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A B S T R A C T   

Application of sensors is becoming prevalent in research and production settings. With increasing battery power, 
improved case and component durability, and consistent data connectivity, precision technologies, such as ac
celerometers, can help identify changes in livestock behavior. The objective of this study is to identify the 
variation among individual animals and among different accelerometer devices. A repeated 4 × 4 Latin-square 
design was utilized to identify differences between accelerometer, animal, and week. Twelve ewes separated into 
three age groups were randomly assigned to 4 different accelerometers deployed as an ear tag weekly over the 
course of 4 weeks. Manual behavior observations were paired to calculated accelerometer metrics and were used 
for training and validation dataset to predict animal behavior using random forest machine learning. Movement 
variation had the greatest importance in predicting behaviors. Across the four week study, differences were 
found for animal and week through each of the calculated metrics. Differences in accelerometers were detected 
for 80 % of the calculated metrics. This study shows the importance to account for variation among individual 
animals and accelerometer devices in experimental designs.   

1. Introduction 

Advancements in technology have improved methods for remotely 
monitoring livestock. Accelerometers have been utilized by researchers 
to detect changes in animal behavior resulting from health and welfare 
issues in several livestock industries including sheep [4,13,14,16,18,19, 
21,36], dairy cattle [2,25,26,32], and beef cattle [6,10,34,35]. Accel
erometers that provide activity data in “real time” or “near real-time” 
are becoming commercially available and give livestock producers the 
ability to remotely monitor animal health and movement and to expe
dite treatment and improve animal well-being ([1,17,18,33]). 

Accelerometers are electronic sensor systems capable of detecting 
changes in activity by measuring linear acceleration along three axes in 
units of the acceleration of gravity (-9.8 m s−2) [3,39]. Acceleration 
measurements along the X (horizontal), Y (longitudinal), or Z (vertical) 

axes are interpreted as animal motion and can serve as a proxy for en
ergy expenditure [29]. Multiple studies have utilized accelerometers to 
study multiple livestock behaviors including lying, standing, grazing, 
and walking [11,23,27]. Machine learning is often used to predict 
livestock behavior and livestock well-being concerns from the multi-axis 
accelerometer data [10,21]. Disease [6,20,35], lameness [4,7], partu
rition [16,19], and water failure leading to deprivation [34] can affect 
animal movement and activity, which allows accelerometers to be used 
to remotely monitor livestock for these welfare concerns. Supervised 
machine learning techniques, such as random forests, incorporate 
observed individual behavior data to train and validate the prediction 
algorithm. Prediction models can have high misclassification rates [35] 
and low accuracy [19], even with large observation datasets. Develop
ment of algorithms that can detect changes in behavior and associated 
well-being concerns and production issues such as disease, parturition 
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and estrus is essential for the use of on-animal sensor and tracking to be 
successful [1,37]. 

One issue that may affect monitoring and evaluation of behavior 
with accelerometers is variation in recorded movements among indi
vidual animals. The intensity of a behaviors (i.e., walking) of one indi
vidual may differ greatly from the intensity of other in the herd, which 
could cause difficulty in prediction of behavior if a group of individuals 
are pooled together for analysis. A second problem is the potential for 
variation among the accelerometer devices. Movement intensity of two 
accelerometers on the same individual may not be identical. Anecdotal 
observations of variation among different accelerometers monitoring 
the same heifers was observed by Tobin et al. [35]. Although diurnal 
movement patterns of healthy heifers remained similar across time, 
mean values of movement intensity (a metric summarizing movement 
across 3 axes) changed when different accelerometer devices were 
placed on heifers each week. This suggested that not only does activity 
monitored by accelerometers likely vary among individual animals, but 
it also could vary among the accelerator devices. Chang et al. [10] 
demonstrated that an algorithm developed for the individual animal was 
more accurate than one developed over a group further supporting this 
hypothesis. However, several commercial sensors (e.g., Cowmanager 
SensOor (https://www.cowmanager.com/) and smaXtec (https://sm 
axtec.com) use the same algorithm for all the animals in the herd, 
which potentially could reduce the accuracy of predictions if there is 
inherent variation in intensity of movements among animals and sen
sors. In addition, both sources of variation could create experimental 
error that would affect accuracy of behavior predictions from machine 
learning Experimental designs to control or minimize these two sources 
of experimental error (variation among individual animals and variation 
among accelerometer devices) depends on the magnitude and pattern of 
these two potential factors affecting the movement data. 

Numerous metrics can be calculated from accelerometer data [15], 
and machine learning techniques can be used to find the best metrics to 
use for prediction of behavior. However, it is also important to under
stand the relationship between the accelerometer metric and behavior. 
Some metrics may have characteristics that make them more robust than 
others. 

This study aims to document and evaluate variation among indi
vidual animals and among accelerometer devices in movements recor
ded by accelerometers. Variability among animals and accelerometers 
potentially can affect behavior prediction models leading to lower ac
curacy and less effective algorithm identification of animal behaviors 
and welfare concerns from remotely collected accelerometer data if the 
same algorithm is used for groups of livestock, which is simpler 
approach to use for commercial applications. Accuracy of prediction 
models is the key or expediting intervention and treatment to ensure the 
highest levels of animal welfare. If the same algorithm is to be used on 
different animals and devices, the calculated metrics from the acceler
ometer used should be robust and less sensitive to variation that may 
occur across the herd. In addition, livestock research involving accel
erometers could use experiment design that account for variation among 
individual animals and accelerometer devices if the differences are 
elucidated and quantified. 

2. Materials and methods 

2.1. Site and animals 

All procedures were approved by the New Mexico State University 
Institutional Animals Care and Use Committee (2019-007). 

