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Abstract—We consider the problem of multi-view anomaly
detection for multi-view time series data. This task aims to find
time steps in time series instances that have inconsistent features
across multiple views. To solve the problem, we propose a multi-
view deep Markov model that can learn sequential structures
in complex high-dimensional multi-view time series data. In
our proposed model, each view is modeled by a sequence of
latent states and the state transition function is shared across
views. Therefore, the inconsistencies in views data will lead to
inconsistencies in transitions between latent states across views,
which makes the likelihood of abnormal time steps not high.
We rely on that property to compute the multi-view anomaly
score of each time step in all time series instances. The extensive
experiments show that the proposed model is effective in detecting
multi-view anomalies in time series data.

Index Terms—multi-view anomaly detection, time series, deep
Markov models

I. INTRODUCTION

In multi-view data, an instance is represented by multiple
views of distinct features that can be obtained from different
sources. For example, an object can be described by cameras
from different viewpoints; an article can have versions in vari-
ous languages. As an example of multi-view time series data, a
person’s activity can be recorded by several sensors; each gives
a view of that person’s activity. Here sensors can be placed
on a person’s chest, right wrist, and left ankle to measure
the motion experienced by various body parts. Learning from
multi-view data is an emerging direction and it could improve
performance in different tasks such as classification [1]–[3],
clustering [4]–[6], and anomaly detection [7], [8].

In this paper, we consider the problem of multi-view
anomaly detection for multi-view time series data. This task
aims to find time steps in time series instances that have
inconsistent features across multiple views. As an example,
Figure 1 shows the difference between a multi-view time
series anomaly and a single-view time series anomaly. In this
figure, the three plots on the right show a three-view time
series dataset. Single-view anomalies are time steps that are
significantly distinct from rest of the data such as time steps
at B or C in the figure. In contrast, consider time steps at A,
its pattern in view three is inconsistent with the patterns at the
same time steps in views one and two. More specifically, the
values near A in views one and two are increasing steadily.

However, in view three, its values are decreasing at A. We can
observe a similar inconsistency at D. These inconsistencies
of features across three views indicate that time steps at A
and D are abnormal. Our paper focuses on detecting this
type of multi-view anomalies. More formally, we consider the
following problem.
Problem definition. We are given a dataset D of N multi-view
multivariate time series instances. Each instance x ∈ D is a
multi-view time series that is a set of time series collected from
multiple views, x = {x(1), . . . , x(V )}, where V is the number
of views and x(v) = [x

(v)
1 , . . . , x

(v)
T ] ∈ Rdv×T denotes the time

series observed in the v-th view. Here dv is the dimension of
view v and T is the length of the time series x. For multi-view
time series anomaly detection, the objective is to determine
whether an observation at time step t of each instance x, xt, is
a multi-view anomaly (i.e., whether it has inconsistent features
across multiple views) or not.

To solve the problem, one possible approach is to treat it
as a single-view anomaly detection problem. We can merge
all views into a single view and apply existing time series
anomaly detection methods [9]–[12]. However, since these
models do not explicitly model the multiple views of time
series, they may not be able to detect the inconsistencies
across multiple views, as shown in the experiments. For multi-
view anomaly detection, there have been several proposed
methods [7], [13], [14]. However, since they are not working
with time series data, we can pass time steps as independent
data points to these models. Therefore, they may not be able
to exploit time-dependency patterns to detect inconsistencies
across views.

In this paper, we propose a novel approach that models
each view using a latent state sequence via deep Markov
models for multi-view time series anomaly detection. We argue
that if views are consistent, the model could use a latent
state sequence to explain the views because these views are
about the same object. When there are inconsistencies between
views, the model would need to use different latent state
sequences to better explain views. For example, the three plots
on the left of Figure 1 show the latent state sequences that
explain the corresponding views. As we can see, since there
are no inconsistencies between views one and two, they could
be modeled using one state sequence. Contrarily, due to the
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Fig. 1: Illustration of multi-view anomaly on time series.

inconsistencies at A and D in view three, to better explain
that part of data, the latent states of view three at A and D
(highlighted using red boxes) need to be different from the
corresponding latent states of views one and two. Therefore,
when we enforce the model to learn one latent state sequence
for all views, the likelihood of data at inconsistent time steps
will be low because the model cannot use one latent state
sequence to explain views that exhibit inconsistencies.

