across

/���7	  ��0���. ������� 3�7������������107/����3103�����

2��0�.���30:��70������77

https://doi.org/10.1017/nws.2023.20


26 K. Tomlinson and A. R. Benson

choosers, allowing it to be fully general over choice models. Finally, we note that L2 regularization
can also be applied to the global parameters β , which as usual corresponds to a Gaussian prior on
these parameters—however, we state the result with uniform priors to emphasize the Laplacian
regularization on the per-chooser parameters α.
Theorem. The maximizer θ∗MLE of the Laplacian- and L2-regularized log-likelihood %L(θ ;D) is
the maximum a posteriori estimate θ∗MAP after observing D under the i.i.d. priors α ∼N (0, [λL+
γ I]−1) for each α ∈ θA and i.i.d. uniform priors for each β ∈ θG.
Proof. First, recall that L is positive semi-definite, so λL+ γ I (with γ , λ > 0) is positive definite
and invertible. Now, using Bayes’ Theorem,

θ∗MAP = argmaxθp(θ |D)

= argmaxθ

Pr (D | θ)p(θ)
Pr (D)

.

Since Pr (D) is independent of the parameters and log is monotonic and increasing,

θ∗MAP = argmaxθ

[
log Pr (D | θ)+ log p(θ)

]
.

Notice that the first term is exactly the log-likelihood %(θ ;D). Additionally, the priors of each
parameter are independent, so

log p(θ)=
∑

α∈θA
log p(α)+

∑

β∈θG
log p(β).

Since the priors p(β) are uniform, they do not affect the maximizer:

θ∗MAP = argmaxθ



%(θ ;D)+
∑

α∈θA
log p(α)



 .

Now consider the Gaussian priors p(α):

p(α)= (2π)n/2 det[(λL+ γ I)−1]−1/2 exp
(
−1
2
αT[(λL+ γ I)−1]−1α

)
.

Simplifying the term in the exp reveals the two regularization terms:

−1
2
αT[(λL+ γ I)−1]−1α =−1

2
αT(λL+ γ I)α

=−λ

2
αTLα− γ

2
αTα

=−λ

2
αTLα− γ

2
||α||22.

We thus have for a constant c independent of α,

log p(α)= log
(
(2π)n/2 det[(λL+ γ I)−1]−1/2 exp

(
−λ

2
αTLα− γ

2
||α||22

))

=−λ

2
αTLα− γ

2
||α||22 + c.
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Plugging this is in and dropping the constants not affecting the maximizer yields

θ∗MAP = argmaxθ



%(θ ;D)− λ

2
∑

α∈θA
αTLα− γ

2
∑

α∈θA
||α||22





= argmaxθ%L(θ ;D)

= θ∗MLE.

Notice that the Gaussian in the theorem above has precision (i.e., inverse covariance) matrix
λL+ γ I. The partial correlation between the per-chooser parameters αi and αj, i (= j (controlling
for all other nodes) is therefore

− λLij√
(λLii + γ )(λLjj + γ )

= λAij√
(λdi + γ )(λdj + γ )

(4)

using the standard Gaussian identity relating precision and partial correlation (Liang et al., 2015)
(where di is the degree of i). If both di, dj > 0 and γ is small, then we can approximate

λAij√
(λdi + γ )(λdj + γ )

≈ λAij√
(λdi)(λdj)

= Aij√
didj

. (5)

This is easy to interpret: αi and αj have partial correlation 0 when i and j are unconnected
(Aij = 0) and positive partial correlation when they are connected (larger when they have fewer
other neighbors). That is, the Gaussian prior in the theorem assumes neighboring nodes have
correlated preferences.

4.1.2. Laplacian-regularized logit models
To incorporate Laplacian regularization in our four logit models (logit, MNL, CL, and CML), we
add per-chooser utilities via for each item i and chooser a to the utility formulations. For instance,
this results in the following utility function for a per-chooser MNL: uθ (i, C, a)= ui + xTa γ i + via.
While we could get rid of the global utilities ui, L2 regularization enables us to learn a parsi-
monious model where ui is the global baseline utility and via represents per-chooser deviations.
The per-chooser parameters of a Laplacian-regularized logit are θA = {vi}i∈U , where the vector vi
stacks the values of via for each chooser a ∈A. All other parameters are global. The Laplacian-
and L2-regularized log-likelihood can then be written down by combining Equations (2) and (3).
Crucially, since the Laplacian is positive semi-definite, the terms−λ

2 vTi Lvi are concave—and since
all four logit log-likelihoods are concave (as is the L2 regularization term), their regularized nega-
tive log likelihoods (NLLs) are convex. This enables us to easily learnmaximum-likelihoodmodels
with standard convex optimization methods.

