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ARTICLE INFO ABSTRACT

Edited by: Dr Spyros Fountas Application of sensors is becoming prevalent in research and production settings. With increasing battery power,
improved case and component durability, and consistent data connectivity, precision technologies, such as ac-
celerometers, can help identify changes in livestock behavior. The objective of this study is to identify the
variation among individual animals and among different accelerometer devices. A repeated 4 x 4 Latin-square
design was utilized to identify differences between accelerometer, animal, and week. Twelve ewes separated into
three age groups were randomly assigned to 4 different accelerometers deployed as an ear tag weekly over the
course of 4 weeks. Manual behavior observations were paired to calculated accelerometer metrics and were used
for training and validation dataset to predict animal behavior using random forest machine learning. Movement
variation had the greatest importance in predicting behaviors. Across the four week study, differences were
found for animal and week through each of the calculated metrics. Differences in accelerometers were detected
for 80 % of the calculated metrics. This study shows the importance to account for variation among individual
animals and accelerometer devices in experimental designs.
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1. Introduction

Advancements in technology have improved methods for remotely
monitoring livestock. Accelerometers have been utilized by researchers
to detect changes in animal behavior resulting from health and welfare
issues in several livestock industries including sheep [4,13,14,16,18,19,
21,36], dairy cattle [2,25,26,32], and beef cattle [6,10,34,35]. Accel-
erometers that provide activity data in “real time” or “near real-time”
are becoming commercially available and give livestock producers the
ability to remotely monitor animal health and movement and to expe-
dite treatment and improve animal well-being ([1,17,18,33]).

Accelerometers are electronic sensor systems capable of detecting
changes in activity by measuring linear acceleration along three axes in
units of the acceleration of gravity (-9.8 m s%) [3,39]. Acceleration
measurements along the X (horizontal), Y (longitudinal), or Z (vertical)

axes are interpreted as animal motion and can serve as a proxy for en-
ergy expenditure [29]. Multiple studies have utilized accelerometers to
study multiple livestock behaviors including lying, standing, grazing,
and walking [11,23,27]. Machine learning is often used to predict
livestock behavior and livestock well-being concerns from the multi-axis
accelerometer data [10,21]. Disease [6,20,35], lameness [4,7], partu-
rition [16,19], and water failure leading to deprivation [34] can affect
animal movement and activity, which allows accelerometers to be used
to remotely monitor livestock for these welfare concerns. Supervised
machine learning techniques, such as random forests, incorporate
observed individual behavior data to train and validate the prediction
algorithm. Prediction models can have high misclassification rates [35]
and low accuracy [19], even with large observation datasets. Develop-
ment of algorithms that can detect changes in behavior and associated
well-being concerns and production issues such as disease, parturition
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and estrus is essential for the use of on-animal sensor and tracking to be
successful [1,37].

One issue that may affect monitoring and evaluation of behavior
with accelerometers is variation in recorded movements among indi-
vidual animals. The intensity of a behaviors (i.e., walking) of one indi-
vidual may differ greatly from the intensity of other in the herd, which
could cause difficulty in prediction of behavior if a group of individuals
are pooled together for analysis. A second problem is the potential for
variation among the accelerometer devices. Movement intensity of two
accelerometers on the same individual may not be identical. Anecdotal
observations of variation among different accelerometers monitoring
the same heifers was observed by Tobin et al. [35]. Although diurnal
movement patterns of healthy heifers remained similar across time,
mean values of movement intensity (a metric summarizing movement
across 3 axes) changed when different accelerometer devices were
placed on heifers each week. This suggested that not only does activity
monitored by accelerometers likely vary among individual animals, but
it also could vary among the accelerator devices. Chang et al. [10]
demonstrated that an algorithm developed for the individual animal was
more accurate than one developed over a group further supporting this
hypothesis. However, several commercial sensors (e.g., Cowmanager
SensOor (https://www.cowmanager.com/) and smaXtec (https://sm
axtec.com) use the same algorithm for all the animals in the herd,
which potentially could reduce the accuracy of predictions if there is
inherent variation in intensity of movements among animals and sen-
sors. In addition, both sources of variation could create experimental
error that would affect accuracy of behavior predictions from machine
learning Experimental designs to control or minimize these two sources
of experimental error (variation among individual animals and variation
among accelerometer devices) depends on the magnitude and pattern of
these two potential factors affecting the movement data.

Numerous metrics can be calculated from accelerometer data [15],
and machine learning techniques can be used to find the best metrics to
use for prediction of behavior. However, it is also important to under-
stand the relationship between the accelerometer metric and behavior.
Some metrics may have characteristics that make them more robust than
others.

This study aims to document and evaluate variation among indi-
vidual animals and among accelerometer devices in movements recor-
ded by accelerometers. Variability among animals and accelerometers
potentially can affect behavior prediction models leading to lower ac-
curacy and less effective algorithm identification of animal behaviors
and welfare concerns from remotely collected accelerometer data if the
same algorithm is used for groups of livestock, which is simpler
approach to use for commercial applications. Accuracy of prediction
models is the key or expediting intervention and treatment to ensure the
highest levels of animal welfare. If the same algorithm is to be used on
different animals and devices, the calculated metrics from the acceler-
ometer used should be robust and less sensitive to variation that may
occur across the herd. In addition, livestock research involving accel-
erometers could use experiment design that account for variation among
individual animals and accelerometer devices if the differences are
elucidated and quantified.

2. Materials and methods
2.1. Site and animals

All procedures were approved by the New Mexico State University
Institutional Animals Care and Use Committee (2019-007).