To the best of our knowledge, our proposed model is the
first to explicitly deal with multi-view anomaly detection on
time series data. We propose a multi-view deep Markov model,
called ITime, that can learn sequential structures in complex
high-dimensional multi-view time series data. To realize the
above idea and to link the views together for detecting multi-
view anomalies, we use the same neural networks to calculate
the means and variances for Gaussians in transitions of the
deep Markov models for all views. In other words, views
all share the same neural networks that generate their latent
states, which encourages the model to learn similar latent state
sequences for all views. Therefore, if there is a view that is
inconsistent with other views at some time steps, the likelihood
will be low at those inconsistent time steps, which we rely on
to calculate the multi-view anomaly score. We summarize our
contributions as follows:

• We propose a multi-view deep Markov model that can
learn sequential structures in complex high-dimensional
multi-view time series data for detecting abnormal time
steps that exhibit inconsistencies across multiple views.

• To estimate the model parameters, we derive an algorithm
based on the variational inference approach.

• We conduct extensive experiments several datasets. The
results show that the proposed model is effective in
detecting multi-view anomalies in time series data.

II. PRELIMINARIES

A. Gaussian State Space Models

Gaussian State Space Models (GSSMs) are widely used for
modeling time series data [15], [16]. We denote a time series
as x = [x1, . . . , xT ], xt ∈ Rdx . Each observed xt is associated
with a latent variable zt that generates/emits that observation at
t. Denote the sequence of latent variables as z = [z1, . . . , zT ],
where zt ∈ Rdz . The generative process of GSSM is defined
as follows:

zt ∼ N (µα(zt−1, ut),Σκ(zt−1, ut)) (Transition) (1)
xt ∼ Π(µβ(zt)) (Emission) (2)

where Π is the emission distribution whose parameters
are determined by a possibly non-linear function µβ of zt
and latent variable zt follows a Gaussian distribution that is
conditioned on previous zt−1 and input variable ut. The mean
and the covariance matrix of the Gaussian distribution are pa-
rameterized by possibly non-linear functions µα(zt−1, ut) and
Σκ(zt−1, ut) respectively. When µα(zt−1, ut), Σκ(zt−1, ut),
and µβ of zt are parameterized with deep neural networks,
we will have deep Markov models. The parameters of the
generative model are ϕ = (α, κ, β).
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B. Variational Inference

For learning parameters of GSSMs, we can optimize the
following variational lower bound on the data marginal log
likelihood:

log pϕ(x) ≥ Eqθ(z|x) [log pϕ(x|z)]− KL [qθ(z|x)∥pϕ(z)]
= L(x;ϕ, θ) (3)

where the variational distribution qθ(z|x) is used to approx-
imate the intractable posterior distribution p(z|x). Since xt

depends only on zt in Eq. 2, the expectation w.r.t qθ(z|x),
Eqθ(z|x) [log pϕ(x|z)], in Eq. 3 can be computed as follows:

Eqθ(z|x) [log pϕ(x|z)] =
T∑

t=1

Eqθ(zt|x) [log pϕ(xt|zt)] (4)

As shown in [17], the KL divergence term,
KL [qθ(z|x)∥pϕ(z)], in Eq. 3 can be factorized as follows for
time series data:

KL [qθ(z|x)∥pϕ(z)] = KL [qθ(z1|x)∥pϕ(z1)]

+
T∑

t=2

Eqθ(zt−1|x) [KL [qθ(zt|zt−1, x)∥pϕ(zt|zt−1)]] (5)

Since pϕ(zt|zt−1) is a Gaussian distribution, the approx-
imated posterior qθ(zt|zt−1, x) should also be a Gaussian
distribution, qθ(zt|zt−1, x) = N (µθ(zt−1, x),Σθ(zt−1, x)).
Here, following the variational inference approach [18], the
functions to compute the mean µθ(zt−1, x) and the variance
Σθ(zt−1, x) can be approximated by neural networks. By these
parameterizations, the expectations in Eq. 4 and Eq. 5 can be
approximated by Monte Carlo estimates [18].

III. PROPOSED MODEL

In this section, we present our proposed multi-view deep
Markov model for multi-view anomaly detection on time
series data, the inference algorithm, and how anomaly score
is measured.

A. Generative Model of ITime

To model multiple views of time series, we assume that each
view of the time series is generated by a sequence of latent
states and the transition function parameters are shared across
views. More specifically, following GSSM, we model a latent
state at time step t in view v of time series instance n using
a Gaussian distribution with a diagonal covariance matrix:

z
(n,v)
t ∼ N

(
µz(z

(n,v)
t−1 ), σ2

z(z
(n,v)
t−1 )

)
(6)

here µz(z
(n,v)
t−1 ) and σ2

z(z
(n,v)
t−1 ) are non-linear functions to

compute the mean and variance of the Gaussian distribution.
We do not use the input variable ut as in Eq. 1 because we
assume that z

(n,v)
t depends only on the latent state of the

previous time step, z(n,v)t−1 . Note that all latent states in multiple

TABLE I: Notations

Notation Decription

x(n,v) ∈ Rdv×T the vth view of the nth instance
x̄(n,v) ∈ Rdv×T reconstruction of x(n,v)