4.2. Graph neural networks
GNNs (Wu et al., 2020) use a graph to structure the aggregations performed by a neural network,
allowing parameters for neighboring nodes to influence each other. We test the canonical GNN,
a graph convolutional network (GCN) (Kipf & Welling, 2017), where node embeddings are aver-
aged across neighbors before each neural network layer. There are many other types of GNNs (see
Wu et al. (2020) for a survey)—we emphasize that we do not claim this particular GCN approach
to be optimal for discrete choice. Rather, we illustrate how GNNs can be applied to choice data
and encourage further exploration.
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In a depth-d GCN, each layer performs the following operation, producing a sequence of
embeddings H(0), . . . ,H(d):

H(i+1) = σ (A′H(i)W(i)) (6)

where H(0) is initialized using node features (if they are available—if not, H(0) is learned), σ is an
activation function,W(i) are parameters, andA′ = (D+ 2I)−1/2(A+ I)(D+ 2I)−1/2 is the degree-
normalized adjacency matrix (with self-loops). Self-loops are added to G to allow a node’s current
embedding to influence its embedding in the next layer.We can either useH(d) as the final embed-
dings or concatenate each layer’s embedding into a final embedding H. In our experiments, we
use a two-layer GCN (both with output dimension 16) and concatenate the layer embeddings. For
simplicity, we fix the dropout rate at 0.5.

To apply GCNs to discrete choice, we can treat the final node embeddings as chooser features
and apply an MNL, modeling utilities as uθ (i, C, a)= ui +HT

a γ i, where ui and γ i are per-item
parameters (the intercept and embedding coefficients, respectively). If item features are also avail-
able, we add the CL term θTyi. Thanks to automatic differentiation software such as PyTorch
(Paszke et al., 2019), we can train both the GCN and MNL/CML weights end-to-end. Again, any
node representation learning method could be used for the embeddings H—we use a GCN for
simplicity.

In general, GNNs have the advantage of being highly flexible, able to capture complex inter-
actions between the features of neighboring nodes. However, some recent research has indicated
that nonlinearity is less helpful for classification in GNNs than in traditional neural networks
tasks (Wu et al., 2019). With the additional modeling power comes significant additional diffi-
culty in training and hyperparameter selection (for embedding dimensions, depth, dropout rate,
and activation function).

4.3. Choice fraction propagation
We also consider a baseline method that uses the graph to directly derive choice predictions, with-
out a probabilistic model of choice. We extend label propagation (Zhou et al., 2004; Jia & Benson,
2021) to multialternative discrete choice. The three features distinguishing the choice setting from
standard label propagation are that we can observe multiple “labels” (i.e., choices) per chooser,
each observation may have had different available labels, and that not all labels are available at
inference time. Given training data of observed choices of the form (i, C, a), where chooser a ∈A
chose item i ∈ C⊆ U , we assign each chooser a a vector za of size k= |U| with each item’s choice
fraction. That is, the ith entry of za stores the fraction of times a chose i in the observed data out
of all opportunities they had to do so (i.e., the number of times i appeared in their choice set). We
use choice fraction rather than counts to normalize by the number of observations for a chooser
and not to count against an item instances when it was not available.

We then apply label propagation to the vectors za overG. Let Z(0) be the matrix whose rows are
za. As in standard label propagation, we iterate Z(i+1)← (1− ρ)Z(0) + ρD−1/2AD−1/2Z(i) until
convergence, where ρ ∈ [0, 1] is a hyperparameter that controls the strength of the smoothing. Let
Z(∞) denote the stationary point of the iteratedmap. For inference, we can use the ath row of Z(∞)

(in practice, we will have a matrix arbitrarily close to Z(∞)), denoted z(∞)
a , to make predictions for

chooser a. Given a choice set C, we predict a will choose the argmax of z(∞)
a restricted to items

appearing inC. Note that in a semi-supervised setting, we do not observe any choices from the test
choosers, so their entries of Z(0) will be zero. The term (1− ρ)Z(0) then acts as a uniform prior,
regularizing the test chooser entries of Z(∞) toward 0. Since choice fraction propagation does not
use chooser or item features, it is best suited to scenarios where neither are available.
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Table 1. Dataset summary. |A|: number of choosers (aggregated at the county/precinct for elections), |U|:
number of items, |C|: choice set sizes, N: number of observed choices, dx : number of chooser features

Dataset |A| |U| |C| N dx dy

APP-INSTALL 139 127 51–127 4,039 — —
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

APP-USAGE 104 121 2–55 20,564 — 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

US-ELECTION-2016 3,112 32 3–22 135,382,576 19 —
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CA-ELECTION-2016 21,495 182 2 261,278,336∗ 17 —
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CA-ELECTION-2020 17,282 170 2 225,606,176∗ 17 —

∗Voters hadmore than one election (i.e., choice) on their ballots.

