
Auroch: Auction-Based Multipath Routing for Payment Channel
Networks

Mohammed Ababneh

New Mexico State University

Las Cruces, NM, USA

mababneh@nmsu.edu

Kartick Kolachala

New Mexico State University

Las Cruces, NM, USA

kart1712@nmsu.edu

Roopa Vishwanathan

New Mexico State University

Las Cruces, NM, USA

roopav@nmsu.edu

ABSTRACT
The Bitcoin blockchain scalability problem has inspired several off-

chain solutions for enabling cryptocurrency transactions, of which

Layer-2 systems such as payment channel networks (PCNs) have

emerged as a frontrunner. PCNs allow for path-based transactions

between users without the need to access the blockchain. These

path-based transactions are possible only if a suitable path exists

from the sender of a payment to the receiver. In this paper, we pro-

pose Auroch, a distributed auction-based pathfinding and routing

protocol that takes into account the routing fees charged by nodes

along a path. Unlike other routing protocols proposed for PCNs,

Auroch takes routing fees into consideration. Aurochmaximizes the

profit that can be achieved by an intermediate node at the same

time minimizing the overall payment cost for the sender.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Dis-
tributed systems security; Security protocols.

KEYWORDS
Payment channel networks, Auction, Blockchains.

ACM Reference Format:
Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan. 2024.

Auroch: Auction-Based Multipath Routing for Payment Channel Networks.

In ACM Asia Conference on Computer and Communications Security (ASIA
CCS ’24), July 1–5, 2024, Singapore, Singapore. ACM, New York, NY, USA,

17 pages. https://doi.org/10.1145/3634737.3657021

1 INTRODUCTION
Blockchains enabling cryptocurrencies such as Bitcoin have inher-

ent scalability problems, e.g., Bitcoin supports less than 7 transac-

tions per second [19] and Ethereum supports less than 15 transac-

tions per second [27], as compared to traditional financial systems,

e.g., Visa processes over 24,000 transactions per second [32]. Pay-

ment channel networks (PCNs) provide a solution to the scalability

challenges faced by blockchains, by enabling users to take part in

transactions without publishing each transaction to the blockchain.

Examples of PCNs include Lightning Network [19], Raiden [21], and

Ripple [22]. A payment channel is essentially a single multisigna-

ture blockchain transaction between two parties that locks up coins

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0482-6/24/07.

https://doi.org/10.1145/3634737.3657021

for a fixed amount of time for use only between those two parties.

In contrast to the on-chain transaction confirmation mechanism

used in blockchains, once a payment channel has been established

between two parties, all transactions between them utilizing the

locked-up coins can be performed offline without the need to write

transactions on the blockchain. The available balance, i.e., coins of

a channel limits the number of transactions that can be performed

over that channel. Two nodes that do not have a direct payment

channel can still transact with each other using multiple transac-

tions over payment channels between intermediate nodes, forming

a payment channel network. To facilitate transactions between a

sender and a receiver, intermediate nodes charge routing fees. As

a result, the sender node has to pay both the actual amount that

they intend to send, along with the sum of routing fees along the

path that comprises several intermediate nodes. Figure 1 represents

a PCN with six nodes Alice, Sam, Alexa, Peter,Megan, and Chloe.
The bidirectional edges between the nodes represent the payment

channels which allow funds to be sent in both directions, the edge

weights next to each node depict that node’s local balance, and the

sum of the nodes’ local balances represents the channel capacity.

Figure 1: Payment channel network

If Alice wishes to send a payment to Chloe, she will need to

route the payment through intermediaries, since there is no direct

Alice−Chloe link.Alice can forward the payment along theAlice→
Sam → Megan → Chloe path or the Alice → Alexa → Peter →
Chloe path, or any of the other paths. Since Alexa, Sam, Peter, and
Megan are forwarding Alice’s payment, they will charge a certain

amount for their service, typically called routing fees. Since nodes
in a PCN are not assumed to know the entire network topology

beyond their immediate neighborhood, one of the big challenges in

1

https://doi.org/10.1145/3634737.3657021
https://doi.org/10.1145/3634737.3657021

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

PCNs is finding a path from a sender to a receiver in a decentralized,

privacy-preserving way. In a PCN, pathfinding depends on several

factors. One factor is the capacity or available liquidity of any

chosen path from a sender to a receiver should at least be equal to

the intended payment. In turn, a path’s capacity is upper bounded

by the minimum capacity of the payment channels between the

path’s intermediate nodes. In Figure 1, consider the path Alice→
Alexa→ Peter→ Chloe. If Alice intends to send a payment via this

path, the maximum amount she can send is three coins. A second

important factor, that is of interest in this work, is the routing

fees charged by intermediate nodes for routing payments. This is

especially important since prior works [13, 17, 25, 26, 29] do not

consider routing fees. Though there are prior works in the literature

that consider routing fees [4, 7, 37, 38], they either use centralized

routing techniques for pathfinding or do not have mechanisms

in place that maximize the profit of intermediate nodes (nodes

along the path from the sender to receiver, excluding the sender

and receiver). Auroch differs from these since in Auroch, we do not

use a centralized routing mechanism for pathfinding and we also

maximize the overall profit of the intermediate nodes. We envision

a scenario in which a path is constructed in a backward direction

from a receiver to a sender, and each node is offered the option of

joining a transaction path by a neighboring node that has already

joined the path. In Figure 1, from the perspective of an intermediate

node Megan, it is beneficial to select the best node among her

neighbors Sam or Alexa in terms of higher routing fees and channel

capacity. Similarly, an intermediate node Alexa might be offered

to join two paths Megan → Chloe or Peter → Chloe, then from

Alexa’s perspective, it is desirable to join the path that offers the

largest capacity and lowest cost. In summary, including routing

fees into distributed pathfinding protocols provides an incentive for

intermediate nodes to participate in transactions. This has the effect

of increasing the number of paths from sender to receiver. On the

other hand, the sender’s goal is to utilize the set of available paths,

with their different capacities and costs, to minimize the overall

cost of the payment. To provide a solution to these conflicting goals,

this paper makes the following contributions:

(1) We develop a distributed pathfinding and routing protocol,

Auroch, that provides incentives for intermediate nodes to

collaborate in route formation.

(2) To maximize the intermediate nodes’ profit, while mini-

mizing the routing cost for the sender, we provide a lin-

ear programming-based formula to divide the payment into

smaller amounts, each of which can be forwarded along

different paths.

(3) We rigorously analyze and prove the security of Auroch in

the Universal Composability framework.

(4) The performance of Auroch is evaluated on real-world PCN

datasets, and shows that it outperforms other comparable

routing protocols for PCNs, in terms of success ratio, volume

of successful transactions, and routing fees.

Auroch can potentially be leveraged to other autonomous decentral-

ized networks with unpredictable connectivity and high turnover

rates, such as IoT or edge networks.

Outline: In Section 2, we discuss related work. In Section 3,

we describe relevant concepts in auction theory. In Section 4 we

give a brief overview of Auroch and in Section 5, we present its

construction. In Section 6, we present our experimental results, in

Section 7 we analyze the security of Auroch in the UC framework,

and in Section 8, we conclude the paper.

2 RELATEDWORK
Routing protocols which do not consider routing fees: Flare
[20] adopts beacon-based routing, in which each node stores local

information about the network and also stores information about

beacon nodes, which are highly connected (nodes with a large num-

ber of incoming and outgoing links). A sender initially tries to find

a path to the receiver using her locally stored information, if she

is unable to do so, she contacts the nearest beacon node to facil-

itate pathfinding. Flare uses source routing in which each node

is expected to store data about the network topology and it also

does not take into account the routing fees charged by nodes. Silen-

tWhispers [13] leverages the concept of landmark routing [31], in

which a well-connected node in the network called landmark aids

the other nodes in the pathfinding process. The sender first finds a

path from itself to the landmark and the landmark then finds a path

from itself to the receiver. Both these paths are stitched together

to get the end-to-end path from the sender to the receiver. This

protocol requires every path from the sender to the receiver to pass

through a landmark, even though a shorter path is available that

does not involve a landmark and does not take the routing fees

charged by nodes into consideration during path selection. Speedy-

Murmurs [26] is a routing protocol that uses prefix embedding

for pathfinding. The network is organized as a tree, every node is

assigned a prefix and the children of a node derive their prefixes

from the parent’s prefix. This protocol calculates the path between

two nodes based on the length of the common prefix between them.

However, like [13], it does not take into account the routing fees

charged by the intermediate nodes. Blanc [17] is a pathfinding pro-

tocol that uses a subset of users to facilitate transactions, termed

“RoutingHelpers”. Pathfinding from sender to receiver uses the tech-

nique of broadcast flooding, due to which the pathfinding phase

incurs a very high communication overhead. Apart from this, it

also uses the blockchain as an auditing mechanism. This results in a

significantly high number of blockchain writes, even for successful

transactions; in the event of transaction retries, the overhead is

a lot more. This protocol too like the prior ones described so far,

does not take into account routing fees charged by an intermedi-

ate node during routing. Spider [29] is a pathfinding protocol that

uses source routing, in which the sender divides the payment into

several smaller payments, each of which will be sent through a

different path. This protocol mainly focuses on avoiding depletion

of nodes’ link balances avoiding skewness (a situation where the

node’s link weights become depleted) in the network and stores

transactions in queues (each node maintains its queue). This causes

the transactions to wait for an indefinite amount of time before

they are processed. It also does not take into account the privacy

of nodes involved in the transaction.

Routing protocols that incorporate routing fees: The distributed
protocols Cheapay[38] and Robustpay+[37] both use source routing

and a flat fee structure, but they differ in the aspect that Cheapay

sends a single payment on a single path, whereas Robustpay+ uses

2

Auroch: Auction-Based Multipath Routing for Payment Channel Networks ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Table 1: Comparison of routing protocols that factor in routing fees

Routing Protocols Concurrency

Sender/Receiver

Privacy

DSR/CR SR Fees

Payment Structure

MIP DCB

Path Payment

Auto-tune [8] No Yes DSR Yes Flat Multiple Multiple No No

MPCN-RP [4] No No CR Yes Flat Single Single No No

VEIN [7] No No CR Yes Dynamic Multiple Multiple No No

Robustpay+ [37] No Yes DSR Yes Flat Multiple Redundant No No

Cheapay [38] No Yes DSR Yes Flat Single Single No No

Auroch Yes Yes DSR No Dynamic Multiple Multiple Yes Yes

redundant payments on multiple paths. Both MPCN-RP[4] and

VEIN[7] use centralized techniques in conjunction with source

routing; however, VEIN uses dynamic fees and multiple payments

on multiple paths. MPCN-RP uses flat fees and single payment on a

single path. Auto-tune [8], similar to Cheapay and Robustpay+ uses

source routing and implements a flat fee structure. With support

for concurrency, sender/receiver privacy, distributed routing with-

out source routing, dynamic fees, single payments, intermediaries’

profit maximization, and dynamic channel balance adjustments,

Auroch maintains its distinction from other works published in

the domain. In Table 1, we give a qualitative comparison between

Auroch and other routing protocols that consider routing fees. We

now briefly describe our comparison metrics. Concurrency indi-

cates whether the routing protocol allows the node to route multiple

transactions at the same time. Send/Rec privacy indicates that the

sender/receiver identity should not be known by other nodes in

the network. Distributed/Centralized Routing (DSR/CR) indicates

whether the routing protocol employs a trusted node (e.g., land-

mark, coordinator, etc.) in the network to provide routing services.

Source routing (SR) indicates whether the sender constructs the

end-to-end path to the receiver. The intermediate nodes can ei-

ther charge a fixed fee called a flat fee or a dynamic fee based on

factors such as the transaction amount. The payment structure

indicates how the payment is routed. A single payment is when

the transaction amount is not split by the sender. Multiple pay-

ments refer to when the amount is split into multiple chunks by the

sender. A redundant payment is the same amount being transacted

across several paths where the payment that reaches the receiver

first is recorded. A single path is the sender using only one path

to route payments to the receiver. Multiple paths are the sender

using more than one path. Maximization of intermediaries profit

(MIP) indicates whether the routing protocol aims to maximize

the monetary profit of the intermediate nodes. Dynamic channel

balance (DCB) indicates whether the routing protocol considers

the dynamic changes in the channel balance of nodes during path

construction.

Auction Theory: The way buyers and sellers exchange goods in

a market is the subject of a sub-discipline of economics known as

auction theory [18]. We now give the definitions of terms from

the auction literature [28, 36] that we use in Auroch. Bidder is the
entity that submits a request in the auction to buy or sell commodi-

ties. In Auroch, any node in the network can be a bidder. Seller is
the entity that owns a commodity and wants to sell it. In Auroch,
any node in the network can be a seller. Auctioneer is the entity
that supervises and controls the bidding process. In Auroch, any

node in the network can conduct its auction and thus can have

unilateral control over it. Commodity refers to the object traded in

the auction between the buyer and seller. In Auroch, the commodity

is the path capacity between a pair of nodes. Valuation is a metric

used by the nodes to compare and decide which path needs to be

chosen in the event of having more than one path to route the

payment. The higher the valuation price for a path, the more likely

it is for that path to be chosen to route the payment. Blockchain:
Auroch can be deployed on any blockchain that supports hashed

time-locked contracts (HTLCs). Wireless networks deploy auctions

to create an appropriate reward that will encourage relay nodes to

forward data [35]. In wireless networks, energy, processing power,

and bandwidth are the resources that are auctioned. On the other

hand, in PCNs, coins on the payment channel are the resources that

are auctioned. Owing to the very different features and intent of

both networks, auctions from wireless networks cannot be trivially

ported to PCNs.

There are various auctioning techniques available, including first

price, second price auctions [36], and proportional auctions [1]. We

do not use first-price or second-price auctions since it is not clear

whether one can deploy them in a multipath payment scenario;

rather in Auroch, we use proportional auctions [1] which seem a

natural fit since they are commonly used in contexts where the

commodity being auctioned is divisible, such as path capacity in

our case. In Auroch, bidders will compete for a path capacity that

is being offered for sale. Each bidder makes a bid in a proportional

auction, indicating the portion of the path capacity they are willing

to buy and the price they are prepared to pay per unit of that path

capacity. The winners in this auction are determined by a linear

optimization formula that takes into account both of the above

factors.

3 SYSTEM SETUP
Path Capacity: Path capacity is the defined as a the minimum

amount that can be transacted between a sender and a receiver

along a given path comprising of several intermediate nodes. In the

Figure 2a, the path capacity along the path Alice→ Peter→ Ivan
→ Chloe is 15.
Channel Capacity: Channel capacity is defined as the total amount

(balance) two nodes have in their payment channels with each other.

In Figure 2a, the channel capacity between Alice and Peter is (25+50
= 75).