This study was conducted on the campus of New Mexico State Uni
versity in Las Cruces, New Mexico, USA at the West Sheep Unit research 
facility. Twelve mature ewes ages 1 to 3 yr (n = 4 per age group) were 
housed in a single pen (18.3 × 9.1 m) and monitored from 23 August to 
20 September 2021. Each ewe was fed 1.6 kg of alfalfa hay in the 
morning (0800 h) with ad libitum access to water, mineral, and salt. 

2.2. Accelerometers 

A tri-axial Axivity AX3 MEMS accelerometer (Axivity Ltd, Newcastle, 
UK) was attached to an Allflex ear tag (Allflex USA Inc., DFW, TX, USA) 
with shrink wrap tubing. The ear tag with the accelerometer was 
attached to the pinna of the left ear. Accelerometers were charged prior 
to deployment to last a minimum of 30 days (study duration). Acceler
ometers were configured to collect acceleration signals at a sample rate 
of 12.5 Hz measuring longitudinal movements of the horizontal X-axis 
(left and right), longitudinal Y-axis (forward and backward), and ver
tical Z-axis (up and down). The dimensions of each accelerometer were 
23 × 32.5 × 7.6 mm and weighed 11 g. For a detailed image of accel
erometer location and orientation, please see Gurule et al. [19]. 

Accelerometer movements were subsequently stored on the NAND 
Memory within the device. Accelerometers were removed weekly and 
after the study to retrieve data via USB connection to the OmGui Axivity 
computer software. The OmGui program downloads data from the 
accelerometer, allows for manipulation for desired study period, and 
stores raw data as a .CWA file, not compatible with Microsoft Excel 
(Microsoft Corporation, Redmond, WA, USA). No accelerometers failed 
throughout the course of the study. The internal clock was synced within 
the OmGui program with the time.is website (https://time.is) prior to 
deployment. Data were aggregated into 1 min epochs. 

2.2.1. Data collection and behavior observation 
Accelerometers were removed from each animal every Monday (23 

August, 30 August, 6 September, 13 September) during the four-week 
study by cutting the male button attaching the tag to the ear. The 
accelerometer was not removed from the Allflex ear tag. The acceler
ometers remained attached to the tag using the heat shrink tubing. 
During weeks 2–4, ear tags were removed from the ewe, data were 
downloaded and accelerometers were reset for preparation for the next 
weeks’ placement. No alterations of the tags were made throughout the 
study. Tags were reattached to the ewes using a new male Allflex pin and 
the original hole made in the left ear. This protocol allowed the accel
erometers to be move from one ewe to another with the ear placement 
and tag orientation as similar as possible. Ear tags are usually the 
preferred approach for producers to remotely monitor their livestock 
compared to collars and other methods of attaching sensors to animals 
[38]. 

To accommodate changing ear tags each week, no observations were 
recorded on Mondays or Tuesdays during the study. Behavioral obser
vations were recorded from Wednesday to Sunday each week during the 
trial. Behavior observations were recorded by trained observers with 
behaviors including lying, standing, feeding, nibbling on the ground 
(stereotypic behavior similar to feeding). Observers time recording de
vices were synced with the time.is website (https://time.is) prior to 
deployment. 

Feeding was defined as the ewe consuming feed from the bunk, 
chewing with head up or down while standing or moving. Lying was 
defined as ewe resting on the ground with no spatial movement but 
could be ruminating. Standing was defined as ewe on all legs in contact 
with the ground with no spatial movement but could be ruminating. 
Lying and standing behaviors were grouped into non-active while 
feeding and nibbling were grouped into active. Behavioral observations 
were aggregated into 1 min epochs and behaviors that were recorded 
that began or ended during the minute were excluded from analysis. In 
total, 2322 full 1 min epochs of observed behavior were recorded and 
used in the analyses. This is equivalent to a total of 38.7 h of observation 
across the five observers 

2.3. Experimental design 

This study was designed as a repeated Latin-square. Three 4 × 4 
Latin-squares were designed to accommodate ewes born in 2018 (ewes 
801, 811, 818, 831), 2019 (ewes 907, 914, 919, 950), or 2020 (ewes 
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009, 014, 017, 019). Four ewes born during each year were randomly 
selected from the herd and used in the Latin square design for that year 
of birth. Limiting a 4 × 4 Latin square to ewes born in a given year 
helped reduce the effect of age on the analyses, and evaluating 3 age 
groups should make the results more representative of commercial 
sheep herds. For each year the fixed effects for the Latin square were 
ewe, accelerometer and week (Table 1). Assignments of ewes to accel
erometers each week were made randomly according to the Latin square 
design. 

The use of Latin-square design allows the simultaneous evaluation of 
the fixed effects of ewe, accelerometer, and week. The error term from 
the Latin-square design does not permit the evaluation of interactions 
between the fixed effects, Table 1) [31]. Fitting interactions between 
fixed effects interaction would result in the incorrect error term [40]. To 
limit any interaction between fixed effects, the authors intentionally 
utilized the same hole which was produced from tagging the animal. The 
exact same attachment point of the Allfex tag/accelerometer allowed us 
compare different accelerometers on the same ewe. 

2.4. Development of behavior classification algorithm 

The mean, maximum, minimum, and standard deviation were 
calculated for each 1 m epoch from accelerometer axes. Additionally, 
movement intensity (MI), signal magnitude area (SMA), entropy, en
ergy, and movement variation (MV) were calculated as metrics for 
behavior analysis. A total of 19 metrics were calculated for each 1 m 
epoch amended from Fogarty et al., 2020 and [15,36] (Tables 2, 3). 

