Auroch: Auction-Based Multipath Routing for Payment Channel
Networks

Mohammed Ababneh
New Mexico State University
Las Cruces, NM, USA
mababneh@nmsu.edu

ABSTRACT

The Bitcoin blockchain scalability problem has inspired several off-
chain solutions for enabling cryptocurrency transactions, of which
Layer-2 systems such as payment channel networks (PCNs) have
emerged as a frontrunner. PCNs allow for path-based transactions
between users without the need to access the blockchain. These
path-based transactions are possible only if a suitable path exists
from the sender of a payment to the receiver. In this paper, we pro-
pose Auroch, a distributed auction-based pathfinding and routing
protocol that takes into account the routing fees charged by nodes
along a path. Unlike other routing protocols proposed for PCNs,
Auroch takes routing fees into consideration. Auroch maximizes the
profit that can be achieved by an intermediate node at the same
time minimizing the overall payment cost for the sender.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; Dis-
tributed systems security; Security protocols.

KEYWORDS

Payment channel networks, Auction, Blockchains.

ACM Reference Format:

Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan. 2024.
Auroch: Auction-Based Multipath Routing for Payment Channel Networks.
In ACM Asia Conference on Computer and Communications Security (ASIA
CCS ’24), July 1-5, 2024, Singapore, Singapore. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3634737.3657021

1 INTRODUCTION

Blockchains enabling cryptocurrencies such as Bitcoin have inher-
ent scalability problems, e.g., Bitcoin supports less than 7 transac-
tions per second [19] and Ethereum supports less than 15 transac-
tions per second [27], as compared to traditional financial systems,
e.g., Visa processes over 24,000 transactions per second [32]. Pay-
ment channel networks (PCNs) provide a solution to the scalability
challenges faced by blockchains, by enabling users to take part in
transactions without publishing each transaction to the blockchain.
Examples of PCNs include Lightning Network [19], Raiden [21], and
Ripple [22]. A payment channel is essentially a single multisigna-
ture blockchain transaction between two parties that locks up coins

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASIA CCS °24, July 1-5, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0482-6/24/07.

https://doi.org/10.1145/3634737.3657021

Kartick Kolachala
New Mexico State University
Las Cruces, NM, USA
kart1712@nmsu.edu

Roopa Vishwanathan
New Mexico State University
Las Cruces, NM, USA
roopav@nmsu.edu

for a fixed amount of time for use only between those two parties.
In contrast to the on-chain transaction confirmation mechanism
used in blockchains, once a payment channel has been established
between two parties, all transactions between them utilizing the
locked-up coins can be performed offline without the need to write
transactions on the blockchain. The available balance, i.e., coins of
a channel limits the number of transactions that can be performed
over that channel. Two nodes that do not have a direct payment
channel can still transact with each other using multiple transac-
tions over payment channels between intermediate nodes, forming
a payment channel network. To facilitate transactions between a
sender and a receiver, intermediate nodes charge routing fees. As
a result, the sender node has to pay both the actual amount that
they intend to send, along with the sum of routing fees along the
path that comprises several intermediate nodes. Figure 1 represents
a PCN with six nodes Alice, Sam, Alexa, Peter, Megan, and Chloe.
The bidirectional edges between the nodes represent the payment
channels which allow funds to be sent in both directions, the edge
weights next to each node depict that node’s local balance, and the
sum of the nodes’ local balances represents the channel capacity.

ﬂ‘ 5 10 L 12

Alice Sam o Megan
(Sender) X o
2
o 2 "\I
) » il » AR
Alexa 3 9 Peter 20 8 Chloe
(Receiver)

Figure 1: Payment channel network

If Alice wishes to send a payment to Chloe, she will need to
route the payment through intermediaries, since there is no direct
Alice—Chloe link. Alice can forward the payment along the Alice —
Sam — Megan — Chloe path or the Alice — Alexa — Peter —
Chloe path, or any of the other paths. Since Alexa, Sam, Peter, and
Megan are forwarding Alice’s payment, they will charge a certain
amount for their service, typically called routing fees. Since nodes
in a PCN are not assumed to know the entire network topology
beyond their immediate neighborhood, one of the big challenges in

https://doi.org/10.1145/3634737.3657021
https://doi.org/10.1145/3634737.3657021

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

PCNs is finding a path from a sender to a receiver in a decentralized,
privacy-preserving way. In a PCN, pathfinding depends on several
factors. One factor is the capacity or available liquidity of any
chosen path from a sender to a receiver should at least be equal to
the intended payment. In turn, a path’s capacity is upper bounded
by the minimum capacity of the payment channels between the
path’s intermediate nodes. In Figure 1, consider the path Alice —
Alexa — Peter — Chloe. If Alice intends to send a payment via this
path, the maximum amount she can send is three coins. A second
important factor, that is of interest in this work, is the routing
fees charged by intermediate nodes for routing payments. This is
especially important since prior works [13, 17, 25, 26, 29] do not
consider routing fees. Though there are prior works in the literature
that consider routing fees [4, 7, 37, 38], they either use centralized
routing techniques for pathfinding or do not have mechanisms
in place that maximize the profit of intermediate nodes (nodes
along the path from the sender to receiver, excluding the sender
and receiver). Auroch differs from these since in Auroch, we do not
use a centralized routing mechanism for pathfinding and we also
maximize the overall profit of the intermediate nodes. We envision
a scenario in which a path is constructed in a backward direction
from a receiver to a sender, and each node is offered the option of
joining a transaction path by a neighboring node that has already
joined the path. In Figure 1, from the perspective of an intermediate
node Megan, it is beneficial to select the best node among her
neighbors Sam or Alexa in terms of higher routing fees and channel
capacity. Similarly, an intermediate node Alexa might be offered
to join two paths Megan — Chloe or Peter — Chloe, then from
Alexa’s perspective, it is desirable to join the path that offers the
largest capacity and lowest cost. In summary, including routing
fees into distributed pathfinding protocols provides an incentive for
intermediate nodes to participate in transactions. This has the effect
of increasing the number of paths from sender to receiver. On the
other hand, the sender’s goal is to utilize the set of available paths,
with their different capacities and costs, to minimize the overall
cost of the payment. To provide a solution to these conflicting goals,
this paper makes the following contributions:

(1) We develop a distributed pathfinding and routing protocol,
Auroch, that provides incentives for intermediate nodes to
collaborate in route formation.

(2) To maximize the intermediate nodes’ profit, while mini-
mizing the routing cost for the sender, we provide a lin-
ear programming-based formula to divide the payment into
smaller amounts, each of which can be forwarded along
different paths.

(3) We rigorously analyze and prove the security of Auroch in
the Universal Composability framework.

(4) The performance of Auroch is evaluated on real-world PCN
datasets, and shows that it outperforms other comparable
routing protocols for PCNs, in terms of success ratio, volume
of successful transactions, and routing fees.

Auroch can potentially be leveraged to other autonomous decentral-
ized networks with unpredictable connectivity and high turnover
rates, such as IoT or edge networks.

Outline: In Section 2, we discuss related work. In Section 3,
we describe relevant concepts in auction theory. In Section 4 we

Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

give a brief overview of Auroch and in Section 5, we present its
construction. In Section 6, we present our experimental results, in
Section 7 we analyze the security of Auroch in the UC framework,
and in Section 8, we conclude the paper.

2 RELATED WORK

Routing protocols which do not consider routing fees: Flare

[20] adopts beacon-based routing, in which each node stores local

information about the network and also stores information about

beacon nodes, which are highly connected (nodes with a large num-
ber of incoming and outgoing links). A sender initially tries to find

a path to the receiver using her locally stored information, if she

is unable to do so, she contacts the nearest beacon node to facil-
itate pathfinding. Flare uses source routing in which each node

is expected to store data about the network topology and it also

does not take into account the routing fees charged by nodes. Silen-
tWhispers [13] leverages the concept of landmark routing [31], in

which a well-connected node in the network called landmark aids

the other nodes in the pathfinding process. The sender first finds a

path from itself to the landmark and the landmark then finds a path

from itself to the receiver. Both these paths are stitched together

to get the end-to-end path from the sender to the receiver. This

protocol requires every path from the sender to the receiver to pass

through a landmark, even though a shorter path is available that

does not involve a landmark and does not take the routing fees

charged by nodes into consideration during path selection. Speedy-
Murmurs [26] is a routing protocol that uses prefix embedding

for pathfinding. The network is organized as a tree, every node is

assigned a prefix and the children of a node derive their prefixes

from the parent’s prefix. This protocol calculates the path between

two nodes based on the length of the common prefix between them.
However, like [13], it does not take into account the routing fees

charged by the intermediate nodes. Blanc [17] is a pathfinding pro-
tocol that uses a subset of users to facilitate transactions, termed

“Routing Helpers”. Pathfinding from sender to receiver uses the tech-
nique of broadcast flooding, due to which the pathfinding phase

incurs a very high communication overhead. Apart from this, it

also uses the blockchain as an auditing mechanism. This results in a

significantly high number of blockchain writes, even for successful

transactions; in the event of transaction retries, the overhead is

a lot more. This protocol too like the prior ones described so far,

does not take into account routing fees charged by an intermedi-
ate node during routing. Spider [29] is a pathfinding protocol that

uses source routing, in which the sender divides the payment into

several smaller payments, each of which will be sent through a

different path. This protocol mainly focuses on avoiding depletion

of nodes’ link balances avoiding skewness (a situation where the

node’s link weights become depleted) in the network and stores

transactions in queues (each node maintains its queue). This causes

the transactions to wait for an indefinite amount of time before

they are processed. It also does not take into account the privacy

of nodes involved in the transaction.

Routing protocols that incorporate routing fees: The distributed
protocols Cheapay[38] and Robustpay+[37] both use source routing

and a flat fee structure, but they differ in the aspect that Cheapay

sends a single payment on a single path, whereas Robustpay+ uses

Auroch: Auction-Based Multipath Routing for Payment Channel Networks

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Table 1: Comparison of routing protocols that factor in routing fees

Routing Protocols | Concurrency | ScPaer/Receiver | pop/cr | sr Fees Payment Structure | .y | pyop
Privacy Path ‘ Payment
Auto-tune [8] No Yes DSR Yes Flat Multiple | Multiple | No No
MPCN-RP [4] No No CR Yes Flat Single Single No No
VEIN [7] No No CR Yes Dynamic | Multiple | Multiple | No No
Robustpay+ [37] No Yes DSR Yes Flat Multiple | Redundant | No No
Cheapay [38] No Yes DSR Yes Flat Single Single No No
Auroch Yes Yes DSR No Dynamic | Multiple | Multiple | Yes Yes

redundant payments on multiple paths. Both MPCN-RP[4] and
VEIN[7] use centralized techniques in conjunction with source
routing; however, VEIN uses dynamic fees and multiple payments
on multiple paths. MPCN-RP uses flat fees and single payment on a
single path. Auto-tune [8], similar to Cheapay and Robustpay+ uses
source routing and implements a flat fee structure. With support
for concurrency, sender/receiver privacy, distributed routing with-
out source routing, dynamic fees, single payments, intermediaries’
profit maximization, and dynamic channel balance adjustments,
Auroch maintains its distinction from other works published in
the domain. In Table 1, we give a qualitative comparison between
Auroch and other routing protocols that consider routing fees. We
now briefly describe our comparison metrics. Concurrency indi-
cates whether the routing protocol allows the node to route multiple
transactions at the same time. Send/Rec privacy indicates that the
sender/receiver identity should not be known by other nodes in
the network. Distributed/Centralized Routing (DSR/CR) indicates
whether the routing protocol employs a trusted node (e.g., land-
mark, coordinator, etc.) in the network to provide routing services.
Source routing (SR) indicates whether the sender constructs the
end-to-end path to the receiver. The intermediate nodes can ei-
ther charge a fixed fee called a flat fee or a dynamic fee based on
factors such as the transaction amount. The payment structure
indicates how the payment is routed. A single payment is when
the transaction amount is not split by the sender. Multiple pay-
ments refer to when the amount is split into multiple chunks by the
sender. A redundant payment is the same amount being transacted
across several paths where the payment that reaches the receiver
first is recorded. A single path is the sender using only one path
to route payments to the receiver. Multiple paths are the sender
using more than one path. Maximization of intermediaries profit
(MIP) indicates whether the routing protocol aims to maximize
the monetary profit of the intermediate nodes. Dynamic channel
balance (DCB) indicates whether the routing protocol considers
the dynamic changes in the channel balance of nodes during path
construction.