Network model: A payment channel network (PCN) can be mod-

eled as a directed graph 𝐺 = (𝑉 , 𝐸) in which the set of vertices 𝑉

represent network nodes (i.e., users) and 𝐸 represents the set of

3

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

directed edges (i.e., payment channels) between nodes. Assume

nodes 𝑣𝑖 and 𝑣 𝑗 have established a payment channel 𝑒𝑖, 𝑗 between

them. Then, let 𝑏𝑖, 𝑗 represent the balance from node 𝑖 to 𝑗 (i.e., how

many coins can node 𝑖 forward in the direction of node 𝑗). Note that

the balances 𝑏𝑖, 𝑗 and 𝑏 𝑗,𝑖 are not necessarily equal. The channel

capacity of a payment channel channel 𝑒𝑖, 𝑗 is denoted as 𝑐𝑖, 𝑗 , where

𝑐𝑖, 𝑗 = 𝑏𝑖, 𝑗 + 𝑏 𝑗,𝑖 .

Challenges: One of the main challenges in applying auction mech-

anisms to PCN routing is the quantification of one path’s efficiency

in comparison to other possible paths. Path efficiency is a function

of several factors such as the fee the path requires, the number of

hops, and the path capacity it can provide. To overcome this chal-

lenge, Auroch proposes a new valuation price function to evaluate

the paths. The second challenge is the design of the bidding price

mechanism with the restriction of keeping the intended value of

the transaction secret (from all intermediaries) until forwarding

paths are selected. In Auroch, the bidding price mechanism is based

on the maximum capacity of intermediaries’ channels and not on

the transaction amount. Third, the local channel balances of nodes

in the payment channel network should not be revealed to nodes

other than immediate neighbors, since doing so is a privacy vio-

lation. To overcome this challenge, Auroch enables the nodes to

proactively apportion funds to different transactions, thus enabling

concurrency.

Threatmodel andAssumptions: InAuroch, we assume that every

node in the PCN has access to the partial view of the network topol-

ogy and no node in the PCN knows the entire network topology.

This assumption has been made since making the entire network

topology public will reveal the identities of all the nodes violating

their privacy. One of the major advantages of blockchain based

financial transactions is the ability to execute them anonymously.

Apart from this, every node maintaining the entire network topol-

ogy locally incurs a tremendous storage overhead and it may not be

possible for nodes that operate the PCN from resource constrained

devices. The Lightning Network, one of the most popular PCNs

has implemented trampoline routing protocol [30] which requires

nodes only to maintain a partial view of the network topology.

The sender, 𝑛𝑠 and receiver, 𝑛𝑑 in Auroch can be malicious. Both

of them can choose to abandon a transaction or cause intentional

delays in the payments to lock-up collateral in channels. The inter-

mediate nodes in Auroch can be un-trusted and can act in arbitrary

ways. These nodes can misreport the maximum capacity they have

in their channels with their next-hop neighbors with the intention

of causing transaction failures. In this paper, we assume that there

is at least one viable path available for the 𝑛𝑠 to route her payment.

We assume that all users have a long-term verification/signing key-

pair and all users have pseudonymous, temporary key-pairs. Users’

temporary key-pairs do not change unless there is a dispute.

Security/privacy properties: Balance security: Balance security in
our system ensures that any honest user participating in a transac-

tion does not lose coins even if all other users engaging in the trans-

action are corrupted. Sender privacy: In our system, sender/receiver

privacy is realized when an adversary cannot identify the identity

of the sender in a transaction between honest users. Link privacy:
An adversary can determine the path capacity along a path com-

prising of several intermediate nodes but can never exactly the

local balance an honest node’s payment channel with its honest

immediate neighbor. Value privacy: The transacted value is not

learned by an adversary who is not involved in the payment path

between sender and receiver. Bidding values privacy: Bidding value

is typically sensitive information in an auction, since it reflects

the economic strength of the buyer. Therefore, all bidding values

should be protected against rival bidders.

4 OVERVIEW OF Auroch
The goal of this paper is to explore the idea of using an auction

mechanism to find multiple paths between a sender/receiver pair

in a PCN and splitting a transaction amount along the different

paths. We aim to do this in a way such that intermediaries can

choose the most profitable path(s) to be on (in terms of routing

fees), which incentivizes them to participate in transactions while

helping the sender choose the most inexpensive path to the receiver.

We use principles from auction theory and linear optimization to

help achieve our goal.

4.1 Auroch Stages
Auroch consists of three main stages: (1) Setup and Route discovery,

(2) Route auctioning, and (3) Route selection. Next, the steps of the

different stages are explained in detail.

Setup and Route Discovery: In a dynamic environment such as

a PCN, there is a possibility of the payment channel closing or

opening, the node becoming offline, and frequent changes in the

payment channel balance. Route discovery using route request

(RREQ) and route reply (RREP) messages form the foundation of

the Aourch. Consequently, a node should start a fresh route dis-

covery procedure whenever it wishes to send a payment while

the destination’s route is unknown. To find a path to the intended

destination, the node broadcasts a route request (RREQ) message.

Without loss of generality, let 𝑛𝑠 denote a node that wants to make

a payment amt to a destination node 𝑛𝑑 . To initiate pathfinding to

the destination, node 𝑛𝑠 broadcasts a routing request RREQ to its

neighboring nodes (i.e., nodes connected with a payment channel

to node 𝑛𝑠). For our purposes in this work, the RREQ message con-

tains a field as follows RREQ = [txid]. The txid is the unique ID of

the request. Each node that receives an RREQ tuple locally stores

the txid and forwards this tuple to all its immediate neighbors. This

step is repeated until the RREQ tuple reaches the intended destina-

tion, 𝑛𝑑 . If a node in the PCN does not want to be involved in the

transaction, it simply drops the RREQ tuple.

Route Auctioning: Once a destination node𝑛𝑑 is reached, it sends

RREP messages to the nodes in the set 𝑃𝑎𝑟𝑒𝑛𝑡 (𝑛𝑑) that 𝑛𝑑 main-

tains locally. This set contains the immediate neighbors of 𝑛𝑑 from

whom 𝑛𝑑 has received the RREQ tuple. The reply message RREP
consists of a number of fields as follows RREP = [txid, 𝑃 (𝑛𝑑 , 𝑛𝑙),

𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑙),𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑙)]. The field 𝑃 (𝑛𝑑 , 𝑛𝑙) denotes the node path

from the destination 𝑛𝑑 down to the current node 𝑛𝑙 . The field

value 𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑙) indicates the path capacity that can be allocated

along the path 𝑃 (𝑛𝑑 , 𝑛𝑙) and𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑙) refers to the corresponding

forwarding cost per token. Once 𝑛𝑙 receives the RREP message, it

conducts an auction to allocate both path capacity and cost, which

are running values that will be updated at each hop. The route auc-

tioning process consists of the following phases (i.e., sub-phases);

4

Auroch: Auction-Based Multipath Routing for Payment Channel Networks ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

(1) Auction setup : Let 𝑛𝑎 be an intermediate node (auction-

eer) along the path from 𝑛𝑠 to 𝑛𝑑 which maintains a set,

𝐵𝑖𝑑𝑑𝑒𝑟 (𝑛𝑎), which contains the nodes from whom 𝑛𝑎 has

received an RREQ message. Node 𝑛𝑎 then auctions the path

capacity along the path from node 𝑛𝑑 to node 𝑛𝑎 . To start the

auction, node 𝑛𝑎 broadcasts the AUC tuple to all the nodes in

the set𝐵𝑖𝑑𝑑𝑒𝑟 (𝑛𝑎). Thismessage contains the following fields

AUC = [txid, 𝑀𝑎𝑥𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑎), 𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒(𝑛𝑑 , 𝑛𝑎)]. In particu-

lar,𝑀𝑎𝑥𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑎) indicates the path capacity that node 𝑛𝑎
can provide over the path 𝑃 (𝑛𝑑 , 𝑛𝑎) (which is upper bounded

by the local channel balance of 𝑛𝑎 with its immediate neigh-

bor along the path from 𝑛𝑑 to 𝑛𝑎). The third field in the AUC
message is the reservation price 𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒(𝑛𝑑 , 𝑛𝑎) indicates

the minimum price that the auctioneer 𝑛𝑎 demands to for-

ward a payment along the path. Assume that node 𝑛𝑎 has

won the preceding auction for the path 𝑃 (𝑛𝑑 , 𝑛𝑎−1) and thus

has attained forwarding privilege for the path 𝑃 (𝑛𝑑 , 𝑛𝑎). Let

𝑊𝑖𝑛𝑃𝑟𝑖𝑐𝑒(𝑛𝑎, 𝑃 (𝑛𝑑 , 𝑛𝑎)) denote the price that 𝑛𝑎 committed

to pay to 𝑛𝑎−1. Then, the reservation price 𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒(𝑛𝑑 , 𝑛𝑎)

that node 𝑛𝑎 asks for can be given as follows

𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒(𝑛𝑑 , 𝑛𝑎) =𝑊𝑖𝑛𝑃𝑟𝑖𝑐𝑒(𝑛𝑎, 𝑃 (𝑛𝑑 , 𝑛𝑎)) + 𝜏fee (1)

where, 𝜏
fee
∈ [𝑓

min
, 𝑓max] denotes the fee that node 𝑛𝑎

charges as its forwarding fee. After nodes in 𝐵𝑖𝑑𝑑𝑒𝑟 (𝑛𝑎)

receive an AUC message from 𝑛𝑎 , the bidding process is

initiated.

(2) Bidding Setup : In this phase, after receiving an AUC mes-

sage, say a node 𝑛𝑏 ∈ 𝐵𝑖𝑑𝑑𝑒𝑟 (𝑛𝑎) offers bidding prices for

the path from 𝑛𝑑 to 𝑛𝑎 . Note that node 𝑛𝑏 might receive

several AUC messages from several auctioneer nodes, 𝑀 ,

which are the nodes to whom 𝑛𝑏 has sent an RREQ mes-

sage. These auctioneer nodes are added to the set 𝐴𝑁 (𝑛𝑏) =

𝐴𝑁 (𝑛𝑏 , 1), 𝐴𝑁 (𝑛𝑏 , 2), . . . , 𝐴𝑁 (𝑛𝑏 , 𝑀), that is maintained lo-

cally by the node 𝑛𝑏 . For our purposes in this work, BID =

[txid, 𝐵𝑖𝑑𝐶𝑎𝑝(𝑛𝑏 , 𝑃 (𝑛𝑑 ,𝑚)), 𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒(𝐴𝑁 (𝑛𝑏 ,𝑚))].

In particular, 𝐵𝑖𝑑𝐶𝑎𝑝(𝑛𝑏 , 𝑃 (𝑛𝑑 ,𝑚)), where𝑚 ∈ [1..𝑀], indi-

cates the maximum amount that node 𝑛𝑏 is willing to send

along the path 𝑃 (𝑛𝑑 ,𝑚). The third field in the BID message

is 𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒(𝐴𝑁 (𝑛𝑏 ,𝑚)) that denotes the bidding price that

𝑛𝑏 offers to each auctioneer node𝑚. We define two pricing

rules for Auroch to determine the 𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒 .

• Pricing Rule 1: To be able to participate in a bid, the bid-

ding price should at least satisfy the reservation price set

by the auctioneer. Given the forwarding fee range interval

[𝑓
min

, 𝑓max], a simple price rule for each auctioneer node

𝑚 can be proposed as follows:

𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒(𝐴𝑁 (𝑛𝑏 ,𝑚)) = 𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒(𝑛𝑑 , 𝑛𝑎) + 𝜏1 (2)

where, 𝜏1←$ [𝑓
min

, 𝑓max].
1

• Pricing Rule 2: Pricing rule 1 did not take all information

into account for bid price determination. For example, nei-

ther the number of auctioneers nor their offered capacities

are incorporated. To account for these parameters, we de-

fine a normalized valuation price 𝑉𝑡𝑃𝑟𝑖𝑐𝑒(𝑛𝑏 , 𝐴𝑁 (𝑛𝑏 ,𝑚))

computed as follows:

1
The values of 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are 1, 10 respectively for Lightning Network [34].

𝑉𝑡𝑃𝑟𝑖𝑐𝑒(𝑛𝑏 , 𝐴𝑁 (𝑛𝑏 ,𝑚)) =

𝑀𝑎𝑥𝐶𝑎𝑝(𝑛𝑑 , 𝐴𝑁 (𝑛𝑏 ,𝑚))∑
𝑘 𝑀𝑎𝑥𝐶𝑎𝑝(𝑛𝑑 , 𝐴𝑁 (𝑛𝑏 , 𝑘))

×
[
1 − 𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒(𝑛𝑑 , 𝐴𝑁 (𝑛𝑏 ,𝑚))∑

𝑘 𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒(𝑛𝑑 , 𝐴𝑁 (𝑛𝑏 , 𝑘))

]
(3)

𝑉𝑡𝑃𝑟𝑖𝑐𝑒(𝑛𝑏 , 𝐴𝑁 (𝑛𝑏 ,𝑚)) value falls in the interval [0, 1].

This equation helps the bidding node to differentiate be-

tween the reservation prices and offered capacities of the

𝑀 auctioneers’ offers.

In the first term of Equation 3, the capacity of an auction-

eer is compared relative to the sum of all offered capacities

(i.e., normalized to a maximum value of 1). The more ca-

pacity an auctioneer offers relative to other auctioneers,

the more is the value associated with this capacity and

consequently, it is better to use the path offered by that

auctioneer node. In the second term of Equation 3, the

reservation prices are compared. Similar to the first term,

an auctioneer’s reservation price is compared to the sum

of all prices offered by all other auctioneers to normalize

it for comparison purposes.

Thus, the normalized reservation price indicates how costly

a certain auctioneer node is in comparison to other auc-

tioneers. In contrast to the capacity parameter, the larger

the reservation price requested by a auctioneer in compar-

ison to other auctioneers, the worse it is to use the path

offered by this auctioneer since it incurs a higher fee value

to be paid by the bidder. Thus, to compare the capacity

and the reservation price together, the normalized reser-

vation price is subtracted from 1. Finally, we note that

since both the capacity and reservation prices are normal-

ized to 1, their product (the proposed valuation price) is

also normalized. Hence, an auctioneer node with greater

offered capacity and lower reservation price relative to

other auctioneers has a larger 𝑉𝑡𝑃𝑟𝑖𝑐𝑒(𝑛𝑏 , 𝐴𝑁 (𝑛𝑏 ,𝑚)).

Using the 𝑉𝑡𝑃𝑟𝑖𝑐𝑒(𝑛𝑏 , 𝐴𝑁 (𝑛𝑏 ,𝑚)), value, we propose the

following bidding rule

𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒(𝐴𝑁 (𝑛𝑏 ,𝑚)) = 𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒(𝑛𝑑 , 𝑛𝑎) + 𝜏2 (4)

where 𝜏2 is given as follows

𝜏2 = 𝑓min
+𝑉𝑡𝑃𝑟𝑖𝑐𝑒(𝑛𝑏 , 𝐴𝑁 (𝑛𝑏 ,𝑚))(𝑓max − 𝑓min

) (5)

Using this rule, we note that the higher the capacity and

the lower the cost an auctioneer node offers, the more

bidding price the bidder is willing to pay for the corre-

sponding path. If a bidding node receives a single AUC
tuple, pricing rule 1 is used. If a bidding node receives

multiple AUC tuples, it could either use pricing rule 1 or

pricing rule 2, but it is more optimal for the bidding node

to use pricing rule 2.