V the number of views
N the number of instances
dv the dimension of the vth view
z(n,v) ∈ Rdz×T the sequence of latent states
dz the dimension of latent state
pϕ(x

(n,v)
t |z(n,v)

t ) the emission
pϕ(z

(n,v)
t |z(n,v)

t−1 ) the transition

qθ(z
(n,v)
t |z(n,v)

t−1 , x(n)) the variational distribution
ϕ the generative parameters
θ the variational parameters of qθ
K the latent state delay
⊕ the concatenation
⊙ the element-wise multiplication

views are in the same latent space, i.e., z(n,v)t ∈ Rdz , ∀v. To
link the views together, we let all views depend on the same
µz(.) and σz(.).

The observation x
(n,v)
t at time step t in view v of time series

instance n is then generated as follows:

x
(n,v)
t ∼ N

(
µ(v)
x (z

(n,v)
t ), σ(v)

x

2
(z

(n,v)
t )

)
(7)

where we assume that the emission distribution Π is a Gaus-
sian distribution with a diagonal covariance matrix. Its mean
and variance are parameterized by two functions µ

(v)
x (z

(n,v)
t )

and σ
(v)
x

2
(z

(n,v)
t ) respectively.

As in deep Markov models, we represent the functions
µz, σ

2
z , µx, σ

2
x using neural networks. More specifically, for

µz and σ2
z , we parameterize them using a Gated Transition

Function [17] as follows :

gt = Sigmoid(MLPg(z
(n,v)
t−1 )) (Gating unit) (8)

ht = Linear(MLPh(z
(n,v)
t−1 )) (Proposed mean) (9)

where MLP(.) is a multilayer perceptron with ReLU activation
function.

µz(z
(n,v)
t−1 ) = (1− gt)⊙ Linear(z(n,v)t−1 ) + gt ⊙ ht (10)

σ2
z(z

(n,v)
t−1 ) = Softplus(Linear(ReLU(ht))) (11)

where ⊙ denotes element-wise multiplication. By using the
Gated Transition Function, it allows some dimensions to use
a linear transition while the other dimensions use a non-linear
transition [17].

Since we want to connect multiple views through latent
states in different views, we assume that the latent states in
different views will have the same dimension. Therefore, we
can let the µz and σ2

z are shared across views. Here as in [13],
we assume that if the views are consistent, the latent states of
views calculated from the shared transition function should be
similar to each other. In other words, the inconsistencies in
views will make the model learn inconsistent or not similar
latent states among views. When maximizing the likelihood,
these inconsistent latent states are likely not generated by
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the same transition function. Therefore, the likelihood of the
instance that has inconsistent views will be not high. We rely
on this assumption to compute the multi-view anomaly score
presented in Section III-D.

Similarly, for µx and σ2
x, we parameterize them as follows:

µ(v)
x (z

(n,v)
t ) = Linear(MLP(z(n,v)t )) (12)

σ(v)
x

2
(z

(n,v)
t ) = Softplus(MLP(z(n,v)t )), (13)

Note that since the dimensions of views can be different,
we have separate functions µ

(v)
x and σ

(v)
x for each view v.
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Fig. 2: The graphical model of ITime.

Given a dataset D of N multi-view multivariate time series
instances, D = {x(n)|n = 1 . . . N}, the complete process of
our proposed multi-view deep Markov model to generate D is
described below. Its corresponding graphical model is shown
in Figure 2.

For each instance: n = 1 . . . N

For each view: v = 1 . . . V

1) Draw sequence of latent states:
a) z

(n,v)
0 ∼ N (0, I)

b) For each time step: t = 1 . . . T

z
(n,v)
t ∼ N

(
µz(z

(n,v)
t−1 ), σ2

z(z
(n,v)
t−1 )

)
2) Draw the vth view of the instance: t = 1 . . . T

x
(n,v)
t ∼ N

(
µ(v)
x (z

(n,v)
t ), σ(v)

x

2
(z

(n,v)
t )

)
B. Variational Inference

In this section, we present an algorithm to learn our pro-
posed model based on variational inference. For the dataset
D containing N multi-view multivariate time series instances,
we aim to maximize the following variational lower bound on
its marginal log likelihood:

L(D;ϕ, θ) =

N∑
n=1

V∑
v=1

L(x(n,v);ϕ, θ) (14)

where L(x(n,v);ϕ, θ) is the variational lower bound on the
marginal log likelihood of one instance n and and its view v.