Auction Theory: The way buyers and sellers exchange goods in
a market is the subject of a sub-discipline of economics known as
auction theory [18]. We now give the definitions of terms from
the auction literature [28, 36] that we use in Auroch. Bidder is the
entity that submits a request in the auction to buy or sell commodi-
ties. In Auroch, any node in the network can be a bidder. Seller is
the entity that owns a commodity and wants to sell it. In Auroch,
any node in the network can be a seller. Auctioneer is the entity
that supervises and controls the bidding process. In Auroch, any

node in the network can conduct its auction and thus can have
unilateral control over it. Commodity refers to the object traded in
the auction between the buyer and seller. In Auroch, the commodity
is the path capacity between a pair of nodes. Valuation is a metric
used by the nodes to compare and decide which path needs to be
chosen in the event of having more than one path to route the
payment. The higher the valuation price for a path, the more likely
it is for that path to be chosen to route the payment. Blockchain:
Auroch can be deployed on any blockchain that supports hashed
time-locked contracts (HTLCs). Wireless networks deploy auctions
to create an appropriate reward that will encourage relay nodes to
forward data [35]. In wireless networks, energy, processing power,
and bandwidth are the resources that are auctioned. On the other
hand, in PCNs, coins on the payment channel are the resources that
are auctioned. Owing to the very different features and intent of
both networks, auctions from wireless networks cannot be trivially
ported to PCNGs.

There are various auctioning techniques available, including first
price, second price auctions [36], and proportional auctions [1]. We
do not use first-price or second-price auctions since it is not clear
whether one can deploy them in a multipath payment scenario;
rather in Auroch, we use proportional auctions [1] which seem a
natural fit since they are commonly used in contexts where the
commodity being auctioned is divisible, such as path capacity in
our case. In Auroch, bidders will compete for a path capacity that
is being offered for sale. Each bidder makes a bid in a proportional
auction, indicating the portion of the path capacity they are willing
to buy and the price they are prepared to pay per unit of that path
capacity. The winners in this auction are determined by a linear
optimization formula that takes into account both of the above
factors.

3 SYSTEM SETUP

Path Capacity: Path capacity is the defined as a the minimum
amount that can be transacted between a sender and a receiver
along a given path comprising of several intermediate nodes. In the
Figure 2a, the path capacity along the path Alice — Peter — Ivan
— Chloe is 15.

Channel Capacity: Channel capacity is defined as the total amount
(balance) two nodes have in their payment channels with each other.
In Figure 2a, the channel capacity between Alice and Peter is (25+50
=75).

Network model: A payment channel network (PCN) can be mod-
eled as a directed graph G = (V, E) in which the set of vertices V
represent network nodes (i.e., users) and E represents the set of

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

directed edges (i.e., payment channels) between nodes. Assume
nodes v; and v; have established a payment channel e; ; between
them. Then, let b; j represent the balance from node i to j (i.e., how
many coins can node i forward in the direction of node j). Note that
the balances b; j and b ; are not necessarily equal. The channel
capacity of a payment channel channel e; ; is denoted as c; j, where
Cj)j = bi,j + bj,i-
Challenges: One of the main challenges in applying auction mech-
anisms to PCN routing is the quantification of one path’s efficiency
in comparison to other possible paths. Path efficiency is a function
of several factors such as the fee the path requires, the number of
hops, and the path capacity it can provide. To overcome this chal-
lenge, Auroch proposes a new valuation price function to evaluate
the paths. The second challenge is the design of the bidding price
mechanism with the restriction of keeping the intended value of
the transaction secret (from all intermediaries) until forwarding
paths are selected. In Auroch, the bidding price mechanism is based
on the maximum capacity of intermediaries’ channels and not on
the transaction amount. Third, the local channel balances of nodes
in the payment channel network should not be revealed to nodes
other than immediate neighbors, since doing so is a privacy vio-
lation. To overcome this challenge, Auroch enables the nodes to
proactively apportion funds to different transactions, thus enabling
concurrency.
Threat model and Assumptions: In Auroch, we assume that every
node in the PCN has access to the partial view of the network topol-
ogy and no node in the PCN knows the entire network topology.
This assumption has been made since making the entire network
topology public will reveal the identities of all the nodes violating
their privacy. One of the major advantages of blockchain based
financial transactions is the ability to execute them anonymously.
Apart from this, every node maintaining the entire network topol-
ogy locally incurs a tremendous storage overhead and it may not be
possible for nodes that operate the PCN from resource constrained
devices. The Lightning Network, one of the most popular PCNs
has implemented trampoline routing protocol [30] which requires
nodes only to maintain a partial view of the network topology.
The sender, ngs and receiver, ng in Auroch can be malicious. Both
of them can choose to abandon a transaction or cause intentional
delays in the payments to lock-up collateral in channels. The inter-
mediate nodes in Auroch can be un-trusted and can act in arbitrary
ways. These nodes can misreport the maximum capacity they have
in their channels with their next-hop neighbors with the intention
of causing transaction failures. In this paper, we assume that there
is at least one viable path available for the ns to route her payment.
We assume that all users have a long-term verification/signing key-
pair and all users have pseudonymous, temporary key-pairs. Users’
temporary key-pairs do not change unless there is a dispute.
Security/privacy properties: Balance security: Balance security in
our system ensures that any honest user participating in a transac-
tion does not lose coins even if all other users engaging in the trans-
action are corrupted. Sender privacy: In our system, sender/receiver
privacy is realized when an adversary cannot identify the identity
of the sender in a transaction between honest users. Link privacy:
An adversary can determine the path capacity along a path com-
prising of several intermediate nodes but can never exactly the
local balance an honest node’s payment channel with its honest

Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

immediate neighbor. Value privacy: The transacted value is not
learned by an adversary who is not involved in the payment path
between sender and receiver. Bidding values privacy: Bidding value
is typically sensitive information in an auction, since it reflects
the economic strength of the buyer. Therefore, all bidding values
should be protected against rival bidders.

4 OVERVIEW OF Auroch

The goal of this paper is to explore the idea of using an auction
mechanism to find multiple paths between a sender/receiver pair
in a PCN and splitting a transaction amount along the different
paths. We aim to do this in a way such that intermediaries can
choose the most profitable path(s) to be on (in terms of routing
fees), which incentivizes them to participate in transactions while
helping the sender choose the most inexpensive path to the receiver.
We use principles from auction theory and linear optimization to
help achieve our goal.

4.1 Auroch Stages

Auroch consists of three main stages: (1) Setup and Route discovery,
(2) Route auctioning, and (3) Route selection. Next, the steps of the
different stages are explained in detail.

Setup and Route Discovery: In a dynamic environment such as
a PCN, there is a possibility of the payment channel closing or
opening, the node becoming offline, and frequent changes in the
payment channel balance. Route discovery using route request
(RREQ) and route reply (RREP) messages form the foundation of
the Aourch. Consequently, a node should start a fresh route dis-
covery procedure whenever it wishes to send a payment while
the destination’s route is unknown. To find a path to the intended
destination, the node broadcasts a route request (RREQ) message.
Without loss of generality, let ng denote a node that wants to make
a payment amt to a destination node ny. To initiate pathfinding to
the destination, node ng broadcasts a routing request RREQ to its
neighboring nodes (i.e., nodes connected with a payment channel
to node n;). For our purposes in this work, the RREQ message con-
tains a field as follows RREQ = [txid]. The txid is the unique ID of
the request. Each node that receives an RREQ tuple locally stores
the txid and forwards this tuple to all its immediate neighbors. This
step is repeated until the RREQ tuple reaches the intended destina-
tion, ngy. If a node in the PCN does not want to be involved in the
transaction, it simply drops the RREQ tuple.

Route Auctioning: Once a destination node n is reached, it sends

RREP messages to the nodes in the set Parent(n,;) that n; main-
tains locally. This set contains the immediate neighbors of ny from
whom ny has received the RREQ tuple. The reply message RREP
consists of a number of fields as follows RREP = [txid, P(ng, n;),

Cap(ng, ng), Cost(ng, ny)]. The field P(ng, n;) denotes the node path
from the destination n; down to the current node n;. The field
value Cap(ng, nj) indicates the path capacity that can be allocated
along the path P(ng, nj) and Cost(ng, nj) refers to the corresponding
forwarding cost per token. Once nj receives the RREP message, it
conducts an auction to allocate both path capacity and cost, which
are running values that will be updated at each hop. The route auc-
tioning process consists of the following phases (i.e., sub-phases);

Auroch: Auction-Based Multipath Routing for Payment Channel Networks

(1) Auction setup : Let n, be an intermediate node (auction-

eer) along the path from ng to ng which maintains a set,
Bidder(ng), which contains the nodes from whom n, has
received an RREQ message. Node n, then auctions the path
capacity along the path from node n; to node n,. To start the
auction, node n, broadcasts the AUC tuple to all the nodes in
the set Bidder(ng). This message contains the following fields
AUC = [txid, MaxCap(ng, ng), ResPrice(ng, ng)]. In particu-
lar, MaxCap(ng, ng) indicates the path capacity that node n,
can provide over the path P(ng, ng) (which is upper bounded
by the local channel balance of n, with its immediate neigh-
bor along the path from ng; to ng). The third field in the AUC
message is the reservation price ResPrice(ny, ng) indicates
the minimum price that the auctioneer n, demands to for-
ward a payment along the path. Assume that node n, has
won the preceding auction for the path P(ng, ns—1) and thus
has attained forwarding privilege for the path P(ng, ng). Let
WinPrice(ng, P(ng, ng)) denote the price that n, committed
to pay to ng—1. Then, the reservation price ResPrice(ng, ng)
that node n, asks for can be given as follows

ResPrice(ng, ng) = WinPrice(ng, P(ng, na)) + Tfee (1)

where, Tfee € [fmin, fmax] denotes the fee that node nq
charges as its forwarding fee. After nodes in Bidder(ng)
receive an AUC message from ng, the bidding process is
initiated.

(2) Bidding Setup : In this phase, after receiving an AUC mes-

sage, say a node nj € Bidder(n,) offers bidding prices for
the path from ny to n,. Note that node n; might receive
several AUC messages from several auctioneer nodes, M,
which are the nodes to whom nj, has sent an RREQ mes-
sage. These auctioneer nodes are added to the set AN(np) =
AN(np, 1), AN(ny, 2), ..., AN(np, M), that is maintained lo-
cally by the node ny,. For our purposes in this work, BID =
[txid, BidCap(ny, P(ng, m)), BidPrice(AN (ny, m))].
In particular, BidCap(np, P(ng, m)), where m € [1..M], indi-
cates the maximum amount that node ny, is willing to send
along the path P(ng, m). The third field in the BID message
is BidPrice(AN(np, m)) that denotes the bidding price that
ny, offers to each auctioneer node m. We define two pricing
rules for Auroch to determine the BidPrice.

o Pricing Rule 1: To be able to participate in a bid, the bid-
ding price should at least satisfy the reservation price set
by the auctioneer. Given the forwarding fee range interval
[fmins fmax], a simple price rule for each auctioneer node
m can be proposed as follows:

BidPrice(AN(np, m)) = ResPrice(ng, ng) + 71 (2)

where, 71 < [finin, fmax]- !