5. Networked discrete choice data
We now describe several datasets in which we can leverage social network structure for improved
choice prediction using the methods we develop. Table 1 shows a summary of our datasets, which
are available at https://osf.io/egj4q/.

5.1. Friends and Family app data
The Friends and Family dataset (Aharony et al., 2011) follows over 400 residents of a young-
family community in North America during 2010-2011. The dataset is remarkably rich, capturing
many aspects of the participants’ lives. For instance, they were given Android phones with
purpose-made logging software that captured app installation and usage as well as Bluetooth pings
between participants’ phones. We use the installation and usage data to construct two separate
choice datasets (APP-INSTALL and APP-USAGE) and use a network built from Bluetooth pings,
as in (Aharony et al., 2011). We ignore uncommon and built-in apps (for instance, we ignore
apps whose package names begin with com.android, com.motorola, com.htc, com.sec, and
com.google), leaving a universe U of 127 apps in APP-INSTALL and 121 in APP-USAGE (e.g.,
Twitter, Facebook, and Myspace).

To construct APP-INSTALL, we use scans that checked which apps were installed on each partic-
ipant’s phone every 10minutes—3 hours. Each time a new app i appears in a scan for a participant
a, we consider that a choice from the set of apps C that were not installed at the time of the last
scan. We use a plain logit as the baseline model in APP-INSTALL, since no item features are readily
available. To construct APP-USAGE, we use 30-second resolution scans of running apps. To sep-
arate usage into sessions, we select instances where a participant ran an app for the first time in
the last hour. We consider such app runs to be a choice i from the set of all apps C installed on
participant a’s phone at that time. Our discrete choice approach enables us to account for these
differences in app availability. In APP-USAGE, we use a CL with a single instance-specific item fea-
ture: recency, defined as log−1 (seconds since last use) or 0 if the user has not used the app. While
it would be possible to construct more complex sets of features with additional effort (for instance
categorizing different types of apps or tracking down their Android store ratings), a simple base-
line suffices to demonstrate how social network structure can benefit choice modeling even in the
absence of item and user features.

To form the social network G over participants for both datasets, we use Bluetooth proxim-
ity hits—like the original study (Aharony et al., 2011), we only consider hits in the month of
April between 7 am and midnight (to avoid coincidental hits from neighbors at night). For each
participant a, we form the link (a, b) to each of their 10 most common interaction partners b
(we also tested thresholds 2–9, but our methods all performed very similarly). We perform this
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Figure 1. Difference between actual and expected install rates (if friendships were irrelevant). The left subplot is with the
real network, while the right two are two null models. Each dot is a (participant, app) pair. The black line marks the mean
over five bins, with the shaded region showing the standard error of the mean.

thresholding because the Bluetooth ping network is extremely dense and contains many edges
that are likely not socially meaningful (for instance, nearby phones may ping each other when two
strangers shop in the same store). Prior research on this data found that social contacts were use-
ful in predicting app installations, but did not employ a discrete choice approach (Aharony et al.,
2011; Pan et al., 2011). Our discrete choice approach allows us to account for multi-hop social
connections and the context of each installation (i.e., what apps were already installed).

As a warm-up data analysis, we show that people are more likely to install an app the more of
their friends have it (but not if we randomize friendships). Let n the total number of people, ni
be the number of people who installed application i, fa the number of friends of person a, and fai
the number of friends of person a who have app i. Suppose app installations are independent of
friendships. If we sample some person a uniformly at random and check which of their friends
have app i, then the probability that a also has app i is (ni − fai)/(n− fa) (simply the remaining
fraction of people who have the app, after observing the friends of a). However, if app installa-
tions correlate across friendships, the observed probability would be higher when fai/fa is larger.
We measure the empirical probability that a person has an app at different friend-installation
fractions. Specifically, we measure