L(x(n,v);ϕ, θ) = Eqθ(z
(n,v)|x(n))

[
log pϕ(x

(n,v)|z(n,v))
]

− KL
[
qθ(z

(n,v)|x(n))
∥∥∥pϕ(z(n,v))

]
=

T∑
t=1

E
qθ(z

(n,v)
t |x(n))

[
log pϕ(x

(n,v)
t |z(n,v)

t )
]

− KL
[
qθ(z

(n,v)
1 |x(n))

∥∥∥pϕ(z(n,v)
1 )

]
−

T∑
t=2

Eqθ

[
KL

[
qθ(z

(n,v)
t |z(n,v)

t−1 , x(n))
∥∥∥pϕ(z(n,v)

t |z(n,v)
t−1 )

]]
(15)

here qθ(z
(n,v)
t |z(n,v)t−1 , x(n)) is parameterized using a neural

network. Since latent states zt form a sequence, we use a
structured inference network for learning latent states [17].
For each time step t, the parameters of the variational dis-
tribution qθ(z

(n,v)
t |z(n,v)t−1 , x(n)) (i.e., mean µposterior

t and vari-
ance σ2

t
posterior) are calculated from the structured inference

network. More specifically, we use a Bidirectional Recurrent
Neural Network (BRNN) as shown in Figure 4. At each time
step, we combine hidden states in the BRNN, hleft

t and hright
t ,

into hcombined as follows:

hcombined =
1

3
(tanh (Linear(z(n,v)t−1 )) + hleft

t + hright
t ) (16)

The mean µposterior
t and variance σ2

t
posterior are then com-

puted as:

µposterior
t = Linear(hcombined) (17)

σ2
t
posterior

= Softplus(Linear(hcombined)) (18)

The data input to the BRNN at time step t will include the
data x

(n,v)
t of the current view as well as the x

(n,v′)
t from

other views. We combine the two inputs using F1 and F2

layers. Each F (.) is a multilayer perceptron (MLP). For F1,
it will receive in the data of of current view x

(n,v)
t . For F2,

it will receive in the flatten data of other views. The input to
the BRNN at time step t, e(n,v)t , is then computed based on
F1 and F2 as follows:

e
(n,v)
t = F

(v)
1

(
x
(n,v)
t

)
⊕ F

(v)
2

( {
x
(n,v′)
t

∣∣∣v′ ∈ {1 . . . V } \ v
})

.

(19)

After having µposterior
t and σ2

t
posterior, we sample the latent

vectors for each view to calculate the Monte Carlo estimates
of the expectations in Eq. 151. Given that the transition follows
Gaussian distribution, the latent states are sampled as follows:

z
(n,v)
t = µposterior

t (z
(n,v)
t−1 ) + σt

posterior(z
(n,v)
t−1 )⊙ ϵz (20)

ϵz ∼ N (0, I)

The complete inference network architecture is shown in
Figures 3 and 4. The final inference algorithm is presented in
Algorithm 1.

1We use a single sample when sampling the latent states to estimate the
expectations in Eq. 15.

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 23:57:38 UTC from IEEE Xplore.  Restrictions apply. 



803

Encoder

Emission1

Emission2

Emission𝑉

𝑥(",$)

𝑥(",&)

𝑥(",')

𝑥(",$)

𝑥(",&)

𝑥(",')

𝑧(",')

𝑧(",&)

𝑧(",$)
𝐹$
($)

𝐹&
($)

𝐹$
(&)

𝐹&
(&)

𝐹$
(')

𝐹&
(')

Fig. 3: Inference Network Structure of ITime.
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Fig. 4: Encoder Structure.

C. Complexity Analysis

In ITime inference, we parameterize all distributions by
using neural networks. Hence, the heavy computations are
essentially matrix multiplications. For analyzing the compu-
tational complexity, we analyze the complexity of matrix
multiplication of each component at each time step of each
view. We estimate the computational complexity per epoch
of both KL-divergence and log likelihood in Eq. 15 as
O(V · T · (N ·max {dV , dz, dh} ·max {dV , dz, dh})), where
dV = max {dv}Vv=1 is the largest dimension of all input views,
dh is the largest dimension of all hidden layers of the neural
networks. The part (N ·max {dV , dz, dh} ·max {dV , dz, dh})
is the upper bound of matrix multiplications of all components.

D. Anomaly Score

Based on our assumption that each view is derived from a
sequence of latent states and normal time steps should have
similar sequences of latent states across multiple views, for
each time step of instance n, we define its multi-view anomaly
score based on the conditional negative log likelihood of the
time step as follows:

score(x(n)
t ) = −

V∑
v=1

log pϕ(x
(n,v)
t |z(n,v)t ) (21)

Algorithm 1 Learning a multi-view deep Markov model with
stochastic gradient ascent.