Pricing Rule 2: Pricing rule 1 did not take all information
into account for bid price determination. For example, nei-
ther the number of auctioneers nor their offered capacities
are incorporated. To account for these parameters, we de-
fine a normalized valuation price VtPrice(ny, AN(ny, m))
computed as follows:

The values of finin and frax are 1, 10 respectively for Lightning Network [34].

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

MaxCap(ng, AN (np, m))
>k MaxCap(ng, AN(np, k))
- ResPrice(ng, AN(np, m))

>k ResPrice(ng, AN(ny, k))

VtPrice(ny, AN(np, m)) =

VtPrice(ny, AN(ny, m)) value falls in the interval [0, 1].
This equation helps the bidding node to differentiate be-
tween the reservation prices and offered capacities of the
M auctioneers’ offers.

In the first term of Equation 3, the capacity of an auction-
eer is compared relative to the sum of all offered capacities
(i.e., normalized to a maximum value of 1). The more ca-
pacity an auctioneer offers relative to other auctioneers,
the more is the value associated with this capacity and
consequently, it is better to use the path offered by that
auctioneer node. In the second term of Equation 3, the
reservation prices are compared. Similar to the first term,
an auctioneer’s reservation price is compared to the sum
of all prices offered by all other auctioneers to normalize
it for comparison purposes.

Thus, the normalized reservation price indicates how costly
a certain auctioneer node is in comparison to other auc-
tioneers. In contrast to the capacity parameter, the larger
the reservation price requested by a auctioneer in compar-
ison to other auctioneers, the worse it is to use the path
offered by this auctioneer since it incurs a higher fee value
to be paid by the bidder. Thus, to compare the capacity
and the reservation price together, the normalized reser-
vation price is subtracted from 1. Finally, we note that
since both the capacity and reservation prices are normal-
ized to 1, their product (the proposed valuation price) is
also normalized. Hence, an auctioneer node with greater
offered capacity and lower reservation price relative to
other auctioneers has a larger VtPrice(ny, AN(np, m)).
Using the VtPrice(ny, AN(np, m)), value, we propose the
following bidding rule

BidPrice(AN(np, m)) = ResPrice(ng, ng) + 72 4)
where 73 is given as follows

72 = fmin + VtPrice(ny, AN(np, m))(fmax — fmin) (5)

Using this rule, we note that the higher the capacity and
the lower the cost an auctioneer node offers, the more
bidding price the bidder is willing to pay for the corre-
sponding path. If a bidding node receives a single AUC
tuple, pricing rule 1 is used. If a bidding node receives
multiple AUC tuples, it could either use pricing rule 1 or
pricing rule 2, but it is more optimal for the bidding node
to use pricing rule 2.

(3) Auction results and announcing: Upon receiving BID

messages, the auctioneer node n, must determine how to
allocate the path capacity along the path P(ng, n,) among
bidding nodes. In particular, given a set of bidding node
prices and the maximum bid capacities, The auctioneer node
nq should allocate the path capacity along the path among

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

bidding nodes to maximize the total forwarding cost. it is
important to note that node n, may receive BID messages
from a number of B nodes and these nodes are added to
set BN(np) = BN(1,n4), BN(2,n4),...,BN(B, ng), which is
locally maintained locally by node n,.

The described problem of path capacity allocation can be
formulated as a linear optimization problem :

max Z BidPrice(AN(b, ng))Cap(ng, BN(b, ng)) (6a)

Cap(ng,BN(b,ng)) b

s.t. Z Cap(ng, BN(b,ng)) < Cap(ng,ng) Vb (6b)
b

Cap(ng, BN(b,ng)) < BidCap(BN(b, ng), P(ng, ng)),
(6¢)
Cap(ng, BN(b,ng)) =0 Vb (6d)

The above problem is a linear optimization problem since
the cost function as well as the constraints are linear in
Cap(ng, BN(b, ng)). The constraint in Equation 6b ensures
that the sum of maximum capacities of the bidders is less
than or equal to path capacity along the P(ng, ng). Hence,
this serves as an upper bound on the sum of the maximum
capacities of the bidders. The constraint in Equation 6c, guar-
antees that the assigned path capacity Cap(ng, BN(B, ng))
does not exceed the maximum amount that bidder is will-
ing to send along the the path P(ny, ng).The last constraint
(Equation 6d) enforces the non-negativity of the assigned
maximum capacity. An auctioneer node n, determines to
which node(s) the available path and path capacity should
be allocated. To advertise the auction results, the auction-
eer node sends the RREP message to the winning nodes.
As stated earlier, the RREP consists of the following fields
RREP = [txid, P(ng, n;), Cap(ng, ny),

Cost(ng, ny)]. The process of message replies and perform-
ing auctions is repeated until the source node ng becomes
a bidding node and bids for the different paths from the
auctioneer nodes.

Route Selection: In this stage, node n; is to determine which of the
available paths to use for routing payments. In particular, given the
set of path costs and capacities, ng needs to send partial payments
over these paths such that the total forwarding cost it has to pay is
minimized. The payment allocation problem can be formulated as
a linear optimization problem, which we describe below.

Let P(ng, ns) = [P(ng, ns)t, P(ng, ns)%, . .., P(ng, ns)X] denote the
set of K paths between ns and ny. Furthermore, let C(ng, ns) =
[Cap(ng, ns)!, Cap(ng, ns)?, . .., Cap(ng, ns)X] and F(ng, ns) = [
Cost(ng, ns)!, Cost(ng, ns)?, . . ., Cost(ng, ng)X] denote the sets of path
capacities and costs, respectively. Let pé‘ns!nd) denote the partial pay-

ment over the k" path, where k € [1.K], and m € [1..M]. The
payment allocation problem can be stated as follows:

Vb

Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

I{nin Z Cost(ng, ns)kpécns,nd) (7a)
Plasng ™
s.t. Zk:pfns,nd) > amt (7b)
%pfns)nd) < amt + Zk: Cap(ny, ns)kCost(nd, ns)k (7¢)
k k
Plngng) < Cap(ng,ng)* Vk (7d)
Plaeina) 2 0 V& (7¢)
Table 2: Notations Used
Notation Description
A Security parameter
n Number of nodes in the PCN
(sks, vk;) Node i’s long-term signing, verification key-
pair
(SKi, VK;) Node i’s temporary signing, verification key-
pair
ns Sender Node
I, Set of immediate neighbors of a ng
ng Destination Node
ny Current node
Na Auctioneer node
np Bidder node
RREQ Route request message
RREP Route replay message
txid Transaction ID
P(ng, ns) Path from destination to sender
P(ng, ny) Path from destination to current node along
path P(ng, ng)
fmins fmax Minimum and maximum routing fees that
can be charged by a node
P a list of available paths from n to ng
C a list of available paths capacities from n; to
ng
Vil a list of available paths costs from ng to ng
Bidder(ng) a set of bidder nodes for node ng,
AN(np) a set of verified auctioneer nodes for bidder
np
BN(ng) a set of verified bidding nodes for auctioneer
Ng

The above problem is a linear optimization problem since the
cost function as well as the constraints are linear in p(ks dy The
constraint in Equation 7b ensures that the sum of partial payments
is either greater than or equal to the original payment amount
amt. Hence, this serves as a lower bound on the sum of payments.
The payment amount on each path should take the path’s cost
into consideration. Thus, the total amount to be payed is upper
bounded by the sum aggregate of all forwarding cost across all
the paths between ng and ny. This is ensured by the constraint
in Equation 7c. The constraint in Equation 7d, guarantees that a

Auroch: Auction-Based Multipath Routing for Payment Channel Networks

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

RREP

(a) Step 1: RREQ sent by Alice propagated. (b) Step 3: Ivan and Sam start the auction. (c) Step 5: Ivan & Sam send auction results.

Step 2: RREP issued by Chloe

(d) Step 8: Peter & Alexa send auction

result.

Step 4: Peter and Alexa send bid

Step 6: Peter & Alexa start auction.
Step 7: Alice sends bid.

{Alice,Peter,lvan,Chloe}

{Alice,Peter,lvan,Chloe}

(e) Step 9: Alice splits payment over
multiple paths

Figure 2: The step-by-step process of the auction mechanism in Auroch (Sender: Alice, Receiver: Chloe)

partial payment over each path does not exceed the path’s capacity.
The last constraint (Equation 7e) checks if the value of each partial
payment is non-negative.

4.2 Auroch Workflow

As an example, consider a simplified network as shown in Figure 2,
where a sender node Alice intends to pay a payment of amt to a
receiver node Chloe.

In Figure 2c, Step 1 : Alice constructs the RREQ=[123] and
sends it to her neighbors, Peter and Alexa. The RREQ=[123] mes-
sage propagates through the network until it receives the destina-
tion, Chloe. Step 2 : Upon receiving the RREQ=[123] messages,
Chloe generates two routing reply (RREP) messages : RREP =
[123, (Chloe, Ivan), 0,0], RREP = [123, (Chloe, Sam), 0, 0]. Chloe sends
them to Ivan and Sam, respectively.

In Figure 2b, Step 3 : Upon receiving RREP messages, Ivan and
Sam initiate the auction phase. Ivan computes the Reservation Price
(ResPrice) using Equation 1, assuming the value 2. Subsequently,
Ivan sets the path capacity along the path P(chloe, Ivan) as 30 tokens.
Ivan generates two AUC = [123, 30, 2], AUC = [123, 30, 2] messages,
individually sends them to Peter and Alexa. Similarly, Sam computes
the Reservation Price (ResPrice) using Equation 1, assuming a value
of 1. Sam sets the path capacity along the path P(Chloe, Sam) to 40
tokens. Sam generates one AUC = [123, 40, 1] message and forwards
it to Alexa. Step 4 : With AUC messages in hand, Peter and Alexa
start bidding. Peter receives one AUC message only from Ivan and
proceeds to calculate Bid Price (BidPrice) using Equation 2. Peter
constructs BID = [123, 22, 2.8] and transmits it to Ivan. In contrast,
Alexa receives two AUC messages. Utilizing Equation 4, Alexa
computes Bid Price BidPrice . She constructs two BID messages

BID = [123, 20, 2.5],BID = [123, 25, 1.5], and forwards them to Ivan
and Sam, respectively.

In Figure 2c, Step 5 : Upon receiving BID messages, Sam re-
ceives one BID message. Subsequently, Sam constructs a RREP =
[123,(Chloe, Sam, Alexa), 25, 1.5] message, sending it Alexa. In con-
trast, Ivan receives two BID messages.So, Ivan will allocate 30 to-
kens to Peter and Alexa by solving a linear optimization problem
represented by Equation 6 to maximize his profit. Ivan constructs

two RREP messages RREP = [123, (Chloe, Ivan, Alexa), 20, 2.5], RREP =

[123,(Chloe, Ivan, Peter), 10, 2.3]. These messages are then sent to
Alexa and Peter. Step 6 : Upon receiving RREP messages, Peter
and Alexa start the auction. Peter computes the Reservation Price
(ResPrice) using Equation 1, assuming a value of 2.5. Peter sets
the path capacity along the path P(Chloe, Peter) to 10 tokens. Pe-
ter constructs AUC = [123,10,2.5] and sends it to Alice. Mean-
While, Alexa conducts auctions for two paths (Chloe, Ivan, Alexa)
and (Chloe, Sam, Alexa). Alexa computes the Reservation Price (
ResPrice) for each path using Equation 1. The ResPrice for the paths
(Chloe, Ivan, Alexa) and (Chloe, Sam, Alexa) are 2.7 and 1.7, respec-
tively. Alexa constructs two AUC messages AUC = [123,25,1.7],
AUC = [123,20,2.7] and sends them to Alice. Step 7: Alice re-
ceives three AUC messages. Consequently, Alice computes Bid
Price (BidPrice) using Equation 4 for the offers. Alice constructs
BID message BID = [123,10,2.8] and sends it to Peter. Further-
more, Alice constructs two AUC messages : BID = [123,2,2.8],
BID = [123, 25, 2] , which Alice sends to Alexa.