(3) Auction results and announcing: Upon receiving BID
messages, the auctioneer node 𝑛𝑎 must determine how to

allocate the path capacity along the path 𝑃 (𝑛𝑑 , 𝑛𝑎) among

bidding nodes. In particular, given a set of bidding node

prices and the maximum bid capacities, The auctioneer node

𝑛𝑎 should allocate the path capacity along the path among

5

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

bidding nodes to maximize the total forwarding cost. it is

important to note that node 𝑛𝑎 may receive BID messages

from a number of 𝐵 nodes and these nodes are added to

set 𝐵𝑁 (𝑛𝑏) = 𝐵𝑁 (1, 𝑛𝑎), 𝐵𝑁 (2, 𝑛𝑎), . . . , 𝐵𝑁 (𝐵, 𝑛𝑎), which is

locally maintained locally by node 𝑛𝑎 .

The described problem of path capacity allocation can be

formulated as a linear optimization problem :

max

𝐶𝑎𝑝(𝑛𝑑 ,𝐵𝑁 (𝑏,𝑛𝑎))

∑︁
𝑏

BidPrice(𝐴𝑁 (𝑏, 𝑛𝑎))Cap(𝑛𝑑 , 𝐵𝑁 (𝑏, 𝑛𝑎)) (6a)

s.t.

∑︁
𝑏

Cap(𝑛𝑑 , 𝐵𝑁 (𝑏, 𝑛𝑎)) ≤ Cap(𝑛𝑑 , 𝑛𝑎) ∀𝑏 (6b)

Cap(𝑛𝑑 , 𝐵𝑁 (𝑏, 𝑛𝑎)) ≤ BidCap(𝐵𝑁 (𝑏, 𝑛𝑎), 𝑃 (𝑛𝑑 , 𝑛𝑎)), ∀𝑏
(6c)

Cap(𝑛𝑑 , 𝐵𝑁 (𝑏, 𝑛𝑎)) ≥ 0 ∀𝑏 (6d)

The above problem is a linear optimization problem since

the cost function as well as the constraints are linear in

𝐶𝑎𝑝(𝑛𝑑 , 𝐵𝑁 (𝑏, 𝑛𝑎)). The constraint in Equation 6b ensures

that the sum of maximum capacities of the bidders is less

than or equal to path capacity along the 𝑃 (𝑛𝑑 , 𝑛𝑎). Hence,

this serves as an upper bound on the sum of the maximum

capacities of the bidders. The constraint in Equation 6c, guar-

antees that the assigned path capacity 𝐶𝑎𝑝(𝑛𝑑 , 𝐵𝑁 (𝐵, 𝑛𝑎))

does not exceed the maximum amount that bidder is will-

ing to send along the the path 𝑃 (𝑛𝑑 , 𝑛𝑎).The last constraint

(Equation 6d) enforces the non-negativity of the assigned

maximum capacity. An auctioneer node 𝑛𝑎 determines to

which node(s) the available path and path capacity should

be allocated. To advertise the auction results, the auction-

eer node sends the RREP message to the winning nodes.

As stated earlier, the RREP consists of the following fields

RREP = [txid, 𝑃 (𝑛𝑑 , 𝑛𝑙),𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑙),

𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑙)]. The process of message replies and perform-

ing auctions is repeated until the source node 𝑛𝑠 becomes

a bidding node and bids for the different paths from the

auctioneer nodes.

Route Selection: In this stage, node𝑛𝑠 is to determinewhich of the

available paths to use for routing payments. In particular, given the

set of path costs and capacities, 𝑛𝑠 needs to send partial payments

over these paths such that the total forwarding cost it has to pay is

minimized. The payment allocation problem can be formulated as

a linear optimization problem, which we describe below.

Let P(𝑛𝑑 , 𝑛𝑠) = [𝑃 (𝑛𝑑 , 𝑛𝑠)
1, 𝑃 (𝑛𝑑 , 𝑛𝑠)

2, . . . , 𝑃 (𝑛𝑑 , 𝑛𝑠)
𝐾
] denote the

set of 𝐾 paths between 𝑛𝑠 and 𝑛𝑑 . Furthermore, let C(𝑛𝑑 , 𝑛𝑠) =

[𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑠)
1,𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑠)

2, . . . ,𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑠)
𝐾
] and F (𝑛𝑑 , 𝑛𝑠) = [

𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑠)
1,𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑠)

2, . . . ,𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑠)
𝐾
] denote the sets of path

capacities and costs, respectively. Let 𝑝𝑘
(𝑛𝑠 ,𝑛𝑑)

denote the partial pay-

ment over the 𝑘𝑡ℎ path, where 𝑘 ∈ [1..𝐾], and 𝑚 ∈ [1..𝑀]. The

payment allocation problem can be stated as follows:

min

𝑝𝑘
(𝑛𝑠 ,𝑛𝑑)

∑︁
𝑚

𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑠)
𝑘𝑝𝑘

(𝑛𝑠 ,𝑛𝑑)
(7a)

s.t.

∑︁
𝑘

𝑝𝑘
(𝑛𝑠 ,𝑛𝑑)

≥ 𝑎𝑚𝑡 (7b)∑︁
𝑘

𝑝𝑘
(𝑛𝑠 ,𝑛𝑑)

≤ 𝑎𝑚𝑡 +
∑︁
𝑘

𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑠)
𝑘𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑠)

𝑘
(7c)

𝑝𝑘
(𝑛𝑠 ,𝑛𝑑)

≤ 𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑠)𝑘 ∀𝑘 (7d)

𝑝𝑘
(𝑛𝑠 ,𝑛𝑑)

≥ 0, ∀𝑘 (7e)

Table 2: Notations Used

Notation Description
𝜆 Security parameter

𝑛 Number of nodes in the PCN

(sk𝑖 , vk𝑖) Node 𝑖’s long-term signing, verification key-

pair

(SK𝑖 ,VK𝑖) Node 𝑖’s temporary signing, verification key-

pair

𝑛𝑠 Sender Node

I𝑛𝑠 Set of immediate neighbors of a 𝑛𝑠

𝑛𝑑 Destination Node

𝑛𝑙 Current node

𝑛𝑎 Auctioneer node

𝑛𝑏 Bidder node

RREQ Route request message

RREP Route replay message

txid Transaction ID

𝑃 (𝑛𝑑 , 𝑛𝑠) Path from destination to sender

𝑃 (𝑛𝑑 , 𝑛𝑙) Path from destination to current node along

path 𝑃 (𝑛𝑑 , 𝑛𝑠)

𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 Minimum and maximum routing fees that

can be charged by a node

P a list of available paths from 𝑛𝑠 to 𝑛𝑑
C a list of available paths capacities from 𝑛𝑠 to

𝑛𝑑
F a list of available paths costs from 𝑛𝑠 to 𝑛𝑑
𝐵𝑖𝑑𝑑𝑒𝑟 (𝑛𝑎) a set of bidder nodes for node 𝑛𝑎

𝐴𝑁 (𝑛𝑏) a set of verified auctioneer nodes for bidder

𝑛𝑏
𝐵𝑁 (𝑛𝑎) a set of verified bidding nodes for auctioneer

𝑛𝑎

The above problem is a linear optimization problem since the

cost function as well as the constraints are linear in 𝑝𝑘
(𝑠,𝑑)

. The

constraint in Equation 7b ensures that the sum of partial payments

is either greater than or equal to the original payment amount

𝑎𝑚𝑡 . Hence, this serves as a lower bound on the sum of payments.

The payment amount on each path should take the path’s cost

into consideration. Thus, the total amount to be payed is upper

bounded by the sum aggregate of all forwarding cost across all

the paths between 𝑛𝑠 and 𝑛𝑑 . This is ensured by the constraint

in Equation 7c. The constraint in Equation 7d, guarantees that a

6

Auroch: Auction-Based Multipath Routing for Payment Channel Networks ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

(a) Step 1: RREQ sent by Alice propagated.
Step 2: RREP issued by Chloe

(b) Step 3: Ivan and Sam start the auction.
Step 4: Peter and Alexa send bid

(c) Step 5: Ivan & Sam send auction results.
Step 6: Peter & Alexa start auction.
Step 7: Alice sends bid.

(d) Step 8: Peter & Alexa send auction
result.

(e) Step 9: Alice splits payment over
multiple paths

Figure 2: The step-by-step process of the auction mechanism in Auroch (Sender: Alice, Receiver: Chloe)

partial payment over each path does not exceed the path’s capacity.

The last constraint (Equation 7e) checks if the value of each partial

payment is non-negative.

4.2 Auroch Workflow
As an example, consider a simplified network as shown in Figure 2,

where a sender node Alice intends to pay a payment of amt to a

receiver node Chloe.

In Figure 2c, Step 1 : Alice constructs the RREQ=[123] and

sends it to her neighbors, Peter and Alexa. The RREQ=[123] mes-

sage propagates through the network until it receives the destina-

tion, Chloe. Step 2 : Upon receiving the RREQ=[123] messages,

Chloe generates two routing reply (RREP) messages : RREP =

[123, (𝐶ℎ𝑙𝑜𝑒, 𝐼𝑣𝑎𝑛), 0, 0],RREP = [123, (𝐶ℎ𝑙𝑜𝑒, 𝑆𝑎𝑚), 0, 0]. Chloe sends

them to Ivan and Sam, respectively.

In Figure 2b, Step 3 : Upon receiving RREP messages, Ivan and

Sam initiate the auction phase. Ivan computes the Reservation Price

(𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒) using Equation 1, assuming the value 2. Subsequently,

Ivan sets the path capacity along the path 𝑃 (𝑐ℎ𝑙𝑜𝑒, 𝐼𝑣𝑎𝑛) as 30 tokens.

Ivan generates two AUC = [123, 30, 2], AUC = [123, 30, 2] messages,

individually sends them to Peter andAlexa. Similarly, Sam computes

the Reservation Price (𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒) using Equation 1, assuming a value

of 1. Sam sets the path capacity along the path 𝑃 (𝐶ℎ𝑙𝑜𝑒, 𝑆𝑎𝑚) to 40

tokens. Sam generates one AUC = [123, 40, 1]message and forwards

it to Alexa. Step 4 : With AUC messages in hand, Peter and Alexa

start bidding. Peter receives one AUC message only from Ivan and

proceeds to calculate Bid Price (𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒) using Equation 2. Peter

constructs BID = [123, 22, 2.8] and transmits it to Ivan. In contrast,

Alexa receives two AUC messages. Utilizing Equation 4, Alexa

computes Bid Price 𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒 . She constructs two BID messages

BID = [123, 20, 2.5],BID = [123, 25, 1.5], and forwards them to Ivan

and Sam, respectively.

In Figure 2c, Step 5 : Upon receiving BID messages, Sam re-

ceives one BID message. Subsequently, Sam constructs a RREP =

[123, (𝐶ℎ𝑙𝑜𝑒, 𝑆𝑎𝑚,𝐴𝑙𝑒𝑥𝑎), 25, 1.5] message, sending it Alexa. In con-

trast, Ivan receives two BID messages.So, Ivan will allocate 30 to-

kens to Peter and Alexa by solving a linear optimization problem

represented by Equation 6 to maximize his profit. Ivan constructs

twoRREPmessagesRREP = [123, (𝐶ℎ𝑙𝑜𝑒, 𝐼𝑣𝑎𝑛,𝐴𝑙𝑒𝑥𝑎), 20, 2.5],RREP =

[123, (𝐶ℎ𝑙𝑜𝑒, 𝐼𝑣𝑎𝑛, 𝑃𝑒𝑡𝑒𝑟), 10, 2.3]. These messages are then sent to

Alexa and Peter. Step 6 : Upon receiving RREP messages, Peter

and Alexa start the auction. Peter computes the Reservation Price

(𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒) using Equation 1, assuming a value of 2.5. Peter sets

the path capacity along the path 𝑃 (𝐶ℎ𝑙𝑜𝑒, 𝑃𝑒𝑡𝑒𝑟) to 10 tokens. Pe-

ter constructs AUC = [123, 10, 2.5] and sends it to Alice. Mean-

While, Alexa conducts auctions for two paths (𝐶ℎ𝑙𝑜𝑒, 𝐼𝑣𝑎𝑛,𝐴𝑙𝑒𝑥𝑎)

and (𝐶ℎ𝑙𝑜𝑒, 𝑆𝑎𝑚,𝐴𝑙𝑒𝑥𝑎). Alexa computes the Reservation Price (

𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒) for each path using Equation 1. The𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒 for the paths

(𝐶ℎ𝑙𝑜𝑒, 𝐼𝑣𝑎𝑛,𝐴𝑙𝑒𝑥𝑎) and (𝐶ℎ𝑙𝑜𝑒, 𝑆𝑎𝑚,𝐴𝑙𝑒𝑥𝑎) are 2.7 and 1.7, respec-

tively. Alexa constructs two AUC messages AUC = [123, 25, 1.7],

AUC = [123, 20, 2.7] and sends them to Alice. Step 7: Alice re-

ceives three AUC messages. Consequently, Alice computes Bid

Price (𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒) using Equation 4 for the offers. Alice constructs

BID message BID = [123, 10, 2.8] and sends it to Peter. Further-

more, Alice constructs two AUC messages : BID = [123, 2, 2.8],

BID = [123, 25, 2] , which Alice sends to Alexa.

In Figure 2d, Step 8: Peter and Alexa announce the result. Peter

constructs RREP = [123, (𝐶ℎ𝑙𝑜𝑒, 𝐼𝑣𝑎𝑛, 𝑃𝑒𝑡𝑒𝑟, 𝐴𝑙𝑖𝑐𝑒), 10, 5.1] and for-

wards it to Alice. Similarly, Alexa constructs two RREP messages:

RREP = [123, (𝐶ℎ𝑙𝑜𝑒, 𝐼𝑣𝑎𝑛,𝐴𝑙𝑒𝑥𝑎,𝐴𝑙𝑖𝑐𝑒),

7

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

2, 5.3], RREP = [123, (𝐶ℎ𝑙𝑜𝑒, 𝑆𝑎𝑚,𝐴𝑙𝑒𝑥𝑎,𝐴𝑙𝑖𝑐𝑒), 20, 4.3], and sends

them to Alice.

In Figure 2e, Step 9: Upon receiving RREP messages, Alice has

all available paths toward the Chloe along with the maximum

payments that can be accommodated over these paths and their

corresponding cost. Alice can divide its payment over these routes

(see Step 9 in Figure 2e) by employing the linear optimization

problem as stated in Equation 7a.

5 CONSTRUCTION
Auroch consists of three stages: setup, route auctioning, and pay-

ment. For ease of reference, we give the table of notations used in

Table 2.

Setup and Broadcast: This stage is described in detail in Appen-

dix A. At a high level, this protocol handles the generation of the

signing and verification key pairs of a node, and the creation and

transmission of a transaction identifier, txid.