1
nk

∑

i∈U,a∈A

(
1ai −

ni − fai
n− fa

)
, (7)

where 1ai is an indicator for whether person a has app i. Notice that if friendships are uncorre-
lated with app installations, the expectation of the summand is 0. Instead of taking the mean over
all app pairs, we take the mean at each unique friend-installation fraction to see if having more
friends with an app results in stronger deviations from uniform installations. This is exactly what
we observe: when people havemore friends with an app, they aremore likely to install it (Figure 1).
In contrast with two null models (a configuration model with the same degree distribution and
an Erdős–Rényi graph with the same density), we see an increase in peoples’ installation prob-
abilities as a larger fraction of their friends have an app. This is in line with findings that the
probability an individuals joins a social network community increases with the number of their
friends in the community (Backstrom et al., 2006). However, it is worth emphasizing that this
finding is purely correlational—we have no way of knowing whether increased installation rates
are due to homophily in the social network, word-of-mouth contagion, or other confounding
factors.
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Figure 2. 2016 US presidential election vote shares for conservative independent Evan McMullin. Notice his regional popu-
larity and the spillover from Utah to southeast Idaho. McMullin was not on the ballot in filled-in states. The lack of spillover
into Coloradomay be due to its crowded field (22 candidates) or because it is less conservative than Idaho.

5.2. County-level US presidential election data
US presidential election data is a common testbed for graph learning methods using a county-
level adjacency network, but the typical approaches are to treat elections as binary classification
or regression problems (predicting the vote shares of one party) (Jia & Benson, 2020; Zhou et al.,
2020; Huang et al., 2020). However, this ignores the fact that voters have more than two options—
moreover, different candidates can be on the ballot in different states. The universe of items U
in our 2016 election data contains no fewer than 31 different candidates (and a “none of these
candidates” option in Nevada, which received nearly 4% of the votes in one county). While third-
party candidates are unlikely to win in the US, they often receive a nontrivial (and quite possibly
consequential) fraction of votes. For instance, in the 2016 election, independent candidate Evan
McMullin received 21.5% of the vote in Utah, while Libertarian candidate Gary Johnson and
Green Party candidate Jill Stein received 3.3% and 1.1% nationally (the gap between Clinton and
Trump was only 2%). A discrete choice approach enables us to include third-party candidates and
account for different ballots in different states. As a visual example, in Figure 2, we show the states
in which McMullin appeared on the ballot as well as his per-county vote share. By accounting
for ballot variation, we can make counterfactual predictions about what would happen if differ-
ent candidates had been on the ballot, which is difficult without a discrete choice framework. For
example, given McMullin’s regional support in Utah, it is possible that he would have fared better
in Nevada (Utah’s western neighbor) than in an East Coast state like New York. Using the entire
ballots also allows us to account for one possible reason whyMcMullin’s vote share appears not to
spilled over into Colorado, while it did into Idaho: Colorado had fully 22 candidates on the ballot,
while Idaho only had 8. A discrete choice approach handles this issue cleanly, while regression on
vote shares does not. We note that, due to inherent limitations of observational data, we cannot be
sure of the causes of the effects we observe (Tomlinson et al., 2021)—nonetheless, a discrete choice
approach enables more flexible modeling and can improve prediction performance regardless of
the cause of preference correlations.

We gathered county-level 2016 presidential voting data from (Kearney, 2018) and county data
from (Jia & Benson, 2020),3 which includes a county adjacency network, county-level demo-
graphic data (e.g., education, income, birth rates, USDA economic typology,4 and unemployment
rates), and the Social Connectedness Index (SCI) (Bailey et al., 2018) measuring the relative fre-
quency of Facebook friendships between each pair of counties. We aggregate all votes at the
county level, treating each county as a chooser a and using county features as xa [modeling voting
choices in aggregate is standard practice (Alvarez & Nagler, 1998)]. For the graph G, we tested
using both the geographic adjacency network and a network formed by connecting each county
to the 10 others with which it has the highest SCI. We found almost identical results with both
networks, so we only discuss the results using the SCI network. We refer to the resulting dataset
as US-ELECTION-2016.
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5.3. California precinct-level election data
The presidential election data is particularly interesting because different ballots have different
candidates, all running in the same election. For instance, this is analogous to having different
regional availability of goods within a category in an online shopping service. In our next two
datasets, CA-ELECTION-2016 and CA-ELECTION-2020, we highlight a different scenario: when
ballots in different locations may have different elections. Extending the online shopping anal-
ogy, this emulates the case where different users view different recommended categories of items.
Although it is beyond the scope of the present work, a discrete choice approach would enable
measuring cross-election effects, such as coattail effects (Hogan, 2005; Ferejohn & Calvert, 1984)
where higher-office elections increase excitement for down-ballot races.