In Figure 2d, Step 8: Peter and Alexa announce the result. Peter
constructs RREP = [123, (Chloe, Ivan, Peter, Alice), 10,5.1] and for-
wards it to Alice. Similarly, Alexa constructs two RREP messages:
RREP = [123, (Chloe, [van, Alexa, Alice),

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

2,5.3], RREP = [123, (Chloe, Sam, Alexa, Alice), 20, 4.3], and sends
them to Alice.

In Figure 2e, Step 9: Upon receiving RREP messages, Alice has
all available paths toward the Chloe along with the maximum
payments that can be accommodated over these paths and their
corresponding cost. Alice can divide its payment over these routes
(see Step 9 in Figure 2e) by employing the linear optimization
problem as stated in Equation 7a.

5 CONSTRUCTION

Auroch consists of three stages: setup, route auctioning, and pay-
ment. For ease of reference, we give the table of notations used in
Table 2.

Setup and Broadcast: This stage is described in detail in Appen-
dix A. At a high level, this protocol handles the generation of the
signing and verification key pairs of a node, and the creation and
transmission of a transaction identifier, txid.

Protocol 1: Route Auctioning: Auction Setup Phase

1 ng receives RREQ message tuple from its neighbors

2 V nodes n, € Parent(ng), ng constructs an individual tuple
RREP = [txid, P(ng, nq), Cap(ng, ng), Cost(ng, ng)]

3 ng SignSKnd(RREP)—> orrep and ng sends RREP along with
oRrRep to each node n, € Parent(ng).

4 On receiving RREP message with orpep,

5 Each node n, does if VerinyKnd (RREP) —0 then

6 ‘ Do nothing

7 else

8 Each n, computes ResPrice using Equation 1

9 Each ng4 construct AUC = [txid,

MaxCap(ng, ng), ResPrice(ng, ng)] message to all

nodes ny, € Bidder(ng)

10 Each n, does SignSKna (AUC)— oauc

1 Each n, sends AUC message along with oayc to each

node ny, € Bidder(ng).

/* Route Auctioning: End Auction Setup Phase =*/

Auction Setup Protocol 1: This protocol handles the auction setup

phase in Auroch, once the route request RREP messages that are
broadcast by ng reach the intended ng, ng constructs the RREP
message and sends it along with its signature (created using its
temporary signing key) on the message to each auctioneer node ng
in the set Parent(ng) from whom it has received an RREQ message
(Lines 1-5). Each auctioneer node ng4, upon successfully verifying
the ng’s signature on the RREP message, picks a routing fee, de-
noted by 7fe, in the range [finin, fmax], Wwhere fmin and fiax are
the minimum and maximum values of the routing fees. In Auroch
we picked the finin as 1 Satoshi and fi,4x as 10 Satoshi [34]. The
auctioneer n, then computes the reservation price (ResPrice), ac-
cording to the Equation 1. The node n, constructs an AUC message
tuple and sends this tuple along with its signature on the message
(created using the temporary signing key of ng) to all of its bidder
nodes ny, in Bidder(n,) from whom it has received the initial RREQ
message (Lines 8-11).

Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

Protocol 2: Route Auctioning: Bidding Setup Phase

1 ny, maintains a set AN(np) = 0

2 nyp, where ny, € Bidder(ng), does YV AUC messages

3 if Verifyy g (AUC) — 0 then

4 ‘ Do nothiang

5 else

6 ‘ np adds each auctioneer node AN(ny, ng) to set AN(np)
7 if |[AN(np)|== 1 then

8 ny, sets the BidCap(ny, P(ng, nq))

9 np chooses a random 71 € [fmin, fmax)

10 np computes BidPrice(AN(np, ng)) using Price Rule 1 in
Equation 2

1 np, constructs BID message, nj, does SignSKnb(BID)—>
OBID

12 np sends BID message along with op|p to auctioneer

13 else if |AN(np)|> 1 then
14 for eachm € AN(np,) do

15 np sets BidCap(ny, AN(ng, m)) for each auctioneer

m € AN(np)

16 np computes BidPrice(AN(np, m)) using Price Rule 1 in
Equation 2 or using Price Rule 2 in Equation 3

17 np, constructs BID message, ny,

18 SignSKnb(BlD)—> OBID

19 np sends BID message along with nj, og|p to auctioneer
AN(nyp, m)
/* Route Auctioning: End Bidding Setup Phase */

Bidding Setup Protocol 2 This protocol handles the bidding setup
phase in Auroch, upon receiving BID messages. ny, verifies the sig-
nature of the auctioneer node n, on the AUC tuples. If the signature
verification is unsuccessful, then the AUC tuple is discarded. Upon
successfully verifying the signature of n, on the AUC message, nj,
adds auctioneer n, to set AN(np) that it locally maintains (Lines 1-6).
If the number of auctioneers for node ny, is 1, 71 is chosen randomly
from a specified range. n;, then determines the path capacity that it
is willing to send along the path P(ng, ng). n, computes BidPrice
for auctioneer n, using Equation 2. Once the BidPrice has been
computed, bidder nj constructs the BID message and sends this
message along with its signature to each auctioneer n, (Lines 7-
12).If the number of auctioneers for the node ny, is more than 1, ny,
computes BidPrice for each auctioneer n, using Equation 4. Once
the BidPrice has been computed for each auctioneer, nj, constructs
the BID message, and sends this message along with its signature
to each node ng, (Lines 13-19).

Auction results and Announcing Protocol 3: Upon receiving bid-
ding messages from all bidding nodes interested in the auction. The
auctioneer n, verifies each BID message. If the verification is suc-
cessful, each bidder node BN(ny, n,) is added to BN(ng) (Lines 1-6).
If there is only one bidder in BN(n,), the auctioneer n, updates the
path P(ng4, ng) by incorporating BN(nyp, ng) into the path. If there
is only one bidder in BN(n,), auctioneer node n, updates P(ng, ng)
by adding BN(ny, hg) into the path P(ng, BN(ny, ng)). Subsequently,
Auctioneer node n, updates Cap(ny, ng) into Cap(ng, BN(np, ng))

Auroch: Auction-Based Multipath Routing for Payment Channel Networks

Protocol 3: Route Auctioning: Auction Results and An-
nouncing Phase

/* ng is the auctioneer */
1 ng maintains a set BN(ng) = 0
2 V BID messages, n, checks
3 if VerinyK"h (BID) — 0 then
4 ‘ Do nothing
5 else
6 ‘ ng adds each bidder ny, to set BN(ng)
7 if |BN(ng)|== 1 then
8 ng updates P(ng, ng) to P(ng, BN(np, ng)) and updates
Cap(ng, ng) to Cap(ng, BN(np, ng))
9 ng updates Cost(ng, ng) to Cost(ng, BN(np, ng))
10 ng constructs
RREP = [txid, P(ng, np), Cap(ng, np), Cost(ng, np)]
1 Signgk,, (RREP)— ogprep and ng sends RREP along
with UEREP to ny
12 else if |[BN(np)|> 1 then
13 np solves Equation 6
14 for each BN(ny, ng) € BN(ng) do
15 ng updates P(ng, ng) to P(ng, BN(np, ng))
16 ng updates Cap(ng, ng) to Cap(ng, BN(np, ng))
17 ngq updates Cost(ng, ng) to Cost(ng, BN(np, ng))
18 ng constructs
RREP = [txid, P(ng, np), Cap(ng, np), Cost(ng, np)]
19 ng Sig”SKna (RREP)— oRrprep and n, sends RREP along

with oprep to np
/* Route Auctioning: End Auction Results and

Announcing Phase */

Protocol 4: Route Selection

/* Protocol 1, Protocol 2, and Protocol 3 are
repeated until the source node ng becomes a
bidding node and bids for the different paths
from the auctioneer nodes. */

1 ng maintains thelist P =0,C=0,and F =0
2 ng receives RREP messages
3 for each RREP message do
4 ItVerifyyy, (RREP) — 0 Do nothing
5 else
6 ng adds P(ng, ng) to P
7 ns adds Cap(ng, ns) to C
8 ns adds Cost(ng, ng) to 7
9 ng solves Equation 7
/* End Route Selection */

, which is path capacity along the path P(ng, BN(np, ng)). Auc-
tioneer node n, updates Costap(ng, nq) into Cost(ng, BN(np, na)),
which is the total cost of forwarding payment along the path
P(ng, BN(np, ng)). Auctioneer node n, updates Cost(ng, ng) into

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Cost(ng, BN(np, ng)), which is the total cost of forwarding pay-
ment along the path P(ng, BN(np, ng)).Auctioneer node n, con-
structs the RREP message and sends it with its signature to bidder
node BN(nyp, ng) (Lines 7-12). If the auctioneer n, has more than
1 bidder node in set BN(n,), then n, solves Equation 6. By solv-
ing the path capacity allocation problem, Auctioneer n, allocates
the maximum capacity MaxCap(ng, ng) in protocol 1 along the
P(np, ng) among bidding nodes M in set BN(n,) in such way maxi-
mize his profit. for each m auctioneer in the set BN(n,),Auctioneer
node n, updates P(ng, ng) into P(ng, BN(m, ng)) by adding bid-
der node BN(m, ng). Auctioneer node n, updates Cap(ng, ng) into
Cap(ng, BN(m, ng)) Auctioneer node n, updates Cost(ng, ng) into
Cost(ng, BN(m, ng)). Auctioneer node n, updates Cost(ng, ng) into
Cost(ng, BN(m, ng)).BN(ny, ng)). Finally, Auctioneer node n, con-
structs the RREP message and sends it with its signature to bidder
node P(ng, BN(m, ng)) (Lines 13-20).

Route Selection Protocol 4 : This is the final stage in our con-
struction. This protocol handles the route selection between the
ns and ng. Upon receiving RREP messages, Node ng verifies the
signature of node n, on each RREP message. Upon successful veri-
fication, ng adds P(nd, ns),Cap(ny, ns), and Cost(ng, ns) to P,C, and
¥, respectively. ng allocates the partial payments among the avail-
able paths by solving the linear optimization problem Equation 7.
The equation, as described earlier, minimizes the sender’s overall
routing cost and also maximizes the profit of each intermediate
node.

Optimizations While Auroch provides sender privacy, the iden-
tity of the receiver is revealed during the path construction. How-
ever, since each node in Auroch uses a pseudonymous identity
within the network, the real identity is not to any other node ex-
cept the sender. These identities can be generated at periodic time
intervals (which can be a system parameter) to provide an addi-
tional degree of privacy. Apart from this, other techniques such as
onion routing [16] and adding dummy nodes by the receiver can
be employed, which do not require any additional modifications to
the structure or protocols of Auroch.

6 EVALUATION
6.1 Experiment Setup

We implemented Auroch and other routing protocols using the
NetworkX library in Python [15] and used the Elliptic Curve Dig-
ital Signature Algorithm, ECDSA, [9] for signature creation and
verification. ECDSA was chosen for its better efficiency. However,
Auroch can be deployed using any digital signature algorithm. We
ran our experiments on a desktop computer with Intel (R) Core ™™
i7-10700 CPU clocked at 2.90 GHz and equipped with 32 GB RAM.
Dataset: We evaluated the performance of Auroch on a snapshot
of the Lightning Network topology from November 27, 2021 [6, 24].
The snapshot contains 18,331 nodes, and 80,918 channels with mean
channel capacity 4056152.35 satoshi and median channel capacity
is 1000000 satoshi (this provides us information on how funds are
distributed among Lightning Network channels). In Lightning Net-
work, the channel balance in a payment channel at the time of
channel opening is publicly available on the blockchain. However,
the local channel balance of nodes, which changes as a result of
nodes being involved in transactions is not publicly available.