This study was conducted on the campus of New Mexico State Uni-
versity in Las Cruces, New Mexico, USA at the West Sheep Unit research
facility. Twelve mature ewes ages 1 to 3 yr (n = 4 per age group) were
housed in a single pen (18.3 x 9.1 m) and monitored from 23 August to
20 September 2021. Each ewe was fed 1.6 kg of alfalfa hay in the
morning (0800 h) with ad libitum access to water, mineral, and salt.
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2.2. Accelerometers

A tri-axial Axivity AX3 MEMS accelerometer (Axivity Ltd, Newcastle,
UK) was attached to an Allflex ear tag (Allflex USA Inc., DFW, TX, USA)
with shrink wrap tubing. The ear tag with the accelerometer was
attached to the pinna of the left ear. Accelerometers were charged prior
to deployment to last a minimum of 30 days (study duration). Acceler-
ometers were configured to collect acceleration signals at a sample rate
of 12.5 Hz measuring longitudinal movements of the horizontal X-axis
(left and right), longitudinal Y-axis (forward and backward), and ver-
tical Z-axis (up and down). The dimensions of each accelerometer were
23 x 32.5 x 7.6 mm and weighed 11 g. For a detailed image of accel-
erometer location and orientation, please see Gurule et al. [19].

Accelerometer movements were subsequently stored on the NAND
Memory within the device. Accelerometers were removed weekly and
after the study to retrieve data via USB connection to the OmGui Axivity
computer software. The OmGui program downloads data from the
accelerometer, allows for manipulation for desired study period, and
stores raw data as a .CWA file, not compatible with Microsoft Excel
(Microsoft Corporation, Redmond, WA, USA). No accelerometers failed
throughout the course of the study. The internal clock was synced within
the OmGui program with the time.is website (https://time.is) prior to
deployment. Data were aggregated into 1 min epochs.

2.2.1. Data collection and behavior observation

Accelerometers were removed from each animal every Monday (23
August, 30 August, 6 September, 13 September) during the four-week
study by cutting the male button attaching the tag to the ear. The
accelerometer was not removed from the Allflex ear tag. The acceler-
ometers remained attached to the tag using the heat shrink tubing.
During weeks 2-4, ear tags were removed from the ewe, data were
downloaded and accelerometers were reset for preparation for the next
weeks’ placement. No alterations of the tags were made throughout the
study. Tags were reattached to the ewes using a new male Allflex pin and
the original hole made in the left ear. This protocol allowed the accel-
erometers to be move from one ewe to another with the ear placement
and tag orientation as similar as possible. Ear tags are usually the
preferred approach for producers to remotely monitor their livestock
compared to collars and other methods of attaching sensors to animals
[38].

To accommodate changing ear tags each week, no observations were
recorded on Mondays or Tuesdays during the study. Behavioral obser-
vations were recorded from Wednesday to Sunday each week during the
trial. Behavior observations were recorded by trained observers with
behaviors including lying, standing, feeding, nibbling on the ground
(stereotypic behavior similar to feeding). Observers time recording de-
vices were synced with the time.is website (https://time.is) prior to
deployment.

Feeding was defined as the ewe consuming feed from the bunk,
chewing with head up or down while standing or moving. Lying was
defined as ewe resting on the ground with no spatial movement but
could be ruminating. Standing was defined as ewe on all legs in contact
with the ground with no spatial movement but could be ruminating.
Lying and standing behaviors were grouped into non-active while
feeding and nibbling were grouped into active. Behavioral observations
were aggregated into 1 min epochs and behaviors that were recorded
that began or ended during the minute were excluded from analysis. In
total, 2322 full 1 min epochs of observed behavior were recorded and
used in the analyses. This is equivalent to a total of 38.7 h of observation
across the five observers

2.3. Experimental design
This study was designed as a repeated Latin-square. Three 4 x 4

Latin-squares were designed to accommodate ewes born in 2018 (ewes
801, 811, 818, 831), 2019 (ewes 907, 914, 919, 950), or 2020 (ewes
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009, 014, 017, 019). Four ewes born during each year were randomly
selected from the herd and used in the Latin square design for that year
of birth. Limiting a 4 x 4 Latin square to ewes born in a given year
helped reduce the effect of age on the analyses, and evaluating 3 age
groups should make the results more representative of commercial
sheep herds. For each year the fixed effects for the Latin square were
ewe, accelerometer and week (Table 1). Assignments of ewes to accel-
erometers each week were made randomly according to the Latin square
design.

The use of Latin-square design allows the simultaneous evaluation of
the fixed effects of ewe, accelerometer, and week. The error term from
the Latin-square design does not permit the evaluation of interactions
between the fixed effects, Table 1) [31]. Fitting interactions between
fixed effects interaction would result in the incorrect error term [40]. To
limit any interaction between fixed effects, the authors intentionally
utilized the same hole which was produced from tagging the animal. The
exact same attachment point of the Allfex tag/accelerometer allowed us
compare different accelerometers on the same ewe.

2.4. Development of behavior classification algorithm

The mean, maximum, minimum, and standard deviation were
calculated for each 1 m epoch from accelerometer axes. Additionally,
movement intensity (MI), signal magnitude area (SMA), entropy, en-
ergy, and movement variation (MV) were calculated as metrics for
behavior analysis. A total of 19 metrics were calculated for each 1 m
epoch amended from Fogarty et al., 2020 and [15,36] (Tables 2, 3).