Protocol 1: Route Auctioning: Auction Setup Phase

1 𝑛𝑑 receives RREQ message tuple from its neighbors

2 ∀ nodes 𝑛𝑎 ∈ 𝑃𝑎𝑟𝑒𝑛𝑡 (𝑛𝑑), 𝑛𝑑 constructs an individual tuple

RREP = [txid, 𝑃 (𝑛𝑑 , 𝑛𝑎),𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑎),𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑎)]

3 𝑛𝑑 SignSK𝑛𝑑
(RREP)→ 𝜎RREP and 𝑛𝑑 sends RREP along with

𝜎RREP to each node 𝑛𝑎 ∈ 𝑃𝑎𝑟𝑒𝑛𝑡 (𝑛𝑑).
4 On receiving RREP message with 𝜎RREP,

5 Each node 𝑛𝑎 does if VerifyVK𝑛𝑑
(RREP)→0 then

6 Do nothing

7 else
8 Each 𝑛𝑎 computes 𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒 using Equation 1

9 Each 𝑛𝑎 construct AUC = [txid,

𝑀𝑎𝑥𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑎), 𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒(𝑛𝑑 , 𝑛𝑎)] message to all

nodes 𝑛𝑏 ∈ 𝐵𝑖𝑑𝑑𝑒𝑟 (𝑛𝑎)
10 Each 𝑛𝑎 does SignSK𝑛𝑎

(AUC)→ 𝜎AUC

11 Each 𝑛𝑎 sends AUC message along with 𝜎AUC to each

node 𝑛𝑏 ∈ 𝐵𝑖𝑑𝑑𝑒𝑟 (𝑛𝑎).
/* Route Auctioning: End Auction Setup Phase */

Auction Setup Protocol 1: This protocol handles the auction setup
phase in Auroch, once the route request RREP messages that are

broadcast by 𝑛𝑠 reach the intended 𝑛𝑑 , 𝑛𝑑 constructs the RREP
message and sends it along with its signature (created using its

temporary signing key) on the message to each auctioneer node 𝑛𝑎
in the set 𝑃𝑎𝑟𝑒𝑛𝑡 (𝑛𝑑) from whom it has received an RREQ message

(Lines 1-5). Each auctioneer node 𝑛𝑎 , upon successfully verifying

the 𝑛𝑑 ’s signature on the RREP message, picks a routing fee, de-

noted by 𝜏fee in the range [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥], where 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are

the minimum and maximum values of the routing fees. In Auroch
we picked the 𝑓𝑚𝑖𝑛 as 1 Satoshi and 𝑓𝑚𝑎𝑥 as 10 Satoshi [34]. The

auctioneer 𝑛𝑎 then computes the reservation price (𝑅𝑒𝑠𝑃𝑟𝑖𝑐𝑒), ac-

cording to the Equation 1. The node 𝑛𝑎 constructs an AUCmessage

tuple and sends this tuple along with its signature on the message

(created using the temporary signing key of 𝑛𝑎) to all of its bidder

nodes 𝑛𝑏 in 𝐵𝑖𝑑𝑑𝑒𝑟 (𝑛𝑎) from whom it has received the initial RREQ
message (Lines 8–11).

Protocol 2: Route Auctioning: Bidding Setup Phase

1 𝑛𝑏 maintains a set 𝐴𝑁 (𝑛𝑏) = ∅
2 𝑛𝑏 , where 𝑛𝑏 ∈ 𝐵𝑖𝑑𝑑𝑒𝑟 (𝑛𝑎), does ∀ AUC messages

3 if Verify𝑉𝐾𝑛𝑎
(AUC)→ 0 then

4 Do nothing

5 else
6 𝑛𝑏 adds each auctioneer node 𝐴𝑁 (𝑛𝑏 , 𝑛𝑎) to set 𝐴𝑁 (𝑛𝑏)

7 if |𝐴𝑁 (𝑛𝑏)|== 1 then
8 𝑛𝑏 sets the 𝐵𝑖𝑑𝐶𝑎𝑝(𝑛𝑏 , 𝑃 (𝑛𝑑 , 𝑛𝑎))

9 𝑛𝑏 chooses a random 𝜏1 ∈ [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥]
10 𝑛𝑏 computes 𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒(𝐴𝑁 (𝑛𝑏 , 𝑛𝑎)) using Price Rule 1 in

Equation 2

11 𝑛𝑏 constructs BID message, 𝑛𝑏 does SignSK𝑛𝑏
(BID)→

𝜎BID
12 𝑛𝑏 sends BID message along with 𝜎BID to auctioneer

13 else if |𝐴𝑁 (𝑛𝑏)|> 1 then
14 for each𝑚 ∈ 𝐴𝑁 (𝑛𝑏) do

15 𝑛𝑏 sets 𝐵𝑖𝑑𝐶𝑎𝑝(𝑛𝑏 , 𝐴𝑁 (𝑛𝑑 ,𝑚)) for each auctioneer

𝑚 ∈ 𝐴𝑁 (𝑛𝑏)

16 𝑛𝑏 computes 𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒(𝐴𝑁 (𝑛𝑏 ,𝑚)) using Price Rule 1 in

Equation 2 or using Price Rule 2 in Equation 3

17 𝑛𝑏 constructs BID message, 𝑛𝑏

18 SignSK𝑛𝑏
(BID)→ 𝜎BID

19 𝑛𝑏 sends BID message along with 𝑛𝑏 𝜎BID to auctioneer

𝐴𝑁 (𝑛𝑏 ,𝑚)

/* Route Auctioning: End Bidding Setup Phase */

Bidding Setup Protocol 2This protocol handles the bidding setup
phase in Auroch, upon receiving BID messages. 𝑛𝑏 verifies the sig-

nature of the auctioneer node 𝑛𝑎 on the AUC tuples. If the signature

verification is unsuccessful, then the AUC tuple is discarded. Upon

successfully verifying the signature of 𝑛𝑎 on the AUC message, 𝑛𝑏
adds auctioneer𝑛𝑎 to set𝐴𝑁 (𝑛𝑏) that it locally maintains (Lines 1-6).

If the number of auctioneers for node 𝑛𝑏 is 1, 𝜏1 is chosen randomly

from a specified range. 𝑛𝑏 then determines the path capacity that it

is willing to send along the path 𝑃 (𝑛𝑑 , 𝑛𝑎). 𝑛𝑏 computes 𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒

for auctioneer 𝑛𝑎 using Equation 2. Once the 𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒 has been

computed, bidder 𝑛𝑏 constructs the BID message and sends this

message along with its signature to each auctioneer 𝑛𝑎 (Lines 7-

12).If the number of auctioneers for the node 𝑛𝑏 is more than 1, 𝑛𝑏
computes 𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒 for each auctioneer 𝑛𝑎 using Equation 4. Once

the 𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒 has been computed for each auctioneer, 𝑛𝑏 constructs

the BID message, and sends this message along with its signature

to each node 𝑛𝑎 (Lines 13-19).

Auction results and Announcing Protocol 3: Upon receiving bid-
ding messages from all bidding nodes interested in the auction. The

auctioneer 𝑛𝑎 verifies each BID message. If the verification is suc-

cessful, each bidder node 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎) is added to 𝐵𝑁 (𝑛𝑎) (Lines 1-6).

If there is only one bidder in 𝐵𝑁 (𝑛𝑎), the auctioneer 𝑛𝑎 updates the

path 𝑃 (𝑛𝑑 , 𝑛𝑎) by incorporating 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎) into the path. If there

is only one bidder in 𝐵𝑁 (𝑛𝑎), auctioneer node 𝑛𝑎 updates 𝑃 (𝑛𝑑 , 𝑛𝑎)

by adding 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎) into the path 𝑃 (𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎)). Subsequently,

Auctioneer node 𝑛𝑎 updates 𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑎) into 𝐶𝑎𝑝(𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎))

8

Auroch: Auction-Based Multipath Routing for Payment Channel Networks ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Protocol 3: Route Auctioning: Auction Results and An-

nouncing Phase

/* 𝑛𝑎 is the auctioneer */

1 𝑛𝑎 maintains a set 𝐵𝑁 (𝑛𝑎) = ∅
2 ∀ BID messages, 𝑛𝑎 checks

3 if Verify𝑉𝐾𝑛𝑏
(BID)→ 0 then

4 Do nothing

5 else
6 𝑛𝑎 adds each bidder 𝑛𝑏 to set 𝐵𝑁 (𝑛𝑎)

7 if |𝐵𝑁 (𝑛𝑎)|== 1 then
8 𝑛𝑎 updates 𝑃 (𝑛𝑑 , 𝑛𝑎) to 𝑃 (𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎)) and updates

𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑎) to 𝐶𝑎𝑝(𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎))

9 𝑛𝑎 updates 𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑎) to 𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎))

10 𝑛𝑎 constructs

RREP = [txid, 𝑃 (𝑛𝑑 , 𝑛𝑏),𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑏),𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑏)]

11 SignSK𝑛𝑎
(RREP)→ 𝜎RREP and 𝑛𝑎 sends RREP along

with 𝜎RREP to 𝑛𝑏
12 else if |𝐵𝑁 (𝑛𝑏)|> 1 then
13 𝑛𝑏 solves Equation 6

14 for each 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎) ∈ 𝐵𝑁 (𝑛𝑎) do

15 𝑛𝑎 updates 𝑃 (𝑛𝑑 , 𝑛𝑎) to 𝑃 (𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎))

16 𝑛𝑎 updates 𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑎) to 𝐶𝑎𝑝(𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎))

17 𝑛𝑎 updates 𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑎) to 𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎))

18 𝑛𝑎 constructs

RREP = [txid, 𝑃 (𝑛𝑑 , 𝑛𝑏),𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑏),𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑏)]

19 𝑛𝑎 SignSK𝑛𝑎
(RREP)→ 𝜎RREP and 𝑛𝑎 sends RREP along

with 𝜎RREP to 𝑛𝑏
/* Route Auctioning: End Auction Results and

Announcing Phase */

Protocol 4: Route Selection
/* Protocol 1, Protocol 2, and Protocol 3 are

repeated until the source node 𝑛𝑠 becomes a
bidding node and bids for the different paths
from the auctioneer nodes. */

1 𝑛𝑠 maintains the list P = ∅, C = ∅, and F = ∅
2 𝑛𝑠 receives RREP messages

3 for each RREP message do
4 IfVerifyVK𝑛𝑎

(RREP)→ 0 Do nothing

5 else
6 𝑛𝑠 adds 𝑃 (𝑛𝑑 , 𝑛𝑠) to P
7 𝑛𝑠 adds 𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑠) to C
8 𝑛𝑠 adds 𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑠) to F
9 𝑛𝑠 solves Equation 7

/* End Route Selection */

, which is path capacity along the path 𝑃 (𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎)). Auc-

tioneer node 𝑛𝑎 updates 𝐶𝑜𝑠𝑡𝑎𝑝(𝑛𝑑 , 𝑛𝑎) into 𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎)),

which is the total cost of forwarding payment along the path

𝑃 (𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎)). Auctioneer node 𝑛𝑎 updates 𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑎) into

𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎)), which is the total cost of forwarding pay-

ment along the path 𝑃 (𝑛𝑑 , 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎)).Auctioneer node 𝑛𝑎 con-

structs the RREP message and sends it with its signature to bidder

node 𝐵𝑁 (𝑛𝑏 , 𝑛𝑎) (Lines 7-12). If the auctioneer 𝑛𝑎 has more than

1 bidder node in set 𝐵𝑁 (𝑛𝑎), then 𝑛𝑎 solves Equation 6. By solv-

ing the path capacity allocation problem, Auctioneer 𝑛𝑎 allocates

the maximum capacity 𝑀𝑎𝑥𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑎) in protocol 1 along the

𝑃 (𝑛𝐷 , 𝑛𝑎) among bidding nodes M in set 𝐵𝑁 (𝑛𝑎) in such way maxi-

mize his profit. for each𝑚 auctioneer in the set 𝐵𝑁 (𝑛𝑎),Auctioneer

node 𝑛𝑎 updates 𝑃 (𝑛𝑑 , 𝑛𝑎) into 𝑃 (𝑛𝑑 , 𝐵𝑁 (𝑚,𝑛𝑎)) by adding bid-

der node 𝐵𝑁 (𝑚,𝑛𝑎). Auctioneer node 𝑛𝑎 updates 𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑎) into

𝐶𝑎𝑝(𝑛𝑑 , 𝐵𝑁 (𝑚,𝑛𝑎)) Auctioneer node 𝑛𝑎 updates 𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑎) into

𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝐵𝑁 (𝑚,𝑛𝑎)). Auctioneer node 𝑛𝑎 updates 𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑎) into

𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝐵𝑁 (𝑚,𝑛𝑎)).𝐵𝑁 (𝑛𝑏 , 𝑛𝑎)). Finally, Auctioneer node 𝑛𝑎 con-

structs the RREP message and sends it with its signature to bidder

node 𝑃 (𝑛𝑑 , 𝐵𝑁 (𝑚,𝑛𝑎)) (Lines 13-20).

Route Selection Protocol 4 : This is the final stage in our con-

struction. This protocol handles the route selection between the

𝑛𝑠 and 𝑛𝑑 . Upon receiving RREP messages, Node 𝑛𝑠 verifies the

signature of node 𝑛𝑎 on each RREP message. Upon successful veri-

fication, 𝑛𝑠 adds 𝑃 (𝑛𝑑, 𝑛𝑠),𝐶𝑎𝑝(𝑛𝑑 , 𝑛𝑠), and𝐶𝑜𝑠𝑡 (𝑛𝑑 , 𝑛𝑠) to P,C, and
F , respectively. 𝑛𝑠 allocates the partial payments among the avail-

able paths by solving the linear optimization problem Equation 7.

The equation, as described earlier, minimizes the sender’s overall

routing cost and also maximizes the profit of each intermediate

node.

OptimizationsWhile Auroch provides sender privacy, the iden-

tity of the receiver is revealed during the path construction. How-

ever, since each node in Auroch uses a pseudonymous identity

within the network, the real identity is not to any other node ex-

cept the sender. These identities can be generated at periodic time

intervals (which can be a system parameter) to provide an addi-

tional degree of privacy. Apart from this, other techniques such as

onion routing [16] and adding dummy nodes by the receiver can

be employed, which do not require any additional modifications to

the structure or protocols of Auroch.

6 EVALUATION
6.1 Experiment Setup
We implemented Auroch and other routing protocols using the

NetworkX library in Python [15] and used the Elliptic Curve Dig-

ital Signature Algorithm, ECDSA, [9] for signature creation and

verification. ECDSA was chosen for its better efficiency. However,

Auroch can be deployed using any digital signature algorithm. We

ran our experiments on a desktop computer with Intel (𝑅) Core TM

i7-10700 CPU clocked at 2.90 GHz and equipped with 32 GB RAM.

Dataset: We evaluated the performance of Auroch on a snapshot

of the Lightning Network topology from November 27, 2021 [6, 24].

The snapshot contains 18,331 nodes, and 80,918 channels with mean

channel capacity 4056152.35 satoshi and median channel capacity

is 1000000 satoshi (this provides us information on how funds are

distributed among Lightning Network channels). In Lightning Net-

work, the channel balance in a payment channel at the time of

channel opening is publicly available on the blockchain. However,

the local channel balance of nodes, which changes as a result of

nodes being involved in transactions is not publicly available.