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

le6

B shortest Path
B speedyMurmurs
ITL spider

== puroch

v
s

24

Success Volume (USD)

50
Capacity Scaling Factor

Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

0.8

EEE Shortest Path
B SpeedyMurmurs
IFFl Spider

TN Auroch

0.7

0.6 1

0.5

Success Ratio

50
Capacity Scaling Factor

0.014

0.012 4

Routing Cost (USD)

30

B Shortest Path
B SpeedyMurmurs
Kl Spider

I Auroch

50 70

Capacity Scaling Factor

Figure 3: Performance of Routing Protocols on Lightning Network data with scaled payment channel capacities (x 30, X 50, X

70)

Benchmarks: We implement and experimentally compare Auroch
with several other comparable routing algorithms, specifically with
shortest path routing (Dijkstra’s algorithm), Speedymumurs [26]
and Spider [29]. Since Auroch is a routing protocol that routes a
single transaction along several paths, concurrency plays an im-
portant role (all the splits of the transaction would need to reach
the receiver at the same time to ensure correct processing of the
transaction amount). The routing protocols Spider and Speedymur-
murs provide support for concurrent payments. In addition, Auroch
was also compared to an implementation of Dijkstra’s shortest path
algorithm since this is currently implemented by the real-world
PCN, Lightning Network. Since standard Dijkstra’s algorithm does
not have any notion of minimum liquidity (which is relevant for
PCNs), we implemented a modified version of Dijkstra’s shortest
path algorithm by enumerating all paths from sender to receiver in
ascending order of path length and minimum capacities, and then
picking the shortest path with the minimum satisfying liquidity
for each transaction. The running time of Dijkstra’s algorithm de-
pends on the priority queue implementation used [5]. NetworkX
library uses a binary heap to implement the priority queue, which
is appropriate for us, since for our network graph, G(V, E), |E| <
|V|2/1og|V]. In shortest path routing, the sender knows the entire
network topology and uses source routing to find a path from her-
self to the receiver. Furthermore, the sender needs to know the
identities of all intermediate nodes along the path and also the base

10

fees and the rate fees charged. This is a significant drawback of us-
ing shortest path algorithms for routing in PCNs, and would apply
regardless of the specific algorithm used, e.g., Dijkstra’s algorithm,
Bellman-Ford algorithm, etc. For all our experiments, we randomly
sampled our transaction dataset to pick amounts to be routed along
with the fees. We note that the SpeedyMurmurs [26] routing proto-
col does not have any notion of routing fees; we have augmented it
with routing fees for a fair comparison with Auroch. For any reason,
if the path chosen by the sender does not have enough liquidity or if
the fees chosen by the sender is not sufficient, the transaction fails.
This exemplifies the major drawback of SpeedyMurmurs in that
transaction amounts (and potentially fees) for a given transaction
path are randomly picked, without the sender knowing if there is
sufficient liquidity along that path to the receiver. In Spider [29], the
sender knows the entire network topology (similar to the shortest
path algorithm) and also minimum value that can be transacted
along a given path. The sender splits the total amount according to
this minimum value and the sender also knows the total base fees
and the rate fees charged along the path to the receiver.

Metrics: In our experiments we measure the success ratio, success
volume, and the cost of routing. The success volume and success
ratio are important indicators of the performance of a routing proto-
col. We measure the cost of routing payments to see which routing
protocol is most economical to users. The success ratio is defined

Auroch: Auction-Based Multipath Routing for Payment Channel Networks

W shortest Path
175000 | m=m SpeedyMurmurs
e Spider

=== Auroch

150000

125000 -

100000 -

75000 1

50000

Success Volume (USD)

25000

5000 7000

Number of Transactions

9000

0.25

Shortest Path

SpeedyMurmurs
Il spider

IR Auroch

Success Ratio

5000 7000 9000
Number of Transactions
0.014
mmm shortest Path
mm speedyMurmurs
0.012 bl Spider

mmm Auroch

[=]]

0 0.010

2

-

0]

-]

V)

o

c

=

3

-]

©

5000 7000 9000

Number of Transactions

Figure 4: Performance of Routing Protocols on Lightning
Network Data

as the ratio between the number of payments that were success-
fully routed to the total number of payments attempted. Success
volume is defined as the ratio between the total volume (amount)
of payments successful to the total volume (amount) of payments
attempted. The cost of routing is defined as the ratio between the
total cost of routing all the successful transactions at once and
the volume of all the payments that were routed successfully. For
an ideal routing protocol, one would expect the total transaction
volume to be significantly higher than the total transaction fees,
hence the ratio of the total transaction fees to the total transaction
volume needs to be as low as possible.

11

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Parameters: We set the number of transactions to 5000, 7000, and
9000, which is the approximate number of transactions recorded per
month (January, February, and April, respectively) on the Ripple
ledger during the year 2021. The transaction data in Ripple, such as
the transaction amounts, currency, time stamp of transaction, etc
are publicly available and can be accessed using the Ripple APIs
(23]

To test scalability, we use number of transactions from Ripple
PCN, since Lightning Network datasets have no information about
the number of transaction and transaction values. In our experi-
ments, the source and the destination nodes of a transaction are
selected randomly and the transaction amount is randomly sam-
pled from the Bitcoin trace for transaction volumes [33]. The cost
of a payment from a sender to the receiver is computed for ev-
ery transaction and all the paths along which all the splits of this
transaction are routed. The transaction fees on each path is com-
puted as 37 | Base Fee; + (rate Fee; X amt), where n is the total
number of intermediate nodes between the sender and receiver. In
our experiments, we assume the base fees along every path to be 1
satoshi and the rate fees are randomly sampled in the range [0..10]
satoshis. For the various routing schemes, we set the number of
disjoint paths for the Spider as 4 similar to [29], and set 3 landmarks
for SpeedyMurmurs similar to [26]. We have chosen these routing
protocols for our comparison since they either offer comparable
security/privacy properties to Auroch or support multiple path pay-
ments which is one of the key aspects in the design of Auroch. We
varied the capacity on each channel by multiplying the channel
capacity by 30, 50, and 70 to study the channel capacity’s impact
on our metrics across all routing protocols. All experiments were
averaged over 20 runs.

6.2 Results

We compare the performance of four routing protocols on our
dataset by varying transaction numbers and channel capacities.
Figure 4 depicts the performance of the routing protocols on 5000,
7000, and 9000 transactions. Figure 4 shows that Auroch has the
largest success volume of all protocols, which is due to its ability to
process a large volume of concurrent transactions. SpeedyMurmurs
and Shortest Path protocols have the lowest success ratio among
all protocols, which is due to the fact that the payment in Speedy-
Murmurs happens on the fly, and the shortest path algorithm uses
only a single path to transmit the payment. If there is no path
with satisfying liquidity, the transaction fails, thus decreasing the
success ratio. On the other hand, the Auroch protocol uses RREP
messages, which tell the sender the path capacity along each path in
a fully decentralized way, without the sender needing to know the
network topology, which results in a significantly higher success
ratio. Similarly, the Spider routing protocol uses probe messages to
get the minimum patg capacity along the paths before sending the
payment. So, using RREP messages and probing messages helps
increase the success ratio.

From Figure 4, we can see that Auroch has the lowest routing cost
among all routing protocols. Spider, SpeedyMurmurs, and Shortest
path routing are up to 2.2x, 2.6x, and 2.1x, respectively, more expen-
sive than Auroch. Figure 3 depicts the performance of the routing
protocols when the channel capacity on each link in the networks

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

is varied by multiplying it with 70, 50, or 30. The purpose of multi-
plying the channel capacity with these values shows that Auroch
performs better (especially in terms of success volume) when there
is sufficient capacity in the channels of the nodes with their imme-
diate neighbors. As the capacity rises, more transactions begin to
succeed among all of the protocols, which is expected. According
to Figure 3 Auroch again has the lowest routing cost of all protocols.
Spider, SpeedyMurmurs, and Shortest path routing are up to 2.1x,
2.7x, and 1.8x, respectively, more expensive than Auroch. The low-
est routing cost of Auroch is due to the fact that with larger channel
capacities, more intermediate nodes become available for forward-
ing payments. The increase in the number of willing nodes and the
increased channel balance result in a reduction in the routing cost.
Furthermore, Auroch uses linear optimization to decrease the cost
of routing. Overall, our experiments show that Auroch achieves
the main goal of minimizing the transaction fees per token. When
the intermediate node acts as an auctioneer, it selects the bidder
node that offers the highest price. On the other hand, when the
intermediate node acts as a buyer node it aims to pay the lowest
price with the highest capacity. Thus Auroch outperforms other
comparable routing protocols in terms of our chosen metrics.

6.3 Tradeoffs

In Auroch, the ng uses broadcasting to find a path to the ngy. This
incurs a significant amount of communication overhead. In the
worst case, the maximum number of hops the RREQ message tuple
will travel is equal to the diameter of the network. This overhead is
better than the overhead of source routing protocol currently being
implemented in Lightning Network [12], where each node stores the
network topology in its local storage causing a tremendous storage
overhead at each node. The snapshot of the network topology stored
at each node needs to be updated every time a new node joins and
leaves the PCN, which means that all the nodes in the PCN would
need to be online all the time, causing wastage of resources and
bandwidth or offline node would initially need to synchronize with
the network before being involved in transactions, which makes
instantaneous payments impossible. Sometimes, nodes in Light-
ning Network operate from resource constrained devices. In such
cases, the storage overhead incurred will be even more. Apart from
this, Auroch aims at reducing the overall routing cost of the ng and
also maximizes the profit of the intermediate nodes, which is not
currently achieved in PCNs. In addition to these, Auroch introduces
additional delays in the PCN due to its auctioning/bidding stages,
signature creation/verification during these stages and solving the
linear optimization problem to present the sender with multiple
paths to the receiver. These series of operations would have to be
performed for every transaction that is processed using Auroch. If
we assume the delay (in terms of additional transaction processing
time) caused by auction/bidding to be «, the delay caused by signa-
ture creation/verification during the auction/bidding stages to be
and the delay caused by solving the linear optimization problem
to be y, the total delay caused by Auroch (for every transaction),
when deployed on a PCN such as Lightning Network would be
(a + B + y). This additional delay in transaction processing how-
ever, provides us with the following advantages: 1) The overall
routing cost of the sender is minimized across multiple paths. 2)

12

Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

The profit of each intermediate node involved in the transaction
is maximized. 3) Auroch provides the sender with a decentralized
pathfindig mechanism as opposed to the centralized source routing.

7 Auroch SECURITY ANALYSIS

In this section, we provide a formal analysis of Auroch in the UC
framework [2]. Protocols which are composed of multiple compo-
nents are usually proven secure in UC framework [10, 11, 13, 14, 17].

We define an ideal functionality F#q/goc, that consists of
five functionalities: Finit, Fauc, FPayment Fhtic> FBC- We use the
Fsig functionality [3] and one helper functionality Fsig [3]. All
the functionalities maintain three tables, utable, txtable, BCTable.
These tables are updated by these functionalities with various tuples
as required. Due to space constraints, we give the definitions of the
of the ideal functionalities and the proof of the following theorem
in Appendix B.

THEOREM 7.1. LetFqqirocH be anideal functionality for Auroch.
Let A be a probabilistic polynomial-time (PPT) adversary for Auroch,
and let S be an ideal-world PPT simulator for F qq;r 0 c - Auroch
UC-realizes F qqyg 0 c# for any PPT distinguishing environment Z.