To construct these datasets, we used data from the 2016 and 2020 California general elections
from the Statewide Database.5 This includes per-precinct registration and voting data as well
as shapefiles describing the geographic boundaries of each precinct (California has over 20,000
voting precincts). The registration data contain precinct-level demographics (counts for party
affiliation, sex, ethnicity, and age ranges), although such data were not available for all precincts.
We restrict the data to the precincts for which all three data types were available: voting, registra-
tion, and shapefile (99.8% of votes cast are included in our processed 2016 data and 99.0% in our
2020 data). Again, we treat each precinct as a chooser a with demographic features xa.

Our processed California data include elections for the US Senate, US House of
Representatives, California State Senate, and California ballot propositions. We set aside presi-
dential votes due to overlap with the previous dataset and state assembly votes to keep the data
size manageable. Due to California’s nonpartisan top-two primary system,6 there are two candi-
dates running for each office—however, each voter has a different set of elections on their ballot
due to differences in US congress and California state senate districts (the state has 53 congres-
sional districts and 40 state senate districts). A discrete choice approach enables us to train a single
model accounting for preferences over all types of candidates. We use the precinct adjacency net-
work G (since SCI is not available at the finer-grained precinct level), which we constructed from
the Statewide Database shapefiles using QGIS (https://qgis.org).

6. Empirical results
We begin by demonstrating the sample complexity benefit of using network structure through
Laplacian regularization on synthetic data. We then apply all three approaches to our datasets,
compare their performance, and demonstrate the insights provided by a networked discrete
choice approach. See Table 1 in Section 5 for a dataset overview. Our code and instructions for
reproducing results are available at https://github.com/tomlinsonk/graph-based-discrete-choice/.

6.1. Improved sample complexity with Laplacian regularization
By leveraging correlations between node preferences through Laplacian regularization, we need
fewer samples per node in order to achieve the same inference quality. When preferences are
smooth over the network, an observation of a choice by one node gives us information about the
preferences of its neighbors (and its neighbors’ neighbors, etc.), effectively increasing the use-
fulness of each observation. In Figure 3, we show the sample complexity benefit of Laplacian
regularization in synthetic data with 100-node Erdős–Rényi graphs (p= 0.1) and preferences over
20 items generated according to the prior from Section 4.1.1. In each of 8 trials, we generate the
graph, sample utilities, and then simulate a varying number of choices by each chooser. We repeat
this for different homophily strengths λ. For each simulated choice, we first draw a choice set
size uniformly between 2 and 20, then pick a uniformly random choice set of that size. We then
measure the mean-squared error in inferred utilities of observed items (fixing the utility of the
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Figure 3. Estimation error of itemutilitieswith (left) andwithout (right) Laplacian regularization on synthetic data generated
according to the priors in Section 4.1.1, with varying homophily strength λ. Error bars (most are tiny) show standard error
over 8 trials. Using Laplacian regularization can improve sample complexity by orders of magnitude.

first item to 0 for identification). When applying Laplacian regularization, we use the correspond-
ing value of λ used to generate the data (in real-world data, this needs to be selected through
cross-validation). We train the models for 100 epochs.

In this best-case scenario, we need orders of magnitude fewer samples per chooser if we take
advantage of preference correlations: with Laplacian regularization, estimation error with only
one sample per chooser is lower than the estimation error with no regularization and 1000 samples
per chooser. The stronger the homophily, the fewer observations are needed to achieve optimal
performance, since a node’s neighbor’s choices are more informative.

6.2. Prediction performance comparison
We now evaluate our approaches on real-world choice data. In the style of semi-supervised learn-
ing, we use a subset of choosers for training and held-out choosers for validation and testing. This
emulates a scenario where it is too expensive to gather data from everyone in the network or exist-
ing data is not available for all nodes (e.g., perhaps not all individuals have consented to choice
data collection). We vary the fraction of training choosers from 0.1 to 0.8 in increments of 0.1,
using half of the remaining choosers for validation and half for testing. We perform 8 indepen-
dent sampling trials at each fraction in the election datasets and 64 in the smaller Friends and
Family datasets.