9

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

Figure 3: Performance of Routing Protocols on Lightning Network data with scaled payment channel capacities (× 30 , × 50, ×
70)

Benchmarks: We implement and experimentally compare Auroch
with several other comparable routing algorithms, specifically with

shortest path routing (Dijkstra’s algorithm), Speedymumurs [26]

and Spider [29]. Since Auroch is a routing protocol that routes a

single transaction along several paths, concurrency plays an im-

portant role (all the splits of the transaction would need to reach

the receiver at the same time to ensure correct processing of the

transaction amount). The routing protocols Spider and Speedymur-

murs provide support for concurrent payments. In addition, Auroch
was also compared to an implementation of Dijkstra’s shortest path

algorithm since this is currently implemented by the real-world

PCN, Lightning Network. Since standard Dijkstra’s algorithm does

not have any notion of minimum liquidity (which is relevant for

PCNs), we implemented a modified version of Dijkstra’s shortest

path algorithm by enumerating all paths from sender to receiver in

ascending order of path length and minimum capacities, and then

picking the shortest path with the minimum satisfying liquidity

for each transaction. The running time of Dijkstra’s algorithm de-

pends on the priority queue implementation used [5]. NetworkX

library uses a binary heap to implement the priority queue, which

is appropriate for us, since for our network graph, 𝐺(𝑉 , 𝐸), |𝐸 | ≪
|𝑉 |2/𝑙𝑜𝑔|𝑉 |. In shortest path routing, the sender knows the entire

network topology and uses source routing to find a path from her-

self to the receiver. Furthermore, the sender needs to know the

identities of all intermediate nodes along the path and also the base

fees and the rate fees charged. This is a significant drawback of us-

ing shortest path algorithms for routing in PCNs, and would apply

regardless of the specific algorithm used, e.g., Dijkstra’s algorithm,

Bellman-Ford algorithm, etc. For all our experiments, we randomly

sampled our transaction dataset to pick amounts to be routed along

with the fees. We note that the SpeedyMurmurs [26] routing proto-

col does not have any notion of routing fees; we have augmented it

with routing fees for a fair comparison with Auroch. For any reason,
if the path chosen by the sender does not have enough liquidity or if

the fees chosen by the sender is not sufficient, the transaction fails.

This exemplifies the major drawback of SpeedyMurmurs in that

transaction amounts (and potentially fees) for a given transaction

path are randomly picked, without the sender knowing if there is

sufficient liquidity along that path to the receiver. In Spider [29], the

sender knows the entire network topology (similar to the shortest

path algorithm) and also minimum value that can be transacted

along a given path. The sender splits the total amount according to

this minimum value and the sender also knows the total base fees

and the rate fees charged along the path to the receiver.

Metrics: In our experiments we measure the success ratio, success

volume, and the cost of routing. The success volume and success

ratio are important indicators of the performance of a routing proto-

col. We measure the cost of routing payments to see which routing

protocol is most economical to users. The success ratio is defined

10

Auroch: Auction-Based Multipath Routing for Payment Channel Networks ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Figure 4: Performance of Routing Protocols on Lightning
Network Data

as the ratio between the number of payments that were success-

fully routed to the total number of payments attempted. Success

volume is defined as the ratio between the total volume (amount)

of payments successful to the total volume (amount) of payments

attempted. The cost of routing is defined as the ratio between the

total cost of routing all the successful transactions at once and

the volume of all the payments that were routed successfully. For

an ideal routing protocol, one would expect the total transaction

volume to be significantly higher than the total transaction fees,

hence the ratio of the total transaction fees to the total transaction

volume needs to be as low as possible.

Parameters: We set the number of transactions to 5000, 7000, and

9000, which is the approximate number of transactions recorded per

month (January, February, and April, respectively) on the Ripple

ledger during the year 2021. The transaction data in Ripple, such as

the transaction amounts, currency, time stamp of transaction, etc

are publicly available and can be accessed using the Ripple APIs

[23]

To test scalability, we use number of transactions from Ripple

PCN, since Lightning Network datasets have no information about

the number of transaction and transaction values. In our experi-

ments, the source and the destination nodes of a transaction are

selected randomly and the transaction amount is randomly sam-

pled from the Bitcoin trace for transaction volumes [33]. The cost

of a payment from a sender to the receiver is computed for ev-

ery transaction and all the paths along which all the splits of this

transaction are routed. The transaction fees on each path is com-

puted as

∑𝑛
𝑖=1

Base Fee𝑖 + (rate Fee𝑖 × amt), where 𝑛 is the total

number of intermediate nodes between the sender and receiver. In

our experiments, we assume the base fees along every path to be 1

satoshi and the rate fees are randomly sampled in the range [0..10]

satoshis. For the various routing schemes, we set the number of

disjoint paths for the Spider as 4 similar to [29], and set 3 landmarks

for SpeedyMurmurs similar to [26]. We have chosen these routing

protocols for our comparison since they either offer comparable

security/privacy properties to Auroch or support multiple path pay-

ments which is one of the key aspects in the design of Auroch. We

varied the capacity on each channel by multiplying the channel

capacity by 30, 50, and 70 to study the channel capacity’s impact

on our metrics across all routing protocols. All experiments were

averaged over 20 runs.

6.2 Results
We compare the performance of four routing protocols on our

dataset by varying transaction numbers and channel capacities.

Figure 4 depicts the performance of the routing protocols on 5000,

7000, and 9000 transactions. Figure 4 shows that Auroch has the

largest success volume of all protocols, which is due to its ability to

process a large volume of concurrent transactions. SpeedyMurmurs

and Shortest Path protocols have the lowest success ratio among

all protocols, which is due to the fact that the payment in Speedy-

Murmurs happens on the fly, and the shortest path algorithm uses

only a single path to transmit the payment. If there is no path

with satisfying liquidity, the transaction fails, thus decreasing the

success ratio. On the other hand, the Auroch protocol uses RREP
messages, which tell the sender the path capacity along each path in

a fully decentralized way, without the sender needing to know the

network topology, which results in a significantly higher success

ratio. Similarly, the Spider routing protocol uses probe messages to

get the minimum patg capacity along the paths before sending the

payment. So, using RREP messages and probing messages helps

increase the success ratio.

From Figure 4, we can see thatAuroch has the lowest routing cost
among all routing protocols. Spider, SpeedyMurmurs, and Shortest

path routing are up to 2.2x, 2.6x, and 2.1x, respectively, more expen-

sive than Auroch. Figure 3 depicts the performance of the routing

protocols when the channel capacity on each link in the networks

11

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

is varied by multiplying it with 70, 50, or 30. The purpose of multi-

plying the channel capacity with these values shows that Auroch
performs better (especially in terms of success volume) when there

is sufficient capacity in the channels of the nodes with their imme-

diate neighbors. As the capacity rises, more transactions begin to

succeed among all of the protocols, which is expected. According

to Figure 3 Auroch again has the lowest routing cost of all protocols.

Spider, SpeedyMurmurs, and Shortest path routing are up to 2.1x,

2.7x, and 1.8x, respectively, more expensive than Auroch. The low-
est routing cost of Auroch is due to the fact that with larger channel

capacities, more intermediate nodes become available for forward-

ing payments. The increase in the number of willing nodes and the

increased channel balance result in a reduction in the routing cost.

Furthermore, Auroch uses linear optimization to decrease the cost

of routing. Overall, our experiments show that Auroch achieves

the main goal of minimizing the transaction fees per token. When

the intermediate node acts as an auctioneer, it selects the bidder

node that offers the highest price. On the other hand, when the

intermediate node acts as a buyer node it aims to pay the lowest

price with the highest capacity. Thus Auroch outperforms other

comparable routing protocols in terms of our chosen metrics.

6.3 Tradeoffs
In Auroch, the 𝑛𝑠 uses broadcasting to find a path to the 𝑛𝑑 . This

incurs a significant amount of communication overhead. In the

worst case, the maximum number of hops the RREQ message tuple

will travel is equal to the diameter of the network. This overhead is

better than the overhead of source routing protocol currently being

implemented in LightningNetwork [12], where each node stores the

network topology in its local storage causing a tremendous storage

overhead at each node. The snapshot of the network topology stored

at each node needs to be updated every time a new node joins and

leaves the PCN, which means that all the nodes in the PCN would

need to be online all the time, causing wastage of resources and

bandwidth or offline node would initially need to synchronize with

the network before being involved in transactions, which makes

instantaneous payments impossible. Sometimes, nodes in Light-

ning Network operate from resource constrained devices. In such

cases, the storage overhead incurred will be even more. Apart from

this, Auroch aims at reducing the overall routing cost of the 𝑛𝑠 and

also maximizes the profit of the intermediate nodes, which is not

currently achieved in PCNs. In addition to these, Auroch introduces

additional delays in the PCN due to its auctioning/bidding stages,

signature creation/verification during these stages and solving the

linear optimization problem to present the sender with multiple

paths to the receiver. These series of operations would have to be

performed for every transaction that is processed using Auroch. If
we assume the delay (in terms of additional transaction processing

time) caused by auction/bidding to be 𝛼 , the delay caused by signa-

ture creation/verification during the auction/bidding stages to be 𝛽

and the delay caused by solving the linear optimization problem

to be 𝛾 , the total delay caused by Auroch (for every transaction),

when deployed on a PCN such as Lightning Network would be

(𝛼 + 𝛽 + 𝛾). This additional delay in transaction processing how-

ever, provides us with the following advantages: 1) The overall

routing cost of the sender is minimized across multiple paths. 2)

The profit of each intermediate node involved in the transaction

is maximized. 3) Auroch provides the sender with a decentralized

pathfindig mechanism as opposed to the centralized source routing.

7 Auroch SECURITY ANALYSIS
In this section, we provide a formal analysis of Auroch in the UC

framework [2]. Protocols which are composed of multiple compo-

nents are usually proven secure in UC framework [10, 11, 13, 14, 17].

We define an ideal functionality FAUROCH , that consists of
five functionalities: F𝑖𝑛𝑖𝑡 , F𝐴𝑈𝐶 , F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 Fℎ𝑡𝑙𝑐 , F𝐵𝐶 . We use the

F𝑠𝑖𝑔 functionality [3] and one helper functionality F𝑠𝑖𝑔 [3]. All

the functionalities maintain three tables, utable, txtable, BCTable.
These tables are updated by these functionalities with various tuples

as required. Due to space constraints, we give the definitions of the

of the ideal functionalities and the proof of the following theorem

in Appendix B.

Theorem 7.1. LetFAUROCH be an ideal functionality for Auroch.
LetA be a probabilistic polynomial-time (PPT) adversary for Auroch,
and let S be an ideal-world PPT simulator for FAUROCH . Auroch
UC-realizes FAUROCH for any PPT distinguishing environmentZ.

8 CONCLUSION
In this work, we study the pathfinding and multipath payment rout-

ing problem in PCNs. We propose Auroch, a distributed pathfinding
and routing protocol that provides incentives for intermediate nodes

to collaborate in route formation while maximizing their profit and

minimizing the total payment cost for the sender. Auroch also sup-

ports concurrency and takes into account the dynamic channel

balance of a node. We examined Auroch on real-world transaction

data to show its effectiveness, and we validated its security within

the UC framework.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation under Award No. 2148358, 1914635, and the Department

of Energy under Award No. DE-SC0023392. Any opinions, findings

and conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the

National Science Foundation and the Department of Energy.

12

Auroch: Auction-Based Multipath Routing for Payment Channel Networks ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

REFERENCES
[1] Benjamin Brooks and Songzi Du. 2021. Optimal auction design with common

values: An informationally robust approach. Econometrica 89, 3 (2021), 1313–

1360.

[2] Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-

tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE, 136–145.

[3] Ran Canetti. 2004. Universally composable signature, certification, and authenti-

cation. In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004.
IEEE, 219–233.

[4] Yanjiao Chen, Yuyang Ran, Jingyue Zhou, Jian Zhang, and Xueluan Gong. 2021.

MPCN-RP: A Routing Protocol for Blockchain-based Multi-Charge Payment

Channel Networks. IEEE Transactions on Network and Service Management
(2021).

[5] Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani. 2008.

Algorithms. McGraw-Hill Higher Education New York.

[6] Elias Rohrer and Julian Malliaris and Florian Tschorsch [n. d.]. Elias Rohrer and

JulianMalliaris and Florian Tschorsch. https://git.tu-berlin.de/rohrer/discharged-

pc-data/tree/master/snapshots

[7] Qianyun Gong, Chengjin Zhou, Le Qi, Jianbin Li, Jianzhong Zhang, and Jingdong

Xu. 2021. VEIN: High scalability routing algorithm for Blockchain-based payment

channel networks. In 2021 IEEE 20th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom). IEEE, 43–50.

[8] Hsiang-Jen Hong, Sang-Yoon Chang, and Xiaobo Zhou. 2023. Auto-tune: An effi-

cient autonomous multi-path payment routing algorithm for Payment Channel

Networks. Computer Networks 225 (2023), 109659.
[9] Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The elliptic curve

digital signature algorithm (ECDSA). International journal of information security
1 (2001), 36–63.

[10] Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan. 2023.

RACED: Routing in Payment Channel Networks Using Distributed Hash Ta-

bles. arXiv preprint arXiv:2311.17668 (2023).
[11] Zilin Liu, Anjia Yang, Jian Weng, Tao Li, Huang Zeng, and Xiaojian Liang. 2022.

Gmhl: generalized multi-hop locks for privacy-preserving payment channel

networks. Cryptology ePrint Archive (2022).
[12] LND. 2023. LND soruce routing. https://lightning.engineering/posts/2018-05-23-

routing/.

[13] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. 2016.

Silentwhispers: Enforcing security and privacy in decentralized credit networks.

Cryptology ePrint Archive (2016).
[14] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. 2018. Anonymous multi-hop locks for blockchain scalability and

interoperability. Cryptology ePrint Archive (2018).
[15] Networkx library [n. d.]. Networkx library. https://networkx.org/

[16] Onion routing [n. d.]. Onion routing. https://www.onion-router.net/

[17] Gaurav Panwar, Satyajayant Misra, and Roopa Vishwanathan. 2019. Blanc:

Blockchain-based anonymous and decentralized credit networks. In Proceedings
of the Ninth ACM Conference on Data and Application Security and Privacy. 339–
350.

[18] Simon Parsons, Juan A Rodriguez-Aguilar, and Mark Klein. 2011. Auctions and

bidding: A guide for computer scientists. ACM Computing Surveys (CSUR) 43, 2
(2011), 1–59.

[19] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments.

[20] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa

Osuntokun. 2016. Flare: An approach to routing in lightning network. White
Paper (2016), 144.

[21] Raiden Network [n. d.]. Raiden Network. https://raiden.network/

[22] Ripple [n. d.]. Ripple. https://ripple.com/

[23] Ripple API [n. d.]. Ripple API. https://data.ripple.com/

[24] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. 2019. Discharged pay-

ment channels: Quantifying the lightning network’s resilience to topology-based

attacks. In 2019 ieee european symposium on security and privacy workshops (eu-
ros&PW). IEEE, 347–356.

[25] Stefanie Roos, Martin Beck, and Thorsten Strufe. 2016. Anonymous addresses

for efficient and resilient routing in f2f overlays. In IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications. IEEE, 1–9.

[26] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. 2017.

Settling payments fast and private: Efficient decentralized routing for path-based

transactions. arXiv preprint arXiv:1709.05748 (2017).
[27] István András Seres, Dániel A Nagy, Chris Buckland, and Péter Burcsi. 2019.

Mixeth: efficient, trustless coin mixing service for ethereum. Cryptology ePrint
Archive (2019).