8 CONCLUSION

In this work, we study the pathfinding and multipath payment rout-
ing problem in PCNs. We propose Auroch, a distributed pathfinding
and routing protocol that provides incentives for intermediate nodes
to collaborate in route formation while maximizing their profit and
minimizing the total payment cost for the sender. Auroch also sup-
ports concurrency and takes into account the dynamic channel
balance of a node. We examined Auroch on real-world transaction
data to show its effectiveness, and we validated its security within
the UC framework.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Award No. 2148358, 1914635, and the Department
of Energy under Award No. DE-SC0023392. Any opinions, findings
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation and the Department of Energy.

Auroch: Auction-Based Multipath Routing for Payment Channel Networks

REFERENCES

(1]

(2]

[7

[

8

=

[11]

[12

[13]

[14

[15]
[16
[17]

(18]

[19]

[20

[21]
[22
[23
[24

[25

[26]

[27]

[28

Benjamin Brooks and Songzi Du. 2021. Optimal auction design with common
values: An informationally robust approach. Econometrica 89, 3 (2021), 1313-
1360.

Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-
tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE, 136-145.

Ran Canetti. 2004. Universally composable signature, certification, and authenti-
cation. In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004.
IEEE, 219-233.

Yanjiao Chen, Yuyang Ran, Jingyue Zhou, Jian Zhang, and Xueluan Gong. 2021.
MPCN-RP: A Routing Protocol for Blockchain-based Multi-Charge Payment
Channel Networks. IEEE Transactions on Network and Service Management
(2021).

Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani. 2008.
Algorithms. McGraw-Hill Higher Education New York.

Elias Rohrer and Julian Malliaris and Florian Tschorsch [n. d.]. Elias Rohrer and
Julian Malliaris and Florian Tschorsch. https://git.tu-berlin.de/rohrer/discharged-
pc-data/tree/master/snapshots

Qianyun Gong, Chengjin Zhou, Le Qi, Jianbin Li, Jianzhong Zhang, and Jingdong
Xu. 2021. VEIN: High scalability routing algorithm for Blockchain-based payment
channel networks. In 2021 IEEE 20th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom). IEEE, 43-50.
Hsiang-Jen Hong, Sang-Yoon Chang, and Xiaobo Zhou. 2023. Auto-tune: An effi-
cient autonomous multi-path payment routing algorithm for Payment Channel
Networks. Computer Networks 225 (2023), 109659.

Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The elliptic curve
digital signature algorithm (ECDSA). International journal of information security
1(2001), 36-63.

Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan. 2023.
RACED: Routing in Payment Channel Networks Using Distributed Hash Ta-
bles. arXiv preprint arXiv:2311.17668 (2023).

Zilin Liu, Anjia Yang, Jian Weng, Tao Li, Huang Zeng, and Xiaojian Liang. 2022.
Gmbhl: generalized multi-hop locks for privacy-preserving payment channel
networks. Cryptology ePrint Archive (2022).

LND. 2023. LND soruce routing. https://lightning.engineering/posts/2018-05-23-
routing/.

Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. 2016.
Silentwhispers: Enforcing security and privacy in decentralized credit networks.
Cryptology ePrint Archive (2016).

Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and
Matteo Maffei. 2018. Anonymous multi-hop locks for blockchain scalability and
interoperability. Cryptology ePrint Archive (2018).

Networkx library [n. d.]. Networkx library. https://networkx.org/

Onion routing [n.d.]. Onion routing. https://www.onion-router.net/

Gaurav Panwar, Satyajayant Misra, and Roopa Vishwanathan. 2019. Blanc:
Blockchain-based anonymous and decentralized credit networks. In Proceedings
of the Ninth ACM Conference on Data and Application Security and Privacy. 339-
350.

Simon Parsons, Juan A Rodriguez-Aguilar, and Mark Klein. 2011. Auctions and
bidding: A guide for computer scientists. ACM Computing Surveys (CSUR) 43, 2
(2011), 1-59.

Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable
off-chain instant payments.

Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa
Osuntokun. 2016. Flare: An approach to routing in lightning network. White
Paper (2016), 144.

Raiden Network [n. d.]. Raiden Network. https://raiden.network/

Ripple [n.d.]. Ripple. https://ripple.com/

Ripple API [n.d.]. Ripple APL https://data.ripple.com/

Elias Rohrer, Julian Malliaris, and Florian Tschorsch. 2019. Discharged pay-
ment channels: Quantifying the lightning network’s resilience to topology-based
attacks. In 2019 ieee european symposium on security and privacy workshops (eu-
ros&PW). IEEE, 347-356.

Stefanie Roos, Martin Beck, and Thorsten Strufe. 2016. Anonymous addresses
for efficient and resilient routing in f2f overlays. In IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications. IEEE, 1-9.
Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Tan Goldberg. 2017.
Settling payments fast and private: Efficient decentralized routing for path-based
transactions. arXiv preprint arXiv:1709.05748 (2017).

Istvan Andras Seres, Daniel A Nagy, Chris Buckland, and Péter Burcsi. 2019.
Mixeth: efficient, trustless coin mixing service for ethereum. Cryptology ePrint
Archive (2019).

Nafiseh Sharghivand, Farnaz Derakhshan, and Nazli Siasi. 2021. A comprehensive
survey on auction mechanism design for cloud/edge resource management and
pricing. IEEE Access 9 (2021), 126502-126529.

13

[29

[30

[31

[35

[36

[38

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan,
Parimarjan Negi, Lei Yang, Radhika Mittal, Giulia Fanti, and Mohammad Alizadeh.
2020. High throughput cryptocurrency routing in payment channel networks. In
USENIX Symposium on Networked Systems Design and Implementation (NSDI).
Trampoline routing [n. d.]. Trampoline payments. https://lightningprivacy.com/
en/blinded-trampoline

P. F. Tsuchiya. 1988. The Landmark Hierarchy: A New Hierarchy for Routing in
Very Large Networks. In Symposium Proceedings on Communications Architectures
and Protocols (Stanford, California, USA) (SIGCOMM ’88). Association for Comput-
ing Machinery, New York, NY, USA, 35-42. https://doi.org/10.1145/52324.52329

] Visa [n.d.]. Visa. https://usa.visa.com/dam/VCOM/download/corporate/media/

visanet-technology/visa-net-booklet.pdf. Accessed: 2023-09-18.

] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. 2019. Flash: efficient dynamic

routing for offchain networks. In Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies. 370-381.

] Philipp Zabka, Klaus-T Foerster, Stefan Schmid, and Christian Decker. 2022.

Empirical evaluation of nodes and channels of the lightning network. Pervasive
and Mobile Computing 83 (2022), 101584.

Kun Zhang, Rui Wang, and Depei Qian. 2010. Aim: An auction incentive mecha-
nism in wireless networks with opportunistic routing. In 2010 13th IEEE Interna-
tional Conference on Computational Science and Engineering. IEEE, 28-33.

Yang Zhang, Chonho Lee, Dusit Niyato, and Ping Wang. 2012. Auction approaches
for resource allocation in wireless systems: A survey. IEEE Communications
surveys & tutorials 15, 3 (2012), 1020-1041.

Yuhui Zhang and Dejun Yang. 2021. Robustpay+: Robust payment routing
with approximation guarantee in blockchain-based payment channel networks.
IEEE/ACM Transactions on Networking 29, 4 (2021), 1676-1686.

Yuhui Zhang, Dejun Yang, and Guoliang Xue. 2019. Cheapay: An optimal algo-
rithm for fee minimization in blockchain-based payment channel networks. In
ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, 1-6.

A PROTOCOLS

Protocol 5: Setup and Broadcast Protocol

1

2

3

N o oa

®

©

10

fori=1;i <nji++do
node i does KeyGen(l’l) — skj, vk;
node i does KeyGen(lA) — SKj, VK;
node i does Signg. (VK;) — ov;
node i calls RetrieveNeighbors(vk;) — I;
node i sends vk; to all the nodes in [;
for j=1;< |I;|;j++ do
‘ if(Verify,y,(VKi, ovk;) = 0), j return L
ns picks x «s {0, 1}, does H(x) — txid
ns sends the (txid, amt, vk,) to the ny via a secure
out-of-band communication channel ng constructs RREQ
= (txid) and broadcasts it to all the nodes in I,;_. The nodes
in I,, forward this tuple to their neighbors until it reaches
the intended ng

Setup and Broadcast, Protocol 5: At a high level, this protocol

handles the generation of the signing and verification keypairs of a
node, and the creation and transmission of a transaction identifier,
txid. In this paper, we assume the existence of two pairs of keys for
a node i, a long-term key pair, sk; and vk;, a temporary key pair,
SKj, VK;. The temporary verification key of a node is signed by its
long-term signing key (lines 1-4). This signature is verified by all the
immediate neighbors of the node i in the network (lines 7, 8). This
ties the node’s temporary identity to its long-term identity. Each
node i uses its temporary identity to interact with non-neighboring
nodes in the network. This protocol also handles the communication
of the transaction details, the transaction id, txid that uniquely
identifies each transaction, the amt that the ng intends to send,

https://git.tu-berlin.de/rohrer/discharged-pc-data/tree/master/snapshots
https://git.tu-berlin.de/rohrer/discharged-pc-data/tree/master/snapshots
https://lightning.engineering/posts/2018-05-23-routing/
https://lightning.engineering/posts/2018-05-23-routing/
https://networkx.org/
https://www.onion-router.net/
https://raiden.network/
https://ripple.com/
https://data.ripple.com/
https://lightningprivacy.com/en/blinded-trampoline
https://lightningprivacy.com/en/blinded-trampoline
https://doi.org/10.1145/52324.52329
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/visa-net-booklet.pdf
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/visa-net-booklet.pdf

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

the long-term verification key of the ng, vkp, to the ny through a
secure out-of-band communication channel (line 9-10). Finally, this
protocol handles the broadcasting of the RREQ tuple, containing
the txid to all the nodes in the network.

B SECURITY ANALYSIS

1) Finit functionality: This functionality is depicted in Figure 5. It
handles the generation and verification of identities for all the nodes
in the PCN. This functionality performs two operations Key Gener-
ation and Identity Verification. In the Key Generation phase, the
Finit functionality generates the long-term and temporary signing
and verification key pairs using the Fs;4 functionality. The purpose
of creating a temporary identity is to hide the real identity of a
node from its non-neighboring nodes in the network. Once the
identities are generated, Finir also handles the verification of the
node’s temporary identity by its neighbors.

Figure 5: ¥ini; functionality

Key Generation: Upon receiving the tuple (KeyGen,
sid;) from node i or S, Fipjy forwards it to Fsig. Upon

receiving (Long Term Verification Key, sid;, vk;) and
(Temporary Verification Key, sidi, VK;), Finir stores the
tuple (sid;, vk;, VK;) in the table utable and sends
the tuple (Long Term Verification Key, sid;, vk;) and

(Temporary Verification Key, sid;, VK;) to the node and
the simulator S. Upon receiving the tuple (Sign, sid;, VK;) from
node i or S, Finj: sends the tuple (Sign, sid;, VK;) to Fig. If
Fsig responds with (Signature, sid;, VK;, ovk;), Finir updates the
corresponding entry in utable to (sid;, -, -, oyk;) and sends the
tuple (Signature, sid;, VK;, oyk,) to the node and also to S. Else
Finit returns L.

Identity Verification: Upon receiving the tuple
(Immediate Neighbors, I;) from node i or S, Finir sends
the tuple (Temporary Verification Key, VK;) to all the nodes in I;.
Upon receiving the tuple (Verify, sid;, VK, ovk;, vk;) from nodes
in I; or S, Finir sends the tuple (Verify, sid;, VK;, oy, ,vksig)
to Fsig. Upon receiving (Verify, sid;, VK;, f) from Fsig, Finit
updates the utable with (sid;, -, - ,+, f) and sends the tuple (Verify,
sidi, VKj, f) to the nodes in I; and this tuple is also sent to the S.