As a baseline, we use standard logit models with no network information. For the election
datasets, we use an MNL that uses county/precinct features to predict votes. This approach to
modeling elections is common in political science (Dow & Endersby, 2004). For APP-INSTALL,
we use a simple logit. For APP-USAGE, we use a CL with recency (as defined in Section 5.1).
We then compare the three graph-based methods we propose to the baseline choice model: a
GCN-augmented MNL (or CML), a Laplacian-regularized logit (or CL/MNL) with per-chooser
utilities, and choice fraction propagation. Aside from propagation, we train the other methods
with batch Rprop (Riedmiller & Braun, 1993), as implemented in PyTorch (Paszke et al., 2019).
For each dataset–model pair, we select the hyperparameters that result in the lowest validation loss
in a grid search; we tested learning rates 10−3, 10−2, 10−1 and L2 regularization strengths 10−5,
10−4, 10−3, 10−2, 10−1 (we also tested no L2 regularization in the two app datasets). We similarly
select Laplacian λ using validation data from 10−5, 10−4, 10−3, 10−2 in the election datasets (in
addition to these, we also test 100, 10−1, 10−6, 10−7 in the app datasets) and propagation ρ from
0.1, 0.25, 0.5, 0.75, 1. The smaller hyperparameter ranges in the election datasets were used due to
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Figure 4. Test negative log likelihoods (NLL; top row; lower is better) and mean relative ranks (MRR; bottom row; lower is
better) on the two Friends and Family datasets and three election datasets (error bars show standard error over chooser
sampling). “Logit” signifies plain logit in APP-INSTALL, CL in APP-USAGE, and MNL in the election datasets. Laplacian regular-
ization improves performance in APP-INSTALL, while no method improves on CL in APP-USAGE. In the election data, Laplacian
MNL, but not GCN, outperforms MNL across train fractions. Propagation performs well on APP-INSTALL, but very poorly on
APP-USAGE, as it does not utilize recency. Despite not using county/precinct features, propagation can be competitive in the
election data.

runtime constraints. We train the likelihood-based models for 100 epochs, or until the squared
gradient magnitude falls below 10−8. For propagation, we perform 256 iterations, breaking if the
sum of squared differences between consecutive iterates falls below 10−8. We note that we did
not aggressively fine-tune the GCN beyond learning rate and L2 regularization strength, since it
has many more hyperparameters than our other approaches and is more expensive to train. Our
GCN results should therefore be interpreted as the performance a discrete choice practitioner
should expect to achieve in a reasonable amount of time using the model, which we believe is an
important metric.

In Figure 4, we show results of all four approaches on all five datasets. We evaluate the three
likelihood-based methods using their test set NLL and use MRR (Tomlinson & Benson, 2021) to
evaluate propagation. For one sample, MRR is defined as the relative position of the actual choice
in the list of predictions in decreasing confidence order (where 0 is the beginning of the list and
and 1 is the end). We then report the meanMRR over the test set. In APP-INSTALL, both Laplacian
regularization and propagation improve prediction performance over the baseline logit model,
and the advantage increases with the fraction of participants used for training (up to 6.8% better
MRR). However, the GCN performs worse than logit in terms of likelihood and the same or worse
in terms of MRR. In contrast, graph-based methods do not outperform a CL in APP-INSTALL. In
the three election datasets, Laplacian-regularized MNL consistently outperforms MNL (with up
to 2.6% better MRR in US-ELECTION-2016; the margin in the California data is small but outside
errorbars), while the GCN performs on par with MNL in US-ELECTION-2016 and worse in the
California datasets.

These results yield insight into the role networks play in different choice behaviors. In APP-
USAGE, we find no benefit from using social network structure using any method. Instead, the
recency feature appears to dominate, with propagation (which has no access to item features)
performing much worse than the three models that do incorporate recency. This indicates that
app usage is driven by individual habit rather than by external social factors. On the other hand,
our results show that app installation has a strong social component: even simple Bluetooth
proximity between friends provides a signal that they will install (but not necessarily use) sim-
ilar apps. This finding highlights how combining a discrete choice approach with network data
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Table 2. Runtime in seconds to train and test each model, with standard err over 4 trials

Dataset CL/MNL Laplacian GCN Propagation

APP-INSTALL 2.5± 0.0 2.2± 0.0 9.0± 0.2 0.2± 0.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

APP-USAGE 12± 0 13± 0 41± 0 0.9± 0.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

US-ELECTION-2016 18± 0 19± 0 20± 0.0 1.0± 0.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CA-ELECTION-2016 605± 6 647± 3 758± 4 63± 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CA-ELECTION-2020 450± 79 397± 2 485± 51 38± 0