[28] Nafiseh Sharghivand, Farnaz Derakhshan, and Nazli Siasi. 2021. A comprehensive

survey on auction mechanism design for cloud/edge resource management and

pricing. IEEE Access 9 (2021), 126502–126529.

[29] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan,

Parimarjan Negi, Lei Yang, RadhikaMittal, Giulia Fanti, andMohammad Alizadeh.

2020. High throughput cryptocurrency routing in payment channel networks. In

USENIX Symposium on Networked Systems Design and Implementation (NSDI).
[30] Trampoline routing [n. d.]. Trampoline payments. https://lightningprivacy.com/

en/blinded-trampoline

[31] P. F. Tsuchiya. 1988. The Landmark Hierarchy: A New Hierarchy for Routing in

Very Large Networks. In Symposium Proceedings on Communications Architectures
and Protocols (Stanford, California, USA) (SIGCOMM ’88). Association for Comput-

ing Machinery, New York, NY, USA, 35–42. https://doi.org/10.1145/52324.52329

[32] Visa [n. d.]. Visa. https://usa.visa.com/dam/VCOM/download/corporate/media/

visanet-technology/visa-net-booklet.pdf. Accessed: 2023-09-18.

[33] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. 2019. Flash: efficient dynamic

routing for offchain networks. In Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies. 370–381.

[34] Philipp Zabka, Klaus-T Foerster, Stefan Schmid, and Christian Decker. 2022.

Empirical evaluation of nodes and channels of the lightning network. Pervasive
and Mobile Computing 83 (2022), 101584.

[35] Kun Zhang, Rui Wang, and Depei Qian. 2010. Aim: An auction incentive mecha-

nism in wireless networks with opportunistic routing. In 2010 13th IEEE Interna-
tional Conference on Computational Science and Engineering. IEEE, 28–33.

[36] Yang Zhang, Chonho Lee, Dusit Niyato, and PingWang. 2012. Auction approaches

for resource allocation in wireless systems: A survey. IEEE Communications
surveys & tutorials 15, 3 (2012), 1020–1041.

[37] Yuhui Zhang and Dejun Yang. 2021. Robustpay+: Robust payment routing

with approximation guarantee in blockchain-based payment channel networks.

IEEE/ACM Transactions on Networking 29, 4 (2021), 1676–1686.

[38] Yuhui Zhang, Dejun Yang, and Guoliang Xue. 2019. Cheapay: An optimal algo-

rithm for fee minimization in blockchain-based payment channel networks. In

ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, 1–6.

A PROTOCOLS

Protocol 5: Setup and Broadcast Protocol

1 for 𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + + do
2 node 𝑖 does KeyGen(1𝜆)→ sk𝑖 , vk𝑖
3 node 𝑖 does KeyGen(1𝜆)→ SK𝑖 , VK𝑖
4 node 𝑖 does Signski (VKi)→ 𝜎VKi

5 node 𝑖 calls RetrieveNeighbors(vk𝑖)→ I𝑖
6 node 𝑖 sends vk𝑖 to all the nodes in I𝑖
7 for j=1;j≤ |I𝑖 |;j++ do
8 if(Verifyvk𝑖 (VK𝑖 , 𝜎VK𝑖

)→ 0), 𝑗 return ⊥
9 𝑛𝑠 picks 𝑥 ←$ {0, 1}𝜆 , does 𝐻 (𝑥)→ txid

10 𝑛𝑠 sends the (txid, amt, vk𝑛𝑠) to the 𝑛𝑑 via a secure

out-of-band communication channel 𝑛𝑠 constructs RREQ
= (txid) and broadcasts it to all the nodes in I𝑛𝑠 . The nodes
in I𝑛𝑠 forward this tuple to their neighbors until it reaches

the intended 𝑛𝑑

Setup and Broadcast, Protocol 5: At a high level, this protocol

handles the generation of the signing and verification keypairs of a

node, and the creation and transmission of a transaction identifier,

txid. In this paper, we assume the existence of two pairs of keys for

a node i, a long-term key pair, ski and vki, a temporary key pair,

SKi, VKi. The temporary verification key of a node is signed by its

long-term signing key (lines 1-4). This signature is verified by all the

immediate neighbors of the node i in the network (lines 7, 8). This

ties the node’s temporary identity to its long-term identity. Each

node i uses its temporary identity to interact with non-neighboring

nodes in the network. This protocol also handles the communication

of the transaction details, the transaction id, txid that uniquely

identifies each transaction, the amt that the 𝑛𝑠 intends to send,

13

https://git.tu-berlin.de/rohrer/discharged-pc-data/tree/master/snapshots
https://git.tu-berlin.de/rohrer/discharged-pc-data/tree/master/snapshots
https://lightning.engineering/posts/2018-05-23-routing/
https://lightning.engineering/posts/2018-05-23-routing/
https://networkx.org/
https://www.onion-router.net/
https://raiden.network/
https://ripple.com/
https://data.ripple.com/
https://lightningprivacy.com/en/blinded-trampoline
https://lightningprivacy.com/en/blinded-trampoline
https://doi.org/10.1145/52324.52329
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/visa-net-booklet.pdf
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/visa-net-booklet.pdf

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

the long-term verification key of the 𝑛𝑠 , vk𝑛𝑠 to the 𝑛𝑑 through a

secure out-of-band communication channel (line 9-10). Finally, this

protocol handles the broadcasting of the RREQ tuple, containing

the txid to all the nodes in the network.

B SECURITY ANALYSIS
1) F𝑖𝑛𝑖𝑡 functionality: This functionality is depicted in Figure 5. It

handles the generation and verification of identities for all the nodes

in the PCN. This functionality performs two operationsKey Gener-
ation and Identity Verification. In the Key Generation phase, the

F𝑖𝑛𝑖𝑡 functionality generates the long-term and temporary signing

and verification key pairs using the F𝑠𝑖𝑔 functionality. The purpose
of creating a temporary identity is to hide the real identity of a

node from its non-neighboring nodes in the network. Once the

identities are generated, F𝑖𝑛𝑖𝑡 also handles the verification of the

node’s temporary identity by its neighbors.

Figure 5: F𝑖𝑛𝑖𝑡 functionality
Key Generation: Upon receiving the tuple (KeyGen,
𝑠𝑖𝑑𝑖) from node 𝑖 or S, F𝑖𝑛𝑖𝑡 forwards it to F𝑠𝑖𝑔 . Upon

receiving (Long Term Verification Key, 𝑠𝑖𝑑𝑖 , vk𝑖) and

(Temporary Verification Key, 𝑠𝑖𝑑𝑖 , VK𝑖), F𝑖𝑛𝑖𝑡 stores the

tuple (𝑠𝑖𝑑𝑖 , vk𝑖 , VK𝑖) in the table utable and sends

the tuple (Long Term Verification Key, 𝑠𝑖𝑑𝑖 , vk𝑖) and

(Temporary Verification Key, 𝑠𝑖𝑑𝑖 , VK𝑖) to the node and

the simulator S. Upon receiving the tuple (Sign, 𝑠𝑖𝑑𝑖 , VK𝑖) from
node 𝑖 or S, F𝑖𝑛𝑖𝑡 sends the tuple (Sign, 𝑠𝑖𝑑𝑖 , VK𝑖) to F𝑠𝑖𝑔 . If
F𝑠𝑖𝑔 responds with (Signature, 𝑠𝑖𝑑𝑖 , VK𝑖 , 𝜎VK𝑖

), F𝑖𝑛𝑖𝑡 updates the
corresponding entry in utable to (𝑠𝑖𝑑𝑖 , ·, ·, 𝜎VK𝑖

) and sends the

tuple (Signature, 𝑠𝑖𝑑𝑖 , VK𝑖 , 𝜎VK𝑖
) to the node and also to S. Else

F𝑖𝑛𝑖𝑡 returns ⊥.
Identity Verification: Upon receiving the tuple

(Immediate Neighbors, I𝑖) from node 𝑖 or S, F𝑖𝑛𝑖𝑡 sends

the tuple (Temporary Verification Key, VK𝑖) to all the nodes in I𝑖 .
Upon receiving the tuple (Verify, 𝑠𝑖𝑑𝑖 , VK𝑖 , 𝜎VK𝑖

, vk𝑖) from nodes

in I𝑖 or S, F𝑖𝑛𝑖𝑡 sends the tuple (Verify, 𝑠𝑖𝑑𝑖 , VK𝑖 , 𝜎VK𝑖
,vk𝑠𝑖𝑑)

to F𝑠𝑖𝑔 . Upon receiving (Verify, 𝑠𝑖𝑑𝑖 , VK𝑖 , 𝑓) from F𝑠𝑖𝑔 , F𝑖𝑛𝑖𝑡
updates the utable with (𝑠𝑖𝑑𝑖 , ·, · ,·, 𝑓) and sends the tuple (Verify,
𝑠𝑖𝑑𝑖 , VK𝑖 , 𝑓) to the nodes in I𝑖 and this tuple is also sent to the S.

2) F𝐴𝑈𝐶 functionality: This functionality is depicted in the Fig-

ure 6. It performs two operations, Auction and Bidding. The auc-
tion operation handles the auctioning of the maximum capacities,

maxcap available in the channels from the 𝑛𝑑 to the 𝑛𝑠 , and the

corresponding bidding of the nodes for these capacities. The func-

tionality initially broadcasts the RREQ tuple sent by 𝑛𝑠 to all its

immediate neighbors until it reaches the 𝑛𝑑 . Once this is done, the

functionality sends an AUC tuple constructed by each node taking

part in the auction to all of the node’s immediate neighbors from

whom the RREQ message was received. This terminates the auc-

tioning operation. In the Bidding phase, every node that intends

to take part in the auction will construct appropriate bidding tuples

with the appropriate prices and sends them to the auctioneer.

3) F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality: This functionality is depicted in the Fig-

ure 8, it performs two operations: Path Selection and HTLC Es-
tablishment. The path selection begins with 𝑛𝑑 sending the details

needed for HTLC establishment and payment (the digest and the

corresponding preimage) to the functionality. 𝑛𝑠 then sends in the

list of all the paths K , along which all the splits of the amt will be
routed. Once the appropriate checks are performed, these details

are stored by the functionality. The final operation in this is the

HTLC establishment, in which the functionality helps every pair

of consecutive nodes along every path from 𝑛𝑠 to 𝑛𝑑 establish the

HTLC and complete the payment.

4)Fℎ𝑡𝑙𝑐 functionality: The steps of theFℎ𝑡𝑙𝑐 functionality are straight
forward. This functionality is depicted in Figure 7.

5)F𝐵𝐶 functionality: This functionality handles the blockchain read

and write operations. The steps are described in Figure 9.

Proof. Initialization: The actions of the honest users, H, ⊂
[1..𝑛], 𝑛 is the number of nodes in the network are simulated by

the simulator S and the actions of dishonest users, D ⊂ [1..𝑛],

are simulated by the adversary A. For each node 𝑖 ∈ H, S gener-

ates the input tuples (Key Gen, 𝑠𝑖𝑑𝑖) and sends them to the F𝑖𝑛𝑖𝑡
functionality. It calls the F𝑠𝑖𝑔 functionality and forwards the tu-

ple (Key Gen, 𝑠𝑖𝑑𝑖). For each node 𝑖 ∈ H, the F𝑖𝑛𝑖𝑡 sends a tuple

(Long Term Verification Key, 𝑠𝑖𝑑𝑖 , vk𝑖)
and (Temporary Verification Key, 𝑠𝑖𝑑𝑖 ,VK𝑖) to S. For each node 𝑖 ∈
H, S, generates the input (Sign, 𝑠𝑖𝑑𝑖 , VK𝑖) and sends it to F𝑖𝑛𝑖𝑡 func-
tionality. F𝑖𝑛𝑖𝑡 and forwards the tuple (Sign, 𝑠𝑖𝑑𝑖 , VK𝑖) sent by S.
Upon receiving the tuple (Signature, 𝑠𝑖𝑑𝑖 , VK𝑖 , 𝜎𝑖), from F𝑠𝑖𝑔 , this
tuple is forwarded to S by the F𝑖𝑛𝑖𝑡 functionality. The adversary
A generates the tuples (Long Term Verification Key,
𝑠𝑖𝑑 𝑗 , vk𝑗) and (Temporary Verification Key, 𝑠𝑖𝑑 𝑗 ,VK𝑗), for those nodes
𝑗 ∈ D that have a direct connection with the nodes ∈ H and gives

them to S. The adversary A also generates the tuple (Verify, VK𝑗 ,
𝜎VK𝑗

, vk𝑗) for those nodes 𝑗 ∈ D that have a direct connection with

the nodes ∈ H and sends it to S. S forwards this tuple to the F𝑖𝑛𝑖𝑡
functionality. Upon receiving the tuple (Verify, 𝑠𝑖𝑑 𝑗 , VK𝑗 , 𝑓) from
the F𝑖𝑛𝑖𝑡 functionality, S forwards this tuple to A. If the value of

𝑓 in the tuple is 𝜙 or 0, the F𝑖𝑛𝑖𝑡 functionality sends a ⊥ to S who

forwards this to A.

Auction : This handles the auctioning of the maxcap between the

nodes along the path from the 𝑛𝑠 to 𝑛𝑑 and also the sending of

the RREQ tuple from the 𝑛𝑠 to the 𝑛𝑑 . We shall describe the RREQ
sending first. Here we will have 3 cases

Case 0: 𝑛𝑠 and I𝑛𝑠 ∈ H: S constructs the tuple (RREQ , txid) and

sends this tuple to the F𝐴𝑈𝐶 functionality. It sends a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 mes-

sage back to the S.
Case 1: 𝑛𝑠 ∈ H and some I𝑛𝑠 ∈ D: S constructs the tuple (RREQ ,

txid) and sends it to the F𝐴𝑈𝐶 functionality and also toA. It sends

a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 message to the S.
Case 2: 𝑛𝑠 ∈ D and some intermediate nodes in H: A constructs

the tuple (RREQ , txid) and sends it to S. S forwards this tuple to

the F𝐴𝑈𝐶 functionality. The F𝐴𝑈𝐶 functionality sends this tuple

back to S, who forwards this tuple to A.

Next, the 𝑛𝑑 sends the RREP tuple to all the nodes in P𝑛𝑑 . Here we
have 4 cases:

Case 0: 𝑛𝑑 and I𝑛𝑑 ∈ H: S constructs the tuple 𝑡 = (RREP, (txid,
14

Auroch: Auction-Based Multipath Routing for Payment Channel Networks ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Figure 6: F𝐴𝑈𝐶 Ideal Functionality
𝑛𝑠 , 𝑛𝑑 communication: Upon receiving the tuple (pay, txid,
amt, vk𝑛𝑠 , 𝑠𝑖𝑑𝑛𝑑 , 𝑠𝑖𝑑𝑛𝑠) from 𝑛𝑠 , the F𝐴𝑈𝐶 functionality send

this tuple to the F𝑖𝑛𝑖𝑡 functionality. Upon receiving the

message (RESP, Success) from the F𝑖𝑛𝑖𝑡 functionality, the
F𝐴𝑈𝐶 functionality forwards the tuple (pay, txid, amt, vk𝑛𝑠 ,
𝑠𝑖𝑑𝑛𝑑) to the 𝑛𝑑 and stores the txid, amt in the txtable =
(𝑠𝑖𝑑𝑛𝑠 , txid, amt, ⊥, ⊥, ⊥, ⊥, ⊥, ⊥). If the F𝑖𝑛𝑖𝑡 functionality
returns a tuple (RESP, ⊥), the F𝐴𝑈𝐶 functionality returns a ⊥
and aborts.