2) Fauc functionality: This functionality is depicted in the Fig-
ure 6. It performs two operations, Auction and Bidding. The auc-
tion operation handles the auctioning of the maximum capacities,
maxcap available in the channels from the ng to the ng, and the
corresponding bidding of the nodes for these capacities. The func-
tionality initially broadcasts the RREQ tuple sent by n; to all its
immediate neighbors until it reaches the ng. Once this is done, the
functionality sends an AUC tuple constructed by each node taking
part in the auction to all of the node’s immediate neighbors from
whom the RREQ message was received. This terminates the auc-
tioning operation. In the Bidding phase, every node that intends
to take part in the auction will construct appropriate bidding tuples
with the appropriate prices and sends them to the auctioneer.

14

Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

3) FPayment functionality: This functionality is depicted in the Fig-

ure 8, it performs two operations: Path Selection and HTLC Es-
tablishment. The path selection begins with n; sending the details
needed for HTLC establishment and payment (the digest and the
corresponding preimage) to the functionality. ng then sends in the
list of all the paths %, along which all the splits of the amt will be
routed. Once the appropriate checks are performed, these details
are stored by the functionality. The final operation in this is the
HTLC establishment, in which the functionality helps every pair
of consecutive nodes along every path from ng to ng establish the
HTLC and complete the payment.

4) 1. functionality: The steps of the F,;;. functionality are straight
forward. This functionality is depicted in Figure 7.

5) Fpc functionality: This functionality handles the blockchain read
and write operations. The steps are described in Figure 9.

Proor. Initialization: The actions of the honest users, H, C
[1..n], n is the number of nodes in the network are simulated by
the simulator S and the actions of dishonest users, D C [1..n],
are simulated by the adversary A. For each node i € H, S gener-
ates the input tuples (Key Gen, sid;) and sends them to the Fipni;
functionality. It calls the Fs;4 functionality and forwards the tu-
ple (Key Gen, sid;). For each node i € H, the Fipi; sends a tuple
(Long Term Verification Key, sid;, vk;)
and (Temporary Verification Key, sid;, VK;) to S. For each node i €
H, S, generates the input (Sign, sid;, VK;) and sends it to Fn;; func-
tionality. Fini; and forwards the tuple (Sign, sid;, VK;) sent by S.
Upon receiving the tuple (Signature, sid;, VK;, 0;), from Fsg, this
tuple is forwarded to S by the Fini; functionality. The adversary
A generates the tuples (Long Term Verification Key,
sidj, vkj) and (Temporary Verification Key, sid;, VK), for those nodes
Jj € D that have a direct connection with the nodes € H and gives
them to S. The adversary A also generates the tuple (Verify, VK;,
OVK;>» vk;) for those nodes j € D that have a direct connection with
the nodes € H and sends it to S. S forwards this tuple to the Fipni;
functionality. Upon receiving the tuple (Verify, sid;, VK, f) from
the Finir functionality, S forwards this tuple to A. If the value of
f in the tuple is ¢ or 0, the Fip;; functionality sends a L to S who
forwards this to A.

Auction : This handles the auctioning of the maxcap between the
nodes along the path from the ng to ng and also the sending of
the RREQ tuple from the ng to the ny. We shall describe the RREQ
sending first. Here we will have 3 cases

Case 0: ng and I, € H: S constructs the tuple (RREQ, txid) and
sends this tuple to the F5pyc functionality. It sends a success mes-
sage back to the S.

Case 1: ng € H and some I,; € D: S constructs the tuple (RREQ,
txid) and sends it to the ¥4y ¢ functionality and also to A. It sends
a success message to the S.

Case 2: ng € D and some intermediate nodes in H: A constructs
the tuple (RREQ, txid) and sends it to S. S forwards this tuple to
the Fauc functionality. The ¥4y ¢ functionality sends this tuple
back to S, who forwards this tuple to A.

Next, the ny sends the RREP tuple to all the nodes in P, ;. Here we
have 4 cases:

Case 0: ny and I,; € H: S constructs the tuple t = (RREP, (txid,

Auroch: Auction-Based Multipath Routing for Payment Channel Networks

Figure 6: ¥4y Ideal Functionality

ns, ng communication: Upon receiving the tuple (pay, txid,
amt, vky_, sidy, sidn,) from ng, the Fayc functionality send
this tuple to the Fipi; functionality. Upon receiving the
message (RESP, Success) from the Fi,;; functionality, the
Fauc functionality forwards the tuple (pay, txid, amt, vky,,
sidp,) to the ng and stores the txid, amt in the txtable =
(sidp,, txid, amt, 1, L, 1, 1, 1, 1). If the Fini; functionality
returns a tuple (RESP, L), the F4r7¢ functionality returns a L
and aborts.

RREQ sending: Upon receiving the tuple (RREQ, txid, sidp,,
I,) from the n;, Fayc functionality send this tuple to the
Finir functionality. Upon receiving the tuple (RESP, Success)
from the Fipi; functionality, Fayc functionality checks if
(sidn,, txid, -, L, 1, 1, L, 1, 1) exists in txtable. If yes, the
Fauc functionality forwards the tuple (RREQ, txid) to all the
nodes in I, . Else, the functionality.

RREP sending to P, ,: Upon receiving the tuple ¢t = (RREP,
(txid, VKy,, P, amt, 0, ORREP,,,,), Pn,) from the ng, the Fauc
functionality checks if the tuple (sidp,, txid, amt, L, L, 1, 1,
1, 1) exists in txtable. If yes, F4yc functionality forwards
this tuple to the Fip;i; functionality. Upon receiving the tuple
(RESP, Success) from the Fin;; functionality, the Fayc
functionality forwards the tuple (Verify, sidy, t, orRrep, VKny,
) to the Fig functionality. Upon receiving the tuple (Verify,
sidn,, t, f) from the Fsig functionality, the ¥4y ¢ checks the
value of f.If f = 0 or f = ¢, the functionality returns a L and
aborts. If not, the ¥4y ¢ functionality sends the tuple

t = (txid, VKp,, P, amt, 0, orgrep) to each node g € Pp,; and
stores the P, Pp,, in the txtable = (sidy_, -, -, P, Pn,, L, L, L,
1).

VKny, Pny, amt, 0, G}r{lEEP)) and sends this tuple to F4yc function-
ality, who performs the required checks and sends this tuple back
to S.

Case 1: ny € H and some [, € D: S constructs the tuple ¢t = (RREP,
(txid, VKp,, Pn,, amt, 0, GSgEP)) and sends this tuple to F4y ¢ func-
tionality and A. Fauc functionality performs the required checks
and sends this tuple back to S.

Case 2: ng € D and some I, , € H: A constructs the tuple t = (RREP,
(txid, VKp,, Pny, amt, 0, crggEP)) and sends it to S, who sends this
to Fauc functionality. If all the checks performed by ¥y ¢ func-
tionality pass, it returns the same back to $ who sends this to A.
If not, the functionality returns a L to S. Case 3: ny and Pp,, € D:
This case is simulated by A.

Now auction commences between every pair of nodes g and g’.
Here we will have 4 cases.

Case 0: g € Hand ¢’ € H: S constructs an input tuple (AUC, txid,
vkg, maxcapg .1, RPg, G/?\UC) and sends it to the F4y¢ function-
ality. Upon receiving this tuple from S, the F4yc functionality
stores the required information and sends this tuple back to S who
forwards this tuple to the node ¢’.

Case 1: g € Hand ¢’ € D: S constructs an input tuple (AUC, txid,

15

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Figure 6: 5y Ideal Functionality Continued

Auction: Upon receiving the tuple (AUC, txid, vky, maxcapy g1,
RPg, O’iuc) from each node g € Py, the F4uc functionality
checks if the tuple (sidp,, txid, -, -, -, L, L, 1, 1) exists in the txtable.
Favc forwards this tuple to the ¥;,;; functionality. For every node
g in P, if Finir functionality returns a tuple (RESP, Success),
Fauc functionality sends the tuple (Verify, sidy, AUC, U/g\UC’ vky)
to Fsig functionality. Else, the ¥4y functionality returns a | and
aborts. Upon receiving the tuple (Verify, sidg, AUC, f), Fauc
checks the value of f.If f = 0 or if f = ¢, the functionality returns
a 1 and aborts. If not, the F4 ¢ functionality sends the tuple
(AUC, txid, vkg, maxcap, .1, RPy, O’ZUC) to the nodes ¢’ € I,,,.

Bidding: Upon receiving the tuple (BID, txid, maxcapy, s, BPgy/,
O’g

B/ID) from each node g’ € I,; to whom the AUC tuple was sent,
the Fayc functionality checks if the tuple (sid,, txid, -, -, -, 1, L,
1, 1) exists in the txtable. If not, the functionality returns a L and
aborts. If yes, the Fayc functionality sends the tuple (Verify, sidy,

(BID, a‘g]D, vky) to the Fsiq functionality. Upon receiving the tuple
Verify, sidy, BID, f). If the value of f is either 0 or ¢, the Fayc
functionality constructs a tuple (BC Write, vkg, t, crng), where t =
BID tuple, and sends this tuple to Fpc functionality. Fayc

functionality also returns a L and aborts. If not, the functionality

forwards the tuple BID, txid, maxcapy, s, BPy, O’g[D) tog.s

Bidder authentication: Upon receiving the tuple (Valid Bidders,
B, txid, sidg) from g, the Fapy ¢ functionality updates the txtable to
store (-, txid, -, -, -, B, L, L, 1).

Final RREP sending: Upon receiving the tuple (RREP, txid, P,
CUrrmaxy’ ny, Costy ny, ORREP, VKg) from g for every node g’,

Fauc retrieves the txid and 8 from txtable(., txid, -, -, -, B, L, L,
1) and checks if each node g’ € B. If not, 4y returns a L and
aborts. If not, Fayc checks if txid € txtable (-, txid, -, -, -, -, L, 1, L).

If yes, Fayc functionality sends the tuple (Verify, sidy, RREP,
ORREP: Vkg') to Fsig functionality. Upon receiving the tuple (Verify,
sidg, RREP, f) from Fsig functionality, Fayc checks the value of f.
If f = 0orif f = ¢, the functionality returns a L and aborts.

vkg, maxcapg ;. 1., RPy, o‘/(-]\UC) and sends it to the F5y ¢ functional-
ity. The ¥4y functionality stores the required information sends
this tuple back to S who forwards this tuple to A that simulates
the node ¢’.

Case 2: g € D and ¢’ € H: Initially S sends the (txid) to A. A

will construct the auction tuple (AUC, txid, vkg, maxcapy, g, 1, RPg,

7

AUC) and will send it to S, who forwards this tuple to the Fayc
functionality. If the value of f # 1, the Fayc functionality will
return a L, abort and will send this message to the S who in turn
forwards this to A.

Case 3: Both g and ¢’ € D: This case is locally simulated by A.
Bidding: The bidding is carried out by the node ¢’ after it receives
the auction tuple during auction from node g. Here we have 4 cases
Case 0: ¢’ € Hand g € H: S constructs a tuple (BID, txid, maxcapg g,

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

BPy, ang) for the node ¢’ and sends this tuple to the F4y ¢ func-
tionality. The F4 ¢ functionality records the required information
and sends this tuple back to S.