Table 3. Edge densities within/between the groups preferring
Facebook (|F| = 70) and Myspace (|M| = 27) in APP-INSTALL.
Left: including the 3 choosers in F ∩M. Right: excluding F ∩M

F M F M

F 11.2% 4.9% F 11.3% 5.8%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M 4.9% 11.7% M 5.8% 12.0%

can illuminate the role social networks play in different choice behaviors. In the election data,
especially CA-ELECTION-2016, even simple choice propagation performs remarkably well, despite
entirely ignoring demographic features. This reveals that many of the important predictive demo-
graphic features (such as party affiliation, age, and ethnicity) are so strongly correlated over the
adjacency network that we do not need to know information about you to predict your vote: it
suffices to know about your neighbors or your neighbors’ neighbors.

We also compare the runtime of each method. To measure runtime, each model was run on
a 50-25-25 train-validation-test split of each dataset four times. Since the hyperparameters are
not crucial for runtime measurements (especially because Rprop is not sensitive to initial learning
rate as an adaptive method), we fixed the learning rate at 0.01, L2 regularization strength at 0.001,
Laplace regularization strength at 0.0001, and propagation ρ at 0.5. For each trial, we trained and
tested each model once, shuffling the order of models to avoid systematic bias due to caching.
Laplacian regularization has very low overhead over CL/MNL, while GCN is up to 4× slower in
the smaller datasets (see Table 2). In the larger datasets, PyTorch’s built-in parallelism reduces this
relative gap. Propagation is more than 10× faster than the choice models in every dataset.

6.3. Facebook and Myspace communities in APP-INSTALL
Given that we observed significant improvement in prediction performance in APP-INSTALL, we
take a closer look at the patterns learned by the Laplacian-regularized logit compared to the plain
logit. In particular, the Facebook and Myspace apps were in the top 20 most-preferred apps under
both models. Given that these were competitor apps at the time,7 we hypothesized that they might
be popular among different groups of participants. This is exactly what we observe in the learned
parameters of the Laplacian-regularized logit. Facebook and Myspace are in the top 10 highest-
utility apps for 70 and 27 participants, respectively (out of 139 total; we refer to these sets as F
andM). Intriguingly, the overlap between F andM is only 3. Moreover, looking at the Bluetooth
interaction network, we find the edge densities are more than twice as high within each of F and
M than between them (Table 3), indicating they are true communities in the social network. In
short, the Laplacian-regularized logit learns about two separate subcommunities, one in which
Facebook is popular and one in which Myspace is popular.
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Table 4. Maximum likelihood 2016 election outcomes under our model under
the three scenarios in Section 6.4. We show mean vote shares (with 95% confi-
dence interval over trials) for the top three predicted candidates and differences
in state outcomes between the counterfactual prediction and reality. C: Clinton,
T: Trump, Outcome: Electoral College votes. T→ C denotes that a state won by
Trump goes for Clinton under the model. States abbreviated by postal code

Scenario 1 Scenario 2 Scenario 3

C % 47.7± 0.1 50.7± 0.1 37.5± 2.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T % 46.3± 0.1 49.3± 0.1 37.0± 1.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T→ C — — PA
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C→ T ME∗, MN, NV, NH ME∗, MN, NV, NH MN, NV, NH
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Other — — RI (“None”)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Outcome T 326, C 205 T 326, C 205 T 304, C 223

∗Maine allocates Electoral College votes proportionally—we assume a 3-1 split.

6.4. Counterfactuals in the 2016 US election
One of the powerful uses of discrete choice models is applying them to counterfactual scenar-
ios to predict what might happen under different choice sets [e.g., in assortment optimization
(Rusmevichientong et al., 2010)]. For instance, we can use our models to make predictions about
election outcomes if different candidates had been on ballots in 2016. However, we begin this
exploration with a warning: making predictions from observational data is subject to confounders,
unobserved factors that affected both who was on which ballot and how the states voted. For
example, only Nevadans had the option to vote for “None of these options,” and Nevada is an
outlier in a number of ways that are likely to impact voting, including its reliance on tourism,
high level of diversity, and lack of income tax. This makes it less likely that the preferences
of Nevadans for “None of these options” will neatly generalize to voters in other states. There
are causal inference methods of managing confounding in discrete choice models; for instance,
our county covariates act as regression controls (Tomlinson et al., 2021). If those covariates fully
described variation in county voting preferences, then the resulting choice models would be unbi-
ased, even with confounding (Tomlinson et al., 2021). However, we do not believe the covariates
fully describe voting, since we can improve prediction by using regional or social correlations
not captured by the county features. Nonetheless, examining our model’s counterfactual predic-
tions is still instructive, demonstrating an application of choice models, providing insight into the
model’s behavior, and motivating randomized experiments to test predictions about the effect of
ballot changes. We note that the MNL we use obeys IIA, preventing relative preferences for candi-
dates changing within a particular county when choice sets change. However, since states contain
many counties, they are mixtures of MNLs (which can violate IIA), so their outcomes can change
under the model.