Input: Data D
Output: Parameters ϕ, θ

1: while not converged do
2: Sample instance x(n) ∈ D
3: for v = 1 . . . V do
4: Calculate embeddings e(n,v)

5: Estimate posterior parameters µposterior
z and σ2

z
posterior

(Eqs. 17, 18)
6: Sample z(n,v) ∼ qθ(z

(n,v)|x(n)) (Eq. 20)
7: Estimate prior transition µprior

z and σprior
z

8: Estimate Eqθ

[
KL

[
qθ(z

(n,v)|x(n))
∥∥pϕ(z(n,v))]]

9: Estimate prior emission µx and σx

10: Estimate Eqθ

[
log pϕ(x

(n,v)|z(n,v))
]

11: Evaluate L(x(n,v);ϕ, θ) (Eq. 15)
12: end for
13: Evaluate ELBO L(x(n);ϕ, θ)
14: Estimate gradient ∆ϕL and ∆θL
15: Update ϕ and θ using ADAM optimizer [19]
16: end while

here the likelihood of x
(n,v)
t depends only on the latent state

of that time step z
(n,v)
t . We argue that if the current time

step is normal, it can also be explained by the latent states
of the previous time steps because the near time steps should
be consistent with each other. Therefore, we also compute
Eq.21 with z

(n,v)
t−1 , z(n,v)t−2 , ..., z(n,v)t−K+1 and sum up all results to

obtain the score. Here K is called the latent state delay. More
specifically,

scoreK(x
(n)
t ) = −

K−1∑
k=0

V∑
v=1

log pϕ(x
(n,v)
t |z(n,v)t−k )

(22)

Intuitively, the higher the score is, the more abnormal that time
step is. In Section IV-D2, we show the effects of K on the
performance of our model.

IV. EXPERIMENTS

A. Datasets

For quantitatively evaluating the proposed model, we use
three real time series datasets:

• Daily and Sport Activities (DSA)2 contains motion sensor
data of 19 daily and sports activities such as sitting, stand-
ing, walking, and running. Each activity is performed by
8 subjects. In total, there are 152 time series instances
with length 7500. There are sensors on five body parts
that are torso, right arm, left arm, right leg, and left leg.
For each body part, there will 9 recorded motion features
(e.g., accelerometers, gyroscopes, and magnetometers).

2https://archive.ics.uci.edu/dataset/256/daily+and+sports+activities
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TABLE II: Dataset Statistics

Dataset #Views #Features #Instances Length

DSA 5 [9, 9, 9, 9, 9] 152 7500
MEx 2 [3, 3] 180 2924
MHealth 3 [5, 9, 9] 110 2096

Therefore, we have 5 views. Each view has 9 features
corresponding to one body part.

• Multi-modal Exercise (MEx)3 contains data of different
physiotherapy exercises performed by 30 subjects. We use
6 activities. There are two accelerometers on the wrist
and the thigh. Each accelerometer records 3 features.
Therefore, there are two views in this dataset, each has 3
features. In total, there are 180 time series instances with
length 2924.

• Mobile Health (MHealth)4 contains body motion and
vital signs recordings of 10 subjects while performing
several physical activities such as climbing stairs, cycling,
and jogging. We use 11 activities. Therefore, there are
110 time series instances with length 2096. Sensors
are placed on the subject’s chest, right wrist and left
ankle to measure the motion experienced by diverse body
parts. The sensor on the chest also provides 2-lead ECG
measurements. Therefore, there are 3 views with 5, 9,
and 9 features respectively.

Table II shows the size of each dataset after preprocessing.
Following the experimental setting in [9], we divide each
time series into two subsets of equal size. The first half is
the training set and the second half is the testing set. Since
we do not have the ground truth for multi-view anomalies,
following [7], [13], [20], we add multi-view anomalies to
the test set. More specifically, for each time series instance
A corresponding to an activity performed by a subject, we
randomly select another time series instance B for another
different activity performed by the same subject. For an
anomaly rate r (e.g., r = 5%, ..., 20%), we select randomly
r time steps from A. For each selected time step in A, we
randomly choose a view, and replace the values at that time
step in the selected view by values of the same time step from
B. By this way, we generate multi-view anomalies because the
injected time step in the injected view belongs to a different
cluster (activity) as compared to the same time step in other
views. We compute the anomaly scores for all time steps in all
instances in the testing set. For the evaluation measurement,
we use AUC (Area under the ROC curve) that is one of the
most widely used performance metrics for anomaly detection
problems. A higher AUC indicates a higher anomaly detection
performance. We generate 10 samples with 4 anomaly rates
for each dataset and report the averaged results.

B. Baselines

We compare the following state-of-the-art methods:

3https://archive.ics.uci.edu/dataset/500/mex
4http://archive.ics.uci.edu/dataset/319/mhealth+dataset

• LOF [21], OCSVM [22]: These are methods for single-
view outlier detection. They are not designed for time
series data. To run these methods, we merge all views
into one single view and treat time steps as independent
data points. Therefore, we lose the information on time
dependencies between time steps. We use the implemen-
tations from scikit-learn 5.