2.5. Machine learning analyses

Random Forest machine learning was used to create behavior pre-
dictions from a training dataset and validate the predications from a
separate and independent data set. Shaikhina et al. [28] developed a
prediction model with 85 % accuracy with only 80 data points using this
technique. Random Forest have also shown to have strong predictive
performance with imbalanced datasets [8]. Only the calculated metrics
were used for predictive variables (features) for machine learning ana-
lyses. These predictive variables were MI, SMA, Energy, Entropy and
MV. The number of predictor variables was limited to help insure that
the machine learning model was not overfitted. Random forests models
were created in R (R Development Core Team, 2011) using ‘random-
Forest’ library. Of the 2322 observed behaviors, 1870 random obser-
vation (80.53 %) were used as the training dataset while the remaining
452 observations (19.46 %) were utilized as the validation dataset. The
ntree was set to 300 after being reduced from 500 and mtry was 4. Mean
Decrease Accuracy and Mean Decrease Gini were plotted from the

Table 1
Structure of repeated Latin-squares.
Accelerometertb7
7 16 17 19
Animal 801 Week3 Week2 Weekl Week4
811 Week1 Week4 Week3 Week2
818 Week2 Week1 Week4 Week3
831 Week4 Week3 Week2 Week1
Accelerometer
14 15 20 22
Animal 907 Week4 Week2 Weekl Week3
914 Week3 Week1l Week4 Week2
919 Week2 Week4 Week3 Week1
950 Week1 Week3 Week2 Week4
Accelerometer
8 10 18 21
Animal 009 Week4 Week1 Week3 Week2
014 Week2 Week3 Week4 Week1
017 Week3 Week2 Weekl Week4
019 Week1 Week4 Week2 Week3

Table 2
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Fourteen features and the equation used to calculate predictive metric.

Feature

Equation

Average X-axis
(Ax)

Average Y-axis
@4,

Average Z-axis
(A7)

Average All-Axis
(Axyz)

Minimum X-axis (Min,)
Minimum Y-axis (Min,)
Minimum Z-axis (Min;)
Maximum X-axis (Maxy)
Maximum Y-axis (Maxy)
Maximum Z-axis (Max;)

Standard Deviation X-axis

(SDx)

1 T

A = f21(x(t>)
1 T

Ay = 32,00

A= 23 Ew)
T 1

Age = 2371060+ y(0) + 5(0)

The minimum X-axis value in the epoch
The minimum Y-axis value in the epoch
The minimum Z-axis value in the epoch
The maximum X-axis value in the epoch
The maximum Y-axis value in the epoch
The maximum Z-axis value in the epoch

SDc = /7 00 () %

where X is the mean of X-
axis value in the epoch

Standard Deviation Y-axis 1 T >
(SD,) 8Dy = (/72,00 = F)

where ¥ is the mean of Y-
axis value in the epoch
Standard Deviation Z-axis
sD.) 8D =
where z is the mean of Z-
axis value in the epoch
Average Standard Deviation 1
all-axis (SDxyz)

Table 3
Five calculated metrics utilized as predictive metrics for machine learning
behavior predictions.

Feature Equation
Movement Intensity _ 1 T 2 Py 2
o M= o > VXO + (0% +2(0)
Signal Magnitude Area 1 1
MA = —
oiA) SMA = 730 (K01 + ()] + (o)
Energy (Energy) Energy = % ll (x(6)® +y(t)* + 2(t)*)*

Entropy (Entropy) Entropy — ’lf Z;(l (O + (0 +2(0)) <In (1 +

(x(0) +¥(0) + 2(0)?)
MY =230 (el 1) = x(0) + e~ 1)~ y(0)] + (e -
1) 2(0))

Movement Variation
™mv)

random forest model to determine importance of each calculated metric.
Mean Decrease Accuracy expresses how much of the model accuracy
would be lost by excluding each variable. Mean Decrease Gini identifies
how each variable accounts for the homogeneity of the nodes within the
grown trees [24]. One-minute epochs of predicted active behavior were
compiled into daily percentages of active behavior.

2.6. Statistical analysis

Mean movement intensity, MV, energy, entropy, SMA, and predicted
active behavior were used as dependent values in a 4 x 4 Latin-square
design (16 experimental units per Latin square) using PROC MIXED in
SAS (SAS Institute Inc., ND, USA; [36]). The dependent variables were
averaged by ewe for each week of the study. Fixed effects were week (1
to 4), accelerometer, and ewe. Each Latin-square, an age group (born in
2018, 2019 or 2020) was analyzed separately. Mean separation tests
were evaluated using the pdiff feature of PROC MIXED.
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Movement intensity, MV, energy, entropy, SMA, and predicted active
behavior were used as dependent values were also averaged by hour by
ewe and then analyzed using the repeated measures procedure of PROC
MIXED in SAS ( [22] as a 4 x 4 Latin-square (n = 12). Each Latin-square,
based on the ewe year of birth, was analyzed separately. The fixed ef-
fects in the model include week (1 to 4), day within week (1 to 5), hour
within day (0 to 23), accelerometer, and ewe. The subject of the
repeated measures was sheep within week. The covariance of repeated
records was modeled using the autoregressive order of 1 (AR1) covari-
ance structure. The AR1 structure has a lower Akaike Information Cri-
terion (AIC) value than the other covariance structures evaluated,
compound symmetry and unstructured [22]. Mean separation tests were
evaluated using the pdiff feature of PROC MIXED.