2.5. Machine learning analyses 

Random Forest machine learning was used to create behavior pre
dictions from a training dataset and validate the predications from a 
separate and independent data set. Shaikhina et al. [28] developed a 
prediction model with 85 % accuracy with only 80 data points using this 
technique. Random Forest have also shown to have strong predictive 
performance with imbalanced datasets [8]. Only the calculated metrics 
were used for predictive variables (features) for machine learning ana
lyses. These predictive variables were MI, SMA, Energy, Entropy and 
MV. The number of predictor variables was limited to help insure that 
the machine learning model was not overfitted. Random forests models 
were created in R (R Development Core Team, 2011) using ‘random
Forest’ library. Of the 2322 observed behaviors, 1870 random obser
vation (80.53 %) were used as the training dataset while the remaining 
452 observations (19.46 %) were utilized as the validation dataset. The 
ntree was set to 300 after being reduced from 500 and mtry was 4. Mean 
Decrease Accuracy and Mean Decrease Gini were plotted from the 

random forest model to determine importance of each calculated metric. 
Mean Decrease Accuracy expresses how much of the model accuracy 
would be lost by excluding each variable. Mean Decrease Gini identifies 
how each variable accounts for the homogeneity of the nodes within the 
grown trees [24]. One-minute epochs of predicted active behavior were 
compiled into daily percentages of active behavior. 

2.6. Statistical analysis 

Mean movement intensity, MV, energy, entropy, SMA, and predicted 
active behavior were used as dependent values in a 4 × 4 Latin-square 
design (16 experimental units per Latin square) using PROC MIXED in 
SAS (SAS Institute Inc., ND, USA; [36]). The dependent variables were 
averaged by ewe for each week of the study. Fixed effects were week (1 
to 4), accelerometer, and ewe. Each Latin-square, an age group (born in 
2018, 2019 or 2020) was analyzed separately. Mean separation tests 
were evaluated using the pdiff feature of PROC MIXED. 

Table 1 
Structure of repeated Latin-squares.    

Accelerometertb7   
7 16 17 19 

Animal 801 Week3 Week2 Week1 Week4  
811 Week1 Week4 Week3 Week2  
818 Week2 Week1 Week4 Week3  
831 Week4 Week3 Week2 Week1   

Accelerometer      
14 15 20 22 

Animal 907 Week4 Week2 Week1 Week3  
914 Week3 Week1 Week4 Week2  
919 Week2 Week4 Week3 Week1  
950 Week1 Week3 Week2 Week4   

Accelerometer      
8 10 18 21 

Animal 009 Week4 Week1 Week3 Week2  
014 Week2 Week3 Week4 Week1  
017 Week3 Week2 Week1 Week4  
019 Week1 Week4 Week2 Week3  

Table 2 
Fourteen features and the equation used to calculate predictive metric.  

Feature Equation 

Average X-axis  
(Ax) Ax =

1
T

∑T
1
(x(t))

Average Y-axis  
(Ay) Ay =

1
T

∑T
1
(y(t))

Average Z-axis  
(Az) Az =

1
T

∑T
1
(z(t))

Average All-Axis  
(Axyz) Axyz =

1
T

∑T
1
(x(t) + y(t) + z(t))

Minimum X-axis (Minx) The minimum X-axis value in the epoch 
Minimum Y-axis (Miny) The minimum Y-axis value in the epoch 
Minimum Z-axis (Minz) The minimum Z-axis value in the epoch 
Maximum X-axis (Maxx) The maximum X-axis value in the epoch 
Maximum Y-axis (Maxy) The maximum Y-axis value in the epoch 
Maximum Z-axis (Maxz) The maximum Z-axis value in the epoch 
Standard Deviation X-axis 

(SDx) SDx =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T

∑T
t=1

(x(t) − x)
2

√

where x is the mean of X- 
axis value in the epoch  

Standard Deviation Y-axis 
(SDy) SDy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T

∑T
t=1

(y(t) − y)
2

√

where y is the mean of Y- 
axis value in the epoch  

Standard Deviation Z-axis 
(SDz) SDz =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T

∑T
t=1

(z(t) − z)
2

√

where z is the mean of Z- 
axis value in the epoch  

Average Standard Deviation 
all-axis (SDxyz) 

VARxyz =
1

3 ∗ T
∗ (SD2

x ∗T +SD2
y ∗T +SD2

z ∗T) SDxyz =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
VARxyz

√

Table 3 
Five calculated metrics utilized as predictive metrics for machine learning 
behavior predictions.  

Feature Equation 

Movement Intensity 
(MI) 

MI =
1
T

∑T
t=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x(t)2
+ y(t)2

+ z(t)2
√

Signal Magnitude Area 
(SMA) 

SMA =
1
T

∑T
t=1

(|x(t)| + |y(t)| + |z(t)|)

Energy (Energy) Energy =
1
T

∑T
t=1

(x(t)2
+ y(t)2

+ z(t)2
)
2 

Entropy (Entropy) Entropy =
1
T

∑T
t=1

(1 + (x(t) + y(t) + z(t))
2
) ∗ ln (1 +

(x(t) + y(t) + z(t))
2
)

Movement Variation 
(MV) 

MV =
1
T

∑T
t=2

(|x(t − 1) − x(t)| + |y(t − 1) − y(t)| + |z(t −

1) − z(t)|)
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Movement intensity, MV, energy, entropy, SMA, and predicted active 
behavior were used as dependent values were also averaged by hour by 
ewe and then analyzed using the repeated measures procedure of PROC 
MIXED in SAS ( [22] as a 4 × 4 Latin-square (n = 12). Each Latin-square, 
based on the ewe year of birth, was analyzed separately. The fixed ef
fects in the model include week (1 to 4), day within week (1 to 5), hour 
within day (0 to 23), accelerometer, and ewe. The subject of the 
repeated measures was sheep within week. The covariance of repeated 
records was modeled using the autoregressive order of 1 (AR1) covari
ance structure. The AR1 structure has a lower Akaike Information Cri
terion (AIC) value than the other covariance structures evaluated, 
compound symmetry and unstructured [22]. Mean separation tests were 
evaluated using the pdiff feature of PROC MIXED. 