RREQ sending: Upon receiving the tuple (RREQ , txid, 𝑠𝑖𝑑𝑛𝑠 ,

I𝑛𝑠) from the 𝑛𝑠 , F𝐴𝑈𝐶 functionality send this tuple to the

F𝑖𝑛𝑖𝑡 functionality. Upon receiving the tuple (RESP, Success)
from the F𝑖𝑛𝑖𝑡 functionality, F𝐴𝑈𝐶 functionality checks if

(𝑠𝑖𝑑𝑛𝑠 , txid, ·, ⊥, ⊥, ⊥, ⊥, ⊥, ⊥) exists in txtable. If yes, the
F𝐴𝑈𝐶 functionality forwards the tuple (RREQ , txid) to all the

nodes in I𝑛𝑠 . Else, the functionality.

RREP sending to P𝑛𝑑 : Upon receiving the tuple 𝑡 = (RREP,
(txid, VK𝑛𝑑 , P, amt, 0, 𝜎RREP𝑛𝑑), P𝑛𝑑) from the 𝑛𝑑 , the F𝐴𝑈𝐶
functionality checks if the tuple (𝑠𝑖𝑑𝑛𝑠 , txid, amt, ⊥, ⊥, ⊥, ⊥,
⊥, ⊥) exists in txtable. If yes, F𝐴𝑈𝐶 functionality forwards

this tuple to the F𝑖𝑛𝑖𝑡 functionality. Upon receiving the tuple

(RESP, Success) from the F𝑖𝑛𝑖𝑡 functionality, the F𝐴𝑈𝐶
functionality forwards the tuple (Verify, 𝑠𝑖𝑑𝑛𝑑 , 𝑡 , 𝜎RREP, VK𝑛𝑑
) to the F𝑠𝑖𝑔 functionality. Upon receiving the tuple (Verify,
𝑠𝑖𝑑𝑛𝑑 , 𝑡 , 𝑓) from the F𝑠𝑖𝑔 functionality, the F𝐴𝑈𝐶 checks the

value of 𝑓 . If 𝑓 = 0 or 𝑓 = 𝜙 , the functionality returns a ⊥ and

aborts. If not, the F𝐴𝑈𝐶 functionality sends the tuple

𝑡 = (txid,VK𝑛𝑑 , P, amt, 0, 𝜎RREP) to each node 𝑔 ∈ P𝑛𝑑 and

stores the P, P𝑛𝑑 in the txtable = (𝑠𝑖𝑑𝑛𝑠 , ·, ·, P, P𝑛𝑑 , ⊥, ⊥, ⊥,
⊥).

VK𝑛𝑑 , P𝑛𝑑 , amt, 0, 𝜎𝑛𝑑RREP)) and sends this tuple to F𝐴𝑈𝐶 function-

ality, who performs the required checks and sends this tuple back

to S.
Case 1: 𝑛𝑑 ∈ H and some I𝑛𝑑 ∈ D: S constructs the tuple 𝑡 = (RREP,
(txid, VK𝑛𝑑 , P𝑛𝑑 , amt, 0, 𝜎𝑛𝑑RREP)) and sends this tuple to F𝐴𝑈𝐶 func-

tionality and A. F𝐴𝑈𝐶 functionality performs the required checks

and sends this tuple back to S.
Case 2: 𝑛𝑑 ∈ D and some I𝑛𝑑 ∈ H:A constructs the tuple 𝑡 = (RREP,
(txid, VK𝑛𝑑 , P𝑛𝑑 , amt, 0, 𝜎𝑛𝑑RREP)) and sends it to S, who sends this

to F𝐴𝑈𝐶 functionality. If all the checks performed by F𝐴𝑈𝐶 func-

tionality pass, it returns the same back to S who sends this to A.

If not, the functionality returns a ⊥ to S. Case 3: 𝑛𝑑 and P𝑛𝑑 ∈ D:
This case is simulated by A.

Now auction commences between every pair of nodes 𝑔 and 𝑔′.
Here we will have 4 cases.

Case 0: 𝑔 ∈ H and 𝑔′ ∈ H: S constructs an input tuple (AUC, txid,
vk𝑔 , maxcap𝑔,𝑔+1, RP𝑔 , 𝜎

𝑔

AUC) and sends it to the F𝐴𝑈𝐶 function-

ality. Upon receiving this tuple from S, the F𝐴𝑈𝐶 functionality

stores the required information and sends this tuple back to S who

forwards this tuple to the node 𝑔′.
Case 1: 𝑔 ∈ H and 𝑔′ ∈ D: S constructs an input tuple (AUC, txid,

Figure 6: F𝐴𝑈𝐶 Ideal Functionality Continued
Auction: Upon receiving the tuple (AUC, txid, vk𝑔 , maxcap𝑔,𝑔+1,

RP𝑔 , 𝜎
𝑔

AUC) from each node 𝑔 ∈ P𝑛𝑑 , the F𝐴𝑈𝐶 functionality

checks if the tuple (𝑠𝑖𝑑𝑛𝑠 , txid, ·, ·, ·, ⊥, ⊥, ⊥, ⊥) exists in the txtable.
F𝐴𝑈𝐶 forwards this tuple to the F𝑖𝑛𝑖𝑡 functionality. For every node

𝑔 in P𝑛𝑑 , if F𝑖𝑛𝑖𝑡 functionality returns a tuple (RESP, Success),
F𝐴𝑈𝐶 functionality sends the tuple (Verify, 𝑠𝑖𝑑𝑔 , AUC, 𝜎

𝑔

AUC, vk𝑔)
to F𝑠𝑖𝑔 functionality. Else, the F𝐴𝑈𝐶 functionality returns a ⊥ and

aborts. Upon receiving the tuple (Verify, 𝑠𝑖𝑑𝑔 , AUC, 𝑓), F𝐴𝑈𝐶
checks the value of 𝑓 . If 𝑓 = 0 or if 𝑓 = 𝜙 , the functionality returns

a ⊥ and aborts. If not, the F𝐴𝑈𝐶 functionality sends the tuple

(AUC, txid, vk𝑔 , maxcap𝑔,𝑔+1, RP𝑔 , 𝜎
𝑔

AUC) to the nodes 𝑔′ ∈ I𝑛𝑑 .

Bidding: Upon receiving the tuple (BID, txid, maxcap𝑔,𝑔′ , BP𝑔′ ,

𝜎
𝑔′

BID) from each node 𝑔′ ∈ I𝑛𝑑 to whom the AUC tuple was sent,

the F𝐴𝑈𝐶 functionality checks if the tuple (𝑠𝑖𝑑𝑛𝑠 , txid, ·, ·, ·, ⊥, ⊥,
⊥, ⊥) exists in the txtable. If not, the functionality returns a ⊥ and

aborts. If yes, the F𝐴𝑈𝐶 functionality sends the tuple (Verify, 𝑠𝑖𝑑𝑔′ ,

(BID, 𝜎𝑔
′

BID, vk𝑔′) to the F𝑠𝑖𝑔 functionality. Upon receiving the tuple

Verify, 𝑠𝑖𝑑𝑔′ , BID, 𝑓). If the value of 𝑓 is either 0 or 𝜙 , the F𝐴𝑈𝐶
functionality constructs a tuple (BC Write, vk𝑔 , 𝑡 , 𝜎

𝑔

BID), where 𝑡 =

BID tuple, and sends this tuple to F𝐵𝐶 functionality. F𝐴𝑈𝐶
functionality also returns a ⊥ and aborts. If not, the functionality

forwards the tuple BID, txid, maxcap𝑔,𝑔′ , BP𝑔′ , 𝜎
𝑔′

BID) to 𝑔. s

Bidder authentication: Upon receiving the tuple (Valid Bidders,
B, txid, 𝑠𝑖𝑑𝑔) from 𝑔, the F𝐴𝑈𝐶 functionality updates the txtable to
store (·, txid, ·, ·, ·, B, ⊥, ⊥, ⊥).

Final RREP sending: Upon receiving the tuple (RREP, txid, P,
currmax𝑔′,𝑛𝑑 , cost𝑔′,𝑛𝑑 , 𝜎RREP, vk𝑔) from 𝑔 for every node 𝑔′,
F𝐴𝑈𝐶 retrieves the txid and B from txtable(·, txid, ·, ·, ·, B, ⊥, ⊥,
⊥) and checks if each node 𝑔′ ∈ B. If not, F𝐴𝑈𝐶 returns a ⊥ and

aborts. If not, F𝐴𝑈𝐶 checks if txid ∈ txtable (·, txid, ·, ·, ·, ·, ⊥, ⊥, ⊥).
If yes, F𝐴𝑈𝐶 functionality sends the tuple (Verify, 𝑠𝑖𝑑𝑔 , RREP,
𝜎RREP, vk𝑔′) to F𝑠𝑖𝑔 functionality. Upon receiving the tuple (Verify,
𝑠𝑖𝑑𝑔 , RREP, 𝑓) from F𝑠𝑖𝑔 functionality, F𝐴𝑈𝐶 checks the value of 𝑓 .

If 𝑓 = 0 or if 𝑓 = 𝜙 , the functionality returns a ⊥ and aborts.

vk𝑔 ,maxcap𝑔,𝑔+1, RP𝑔 , 𝜎
𝑔

AUC) and sends it to the F𝐴𝑈𝐶 functional-

ity. The F𝐴𝑈𝐶 functionality stores the required information sends

this tuple back to S who forwards this tuple to A that simulates

the node 𝑔′.
Case 2: 𝑔 ∈ D and 𝑔′ ∈ H: Initially S sends the (txid) to A. A
will construct the auction tuple (AUC, txid, vk𝑔 , maxcap𝑔,𝑔+1, RP𝑔 ,

𝜎
𝑔

AUC) and will send it to S, who forwards this tuple to the F𝐴𝑈𝐶
functionality. If the value of 𝑓 ̸= 1, the F𝐴𝑈𝐶 functionality will

return a ⊥, abort and will send this message to the S who in turn

forwards this to A.

Case 3: Both 𝑔 and 𝑔′ ∈ D: This case is locally simulated by A.

Bidding: The bidding is carried out by the node 𝑔′ after it receives
the auction tuple during auction from node 𝑔. Here we have 4 cases

Case 0:𝑔′ ∈H and𝑔 ∈H:S constructs a tuple (BID, txid,maxcap𝑔,𝑔′ ,
15

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

BP𝑔′ , 𝜎
𝑔′

𝐵𝐼𝐷
) for the node 𝑔′ and sends this tuple to the F𝐴𝑈𝐶 func-

tionality. The F𝐴𝑈𝐶 functionality records the required information

and sends this tuple back to S.
Case 1: 𝑔′ ∈ D and 𝑔 ∈ H: S sends the (txid, maxcap𝑔,𝑔′) to A. A

Figure 7: Fℎ𝑡𝑙𝑐 ideal functionality
• Initialization: Upon receiving the tuple (Payment,

vk𝐵𝑜𝑏 , vk𝐴𝑙𝑖𝑐𝑒 , 𝑠𝑖𝑑𝐴𝑙𝑖𝑐𝑒) from F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 , Fℎ𝑡𝑙𝑐 checks

if vk𝐴𝑙𝑖𝑐𝑒 , vk𝐵𝑜𝑏 ∈ utable = (𝑠𝑖𝑑𝐴𝑙𝑖𝑐𝑒 , vk𝐴𝑙𝑖𝑐𝑒 ·, ·, ·) and
utable = (𝑠𝑖𝑑𝐵𝑜𝑏 , 𝑣𝑘𝐵𝑜𝑏 , ·, ·, ·) respectively. If yes, Fℎ𝑡𝑙𝑐
sends a message (Init OK) to Bob. Else it returns a

⊥. Upon receiving the tuple (Payment, vk𝐵𝑜𝑏 , vk𝐴𝑙𝑖𝑐𝑒 ,
𝑠𝑖𝑑𝐴𝑙𝑖𝑐𝑒) from F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 , Fℎ𝑡𝑙𝑐 checks if vk𝐴𝑙𝑖𝑐𝑒 , vk𝐵𝑜𝑏
∈ utable = (𝑠𝑖𝑑𝐴𝑙𝑖𝑐𝑒 , vk𝐴𝑙𝑖𝑐𝑒 ·, ·, ·) and utable = (𝑠𝑖𝑑𝐵𝑜𝑏 ,

𝑣𝑘𝐵𝑜𝑏 , ·, ·, ·) respectively. If yes, Fℎ𝑡𝑙𝑐 sends a message

(Init OK) to Alice. Else it returns a ⊥.
• HTLC fulfillment: Upon receiving the tuple

(HTLC tuple, vk𝑖 , vk𝑖+1, txid, amt, 𝑌 , 𝑋) for every pair

of consecutive nodes along the path of the txid from

Bob to Alice, from F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality, Fℎ𝑡𝑙𝑐 checks
if 𝐻 (𝑋) = 𝑌 , if yes, Fℎ𝑡𝑙𝑐 sends a message (Success) to

F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 . Else it returns a ⊥.

generates the bidding tuple (BID, txid,maxcap𝑔,𝑔′ , BP𝑔′ , 𝜎
𝑔′

𝐵𝐼𝐷
) and

sends it to the S. S forwards this tuple to the F𝐴𝑈𝐶 functionality.

If any of the entries in the tuple are incorrect, the F𝐴𝑈𝐶 returns a

⊥ and aborts and sends the ⊥ to S who in turn forwards this tuple

to A.

Case 2:𝑔′ ∈H and𝑔 ∈D:S constructs a tuple (BID, txid,maxcap𝑔,𝑔′ ,

BP𝑔′ , 𝜎
𝑔′

𝐵𝐼𝐷
) for the node 𝑔′ and sends this tuple to the F𝐴𝑈𝐶 func-

tionality. F𝐴𝑈𝐶 functionality records the required information and

sends this tuple back to S, who in turn forwards this tuple to A.

Valid bidders: This handles the sending of the valid bidder’s tuple
by the node 𝑔 to the F𝐴𝑈𝐶 functionality. Here we have 2 cases.