3. Results

The initial random forest model utilized the four observed behaviors
(laying, standing, feeding, and nibbling) for prediction. Standing was
usually predicted as laying and nibbling was predicted as feeding. We
merged the four observed behaviors into active (feeding and nibbling)
and inactive (laying and standing) to create a binary classification
model.

The random forest model had an out-of-bag (OOB) error rate of 6.26
%. The training dataset predicted the ‘active’ behavior 100 % correctly.
The test dataset had prediction accuracy of 95.35 %. The model used
approximately 175 of the 300 grown trees. The importance of variables
is calculated using the Mean Decrease Accuracy and Mean Decrease
Gini. Mean Decrease Gini is the average of a variables total decrease in
node impurity, weighted by the proportion of samples reaching that
node in each tree within the forest. The order of importance of variables
used in the model were MV, Energy, MI, Entropy, and SMA based off
Mean Decrease Accuracy (Table 4, Fig. 1). The random forest model
prediction had receiving operator characteristics (ROC) area under the
curve of 0.961. The random forest model predicted 82.6 % of the
observed dataset.

3.1. 2018 ewes

There were differences in weekly MV due to the main effects of
accelerometer (P = 0.0005), week (P = 0.0207), and sheep (P < 0.0001)
during this study. The greatest differences in means of MV (highest
minus lowest) were 0.04037, 0.05191, and 0.02900 for accelerometer,
sheep, and week, respectively (Tables 5-7). For the hourly averages, the
analysis of repeated measures found detectable differences of hour of the
day (P < 0.0001) in addition to differences of accelerometer, week and
sheep (P = 0.0029, P = 0.0125, P = 0.0008) with no detectable differ-
ences for day of the week (P = 0.17).

There were differences in the weekly averages for energy due to the
main effects of accelerometer (P < 0.0001), week (P = 0.0032), and
sheep (P < 0.0001) during this study. The greatest differences in means
of energy were 2.7098, 4.0356 and 2.0166 for accelerometer, sheep, and
week, respectively (Tables 5-7). For the hourly averages, the repeated
measures analysis found detectable differences of day of the week (P =
0.0317) and hour of the day (P < 0.0001) with no detectable differences
of accelerometer, week and sheep (P > 0.05).

Table 4
Importance of calculated variables used in random forest machine learning
prediction model.

Calculated Metric Mean Decrease Accuracy Mean Decrease Gini

Movement Variation 238.55217 490.32945
Energy 46.94281 92.47779
Movement Intensity 28.58495 50.30435
Entropy 23.59104 68.99224
Signal Magnitude Area 20.39243 39.72620
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There were differences in MI due to the main effects of accelerometer
(P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001) during this
study. The greatest differences in means of MI were 0.03298, 0.02475,
and 0.02009 for accelerometer, sheep, and week, respectively
(Tables 5-7). For the hourly averages, the analysis of repeated measures
found detectable differences of hour of the day (P < 0.0001) in addition
to differences of accelerometer, week and sheep (P < 0.0001, P =
0.0012, P = 0.0002) with no detectable differences due to day (P =
0.89).

There were differences in entropy due to the main effects of accel-
erometer (P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001)
during this study. The greatest differences in means of energy were
0.494, 0.6799, and 0.196 for accelerometer, sheep, and week, respec-
tively (Tables 5-7). For the hourly averages, the analysis of repeated
measures found detectable differences of day of the week (P = 0.0013)
and hour of the day (P < 0.0001) with no detectable differences of
accelerometer, week and sheep (P > 0.05).

There were differences in weekly SMA due to the main effects of
accelerometer (P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001)
during this study. The greatest differences in means of SMA were
0.06392, 0.07873, and 0.05669 for accelerometer, sheep, and week,
respectively (Tables 5-7). For the hourly averages, the analysis of
repeated measures found detectable differences of day of the week (P =
0.010) and hour of the day (P < 0.0001) with no detectable differences
of accelerometer, week and sheep (P > 0.05).

There were differences in weekly activity due to the main effects of
accelerometer (P = 0.0089) and week (P < 0.0001) during this study. No
differences between sheep were detected for the 2018 ewes (P = 0.18).
The greatest differences in means of percent active were 1.056 % and
0.444 % for accelerometer and week, respectively (Tables 5-7). For the
hourly averages, the analysis of repeated measures found detectable
differences of day of the week (P < 0.0001) with no detectable differ-
ences of accelerometer, animal, and week (P > 0.05).

3.2. 2019 ewes

There were differences in MV due to the main effects of week (P =
0.0421), and sheep (P < 0.0001) for the 2019 ewes. No differences be-
tween accelerometer were detected for the 2019 ewes (P = 0.09). The
greatest differences in means of MV were 0.08442 and 0.02709 for
sheep, and week, respectively (Tables 5-7). For the hourly averages, the
analysis of repeated measures found detectable differences of hour of the
day (P < 0.0001) in addition to differences of accelerometer, week, and
sheep (P = 0.0456, P = 0.0269, P < 0.0001) with no detectable differ-
ences due to day of the week (P = 0.13).

There were differences in energy due to the main effects of week (P <
0.0001), and sheep (P < 0.0001) in this age group. No differences be-
tween accelerometer were detected for the 2019 ewes (P = 0.24). The
greatest differences in means of energy were 4.5024 and 1.3548 for
sheep, and week, respectively (Tables 5-7). For the hourly averages, the
analysis of repeated measures found detectable differences of hour of the
day (P < 0.0001) in addition to differences of, week, and sheep (P =
0.0145, P < 0.0001) with no detectable differences due to day of the
week (P = 0.19) or (P = 0.32.