3. Results 

The initial random forest model utilized the four observed behaviors 
(laying, standing, feeding, and nibbling) for prediction. Standing was 
usually predicted as laying and nibbling was predicted as feeding. We 
merged the four observed behaviors into active (feeding and nibbling) 
and inactive (laying and standing) to create a binary classification 
model. 

The random forest model had an out-of-bag (OOB) error rate of 6.26 
%. The training dataset predicted the ‘active’ behavior 100 % correctly. 
The test dataset had prediction accuracy of 95.35 %. The model used 
approximately 175 of the 300 grown trees. The importance of variables 
is calculated using the Mean Decrease Accuracy and Mean Decrease 
Gini. Mean Decrease Gini is the average of a variables total decrease in 
node impurity, weighted by the proportion of samples reaching that 
node in each tree within the forest. The order of importance of variables 
used in the model were MV, Energy, MI, Entropy, and SMA based off 
Mean Decrease Accuracy (Table 4, Fig. 1). The random forest model 
prediction had receiving operator characteristics (ROC) area under the 
curve of 0.961. The random forest model predicted 82.6 % of the 
observed dataset. 

3.1. 2018 ewes 

There were differences in weekly MV due to the main effects of 
accelerometer (P = 0.0005), week (P = 0.0207), and sheep (P < 0.0001) 
during this study. The greatest differences in means of MV (highest 
minus lowest) were 0.04037, 0.05191, and 0.02900 for accelerometer, 
sheep, and week, respectively (Tables 5–7). For the hourly averages, the 
analysis of repeated measures found detectable differences of hour of the 
day (P < 0.0001) in addition to differences of accelerometer, week and 
sheep (P = 0.0029, P = 0.0125, P = 0.0008) with no detectable differ
ences for day of the week (P = 0.17). 

There were differences in the weekly averages for energy due to the 
main effects of accelerometer (P < 0.0001), week (P = 0.0032), and 
sheep (P < 0.0001) during this study. The greatest differences in means 
of energy were 2.7098, 4.0356 and 2.0166 for accelerometer, sheep, and 
week, respectively (Tables 5–7). For the hourly averages, the repeated 
measures analysis found detectable differences of day of the week (P =
0.0317) and hour of the day (P < 0.0001) with no detectable differences 
of accelerometer, week and sheep (P > 0.05). 

There were differences in MI due to the main effects of accelerometer 
(P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001) during this 
study. The greatest differences in means of MI were 0.03298, 0.02475, 
and 0.02009 for accelerometer, sheep, and week, respectively 
(Tables 5–7). For the hourly averages, the analysis of repeated measures 
found detectable differences of hour of the day (P < 0.0001) in addition 
to differences of accelerometer, week and sheep (P < 0.0001, P =

0.0012, P = 0.0002) with no detectable differences due to day (P =

0.89). 
There were differences in entropy due to the main effects of accel

erometer (P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001) 
during this study. The greatest differences in means of energy were 
0.494, 0.6799, and 0.196 for accelerometer, sheep, and week, respec
tively (Tables 5–7). For the hourly averages, the analysis of repeated 
measures found detectable differences of day of the week (P = 0.0013) 
and hour of the day (P < 0.0001) with no detectable differences of 
accelerometer, week and sheep (P > 0.05). 

There were differences in weekly SMA due to the main effects of 
accelerometer (P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001) 
during this study. The greatest differences in means of SMA were 
0.06392, 0.07873, and 0.05669 for accelerometer, sheep, and week, 
respectively (Tables 5–7). For the hourly averages, the analysis of 
repeated measures found detectable differences of day of the week (P =
0.010) and hour of the day (P < 0.0001) with no detectable differences 
of accelerometer, week and sheep (P > 0.05). 

There were differences in weekly activity due to the main effects of 
accelerometer (P = 0.0089) and week (P < 0.0001) during this study. No 
differences between sheep were detected for the 2018 ewes (P = 0.18). 
The greatest differences in means of percent active were 1.056 % and 
0.444 % for accelerometer and week, respectively (Tables 5–7). For the 
hourly averages, the analysis of repeated measures found detectable 
differences of day of the week (P < 0.0001) with no detectable differ
ences of accelerometer, animal, and week (P > 0.05). 

3.2. 2019 ewes 

There were differences in MV due to the main effects of week (P =
0.0421), and sheep (P < 0.0001) for the 2019 ewes. No differences be
tween accelerometer were detected for the 2019 ewes (P = 0.09). The 
greatest differences in means of MV were 0.08442 and 0.02709 for 
sheep, and week, respectively (Tables 5–7). For the hourly averages, the 
analysis of repeated measures found detectable differences of hour of the 
day (P < 0.0001) in addition to differences of accelerometer, week, and 
sheep (P = 0.0456, P = 0.0269, P < 0.0001) with no detectable differ
ences due to day of the week (P = 0.13). 

There were differences in energy due to the main effects of week (P <
0.0001), and sheep (P < 0.0001) in this age group. No differences be
tween accelerometer were detected for the 2019 ewes (P = 0.24). The 
greatest differences in means of energy were 4.5024 and 1.3548 for 
sheep, and week, respectively (Tables 5–7). For the hourly averages, the 
analysis of repeated measures found detectable differences of hour of the 
day (P < 0.0001) in addition to differences of, week, and sheep (P =
0.0145, P < 0.0001) with no detectable differences due to day of the 
week (P = 0.19) or (P = 0.32. 