Case 1: ¢’ € D and g € H: S sends the (txid, maxcapg,g,) to A. A

Figure 7: 71, ideal functionality

e Initialization: Upon receiving the tuple (Payment,
vkBobs Vkatice, Sidajice) from 77Payment> Fheie checks
if vk ajice> VkBop € utable = (sidajices Vkatice > - -) and
utable = (sidgop, vkpop, * *» -) respectively. If yes, Fpyic
sends a message (Init OK) to Bob. Else it returns a
L. Upon receiving the tuple (Payment, vkg,p, vkajices
sidaice) from Fpayment: Fheic checks if vkjice, vkpob
€ utable = (sidajice> VKajice * *» -) and utable = (sidg,yp,
vkpgops > -, -) respectively. If yes, ;1. sends a message
(Init OK) to Alice. Else it returns a L.

e HTLC fulfillment: Upon receiving the tuple
(HTLC tuple, vk;, vki+1, txid, amt, Y, X) for every pair
of consecutive nodes along the path of the txid from
Bob to Alice, from Fpgyment functionality, ;. checks
if HX) =Y, if yes, Fp;1c sends a message (Success) to
FPayment- Else it returns a L.

generates the bidding tuple (BID, txid, maxcapy, s, BPg/, O’gID) and
sends it to the S. S forwards this tuple to the Fay ¢ functionality.
If any of the entries in the tuple are incorrect, the F4y7¢ returns a
1 and aborts and sends the L to S who in turn forwards this tuple
to A.

Case 2:g’ e Hand g € D: S constructs a tuple (BID, txid, maxcapg ;.

BPy, o]gg}D) for the node g’ and sends this tuple to the F4y¢ func-
tionality. ¥y functionality records the required information and
sends this tuple back to S, who in turn forwards this tuple to A.
Valid bidders: This handles the sending of the valid bidder’s tuple
by the node g to the F4y¢ functionality. Here we have 2 cases.
Case 0: g € H: S constructs the tuple (Valid Bidders, B, txid, sidy)
and sends it to the 4y ¢ functionality. Fay ¢ functionality stores
the required information in the txtable and returns a success mes-
sage to S.

Case 1: g € D: S will send the tuple (txid) to A. A creates the
tuple (Valid Bidders, B, txid, sidg) and sends it to S, who sends
it to Fayc. If any of the entries in the tuple are incorrect, Fayc
returnsa L.

RREP send: Once the BID tuples have been received by the node
g, every node g sends an RREP tuple to the node ¢’. Here we have
2 cases

Case 0: g € H: S constructs the tuple (RREP, txid, P, currmaxg’ n,,
costy n,» ORREP, Vkg) for each node ¢’ and sends this tuple to the
Favc functionality. The Fayc functionality sends a success mes-
sage to S.

Case 1: g € D: A constructs the tuple (RREP, txid, P, currmaxg’ ng,
costy . ORREP, Vkg) for every node ¢’ and sends this tuple to S
who forwards this tuple to the 4y ¢ functionality. If any of the
entries in the tuple are incorrect, the ¥4y ¢ returns a L and sends
this message to S who forwards this to A.

16

Mohammed Ababneh, Kartick Kolachala, and Roopa Vishwanathan

Figure 8: Fpaymen: functionality

Path Selection: Upon receiving the tuple (HTLC Details, Y, X,
txid, sidp,) from the ny, the Fpgymen: functionality checks if the

also checks if the tuple (sidp,, -, -, -, -) exists in the utable. If these
checks do not pass, the Fpgymens returns a L and aborts. If all
these checks pass, the Fpgyment updates the txtable to store (sidp,,

txid, sidp,) to sidn,. Upon receiving the tuple (All Paths, K, sidp,)
from ng, the Fpaymens functionality checks if the tuple (sidy,, txid,

HTLC Establishment: Upon receiving the tuple (HTLC Tuple,
vk;, vki.1, txid, amt, Y, X) from i, for each pair of consecutive
nodes i, i + 1 along the path from the ns to the ng, the Fpayment

K and checks if the nodes i and i + 1 are consecutive nodes in any
of these P lists. If any of these checks fail, the functionality returns
a L and aborts. If all the checks pass, the tuple (HTLC Payment,
vki, vkiy 1, txid, amt, Y, X) is sent to the Fp;;. functionality. Upon
receiving the messages, either (Success) or L, they will be
forwarded to the node i + 1.

g € D: This case is simulated by A.

Payment: This handles the actual payment between the ng and ng
in Auroch. We have the following cases to consider.

Case 0: ng, ng and all intermediate nodes are € H: S constructs
the tuple (HTLC Details, Y, X, txid, sidy,,) and sends this tuple to
the Fpayment functionality. The functionality returns this tuple
back to S. S constructs the tuple (All Paths, K, sidy,) and send to
the Fpaymenr functionality. For every pair of consecutive nodes
iand i+ 1 along each path from ns to ng, S constructs the tu-
ple (HTLC Tuple, vki, vki.1, txid, amt, Y, X) and sends it to the
FPayment functionality. The Fpgymen: functionality sends this tu-
ple to ¥y, functionality. The ;. functionality sends a success
message to Fpaymen: functionality, which in turn forwards this
message to S. zCase 1: ng, ny € H and some intermediate nodes
€ D: S constructs the tuple (HTLC Details, Y, X, txid, sidn,) and
sends this tuple to the Fpgymens functionality. The functionality
returns this tuple back to S. S constructs the tuple (All Paths, %K,
sidp,) and send to the Fpaymens functionality. For every pair of
consecutive nodes, i and i+ 1 along each path fzrom the ng to the ng,
such that node i is honest and node i + 1 is dishonest, S (simulating
the honest node i) sends the tuple (vk;, Y, X) to A. A simulates
the HTLC payment locally and constructs the tuple (HTLC Tuple,
vkj, vkis1, txid, amt, Y, X) to S. S forwards this tuple to Fpaymenr
functionality. The Fpgymen: functionality sends this tuple to ¢
functionality. The ¥, functionality returns either a success or a
L to the Fpayment, who sends this to S. S sends this message to
A. Similarly, for every pair of consecutive nodes along the path
from ng to ng, wherei e D and i+ 1 € H, A sens the (vkj) to S. S

Auroch: Auction-Based Multipath Routing for Payment Channel Networks

constructs the tuple (HTLC Tuple, vki, vkj.1, txid, amt, Y, X) and
sends this to Fpaymens functionality, who sends this tuple to F;¢
functionality. The ;. functionality either returns a success or L
and this sent to Fpaymens functionality, who sends this to S, who
in turn sends this to A.

Figure 9: ¥ functionality

Blockchain read: Upon receiving the tuple (BC Read, vk;) from
anode i in the network, the Fp¢ functionality retrieves the
successfully mined blocks from the BCTable = (By, ..., Bj) and
sends this data to the node vk;.

Blockchain write: Upon receiving the tuple (BC Write, O'tk_,
VKj

network, the ¥pc functionality constructs the tuple (Verify, sidj,
t, 05 K vkj) to the F;4 functionality. Upon the receiving the
tuple (Verify, sid;, t,) from ¥4 functionality, If the value of f
is ¢ or 0, the Fpc functionality returns a L and aborts. If not,
FBc retrieves the fees from this transaction (Hj, -, t, fee, -, -, -, -,

If yes, the Fp¢ functionality adds this transaction to the list of
pending transactions T and adds this T to the block being
currently mined Beyrr = (-, -, -, T). Fpc internally runs a
Proof-of-Work challenge and mines a block By, and this block
is propagated to all the nodes in the network.

Case 2: ng € H and some intermediate nodes are € H and the ny
€ D: A constructs the tuple (HTLC Details, Y, X, txid, sidp,) and
sends this tuple to S, who forwards this to Fpayment- S constructs
the tuple (All Paths, K, sidy,) and sends this tuple to Fpayment
functionality. For every pair of consecutive nodes, i and i + 1 along
each path from the ng to the ng, such that node i is honest and node
i+ 1is dishonest, S sends the tuple (vk;, Y, X) to A. A simulates
the HTLC payment locally and constructs the tuple (HTLC Tuple,
vkj, vki.1, txid, amt, Y, X) to S, who sends it to Fpaymens, who
then forwards this to F;j.. The Fp;. functionality returns either
a success or a L to the Fpgyment, who sends this to S. Similarly,
for every pair of consecutive nodes along the path from n; to ng,
whereie€ D andi+ 1€ H, A sens the (vk;) to S. S constructs the
tuple (HTLC Tuple, vk;, vki.1, txid, amt, Y, X) and sends this to
FPayment functionality, who sends this tuple to ¥, functionality.
The Fy;. functionality either returns a success or L.

Case 3: ns € H, nj and some intermediate nodes are € D: ng con-
structs the tuple (All Paths, K, sid,,) and sends it to A and the
FPayment Will send the tuple (HTLC Details, Y, X, txid, sidp,) and
will send this tuple to S, who sends this tuple to Fpaymen: func-
tionality. For every pair of consecutive nodes, i and i + 1 from n; to
ng, such thatie€ Handi+ 1 €D, S (simulating node i), sends the
tuple (vk;, Y, X), to A. A then constructs the tuple (HTLC Tuple,
vki, vkir1, txid, amt, Y, X) and sends this tuple to S, who forwards
this to Fpgyment, Who sends it to Fc. The Fpyc functionality can
either return a success or L.

Case 4: ns € H, n; and some intermediate nodes are € D: A
(simulating the ng;), constructs the tuple (HTLC Details, Y, X, txid,

17

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

sidn,) and sends this tuple to S. S sends this tuple to Fpayment
functionality. S (simulating the honest ng) constructs the tuple
(All Paths, K, sidy,) and sends this tuple to the Fpaymen: function-
ality. For every pair of consecutive nodes, i and i + 1 along each
path from ng to ng, such thati € Hand i+1 € D, S (simulating node
i), sends the tuple (vk;, Y, X), to A. A then constructs the tuple
(HTLC Tuple, vkj, vkis1, txid, amt, Y, X) and sens this tuple to S.
S will send this tuple to the Fpgymens functionality, who in turn
forwards this tuple to ¥, functionality. The ;. functionality
can either return a success or L. This sent to Fpgymen: functional-
ity, who sends this to S, who in turn sends this to A.
Case 5: ng € D, some intermediate nodes in H, ng € D: A, simu-
lating the ny, constructs the tuple (HTLC Details, Y, X, txid, sidp,;)
and sends it to S. S sends this tuple to the F4yc functionality.
A simulating the ng, constructs the tuple (All Paths, K sidy,) and
sens it to S and S forwards this tuple to Fayc functionality. If
the entries in this tuple are incorrect, the functionality returns a
1 and aborts and the same message is sent to A. For every pair of
consecutive nodes, i and i + 1 along each path from ng to ng, such
thati € Handi+1 € D, S (simulating node i), sends the tuple (vk;, Y,
X), to A. A then constructs the tuple (HTLC Tuple, vk;, vki.1, txid,
amt, Y, X) and sens this tuple to S. S will send this tuple to the
FPayment functionality, who in turn forwards this tuple to Fc
functionality. The ;. functionality can either return a success or
L. This sent to Fpgyment functionality, who sends this to S, who
in turn sends this to A.
Case 6: ng and some intermediate nodes € D and n; € H: S con-
structs the tuple (HTLC Details, Y, X, txid, sidp,) and sends it to
the Fpaymen: functionality. A constructs the tuple (All Paths, %K)
and sends it to the S, who forwards to the Fpgymens functionality.
If the entries in the tuple are incorrect, the Fpaymen: functionality
returns a L. Else, For every pair of consecutive nodes, i and i+1 from
ns to ng, S sends the tuple (vk;, Y, X), to A. A then constructs the
tuple (HTLC Tuple, vk, vki.1, txid, amt, Y, X) and sens this tuple
to S, who in turn forwards this tuple to ¥, functionality. The
Fhe1c functionality can either return a success or L.

O

	Abstract
	1 Introduction
	2 Related Work
	3 System Setup
	4 Overview of Auroch
	4.1 Auroch Stages
	4.2 Auroch Workflow

	5 Construction
	6 Evaluation
	6.1 Experiment Setup
	6.2 Results
	6.3 Tradeoffs

	7 Auroch Security Analysis
	8 Conclusion
	Acknowledgments
	References
	A Protocols
	B Security Analysis