There were differences in MI due to the main effects of accelerometer
(P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001) for the 2019
ewes. The greatest differences in means of MI were 0.07916, 0.04386,
and 0.01952 for accelerometer, sheep, and week, respectively
(Tables 5-7). For the hourly averages, the analysis of repeated measures
found detectable differences of hour of the day (P < 0.0001) in addition
to differences of accelerometer, week, and sheep (P < 0.0001, P =
0.0008, P < 0.0001) with no detectable differences due to day of the
week (P = 0.65).

There were differences in entropy due to the main effects of accel-
erometer (P = 0.0124), week (P < 0.0001), and sheep (P < 0.0001)
during this study. The greatest differences in means of energy were
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Fig. 1. Mean Decrease Accuracy and Mean Decrease Gini of the five calculated predictor variables, movement variation (MV), energy, movement intensity (MI),
entropy and signal magnitude intensity (SMI).

Table 5
Means (+SE) of Movement Variation (MV), Energy, Movement Intensity (MI), Signal Magnitude Area (SMA), Entropy, and Daily Active Percentage for ewes born in
2018-2020 based on analyses that used weekly averages of the dependent variables.

Birth Year Ewe MV SE Energy SE MI SE SMA SE Entropy SE Daily Active,% SE
2018 801 0.1818 0.004 2.7432 0.399 1.0334 0.002 1.3616 0.029 2.1178 0.032 8.067 0.376
811 .2000 0.004 6.7788 0.399 1.0086 0.002 1.4114 0.029 1.4379 0.032 8.577 0.376
818 0.1481 0.004 4.4877 0.399 1.0145 0.002 1.3856 0.029 1.7641 0.032 7.740 0.376
831 0.1775 0.004 4.1212 0.399 1.0328 0.002 1.3327 0.029 2.0473 0.032 7.898 0.376
2019 907 0.1782 0.005 2.3608 0.288 1.0251 0.002 1.4260 0.005 1.0009 0.043 8.283 0.307
914 0.2627 0.005 6.8632 0.288 1.0690 0.002 1.3757 0.005 3.1555 0.043 9.026 0.307
919 0.1858 0.005 3.0535 0.288 1.0298 0.002 1.3474 0.005 1.4802 0.043 8.495 0.307
950 0.2235 0.005 5.4420 0.288 1.0338 0.002 1.3694 0.005 1.6195 0.043 8.945 0.307
2020 009 0.1625 0.003 5.8243 0.311 1.0074 0.002 1.3469 0.003 2.4497 0.028 8.006 0.282
014 0.1751 0.003 2.6607 0.311 1.0211 0.002 1.3105 0.003 2.3137 0.028 8.106 0.282
017 0.1804 0.003 3.6663 0.311 0.9988 0.002 1.2805 0.003 1.9086 0.028 8.649 0.282
019 0.1573 0.003 2.6015 0.311 0.9968 0.002 1.2704 0.003 1.7577 0.028 7.617 0.282
Table 6

Means (+ standard errors, SE) of Movement Variation (MV), Energy, Movement Intensity (MI), Signal Magnitude Area (SMA), Entropy and Activity for accelerometers
placed in 2018, 2019 and 2020 age groups based on analyses that used weekly averages of the dependent variables.

Ewe Birth Year Accelerometer MV SE Energy SE MI SE SMA SE Entropy SE Daily Active, SE
%

2018 7 0.1591 0.004 3.4290 0.399 1.0230 0.002 1.3418 0.029 1.7787 0.032 7.600 0.376
16 0.1995 0.004 6.1388 0.399 1.0384 0.002 1.4012 0.029 1.6314 0.032 8.956 0.376
17 0.1773 0.004 4.5148 0.399 1.0226 0.002 1.4057 0.029 2.1254 0.032 7.804 0.376
19 0.1716 0.004 4.0483 0.399 1.0054 0.002 1.3427 0.029 1.8316 0.032 8.750 0.376

2019 14 0.2071 0.005 3.9876 0.288 0.9972 0.002 1.3017 0.005 1.8483 0.043 8.610 0.307
15 0.2198 0.005 4.3866 0.288 1.0988 0.002 1.4633 0.005 1.7183 0.043 8.685 0.307
20 0.2004 0.005 4.8233 0.288 1.0196 0.002 1.3644 0.005 1.8294 0.043 8.506 0.307
22 0.2229 0.005 4.5221 0.288 1.0422 0.002 1.3892 0.005 1.8602 0.043 8.948 0.307

2020 8 0.1695 0.003 3.4610 0.311 1.0464 0.001 1.3608 0.003 2.2942 0.028 7.987 0.282
10 0.1629 0.003 3.5526 0.311 1.0114 0.001 1.3007 0.003 1.9608 0.028 7.904 0.282
18 0.1702 0.003 3.9920 0.311 0.9777 0.001 1.2712 0.003 2.0336 0.028 8.257 0.282
21 0.1726 0.003 3.7471 0.311 0.9887 0.001 1.2755 0.003 2.1411 0.028 8.230 0.282
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Table 7
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Means (+SE) of Movement Variation (MV), Energy, Movement Intensity (MI), Signal Magnitude Area (SMA), Entropy, and Daily Active Percentage for week 1-4 of the
placed in ewes born in 2018-2020 based on Latin-square design analyses that used weekly averages of the dependent variables.