There were differences in MI due to the main effects of accelerometer 
(P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001) for the 2019 
ewes. The greatest differences in means of MI were 0.07916, 0.04386, 
and 0.01952 for accelerometer, sheep, and week, respectively 
(Tables 5–7). For the hourly averages, the analysis of repeated measures 
found detectable differences of hour of the day (P < 0.0001) in addition 
to differences of accelerometer, week, and sheep (P < 0.0001, P =

0.0008, P < 0.0001) with no detectable differences due to day of the 
week (P = 0.65). 

There were differences in entropy due to the main effects of accel
erometer (P = 0.0124), week (P < 0.0001), and sheep (P < 0.0001) 
during this study. The greatest differences in means of energy were 

Table 4 
Importance of calculated variables used in random forest machine learning 
prediction model.  

Calculated Metric Mean Decrease Accuracy Mean Decrease Gini 

Movement Variation 238.55217 490.32945 
Energy 46.94281 92.47779 
Movement Intensity 28.58495 50.30435 
Entropy 23.59104 68.99224 
Signal Magnitude Area 20.39243 39.72620  
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Fig. 1. Mean Decrease Accuracy and Mean Decrease Gini of the five calculated predictor variables, movement variation (MV), energy, movement intensity (MI), 
entropy and signal magnitude intensity (SMI). 

Table 5 
Means (±SE) of Movement Variation (MV), Energy, Movement Intensity (MI), Signal Magnitude Area (SMA), Entropy, and Daily Active Percentage for ewes born in 
2018–2020 based on analyses that used weekly averages of the dependent variables.  

Birth Year Ewe MV SE Energy SE MI SE SMA SE Entropy SE Daily Active,% SE 

2018 801 0.1818 0.004 2.7432 0.399 1.0334 0.002 1.3616 0.029 2.1178 0.032 8.067 0.376  
811 .2000 0.004 6.7788 0.399 1.0086 0.002 1.4114 0.029 1.4379 0.032 8.577 0.376  
818 0.1481 0.004 4.4877 0.399 1.0145 0.002 1.3856 0.029 1.7641 0.032 7.740 0.376  
831 0.1775 0.004 4.1212 0.399 1.0328 0.002 1.3327 0.029 2.0473 0.032 7.898 0.376 

2019 907 0.1782 0.005 2.3608 0.288 1.0251 0.002 1.4260 0.005 1.0009 0.043 8.283 0.307  
914 0.2627 0.005 6.8632 0.288 1.0690 0.002 1.3757 0.005 3.1555 0.043 9.026 0.307  
919 0.1858 0.005 3.0535 0.288 1.0298 0.002 1.3474 0.005 1.4802 0.043 8.495 0.307  
950 0.2235 0.005 5.4420 0.288 1.0338 0.002 1.3694 0.005 1.6195 0.043 8.945 0.307 

2020 009 0.1625 0.003 5.8243 0.311 1.0074 0.002 1.3469 0.003 2.4497 0.028 8.006 0.282  
014 0.1751 0.003 2.6607 0.311 1.0211 0.002 1.3105 0.003 2.3137 0.028 8.106 0.282  
017 0.1804 0.003 3.6663 0.311 0.9988 0.002 1.2805 0.003 1.9086 0.028 8.649 0.282  
019 0.1573 0.003 2.6015 0.311 0.9968 0.002 1.2704 0.003 1.7577 0.028 7.617 0.282  

Table 6 
Means (± standard errors, SE) of Movement Variation (MV), Energy, Movement Intensity (MI), Signal Magnitude Area (SMA), Entropy and Activity for accelerometers 
placed in 2018, 2019 and 2020 age groups based on analyses that used weekly averages of the dependent variables.  

Ewe Birth Year Accelerometer MV SE Energy SE MI SE SMA SE Entropy SE Daily Active, 
% 

SE 

2018 7 0.1591 0.004 3.4290 0.399 1.0230 0.002 1.3418 0.029 1.7787 0.032 7.600 0.376  
16 0.1995 0.004 6.1388 0.399 1.0384 0.002 1.4012 0.029 1.6314 0.032 8.956 0.376  
17 0.1773 0.004 4.5148 0.399 1.0226 0.002 1.4057 0.029 2.1254 0.032 7.804 0.376  
19 0.1716 0.004 4.0483 0.399 1.0054 0.002 1.3427 0.029 1.8316 0.032 8.750 0.376 

2019 14 0.2071 0.005 3.9876 0.288 0.9972 0.002 1.3017 0.005 1.8483 0.043 8.610 0.307  
15 0.2198 0.005 4.3866 0.288 1.0988 0.002 1.4633 0.005 1.7183 0.043 8.685 0.307  
20 0.2004 0.005 4.8233 0.288 1.0196 0.002 1.3644 0.005 1.8294 0.043 8.506 0.307  
22 0.2229 0.005 4.5221 0.288 1.0422 0.002 1.3892 0.005 1.8602 0.043 8.948 0.307 

2020 8 0.1695 0.003 3.4610 0.311 1.0464 0.001 1.3608 0.003 2.2942 0.028 7.987 0.282  
10 0.1629 0.003 3.5526 0.311 1.0114 0.001 1.3007 0.003 1.9608 0.028 7.904 0.282  
18 0.1702 0.003 3.9920 0.311 0.9777 0.001 1.2712 0.003 2.0336 0.028 8.257 0.282  
21 0.1726 0.003 3.7471 0.311 0.9887 0.001 1.2755 0.003 2.1411 0.028 8.230 0.282  
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0.1419, 2.1546, and 0.7064 for accelerometer, sheep, and week, 
respectively (Tables 5–7). For the hourly averages, the analysis of 
repeated measures found detectable differences of hour of the day (P <
0.0001) in addition to differences of week and sheep (P < 0.0001, P <
0.0001) with no detectable differences due to day of the week (P = 0.86) 
or accelerometer (P = 0.18). 