• Bayesian-MVAD [7]6, SRLSP [23]7: These are methods
for multi-view anomaly detection. However, it cannot run
with time series data. As above, we pass time steps as
independent data points to these models.

• Omni [9]8, MTAD-GAT [10]9, TFAD [24]10, GANF
[25]11, TranAD [26]12, Anomaly-Transformer [27]13, In-
terFusion [28]14 : These models are proposed for single-
view time series anomaly detection. As above, we merge
features in all views into one single view.

• ITime15: This is our proposed model. To the best of our
knowledge, our model is the first attempt to detect multi-
view anomalies on time series data.

In our experiments, for ITime model, latent dimension is
set to 20. For other methods, we set the latent dimension as
default (i.e., 150 for MTAD-GAT, 3 for OmniAnomaly, and
min({dv|v ∈ V }) − 1 for Bayesian-MVAD). The number of
epochs is set 100. Other hyperparameters are set as default for
all baselines. We employ Adam optimizer with learning rate
10−3 for the training of our model. We run the methods on
a system with 64GB memory, an Intel(R) Xeon(R) CPU E5-
2623v3, 16 cores at 3.00GHz, and a GPU NVIDIA Quadro
P2000 GPU with 5 GB GDDR5.

C. Multi-View Anomaly Detection

Figure 5 shows the average AUCs with different anomaly
rates on DSA, MEx, and MHealth. In general, the performance
of all methods decreases when the anomaly rate increases.
ITime consistently outperforms the baselines in all settings
across all datasets, which demonstrates the effectiveness of
ITime in detecting multi-view anomalies on time series data.
Among the single-view outlier detection methods for non-
time series data, LOF has the best performance. Since LOF
is a density-based method, it is able to detect the multi-
view anomalies that deviate from main clusters when merg-
ing views into one. However, LOF’s performance is lower
than time series methods’ because they can model the time
dependencies in time series. Moreover, MVAD-GAT is able
to detect multi-view anomalies more effectively than others
single-view time series methods due to the explicit modeling

5https://scikit-learn.org/stable
6https://github.com/zwang-datascience/MVAD Bayesian
7https://github.com/wy54224/SRLSP
8https://github.com/NetManAIOps/OmniAnomaly
9https://github.com/ML4ITS/mtad-gat-pytorch

10https://github.com/DAMO-DI-ML/CIKM22-TFAD
11https://github.com/EnyanDai/GANF
12https://github.com/imperial-qore/TranAD
13https://github.com/thuml/Anomaly-Transformer/tree/main
14https://github.com/zhhlee/InterFusion
15https://github.com/thanhphuong163/ITime
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TABLE III: Average AUCs with anomaly rate 5% on the three
datasets. A higher AUC is better.

Method DSA MEx MHealth

ITime 0.97008 ± 0.004 0.97156 ± 0.005 0.95469 ± 0.006
MVAD-GAT 0.92964 ± 0.006 0.95711 ± 0.003 0.93503 ± 0.006
Omni 0.88018 ± 0.007 0.89715 ± 0.011 0.86930 ± 0.010
TranAD 0.83492 ± 0.003 0.77981 ± 0.008 0.82937 ± 0.004
Anomaly-Transformer 0.90756 ± 0.005 0.94962 ± 0.004 0.88212 ± 0.010
InterFusion 0.90772 ± 0.009 0.90291 ± 0.011 0.87715 ± 0.010
GANF 0.80971 ± 0.007 0.85370 ± 0.008 0.82598 ± 0.007
TFAD 0.67346 ± 0.006 0.86997 ± 0.005 0.69058 ± 0.004
Bayesian-MVAD 0.67460 ± 0.007 0.53727 ± 0.015 0.62969 ± 0.011
SRLSP 0.94664 ± 0.003 0.87223 ± 0.008 0.92689 ± 0.003
LOF 0.80628 ± 0.010 0.61323 ± 0.005 0.84213 ± 0.010
OCSVM 0.55022 ± 0.006 0.53064 ± 0.007 0.56935 ± 0.013

of correlations between time series features. For SRLSP and
Bayesian-MVAD, they are designed for multi-view non-time
series data. Therefore, they are not as effective as some of
time-series methods because SRLSP and Bayesian-MVAD do
not model the time dependencies. However, since SRLSP is
a multi-view anomaly detection method, SRLSP can produce
better results in some settings when compared to some single-
view time series methods. In contrast, since ITime is the
first method designed for detecting multi-view anomalies on
time series data, it consistently outperforms both single-view
anomaly detection methods for time series data and multi-view
anomaly detection methods for non-time series data. Table III
shows detailed numbers of average AUCs of all methods with
anomaly rate 5% on the three datasets.