Case 0: 𝑔 ∈ H: S constructs the tuple (Valid Bidders, B, txid, 𝑠𝑖𝑑𝑔)
and sends it to the F𝐴𝑈𝐶 functionality. F𝐴𝑈𝐶 functionality stores

the required information in the txtable and returns a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 mes-

sage to S.
Case 1: 𝑔 ∈ D: S will send the tuple (txid) to A. A creates the

tuple (Valid Bidders, B, txid, 𝑠𝑖𝑑𝑔) and sends it to S, who sends

it to F𝐴𝑈𝐶 . If any of the entries in the tuple are incorrect, F𝐴𝑈𝐶
returns a ⊥.
RREP send: Once the BID tuples have been received by the node

𝑔′, every node 𝑔 sends an RREP tuple to the node 𝑔′. Here we have
2 cases

Case 0: 𝑔 ∈ H: S constructs the tuple (RREP, txid, P, currmax𝑔′,𝑛𝑑 ,
cost𝑔′,𝑛𝑑 , 𝜎RREP, vk𝑔) for each node 𝑔′ and sends this tuple to the

F𝐴𝑈𝐶 functionality. The F𝐴𝑈𝐶 functionality sends a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 mes-

sage to S.
Case 1: 𝑔 ∈ D:A constructs the tuple (RREP, txid, P, currmax𝑔′,𝑛𝑑 ,
cost𝑔′,𝑛𝑑 , 𝜎RREP, vk𝑔) for every node 𝑔′ and sends this tuple to S
who forwards this tuple to the F𝐴𝑈𝐶 functionality. If any of the

entries in the tuple are incorrect, the F𝐴𝑈𝐶 returns a ⊥ and sends

this message to S who forwards this to A.

Figure 8: F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality
Path Selection: Upon receiving the tuple (HTLC Details, 𝑌 , 𝑋 ,
txid, 𝑠𝑖𝑑𝑛𝑑) from the 𝑛𝑑 , the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality checks if the

tuple (𝑠𝑖𝑑𝑛𝑑 , txid, ·, ·, ·, ·, ·, ·, ·, ·, ·) exists in the txtable. F𝑃𝑎𝑦𝑚𝑒𝑛𝑡
also checks if the tuple (𝑠𝑖𝑑𝑛𝑑 , ·, ·, ·, ·) exists in the utable. If these
checks do not pass, the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 returns a ⊥ and aborts. If all

these checks pass, the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 updates the txtable to store (𝑠𝑖𝑑𝑛𝑠 ,

·, ·, ·, ·, ·, ·, ·, ·, ·, 𝑌 , 𝑋) and sends the tuple (HTLC Details, 𝑌 , 𝑋 ,
txid, 𝑠𝑖𝑑𝑛𝑑) to 𝑠𝑖𝑑𝑛𝑠 . Upon receiving the tuple (All Paths, K , 𝑠𝑖𝑑𝑛𝑠)
from 𝑛𝑠 , the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality checks if the tuple (𝑠𝑖𝑑𝑛𝑠 , txid,

·, ·, ·, ·, ·, ·, ·, ·, 𝑌 , 𝑋) exists in the txtable. If this check does not pass,

the functionality returns a ⊥ and aborts. If not, the functionality

updates the txtable to store (𝑠𝑖𝑑𝑛𝑠 , txid, ·, ·, ·, ·, ·, ·, ·, ·, ·, ·, K).

HTLC Establishment: Upon receiving the tuple (HTLC Tuple,
𝑣𝑘i, vki+1, txid, amt, 𝑌 , 𝑋) from i, for each pair of consecutive

nodes i, i + 1 along the path from the 𝑛𝑠 to the 𝑛𝑑 , the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡
functionality checks if the tuple (𝑠𝑖𝑑𝑛𝑠 , txid, amt, ·, ·, ·, ·, ·, ·, ·, 𝑌 , 𝑋 ,
·). F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 then retrieves the list K from the tuple (𝑠𝑖𝑑𝑛𝑠 , ·, ·, ·, ·,
·, ·, ·, ·, ·, ·, ·, K) exists in the txtable and retrieves all the P from the

K and checks if the nodes i and i + 1 are consecutive nodes in any

of these P lists. If any of these checks fail, the functionality returns

a ⊥ and aborts. If all the checks pass, the tuple (HTLC Payment,
𝑣𝑘i, vki+1, txid, amt, 𝑌 , 𝑋) is sent to the Fℎ𝑡𝑙𝑐 functionality. Upon
receiving the messages, either (Success) or ⊥, they will be

forwarded to the node i + 1.

𝑔 ∈ D: This case is simulated by A.

Payment: This handles the actual payment between the 𝑛𝑠 and 𝑛𝑑
in Auroch. We have the following cases to consider.

Case 0: 𝑛𝑠 , 𝑛𝑑 and all intermediate nodes are ∈ H: S constructs

the tuple (HTLC Details, 𝑌 , 𝑋 , txid, 𝑠𝑖𝑑𝑛𝑑) and sends this tuple to

the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality. The functionality returns this tuple

back to S. S constructs the tuple (All Paths, K , 𝑠𝑖𝑑𝑛𝑠) and send to

the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality. For every pair of consecutive nodes

i and i + 1 along each path from 𝑛𝑠 to 𝑛𝑑 , S constructs the tu-

ple (HTLC Tuple, vki, vki+1, txid, amt, 𝑌 , 𝑋) and sends it to the

F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality. The F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality sends this tu-

ple to Fℎ𝑡𝑙𝑐 functionality. The Fℎ𝑡𝑙𝑐 functionality sends a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

message to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality, which in turn forwards this

message to S. zCase 1: 𝑛𝑠 , 𝑛𝑑 ∈ H and some intermediate nodes

∈ D: S constructs the tuple (HTLC Details, 𝑌 , 𝑋 , txid, 𝑠𝑖𝑑𝑛𝑑) and
sends this tuple to the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality. The functionality
returns this tuple back to S. S constructs the tuple (All Paths, K ,
𝑠𝑖𝑑𝑛𝑠) and send to the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality. For every pair of

consecutive nodes, i and i+1 along each path fzrom the 𝑛𝑠 to the 𝑛𝑑 ,

such that node i is ℎ𝑜𝑛𝑒𝑠𝑡 and node i + 1 is 𝑑𝑖𝑠ℎ𝑜𝑛𝑒𝑠𝑡 , S (simulating

the honest node i) sends the tuple (vki, 𝑌 , 𝑋) to A. A simulates

the HTLC payment locally and constructs the tuple (HTLC Tuple,
vki, vki+1, txid, amt, 𝑌 , 𝑋) to S. S forwards this tuple to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡
functionality. The F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality sends this tuple to Fℎ𝑡𝑙𝑐
functionality. The Fℎ𝑡𝑙𝑐 functionality returns either a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 or a

⊥ to the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 , who sends this to S. S sends this message to

A. Similarly, for every pair of consecutive nodes along the path

from 𝑛𝑠 to 𝑛𝑑 , where i ∈ D and i + 1 ∈ H, A sens the (vki) to S. S
16

Auroch: Auction-Based Multipath Routing for Payment Channel Networks ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

constructs the tuple (HTLC Tuple, vki, vki+1, txid, amt, 𝑌 , 𝑋) and
sends this to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality, who sends this tuple to Fℎ𝑡𝑙𝑐
functionality. The Fℎ𝑡𝑙𝑐 functionality either returns a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 or ⊥
and this sent to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality, who sends this to S, who
in turn sends this to A.

Figure 9: F𝐵𝐶 functionality
Blockchain read: Upon receiving the tuple (BC Read, vki) from
a node i in the network, the F𝐵𝐶 functionality retrieves the

successfully mined blocks from the BCTable = (B1, . . . , B𝑗) and
sends this data to the node vki.

Blockchain write: Upon receiving the tuple (BC Write, 𝜎𝑡vki ,
(𝐻

txid
, ·, 𝑡 , ·, ·, ·, ·, ·, ·, ·, 1, 1, ·, ·, ·, ·, ·, ·, ·)) from a node i in the

network, the F𝐵𝐶 functionality constructs the tuple (Verify, 𝑠𝑖𝑑i,
𝑡 , 𝜎𝑡vki

, vki) to the F𝑠𝑖𝑔 functionality. Upon the receiving the

tuple (Verify, 𝑠𝑖𝑑i, 𝑡 , 𝑓) from F𝑠𝑖𝑔 functionality, If the value of 𝑓
is 𝜙 or 0, the F𝐵𝐶 functionality returns a ⊥ and aborts. If not,

F𝐵𝐶 retrieves the fees from this transaction (𝐻i, ·, 𝑡 , 𝑓 𝑒𝑒 , ·, ·, ·, ·,
·, ·, 1, 1, ·, ·, ·, ·, ·, ·, ·) and checks if this 𝑓 𝑒𝑒 > the base fees, 𝑓 𝑒𝑒′.
If yes, the F𝐵𝐶 functionality adds this transaction to the list of

pending transactions T and adds this T to the block being

currently mined B𝑐𝑢𝑟𝑟 = (·, ·, ·, T). F𝐵𝐶 internally runs a

Proof-of-Work challenge and mines a block B𝑛𝑒𝑤 and this block

is propagated to all the nodes in the network.

Case 2: 𝑛𝑠 ∈ H and some intermediate nodes are ∈ H and the 𝑛𝑑
∈ D: A constructs the tuple (HTLC Details, 𝑌 , 𝑋 , txid, 𝑠𝑖𝑑𝑛𝑑) and
sends this tuple to S, who forwards this to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 . S constructs

the tuple (All Paths, K , 𝑠𝑖𝑑𝑛𝑠) and sends this tuple to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡
functionality. For every pair of consecutive nodes, i and i + 1 along

each path from the 𝑛𝑠 to the 𝑛𝑑 , such that node i is ℎ𝑜𝑛𝑒𝑠𝑡 and node

i + 1 is 𝑑𝑖𝑠ℎ𝑜𝑛𝑒𝑠𝑡 , S sends the tuple (vki, 𝑌 , 𝑋) to A. A simulates

the HTLC payment locally and constructs the tuple (HTLC Tuple,
vki, vki+1, txid, amt, 𝑌 , 𝑋) to S, who sends it to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 , who
then forwards this to Fℎ𝑡𝑙𝑐 . The Fℎ𝑡𝑙𝑐 functionality returns either

a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 or a ⊥ to the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 , who sends this to S. Similarly,

for every pair of consecutive nodes along the path from 𝑛𝑠 to 𝑛𝑑 ,

where i ∈ D and i + 1 ∈ H, A sens the (vki) to S. S constructs the

tuple (HTLC Tuple, vki, vki+1, txid, amt, 𝑌 , 𝑋) and sends this to

F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality, who sends this tuple to Fℎ𝑡𝑙𝑐 functionality.
The Fℎ𝑡𝑙𝑐 functionality either returns a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 or ⊥.
Case 3: 𝑛𝑠 ∈ H, 𝑛𝑑 and some intermediate nodes are ∈ D: 𝑛𝑠 con-
structs the tuple (All Paths, K , 𝑠𝑖𝑑𝑛𝑠) and sends it to A and the

F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 will send the tuple (HTLC Details, 𝑌 , 𝑋 , txid, 𝑠𝑖𝑑𝑛𝑑) and
will send this tuple to S, who sends this tuple to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 func-
tionality. For every pair of consecutive nodes, i and i + 1 from 𝑛𝑠 to

𝑛𝑑 , such that i ∈ H and i + 1 ∈ D, S (simulating node i), sends the

tuple (vk𝑖 , 𝑌 , 𝑋), to A. A then constructs the tuple (HTLC Tuple,
vki, vki+1, txid, amt, 𝑌 , 𝑋) and sends this tuple to S, who forwards

this to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 , who sends it to Fℎ𝑡𝑙𝑐 . The Fℎ𝑡𝑙𝑐 functionality can
either return a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 or ⊥.

Case 4: 𝑛𝑠 ∈ H, 𝑛𝑑 and some intermediate nodes are ∈ D: A
(simulating the 𝑛𝑑), constructs the tuple (HTLC Details, 𝑌 , 𝑋 , txid,

𝑠𝑖𝑑𝑛𝑑) and sends this tuple to S. S sends this tuple to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡
functionality. S (simulating the honest 𝑛𝑠) constructs the tuple

(All Paths,K , 𝑠𝑖𝑑𝑛𝑠) and sends this tuple to the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 function-
ality. For every pair of consecutive nodes, i and i + 1 along each

path from 𝑛𝑠 to 𝑛𝑑 , such that i ∈ H and i+1 ∈ D, S (simulating node

i), sends the tuple (vk𝑖 , 𝑌 , 𝑋), to A. A then constructs the tuple

(HTLC Tuple, vki, vki+1, txid, amt, 𝑌 , 𝑋) and sens this tuple to S.
S will send this tuple to the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality, who in turn

forwards this tuple to Fℎ𝑡𝑙𝑐 functionality. The Fℎ𝑡𝑙𝑐 functionality
can either return a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 or ⊥. This sent to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functional-
ity, who sends this to S, who in turn sends this to A.

Case 5: 𝑛𝑠 ∈ D, some intermediate nodes in H, 𝑛𝑑 ∈ D: A, simu-

lating the 𝑛𝑑 , constructs the tuple (HTLC Details, 𝑌 , 𝑋 , txid, 𝑠𝑖𝑑𝑛𝑑)
and sends it to S. S sends this tuple to the F𝐴𝑈𝐶 functionality.

A simulating the 𝑛𝑠 , constructs the tuple (All Paths, K , 𝑠𝑖𝑑𝑛𝑠) and
sens it to S and S forwards this tuple to F𝐴𝑈𝐶 functionality. If

the entries in this tuple are incorrect, the functionality returns a

⊥ and aborts and the same message is sent to A. For every pair of

consecutive nodes, i and i + 1 along each path from 𝑛𝑠 to 𝑛𝑑 , such

that i ∈ H and i+1 ∈ D,S (simulating node i), sends the tuple (vk𝑖 ,𝑌 ,
𝑋), toA.A then constructs the tuple (HTLC Tuple, vki, vki+1, txid,
amt, 𝑌 , 𝑋) and sens this tuple to S. S will send this tuple to the

F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality, who in turn forwards this tuple to Fℎ𝑡𝑙𝑐
functionality. The Fℎ𝑡𝑙𝑐 functionality can either return a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 or

⊥. This sent to F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality, who sends this to S, who
in turn sends this to A.

Case 6: 𝑛𝑠 and some intermediate nodes ∈ D and 𝑛𝑑 ∈ H: S con-

structs the tuple (HTLC Details, 𝑌 , 𝑋 , txid, 𝑠𝑖𝑑𝑛𝑑) and sends it to

the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality. A constructs the tuple (All Paths, K)
and sends it to the S, who forwards to the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality.
If the entries in the tuple are incorrect, the F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 functionality
returns a⊥. Else, For every pair of consecutive nodes, i and i+1 from
𝑛𝑠 to 𝑛𝑑 , S sends the tuple (vk𝑖 , 𝑌 , 𝑋), toA.A then constructs the

tuple (HTLC Tuple, vki, vki+1, txid, amt, 𝑌 , 𝑋) and sens this tuple

to S, who in turn forwards this tuple to Fℎ𝑡𝑙𝑐 functionality. The
Fℎ𝑡𝑙𝑐 functionality can either return a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 or ⊥.

□

17

	Abstract
	1 Introduction
	2 Related Work
	3 System Setup
	4 Overview of Auroch
	4.1 Auroch Stages
	4.2 Auroch Workflow

	5 Construction
	6 Evaluation
	6.1 Experiment Setup
	6.2 Results
	6.3 Tradeoffs

	7 Auroch Security Analysis
	8 Conclusion
	Acknowledgments
	References
	A Protocols
	B Security Analysis