Assigned Ewe Birth Year Week MV SE Energy SE MI SE SMA SE Entropy SE Daily Active, SE
%

2018 1 0.1705 0.004 5.5787 0.399 1.0321 0.002 1.4057 0.029 1.9617 0.032 10.5753 0.376
2 0.1932 0.004 4.7864 0.399 1.0120 0.002 1.3263 0.029 1.8693 0.032 10.6066 0.376
3 0.1794 0.004 4.2037 0.399 1.0182 0.002 1.3830 0.029 1.7657 0.032 10.1622 0.376
4 0.1644 0.004 3.5621 0.399 1.0270 0.002 1.3764 0.029 1.7704 0.032 10.1865 0.376

2019 1 0.2007 0.005 4.0447 0.288 1.0274 0.002 1.3613 0.005 1.5079 0.043 7.6667 0.307
2 0.2278 0.005 4.7782 0.288 1.0376 0.002 1.4084 0.005 1.7104 0.043 8.6007 0.307
3 0.2057 0.005 3.4994 0.288 1.0458 0.002 1.3981 0.005 1.8251 0.043 7.8160 0.307
4 0.2160 0.005 5.3979 0.288 1.0469 0.002 1.3504 0.005 2.2121 0.043 7.9271 0.307

2020 1 0.1693 0.003 4.8184 0.311 1.0019 0.001 1.3184 0.003 2.1174 0.028 7.9549 0.282
2 0.1893 0.003 4.5014 0.311 1.0064 0.001 1.3024 0.003 2.1089 0.028 7.9167 0.282
3 0.1575 0.003 2.9650 0.311 1.0032 0.001 1.2829 0.003 1.9969 0.028 8.5382 0.282
4 0.1591 0.003 2.4679 0.311 1.0127 0.001 1.3048 0.003 2.2065 0.028 8.2500 0.282

Latin square analyses of weekly and hourly averages.

0.1419, 2.1546, and 0.7064 for accelerometer, sheep, and week,
respectively (Tables 5-7). For the hourly averages, the analysis of
repeated measures found detectable differences of hour of the day (P <
0.0001) in addition to differences of week and sheep (P < 0.0001, P <
0.0001) with no detectable differences due to day of the week (P = 0.86)
or accelerometer (P = 0.18).

There were differences in SMA due to the main effects of acceler-
ometer (P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001) during
this study. The greatest differences in means of SMA were 0.1616,
0.07866, and 0.05768 for accelerometer, sheep, and week, respectively
(Tables 5-7). For the hourly averages, the analysis of repeated measures
found detectable differences of hour of the day (P < 0.0001) in addition
to differences of accelerometer, week and sheep (P < 0.0001, P =
0.0003, P = 0.0002) with no detectable differences due to day of the
week (P = 0.86).

There were differences in weekly activity due to the main effects of
week (P < 0.0001). No differences between sheep or accelerometer were
detected for the 2019 ewes (P > 0.05). The greatest difference in means
for activity were 0.9403 % for week (Tables 5-7). For the hourly aver-
ages, the analysis of repeated measures found detectable differences of
day of the week (P < 0.0001), week (P = 0.0003) and animal (P =
0.0486) with no detectable differences of accelerometer (P = 0.46).

3.3. 2020 ewes

There were differences in MV due to the main effects of week (P =
0.0014), and sheep (P = 0.0375). No differences between accelerometer
were detected for the 2020 ewes (P = 0.74). The greatest differences in
means of MV were 0.02316 and 0.03174 for sheep, and week, respec-
tively (Tables 5-7). For the hourly averages, the analysis of repeated
measures found detectable differences of hour of the day (P < 0.0001) in
addition to differences of week and sheep (P = 0.0017, P = 0.0081) with
no detectable differences due to day of the week (P = 0.30) or acceler-
ometer (P = 0.29).

There were differences in energy due to the main effects of week (P <
0.0001), and sheep (P < 0.0001). No differences between accelerometer
were detected for the 2020 ewes (P = 0.63). The greatest differences in
means of energy were 3.1636 and 2.3505 for sheep, and week, respec-
tively (Tables 5-7). For the hourly averages, the analysis of repeated
measures found detectable differences of hour of the day (P < 0.0001) in
addition to differences of week and sheep (P = 0.0039, P = 0.0009) with
no detectable differences due to day of the week (P = 0.24) or acceler-
ometer (P = 0.64).

There were differences in MI due to the main effects of accelerometer
(P < 0.0001), week (P < 0.0001), and sheep (P < 0.0001) for the weekly
means of the 2020 ewes. The greatest differences in means of MI were
0.0686, 0.02431, and 0.01085 for accelerometer, sheep, and week,
respectively (Tables 5-7). For the hourly averages, the analysis of

repeated measures found detectable differences of hour of the day (P <
0.0001) in addition there were differences in accelerometers, weeks and
sheep (P < 0.0001, P = 0.0017, P < 0.0001) with no detectable differ-
ences due to day of the week (P = 0.54).

There were differences in weekly means of entropy due to the main
effects of accelerometer (P < 0.0001), week (P < 0.0001), and sheep (P
< 0.0001) for the 2020 ewes. The greatest differences in means of en-
tropy were 0.3335, 0.6920, and 0.1205 for accelerometer, sheep, and
week, respectively (Tables 5-7). For the hourly averages, the analysis of
repeated measures found detectable differences of hour of the day (P <
0.0001) and day of the week (P = 0.0025) in addition to differences of
sheep (P < 0.0094) with no detectable differences due to day of the week
(P = 0.59) or accelerometer (P = 0.22).