D. Parameter Analysis

1) Analysis of Latent Dimension: We study the influence
of the latent dimension on our proposed model. Figure 6
shows the average AUCs by our method with different latent
dimensions. As we can see in the figure, the latent dimension
has little effect on the performance of our method. The per-
formance of ITime is a little bit better with latent dimensions
15 and 20 on MHealth dataset.

2) Analysis of Latent State Delay on Anomaly Score: In
addition, we conduct an experiment to show the effects of the
latent state delay K on the performance of our model. Figure 7
shows the AUC performance of ITime when varying K. As we
can see from the figure, increasing the latent state delay from
0 to 3 can help improve the AUC significantly. The AUC is
decreasing a little bit after that in DSA and MHealth datasets.

E. Running Time Analysis

Table IV shows running time by some of the strongest
methods for time series data across all datasets. Compared
to anomaly detection methods for time series data such as
OmniAnomaly, and MTAD-GAT, ITime has a reasonable
running time on large datasets, as theoretically shown in the
complexity analysis in Section III-C.

F. A Use Case with Real-World Multi-View Time Series Data

In this section, we show an application of multi-view
anomaly detection by ITime. Figure 8 shows S&P 500 index
data of 5 economic sectors of the U.S. economy from January

TABLE IV: Training time (hh:mm:ss).

Method DSA MEx Mhealth

ITime 15:17:37 1:26:39 1:00:11
MTAD-GAT 4:34:53 0:15:33 0:13:24
OmniAnomaly 17:00:20 1:44:50 1:11:39

1st, 2021 to December 31th, 2022 16. The data measures
the performance of the U.S. economy in 5 sectors includ-
ing Information Technology, Health Care, Consumer Staples,
Energy, and Real Estate. The data is collected from S&P
500 via Yahoo! Finance17. We treat each sector as a view to
the U.S. economy and run ITime to detect whether there are
any inconsistencies in the performance of the 5 views/sectors.
Furthermore, we also run single-view MTAD-GAT model on
this data by merging features in all views into one single
view for comparing single-view and multi-view methods. In
Figure 8, we plot anomaly scores by ITime and MTAD-GAT
(the 2 plots on the top), and the time series of 5 views (the
5 plots at the bottom). We highlight top 10 (2%) time steps
that have the highest anomaly scores detected by ITime and
MTAD-GAT. For ITime, these top 10 anomalies concentrate
at the two segments highlighted in red. For MTAD-GAT, its
top 10 detected anomalies are highlighted in green.

As detected by ITime, the first abnormal segment is from
March 2nd to March 8th, 2021. We can see an inconsistent
performance between the Energy sector and the rest. There
was a short drop, then an increase in the indices of Information
Technology, Health Care, Consumer Staples, and Real Estate
sectors. In contrast, Energy sector was increasing steadily.
This could be partially explained by the start of the recovery
after the COVID-19 pandemic. Around this time, the mass
COVID-19 vaccinations and the economic stimulus packages18

boosted the U.S. consumer confidence and spending. However,
the energy index kept increasing because the cold weather in
February 2021 caused the natural gas price increase throughout
the U.S.19. The second inconsistent segment is from December
29th, 2021 to January 5th, 2022. This period of time witnessed
a rising trend losing its momentum in Information Technology,
Health Care, Consumer Staples, and Real Estate sectors. The
root of this situation could be because COVID-19 cases were
surging due to the Omicron variant in the U.S.20. Meanwhile,
Energy sector still went up. This could partially be due to
the energy crisis between Europe and Russia affecting the
U.S. energy market. For MTAD-GAT model, it does not rank
these inconsistencies high because it is a single-view method
that aims to detect abnormal changes in the indices instead of
pointing out the inconsistencies between views.

16Data is scaled by using StandardScaler
17https://pypi.org/project/yfinance/
18https://www.cnn.com/2021/03/12/economy/

march-consumer-sentiment-vaccines/index.html
19https://www.eia.gov/todayinenergy/detail.php?id=50798
20http://bit.ly/cnbcomnicron
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Fig. 5: Average AUCs with different anomaly rates on the three datasets. A higher AUC is better.
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Fig. 6: Average AUCs by ITime with different latent dimen-
sions.
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Fig. 7: Average AUCs by ITime with different latent state
delays of anomaly score.