A widespread narrative of the 2016 election is that third-party candidates cost Clinton the elec-
tion by disproportionately taking votes from her (Chalabi, 2016; Rothenberg, 2019). To test this
hypothesis, we examine three counterfactual scenarios: (Scenario 1) all ballots have five options:
Clinton, Trump, Johnson, Stein, and McMullin; (Scenario 2) ballots only list Clinton and Trump,
and (Scenario 3) ballots are as they were in 2016, but “None of these candidates” is added to
every ballot. For each scenario, we take the best (validation-selected) Laplacian-regularized MNL
trained on 80% of counties from each of the 8 county sampling trials and average their vote count
predictions. Maximum-likelihood outcomes under the model are shown in Table 4. We find no
evidence to support the claim that third-party candidates hurt Clinton more than Trump. None
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of the scenarios changed the two major measures of outcome: Clinton maintained the popular
vote advantage, while Trump carried the Electoral College. A few swing states change hands in
the predictions. The model places more weight on “None of these candidates” than seems realistic
(for instance, predicting it to be the plurality winner in Rhode Island), likely because training data
is only available for this option in a single state, leading to confounding. We also note that under
the true choice sets, the model’s maximum likelihood state outcomes are the same as in Scenarios
1 and 2. A more complete analysis would examine the full distribution of Electoral College out-
comes rather than just the maximum likelihood outcome, but we leave such analysis for future
work as it is not our main focus.

7. Discussion
As we have seen, social and geographic network structure can be very useful in modeling the
choices of a group of connected individuals, since people tend to have more similar preferences to
their network neighborhood than to distant strangers. Several possible explanations are possible
for this phenomenon: people may be more likely to become friends with similarly-minded indi-
viduals (homophily) or trends may spread across existing friendships (contagion). Unfortunately,
determining whether homophily or contagion is responsible for similar behavior among friends
is notoriously difficult [and often impossible (Shalizi & Thomas, 2011)].

We saw poor performance from the GCN relative to the logit models—as we noted, there are
many hyperparameters that could be fine-tuned to possibly improve this performance, although
this might not be practical for nonexperts. Additionally, there are a host of other GNNs that could
outperform GCNs in a choice task. Our contributions in this area are to demonstrate how GNN
models can be adapted for networked choice problems and to encourage further exploration of
such problems. However, our findings are consistent with several lines of recent work that show
simple propagation-based methods outperforming GNNs (Huang et al., 2020; Wu et al., 2019; He
et al., 2020).

There are several interesting avenues for future work in graph-based methods for discrete
choice. As we noted, much of the recent machine learning interest in discrete choice (Seshadri
et al., 2019; Bower & Balzano, 2020; Rosenfeld et al., 2020; Tomlinson & Benson, 2021) has
revolved around incorporating context effects (violations of IIA). Combining our methods with
such approaches could answer questions that are to our knowledge entirely unaddressed in the lit-
erature (and possibly even unasked): Do context effects have a social component? If so, what kinds
of context effects? Can we improve contextual choice prediction with social structure (in terms
of accuracy or sample complexity)? Another natural extension of our work is to use a weighted
Laplacian when we have a weighted social network. In another direction, choice data could be
studied as an extra signal for community detection in networks, building on our identification of
the Facebook and Myspace communities in the Friends and Family data.
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Notes
1 MRR measures the relative position of the true choice in the predicted ranking (Tomlinson & Benson, 2021).
2 The dataset is from 2010, when both were popular options.
3 One county—Oglala Lakota County, South Dakota (FIPS 46102)—was named Shannon County (FIPS 46113) until 2015,
which resulted in some missing data. We manually renamed it in the data and extrapolated missing data from previous years.
4 https://www.ers.usda.gov/data-products/county-typology-codes/
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5 https://statewidedatabase.org; 2016 and 2020 data accessed 8/20/20 and 3/22/21, resp.
6 https://www.sos.ca.gov/elections/primary-elections-california
7 The dataset is from 2010; Facebook surpassed Myspace’s popularity in the US in 2009.
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