There were differences in weekly means of SMA due to the main
effects of accelerometer (P < 0.0001), week (P < 0.0001), and sheep (P
< 0.0001) during this study. The greatest differences in means of SMA
were 0.08960, 0.07655, and 0.03522 for accelerometer, sheep, and
week, respectively (Tables 5-7). For the hourly averages, the analysis of
repeated measures found detectable differences of hour of the day (P <
0.0001) in addition to differences of accelerometer, week and sheep (P <
0.0001, P = 0.0021, P < 0.0001) with no detectable differences due to
day of the week (P = 0.15).

There were differences in weekly activity due to the main effects of
animal (P = 0.0288) and week (P < 0.0001) during this study. No dif-
ferences between sheep or accelerometer were detected for the 2020
ewes (P > 0.63). The greatest differences in means for activity were
1.045 % and 0.6215 % for animal and week, respectively (Tables 5, 6,
7). For the hourly averages, the analysis of repeated measures found
detectable differences of day of the week (P < 0.0001), week (P <
0.0001) and animal (P = 0.0076) with no detectable differences of
accelerometer (P = 0.21).

4. Discussion

Through the random forest machine learning procedure, MV had the
greatest Mean Decrease Accuracy. As variables are excluded from the
model, the model becomes less accurate. As seen in Fig. 1, MV was the
most important variable in terms of accuracy of the model and homo-
geneity of the nodes within the forest. Movement variation is based on
the variation between adjacent epochs (Table 3). and provides an indi-
cation of the total amount of variance between epochs to describe the
amplitude, frequency, and duration of movement [9]. Prediction of the
test dataset had lower accuracy of 82.60 % compared to the overall
model of 95.35 %. All active behavior observation misclassifications
were during feeding periods. Time of day was not included as a metric
during this random forest machine learning procedure. Studies con-
ducted in feedlot settings may be benefited by including time of day.

Although differences in week were detected for almost every
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analysis, weather during the study were generally mild with few major
changes in temperature, wind speed and humidity (Table 7). This study
was conducted during typical monsoonal activity. Weeks 1 and 2 both
had measurable precipitation while all weeks had varying humidity
levels. Average daily temperatures and wind speeds were consistent
throughout each week with varying ranges between weeks (Table 4).
The effect of week in these analyses are likely a result of changing
weather conditions in combination with other undefined factors
(Table 8).

Consistently, across the three Latin square experiments using
different age groups there were clear differences in MI and SMA among
ewes, accelerometers, and weeks with the repeated measures analyses.
Differences in ewes and weeks were detected for MV energy and activity
from the repeated measures analyses. For the analyses of weekly aver-
ages, there were consistent differences among ewes and accelerometers
for MI, SMA and entropy. The largest numerical difference among the
means of MI was consistent across all age groups for accelerometers,
which was surprising because the same model of accelerometer was used
throughout the study. Signal magnitude area had larger numerical dif-
ferences in accelerometer in the 2019 and 2020 age groups while 2018
age group had the largest numerical differences in individual sheep.

Tobin et al. [15] attempted to create a 4-d rolling average to deter-
mine the time of the onset of bovine ephemeral fever. The authors
identified large contrasts in MI between accelerometers which were used
for the study. Accelerometers were exchanged weekly due to limited
battery life and MI shifted after each exchange. The shift in MI values
when accelerometers caused errors within the moving 4 d rolling av-
erages causing it to change each week, which was an artifact of the
differences among accelerometers. These shifts in MI values associated
with exchanging accelerometers increased the challenge of detecting the
onset of bovine ephemeral fever.

To reduce changes in device weight and changes to inertia in this
study, the ear tag was attached using the same ear hole on the ewe and
accelerometers were not removed from the tag throughout the study.
The attachment of the accelerometer to the Allflex tag was identical for
devices. Tolerances among accelerometers sensors during the
manufacturing process, though miniscule, could result in minor changes
in axis values, resulting in detectable differences among devices.

The observed differences among accelerometers in this study show
the importance the experimental design used in behavior studies that
use accelerometers. Researchers should set up studies where the

Table 8
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statistical model can account for variation among animals and acceler-
ometers, especially if the MI, SMA or entropy metrics are used. If the
same accelerometer can be used on an animal for the entire study, cross-
over designs and Latin squares can account for the variation in animal
and accelerometer device simultaneously. Researchers should avoid
changing accelerometers on animals during the study, because this may
increase experimental error and decrease precision by amplifying the
variation among animals.

For analysis of weekly averages across all age groups, differences in
MV were only consistently detected among sheep and week with only
the 2018 age group having differences among accelerometers. The
largest numerical difference among the means of MV were for sheep and
week. When calculating MV, each axis is subtracted from the previous
axis reading and the absolute value of each axis is then summed.
Movement variation is the only calculated metric evaluated in this study
that is based on changes in accelerometer readings rather than the
variation of movement readings of each axis. In contrast, MI, SMA,
Energy and Entropy directly reflect the numerical values of each reading
from each axis. Differences among accelerometer devices for this metrics
reflect the recorded values for movements.

Differences among accelerometers can be a confounding factor in
experimental designs where accelerometer devices are changed during a
study. Differences among accelerometers will likely increase experi-
mental error in designs where devices are not changed because it will
likely increase apparent differences among individual animals. In this
study, differences among accelerometers were similar in magnitude to
differences among individual animals. Variation among animals and
accelerometers in some cases could cancel each other out, but this is
unlikely. Correspondingly, movement variation may be a better metric
than movement intensity, signal magnitude amplitude and entropy.

