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Abstract

The AllDifferent constraint is a fundamental tool in Constraint Programming. It naturally arises in many problems, from
puzzles to scheduling and routing applications. Such popularity has prompted an extensive literature on filtering and
propagation for this constraint. This paper investigates the use of General Processing Units (GPUs) to accelerate filtering
and propagation. In particular, the paper presents an efficient parallelization of the Al/lDifferent constraint on GPU, along
with an analysis of different design and implementation choices and evaluation of the performance of the resulting system on
several benchmarks.
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1 Introduction

Constraint Programming (CP) is a declarative paradigm used to model and solve combinatorial
problems. Problems are modeled using a set of variables, each provided with a set of possible
values (the domain of the variable), and a set of constraints that characterize the feasible solutions.
Dedicated constraint solvers are used to process the problem models and identify solutions. Thanks
to the MiniZinc Challenge [32], an annual competition among solvers, the CP language MiniZinc
[27] has emerged as a de-facto standard modeling language for the CP community.
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Traditional constraint solvers operate by alternating two stages: non-deterministic variables
assignment and constraint propagation. Once a value has been assigned to a variable, constraint
propagation eliminates values from domains of other variables that are incompatible in any solution
with the assignment that has just been made. Alternative assignments are typically explored through
backtracking.

The effectiveness of constraint propagation is heavily dependent on how the problem is modeled.
For example, it is frequently possible to model the same problem using either a collection of
elementary (e.g. binary or ternary) constraints or a single constraint involving many variables (i.e.
a global constraint). Global constraints have the advantage of capturing a complex relationship
between many variables, typically allowing a more extensive level of propagation. The impact of
propagation on the structure of the search tree explored by a constraint solver can be significant—
indeed, the optimized propagation of global constraints is the subject of many studies [31].

The AllDifferent constraint, which requires all variables in the constraint to be assigned a distinct
value, naturally arises in many problems, from puzzles to scheduling and routing applications. Such
popularity has prompted extensive studies on the propagation of this global constraint. There are
different algorithms to propagate the AllDifferent constraint, each with a different trade-off between
propagation strength and computational cost [43]. The most popular approach is the one by Régin
[29].

The use of parallelism to enhance performance of CP solvers has been extensively investigate,
with emphasis on CPU-based multi-threaded solutions [ 14]. These approaches usually involve either
(i) decomposing and distributing the problem or (ii) dividing and distributing the search space
exploration. Such methods are prone to issues such as load imbalance and synchronization overhead.

Recently, the use of Graphical Processing Units (GPUs) has led to extensive performance benefits
in several areas of Al, such as Machine Learning. Relatively, more limited work has been done in
exploring the use of GPUs for logic-based Al [6, 7], e.g. [4] for SAT, [8, 9] for ASP and [3] for CP.

In this paper, we present a GPU-accelerated propagator for the AllDifferent constraint. To the
best of our knowledge, this is the first work on accelerating the propagation of a global constraint
using GPUs.

Our contributions are as follows: an analysis of Regin’s algorithm to identify which parts are
amenable of parallelization using a GPU; the comparison of alternative parallelization approaches;
the integration of both the MiniZinc support and our GPU-accelerator propagator in a lightweight
constraint solver [26]; and a comparison between the standard propagator and our GPU-accelerated
version. Results on large instances of the Travelling Salesman Problem, N-Queens and the
Langford’s Problem demonstrate encouraging speedup.

The rest of the paper is organized as follows: Section 2 gives an introduction to CP, the Regin’s
algorithm for AllDifferent, related works and the use of GPU for general computation. Section 3
describes the parallelization process, the integration in a constraint solver and the implementation
details of the final algorithm. In Section 4, we describe the benchmarks used to test the GPU-
accelerated propagators, analyse its scalability and present the final results. Finally, Section 5
summarizes the paper and gives some directions for future works.

2 Background

2.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) can be described by a triple P = (V,D,C), where V =
{Vi,...,Vy} is a finite set of variables, D = {Dy,...,D,} is a finite set of sets, called domains,
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and C is a set of constraints on the variables V. The domain D; captures the allowable values for the
variable V;. Every constraint ¢ € C is defined over a subset var(c) C V called scope of ¢. Assume
var(c) = {Vi,...,Vi,}, then c is a relation on D;; x --- x D; ,namely c € D;; x --- x D;,. A
solution is an assignment ¢ : Y —> Dy U - - - U D,, such that:

e fori=1,...,n:0(V;) € D;and
e forallcinC,ifvar(c) = {V;,..., Vi, ), then (c(V}),...,0(V;,)) € c.

im>

In this paper, we focus on CSPs on finite domains, i.e. each D; is a finite set. Whenever clear from
the context, we will use syntactic sugars for commonly understood constraints (e.g. V3 < 2 - Vs).
We will use the term global constraint to refer to constraints that define relationships between a
non-fixed number of variables.

Given a CSP P, a constraint solver looks for one or more solutions of P. A typical solver
alternates two types of processes in the search for solutions: (i) constraint propagation and (ii) non-
deterministic choices. The latter step is used to select the next variable to be assigned and to select
non-deterministically a value to be given to the variable (drawn from its current domain). Constraint
propagation makes use of the constraints to remove from the domains of the variables values that can
be proved not to belong to any solution compatible with the assignments made thus far. The choice
of the variable is typically fast compared to the cost of constraint propagation.