There were differences in SMA due to the main effects of acceler
ometer (P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001) during 
this study. The greatest differences in means of SMA were 0.1616, 
0.07866, and 0.05768 for accelerometer, sheep, and week, respectively 
(Tables 5–7). For the hourly averages, the analysis of repeated measures 
found detectable differences of hour of the day (P < 0.0001) in addition 
to differences of accelerometer, week and sheep (P < 0.0001, P =

0.0003, P = 0.0002) with no detectable differences due to day of the 
week (P = 0.86). 

There were differences in weekly activity due to the main effects of 
week (P < 0.0001). No differences between sheep or accelerometer were 
detected for the 2019 ewes (P > 0.05). The greatest difference in means 
for activity were 0.9403 % for week (Tables 5–7). For the hourly aver
ages, the analysis of repeated measures found detectable differences of 
day of the week (P < 0.0001), week (P = 0.0003) and animal (P =

0.0486) with no detectable differences of accelerometer (P = 0.46). 

3.3. 2020 ewes 

There were differences in MV due to the main effects of week (P =
0.0014), and sheep (P = 0.0375). No differences between accelerometer 
were detected for the 2020 ewes (P = 0.74). The greatest differences in 
means of MV were 0.02316 and 0.03174 for sheep, and week, respec
tively (Tables 5–7). For the hourly averages, the analysis of repeated 
measures found detectable differences of hour of the day (P < 0.0001) in 
addition to differences of week and sheep (P = 0.0017, P = 0.0081) with 
no detectable differences due to day of the week (P = 0.30) or acceler
ometer (P = 0.29). 

There were differences in energy due to the main effects of week (P <
0.0001), and sheep (P < 0.0001). No differences between accelerometer 
were detected for the 2020 ewes (P = 0.63). The greatest differences in 
means of energy were 3.1636 and 2.3505 for sheep, and week, respec
tively (Tables 5–7). For the hourly averages, the analysis of repeated 
measures found detectable differences of hour of the day (P < 0.0001) in 
addition to differences of week and sheep (P = 0.0039, P = 0.0009) with 
no detectable differences due to day of the week (P = 0.24) or acceler
ometer (P = 0.64). 

There were differences in MI due to the main effects of accelerometer 
(P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001) for the weekly 
means of the 2020 ewes. The greatest differences in means of MI were 
0.0686, 0.02431, and 0.01085 for accelerometer, sheep, and week, 
respectively (Tables 5–7). For the hourly averages, the analysis of 

repeated measures found detectable differences of hour of the day (P <
0.0001) in addition there were differences in accelerometers, weeks and 
sheep (P < 0.0001, P = 0.0017, P < 0.0001) with no detectable differ
ences due to day of the week (P = 0.54). 

There were differences in weekly means of entropy due to the main 
effects of accelerometer (P < 0.0001), week (P < 0.0001), and sheep (P 
< 0.0001) for the 2020 ewes. The greatest differences in means of en
tropy were 0.3335, 0.6920, and 0.1205 for accelerometer, sheep, and 
week, respectively (Tables 5–7). For the hourly averages, the analysis of 
repeated measures found detectable differences of hour of the day (P <
0.0001) and day of the week (P = 0.0025) in addition to differences of 
sheep (P < 0.0094) with no detectable differences due to day of the week 
(P = 0.59) or accelerometer (P = 0.22). 

There were differences in weekly means of SMA due to the main 
effects of accelerometer (P < 0.0001), week (P < 0.0001), and sheep (P 
< 0.0001) during this study. The greatest differences in means of SMA 
were 0.08960, 0.07655, and 0.03522 for accelerometer, sheep, and 
week, respectively (Tables 5–7). For the hourly averages, the analysis of 
repeated measures found detectable differences of hour of the day (P <
0.0001) in addition to differences of accelerometer, week and sheep (P <
0.0001, P = 0.0021, P < 0.0001) with no detectable differences due to 
day of the week (P = 0.15). 

There were differences in weekly activity due to the main effects of 
animal (P = 0.0288) and week (P < 0.0001) during this study. No dif
ferences between sheep or accelerometer were detected for the 2020 
ewes (P > 0.63). The greatest differences in means for activity were 
1.045 % and 0.6215 % for animal and week, respectively (Tables 5, 6, 
7). For the hourly averages, the analysis of repeated measures found 
detectable differences of day of the week (P < 0.0001), week (P <

0.0001) and animal (P = 0.0076) with no detectable differences of 
accelerometer (P = 0.21). 

4. Discussion 

Through the random forest machine learning procedure, MV had the 
greatest Mean Decrease Accuracy. As variables are excluded from the 
model, the model becomes less accurate. As seen in Fig. 1, MV was the 
most important variable in terms of accuracy of the model and homo
geneity of the nodes within the forest. Movement variation is based on 
the variation between adjacent epochs (Table 3). and provides an indi
cation of the total amount of variance between epochs to describe the 
amplitude, frequency, and duration of movement [9]. Prediction of the 
test dataset had lower accuracy of 82.60 % compared to the overall 
model of 95.35 %. All active behavior observation misclassifications 
were during feeding periods. Time of day was not included as a metric 
during this random forest machine learning procedure. Studies con
ducted in feedlot settings may be benefited by including time of day. 

Although differences in week were detected for almost every 

Table 7 
Means (±SE) of Movement Variation (MV), Energy, Movement Intensity (MI), Signal Magnitude Area (SMA), Entropy, and Daily Active Percentage for week 1–4 of the 
placed in ewes born in 2018–2020 based on Latin-square design analyses that used weekly averages of the dependent variables.  