Aggregating large amounts of datapoints into one mean value can
cause information loss [12]. In our analyses, a total of 750, 1080,000
and 7560,000 datapoints were aggregated to create a single metric for
minute, day and weekly metric means, respectively. The aggregation of
accelerometer data may have diluted the information from the accel-
erometer. means for the daily active percentage metric. Aggregating
data into epochs may be beneficial for herd level analyses but could
longer period aggregations such as hourly, daily or weekly may reduce
the opportunity to identify behavioral changes within the individual.

This study shows how algorithms developed for individual animals
rather than an entire herd may be more useful for detecting behavioral

Weather conditions throughout the study, including the maximum, average, and minimum of temperature, humidity, and wind speed, and precipitation.

Date Temperature (°C) Humidity (%) Wind Speed (m/sec) Precipitation (mm)

Aug Max Avg Min Max Avg Min Max Avg Min Total
Week 1 25 36.44 28.88 20.92 79.28 42.48 20.3 11.70 4.70 0 0

26 34.91 28.87 21.43 60.38 35.95 20.64 12.42 6.10 0 0

27 34.61 27.66 21.33 60.82 42.16 20.37 17.96 5.53 0 0

28 35.04 27.46 20.95 70.23 45.98 22.08 16.45 5.11 0 0

29 34.58 28.15 20.25 69.39 41.46 20.58 13.35 5.72 0 0

Sep Max Avg Min Max Avg Min Max Avg Min Total
Week 2 1 27.57 23.49 20.82 93.00 77.34 56.78 16.23 4.39 0 1.27

2 33.07 25.73 19.65 94.20 62.93 27.24 10.47 3.42 0 0

3 34.41 27.09 19.68 83.60 50.85 26.57 17.28 3.90 0 0

4 34.16 27.02 23.77 70.38 51.59 28.28 16.56 5.61 0 5.58

5 29.64 25.09 21.97 77.27 59.79 40.88 17.28 3.97 0 0.25

Sep Max Avg Min Max Avg Min Max Avg Min Total
Week 3 8 35.05 27.41 18.78 69.75 39.24 18.15 15.40 5.67 0 0

9 34.38 27.26 19.83 64.62 40.45 19.66 11.95 4.47 0 0

10 34.58 26.07 17.21 69.77 39.75 13.87 10.08 2.66 0 0

11 35.28 25.81 16.2 72.20 36.88 10.77 9.72 3.03 0 0

12 33.75 25.86 16.57 53.19 29.17 14.23 10.83 4.10 0 0

Sep Max Avg Min Max Avg Min Max Avg Min Total
Week 4 15 34.28 27.31 21.06 55.15 30.91 19.53 14.54 5.32 0 0.25

16 35.66 26.95 19.22 58.71 32.79 14.07 9.07 3.29 0 0

17 35.84 26.25 15.86 67.23 33.36 10.6 9.93 2.78 0 0

18 35.99 26.64 18.29 56.15 29.02 10.87 10.40 3.87 0 0

19 35.49 27.42 17.84 59.83 33.23 16.67 11.30 4.58 0 0
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changes associated with illness or welfare concerns. Physical charac-
teristic differences lead to high inter-animal variability which results in
changing expressions of same behaviors [5]. Splitting datasets by animal
can be computationally expensive but may increase overall accuracy.
Sprinkle et al. [30] had lower instances of bad data with improved
behavior prediction when datasets were analyzed separately by animal
rather than the global formula. Chang et al. [10] also found important
differences among animals when using accelerometers to predict rumi-
nation in cattle. These authors also recommended developing separate
detection algorithms for each animal.

However, commercial applications using accelerometers to detect
behavior or wellness concerns often use one algorithm rather than
different algorithms developed for each individual animal. If a single
algorithm must be developed, this study suggests that metrics such as
MV would be more useful than MI or SMA. Also, predicted behavior such
as activity (%) that is developed data collected from multiple animals
and evaluated with machine learning may be more useful than MI or
SMA metrics for a single algorithm used for entire herds. In this study,
MV was the best predictor of activity using random forests machine
learning, which shows the value of MV over metrics such as MI, SMA,
Energy and Entropy. Use of predicted behaviors may not always be a
better alternative to detect animal wellbeing concerns than monitoring
metrics such as MV directly. Gurule et al. [19] found that changes in
variation in recorded movements were more successful in predicting
lambing than using predicted active or inactive behavior derived from
supervised machine learning. Development of predicted behaviors from
accelerometer data using supervised machine learning, such as Random
Forests, also requires collection of numerous behavior observations,
which may not always be practical in extensive settings.

5. Conclusions

Our study has demonstrated the variability that occurs among tri-
axial accelerometer and individual animal while monitoring behavior
using accelerometers. Differences among accelerometers was often
similar in magnitude to differences among individual animals and
weekly time periods. When using multiple accelerometers throughout a
study, researchers need to account for differences among devices even
when sourced from the same manufacturer. Future applications of
multiple sensors, including accelerometers, must be carefully monitored
to evaluate differences among units, which may diminish trust and
further usage of technologies. In addition, the variation among animals
and sensor devices should be considered when developing algorithms to
detect illness and welfare concerns from remote monitoring. Algorithms
based on changes in behavior of individual animals are likely to more
accurate than approaches that uses the same values or thresholds for an
entire herd. If a single metric must be used for an entire herd or herds,
algorithms that monitor changes in accelerometer readings such as
movement variation, will likely be more accurate and precise than those
calculated directly from movement readings.
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