V. RELATED WORK

A. Non-time Series Anomaly Detection

There have been several methods for detecting anomalies in
non-time series data. Most of them are single-view methods
such as density-based methods [21], [29], clustering-based
methods [30], [31], projection-based methods [32], [33], and
deep learning based approaches [34]–[36]. Recently, there is
an interest in anomaly detection for multi-view data whose
objective is to detect the inconsistencies across multiple views
[7], [8], [13], [20], [37]–[39]. [38] uses consensus clustering to
detect multi-view anomalies. According to this method, data

points that do not belong to any consensus cluster are con-
sidered abnormal. [40] is another clustering-based method for
detecting multi-view outliers. By comparing affinity vectors in
different views derived from the clustering results, this method
can identify anomalies on multi-view data. Another approach
based on spectral clustering is HOrizontal Anomaly Detection
(HOAD) [37]. This method computes the key eigenvectors
from a combined similarity graph based on the similarity
matrices. Anomaly score is obtained by calculating cosine
distances of those eigenvectors. Multi-view low-rank analysis
[39] is another approach to tackle this problem. The proposed
method creates a cross-view low-rank coding to capture the
intrinsic structures of the data. The multi-view anomaly score
is calculated by the coefficients from the low-rank matrix.

There are other methods that rely on the assumption that
all views of a normal instance should be generated from a
single latent vector [6], [13]. Based on that assumption, [13]
designs a probabilistic latent variable model that generates the
data and calculates the probability that a multi-view instance
is generated from more than one latent vector. This probability
is used to determine if a data point is a multi-view anomaly
or not. [6] also addresses this task based on this paradigm.
A hierarchical Bayesian model is proposed to link the views
of instances through a single, reduced-dimensionality latent
space. Multi-view anomalies are identified by the negative
Student’s t density calculated from the learned parameters.

B. Time Series Anomaly Detection

Most of proposed anomaly detection methods for multi-
variate time series are reconstruction-based models [9], [10],
[27], [28], [41]–[45]. A reconstruction-based model learns the
latent representation of the input time series and reconstructs
that original input based on some of its latent variables. [41]
proposes an LSTM-based Encoder-Decoder for multi-sensor
anomaly detection. This method uses an LSTM-based encoder
to encode the input time series into a vector representation,
and an LSTM-base decoder to reconstruct the input from
that vector. [42] detects anomalous instances by using a
collective of autoencoders to differentiate between normal
and abnormal instances. However, the previous deterministic
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Fig. 8: An example of predicted multi-view anomalies on S&P
500 dataset by ITime.

methods are sensitive with unpredictable instances. Therefore,
[9] integrates LSTM architecture to variational autoencoders
for a robust learning representation. By introducing stochastic
variables and planar normalizing flow, the model can capture
the normal patterns of time series without being misled by

unpredictable samples. The model produces low reconstruction
probability for anomalies. Anomaly-Transformer from [27]
introduces Association Discrepancy which is a distinguishment
between normal and abnormal time steps. By minimizing
prior-association and maximizing series-association, the model
can find the most informative association for association dis-
crepancy, and combine it with reconstruction error to improve
detection performance.

Furthermore, none of the above methods explicitly models
the correlation between univariate time series features. [10]
introduces the graph attention layer in the proposed MTAD-
GAT framework for modeling the relationship between time
series attributes and the temporal dependencies within each
univariate time series attribute. In addition, MTAD-GAT model
uses the latent representation from a GRU layer to reconstruct
the original input and forecast its future values. This approach
calculates anomaly score via a weighted sum of both the
reconstruction probability from its reconstruction model and
the forecasting error from its forecasting model. InterFusion
from [28] renovates hierarchical Variational Auto-Encoder
with two latent variables that learn low-dimensional inter-
metric and temporal dependency among multivariate time
series simultaneously.

The above models are not designed for multi-view time
series data. The most relevant work to our proposed method is
MTHL [46] that aims to find anomalous patterns from dynamic
network systems. MTHL uses multi-view learning framework
where edge and node properties are considered as two distinct
views. The model projects these two views into a shared latent
space and learns a hypersphere boundary containing all latent
embeddings of normal multi-view instances. If the distances
of those projections are greater than the boundary’s radius, it
is considered as anomaly. Although MTHL can model multi-
view time series based on edge and node properties, it is
designed for detecting anomalies in dynamic network systems
and only work with two-view time series data. Moreover,
MTHL aims to detect consistent irregular patterns in multi-
ple views which is the second type of multi-view anomaly
discussed above.

VI. CONCLUSION

We propose ITime, a multi-view deep Markov model, for
detecting multi-view anomalies in multi-view time series data.
To link multiple views of time series, we assume that each
view of the time series is generated by a sequence of latent
states and the transition function parameters are shared across
views. By learning the latent state sequences of views that
are generated by the shared neural networks, our model can
detect abnormal time steps that exhibit inconsistencies across
multiple views of time series data. We derive a variational
inference algorithm to estimate the parameters of our proposed
model. The extensive experiments on several datasets show
that the ITime model outperforms state-of-the-art baselines
significantly in detecting multi-view anomalies.
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