Assigned Ewe Birth Year Week MV SE Energy SE MI SE SMA SE Entropy SE Daily Active, 
% 

SE 

2018 1 0.1705 0.004 5.5787 0.399 1.0321 0.002 1.4057 0.029 1.9617 0.032 10.5753 0.376  
2 0.1932 0.004 4.7864 0.399 1.0120 0.002 1.3263 0.029 1.8693 0.032 10.6066 0.376  
3 0.1794 0.004 4.2037 0.399 1.0182 0.002 1.3830 0.029 1.7657 0.032 10.1622 0.376  
4 0.1644 0.004 3.5621 0.399 1.0270 0.002 1.3764 0.029 1.7704 0.032 10.1865 0.376 

2019 1 0.2007 0.005 4.0447 0.288 1.0274 0.002 1.3613 0.005 1.5079 0.043 7.6667 0.307  
2 0.2278 0.005 4.7782 0.288 1.0376 0.002 1.4084 0.005 1.7104 0.043 8.6007 0.307  
3 0.2057 0.005 3.4994 0.288 1.0458 0.002 1.3981 0.005 1.8251 0.043 7.8160 0.307  
4 0.2160 0.005 5.3979 0.288 1.0469 0.002 1.3504 0.005 2.2121 0.043 7.9271 0.307 

2020 1 0.1693 0.003 4.8184 0.311 1.0019 0.001 1.3184 0.003 2.1174 0.028 7.9549 0.282  
2 0.1893 0.003 4.5014 0.311 1.0064 0.001 1.3024 0.003 2.1089 0.028 7.9167 0.282  
3 0.1575 0.003 2.9650 0.311 1.0032 0.001 1.2829 0.003 1.9969 0.028 8.5382 0.282  
4 0.1591 0.003 2.4679 0.311 1.0127 0.001 1.3048 0.003 2.2065 0.028 8.2500 0.282 

Latin square analyses of weekly and hourly averages. 
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analysis, weather during the study were generally mild with few major 
changes in temperature, wind speed and humidity (Table 7). This study 
was conducted during typical monsoonal activity. Weeks 1 and 2 both 
had measurable precipitation while all weeks had varying humidity 
levels. Average daily temperatures and wind speeds were consistent 
throughout each week with varying ranges between weeks (Table 4). 
The effect of week in these analyses are likely a result of changing 
weather conditions in combination with other undefined factors 
(Table 8). 

Consistently, across the three Latin square experiments using 
different age groups there were clear differences in MI and SMA among 
ewes, accelerometers, and weeks with the repeated measures analyses. 
Differences in ewes and weeks were detected for MV energy and activity 
from the repeated measures analyses. For the analyses of weekly aver
ages, there were consistent differences among ewes and accelerometers 
for MI, SMA and entropy. The largest numerical difference among the 
means of MI was consistent across all age groups for accelerometers, 
which was surprising because the same model of accelerometer was used 
throughout the study. Signal magnitude area had larger numerical dif
ferences in accelerometer in the 2019 and 2020 age groups while 2018 
age group had the largest numerical differences in individual sheep. 

Tobin et al. [15] attempted to create a 4-d rolling average to deter
mine the time of the onset of bovine ephemeral fever. The authors 
identified large contrasts in MI between accelerometers which were used 
for the study. Accelerometers were exchanged weekly due to limited 
battery life and MI shifted after each exchange. The shift in MI values 
when accelerometers caused errors within the moving 4 d rolling av
erages causing it to change each week, which was an artifact of the 
differences among accelerometers. These shifts in MI values associated 
with exchanging accelerometers increased the challenge of detecting the 
onset of bovine ephemeral fever. 

To reduce changes in device weight and changes to inertia in this 
study, the ear tag was attached using the same ear hole on the ewe and 
accelerometers were not removed from the tag throughout the study. 
The attachment of the accelerometer to the Allflex tag was identical for 
devices. Tolerances among accelerometers sensors during the 
manufacturing process, though miniscule, could result in minor changes 
in axis values, resulting in detectable differences among devices. 

The observed differences among accelerometers in this study show 
the importance the experimental design used in behavior studies that 
use accelerometers. Researchers should set up studies where the 

statistical model can account for variation among animals and acceler
ometers, especially if the MI, SMA or entropy metrics are used. If the 
same accelerometer can be used on an animal for the entire study, cross- 
over designs and Latin squares can account for the variation in animal 
and accelerometer device simultaneously. Researchers should avoid 
changing accelerometers on animals during the study, because this may 
increase experimental error and decrease precision by amplifying the 
variation among animals. 

For analysis of weekly averages across all age groups, differences in 
MV were only consistently detected among sheep and week with only 
the 2018 age group having differences among accelerometers. The 
largest numerical difference among the means of MV were for sheep and 
week. When calculating MV, each axis is subtracted from the previous 
axis reading and the absolute value of each axis is then summed. 
Movement variation is the only calculated metric evaluated in this study 
that is based on changes in accelerometer readings rather than the 
variation of movement readings of each axis. In contrast, MI, SMA, 
Energy and Entropy directly reflect the numerical values of each reading 
from each axis. Differences among accelerometer devices for this metrics 
reflect the recorded values for movements. 

Differences among accelerometers can be a confounding factor in 
experimental designs where accelerometer devices are changed during a 
study. Differences among accelerometers will likely increase experi
mental error in designs where devices are not changed because it will 
likely increase apparent differences among individual animals. In this 
study, differences among accelerometers were similar in magnitude to 
differences among individual animals. Variation among animals and 
accelerometers in some cases could cancel each other out, but this is 
unlikely. Correspondingly, movement variation may be a better metric 
than movement intensity, signal magnitude amplitude and entropy. 

Aggregating large amounts of datapoints into one mean value can 
cause information loss [12]. In our analyses, a total of 750, 1080,000 
and 7560,000 datapoints were aggregated to create a single metric for 
minute, day and weekly metric means, respectively. The aggregation of 
accelerometer data may have diluted the information from the accel
erometer. means for the daily active percentage metric. Aggregating 
data into epochs may be beneficial for herd level analyses but could 
longer period aggregations such as hourly, daily or weekly may reduce 
the opportunity to identify behavioral changes within the individual. 

This study shows how algorithms developed for individual animals 
rather than an entire herd may be more useful for detecting behavioral 

Table 8 
Weather conditions throughout the study, including the maximum, average, and minimum of temperature, humidity, and wind speed, and precipitation.   

Date Temperature (◦C)  Humidity (%)  Wind Speed (m/sec)  Precipitation (mm)  
Aug Max Avg Min Max Avg Min Max Avg Min Total 

Week 1 25 36.44 28.88 20.92 79.28 42.48 20.3 11.70 4.70 0 0  
26 34.91 28.87 21.43 60.38 35.95 20.64 12.42 6.10 0 0  
27 34.61 27.66 21.33 60.82 42.16 20.37 17.96 5.53 0 0  
28 35.04 27.46 20.95 70.23 45.98 22.08 16.45 5.11 0 0  
29 34.58 28.15 20.25 69.39 41.46 20.58 13.35 5.72 0 0  
Sep Max Avg Min Max Avg Min Max Avg Min Total 

Week 2 1 27.57 23.49 20.82 93.00 77.34 56.78 16.23 4.39 0 1.27  
2 33.07 25.73 19.65 94.20 62.93 27.24 10.47 3.42 0 0  
3 34.41 27.09 19.68 83.60 50.85 26.57 17.28 3.90 0 0  
4 34.16 27.02 23.77 70.38 51.59 28.28 16.56 5.61 0 5.58  
5 29.64 25.09 21.97 77.27 59.79 40.88 17.28 3.97 0 0.25  
Sep Max Avg Min Max Avg Min Max Avg Min Total 

Week 3 8 35.05 27.41 18.78 69.75 39.24 18.15 15.40 5.67 0 0  
9 34.38 27.26 19.83 64.62 40.45 19.66 11.95 4.47 0 0  
10 34.58 26.07 17.21 69.77 39.75 13.87 10.08 2.66 0 0  
11 35.28 25.81 16.2 72.20 36.88 10.77 9.72 3.03 0 0  
12 33.75 25.86 16.57 53.19 29.17 14.23 10.83 4.10 0 0  
Sep Max Avg Min Max Avg Min Max Avg Min Total 

Week 4 15 34.28 27.31 21.06 55.15 30.91 19.53 14.54 5.32 0 0.25  
16 35.66 26.95 19.22 58.71 32.79 14.07 9.07 3.29 0 0  
17 35.84 26.25 15.86 67.23 33.36 10.6 9.93 2.78 0 0  
18 35.99 26.64 18.29 56.15 29.02 10.87 10.40 3.87 0 0  
19 35.49 27.42 17.84 59.83 33.23 16.67 11.30 4.58 0 0  
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changes associated with illness or welfare concerns. Physical charac
teristic differences lead to high inter-animal variability which results in 
changing expressions of same behaviors [5]. Splitting datasets by animal 
can be computationally expensive but may increase overall accuracy. 
Sprinkle et al. [30] had lower instances of bad data with improved 
behavior prediction when datasets were analyzed separately by animal 
rather than the global formula. Chang et al. [10] also found important 
differences among animals when using accelerometers to predict rumi
nation in cattle. These authors also recommended developing separate 
detection algorithms for each animal. 

However, commercial applications using accelerometers to detect 
behavior or wellness concerns often use one algorithm rather than 
different algorithms developed for each individual animal. If a single 
algorithm must be developed, this study suggests that metrics such as 
MV would be more useful than MI or SMA. Also, predicted behavior such 
as activity (%) that is developed data collected from multiple animals 
and evaluated with machine learning may be more useful than MI or 
SMA metrics for a single algorithm used for entire herds. In this study, 
MV was the best predictor of activity using random forests machine 
learning, which shows the value of MV over metrics such as MI, SMA, 
Energy and Entropy. Use of predicted behaviors may not always be a 
better alternative to detect animal wellbeing concerns than monitoring 
metrics such as MV directly. Gurule et al. [19] found that changes in 
variation in recorded movements were more successful in predicting 
lambing than using predicted active or inactive behavior derived from 
supervised machine learning. Development of predicted behaviors from 
accelerometer data using supervised machine learning, such as Random 
Forests, also requires collection of numerous behavior observations, 
which may not always be practical in extensive settings. 

5. Conclusions 

Our study has demonstrated the variability that occurs among tri- 
axial accelerometer and individual animal while monitoring behavior 
using accelerometers. Differences among accelerometers was often 
similar in magnitude to differences among individual animals and 
weekly time periods. When using multiple accelerometers throughout a 
study, researchers need to account for differences among devices even 
when sourced from the same manufacturer. Future applications of 
multiple sensors, including accelerometers, must be carefully monitored 
to evaluate differences among units, which may diminish trust and 
further usage of technologies. In addition, the variation among animals 
and sensor devices should be considered when developing algorithms to 
detect illness and welfare concerns from remote monitoring. Algorithms 
based on changes in behavior of individual animals are likely to more 
accurate than approaches that uses the same values or thresholds for an 
entire herd. If a single metric must be used for an entire herd or herds, 
algorithms that monitor changes in accelerometer readings such as 
movement variation, will likely be more accurate and precise than those 
calculated directly from movement readings. 
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