2.2 Constraint Propagation

Constraint propagation is a fundamental technique in CP. As mentioned, it is used to reduce the
search space by identifying and removing inconsistent values from the domains of the variables.
The propagation of a single constraint is derived from the specific semantics of such constraint. For
example, the propagation of the constraint /; < V; removes from D; all values smaller than &, when
k is assigned to V;. Similarly, when £ is assigned to V, it removes from D; all values bigger than 4.

When the domains of a variable is reduced, constraints involving such a variable may be used to
reduce the domains of other variables. This leads to a chain of propagations that terminates when it
is not possible to remove further values (i.e. a fix-point is reached). A simple way to implement such
a mechanism is by using a queue containing all constraints to be propagated. A constraint is added
to the queue when the domain of at least one variable in its scope is changed.

Algorithms used to propagate constraints are called filtering algorithms and are subject to a trade-
off between computational complexity and the amount of values they can remove. A strong filtering
algorithm is one that leads to hyper-arc consistency [31]. An m-ary constraint ¢ on the variables
var(c) = {Vi, ..., Vi,} is hyper-arc consistent (HAC) if for allj = 1, ..., m it holds that:

(Vaj S D,}.)(Elal S Dil) LR (Elai_l S Di/—l)
(Jai+1 € Diy,,) -+~ (3am € D, ) (a1, ..., am) € ©).

A CSP is hyper-arc consistent if all constraints in C are HAC. In case of binary constraints (i.e.
m = 2) the HAC property reduces to arc consistency. The time complexity of naive algorithms for
achieving HAC is exponential in m.

It is common practice to simplify constraints involving many variables into collections of
constraints involving a smaller number of variables (e.g. 2 or 3). For example, a constraint like
X +2Y +3U < 4V + Z can be translated to the simpler constraints 4 < B,A = X + C,C =
2Y +3U,B = 4V + Z. Notice that this type of translation may lead to a reduced filtering capability
during constraint propagation, since the HAC property is guaranteed only for the simple constraints.
However, constraints can be rewritten in different ways, differently affecting the effectiveness of the
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propagation step. For instance, for the above constraint one can more efficiently exploit a built-in
constraint capable of handling sums of linear terms. The given constraint can be first rewritten as
X +2Y+3U—4V —Z < 0 and then, by using the scalar product global constraint, as the equivalent
x,y,u,v,7]1-[1,2,3,—4,—-1] < 0.

The CP literature has explored a number of dedicated algorithms to handle propagation for
specific types of constraints. In what follows, we focus on the global constraint A/lDifferent.

2.3 AllDifferent

The AllDifferent global constraint deals with a list of variables (of any length) and aims at
ensuring that all of them are assigned pairwise different values in the solution. Even though
AllDifferent(x, . ..,x,) admits exactly the same set of solutions as the set of binary constraints
{xi #x; : 1 <i<j < n}, arc consistency applied to the individual binary constraints delivers a
weaker filtering of the domains than considering the original global constraint. A comprehensive
review on the AllDifferent constraint is out of the scope of this work, interested readers can refer to
[43] for a review of the different propagation algorithms, to [13, 48] for various improvements and
to [33] for a multi-thread and distributed implementation.

Régin’s well-known algorithm [29] for AllDifferent is based on a bipartite graph representation
of the constraint that matches variables with values. In general, a bipartite graph G(N; U N,, E) is
defined over two disjoint sets of nodes N1 and N> and £ C Ny x N, are undirected edges. A matching
of a bipartite graph is a set of edges M C E such that no two distinct edges share a node. A maximum
matching is a maximum cardinality matching. The Hopcroft-Karp algorithm [17] for computing a
maximum matching in a bipartite graph has O(,/n - |E|) running time, while the Ford-Fulkerson
algorithm, which reduces the problem to a maximum flow, has time complexity O(n - |E]) [12],
where n = |N1| + |Nz|.

A directed graph (digraph) G(N, A) pairs a set of nodes N with a set of arcs 4 € N x N, i.e.
a set of directed edges. A path x¢,x1,...,X, is a sequence of nodes such that (x;,x; + 1) € A4 for
i=0,...,m—1.Ifx, = xo, the path is called a cycle. A Strongly Connected Component (SCC) M of
G is a maximal subset of N such that, for all pairs u,v € M, there is a path u = x¢,x1,...,x, = v. It
follows that there are no cycles with edges between different SCCs. The set of SCCs forms a partition
of the nodes of the digraph. Tarjan’s algorithm can be used to efficiently compute the SCCs of any
digraph in O(|N| + |4]) time [36].

Before discussing the GPU-based implementation, let us review the steps adopted in the
propagation of the AllDifferent constraint. In particular, consider the constraint applied to » variables,
ie.

AllDifferent(x1, . . ., xp).

Consider the following preliminary definitions. Given a bipartite graph G(N; U N, E) and a
matching M of G, the residual digraph from G and M is a directed graph R(Ng, Ar) built as follows
(see Figure 1):

1. The matching M is used to define the set of arcs A that directs the edges of £

A1 = {(x,d) : xeN,de Ny, {x,d} e E\M}U
{(d,x) : x € Ni,d € Np,{x,d} € M}

Namely, for each matching edge, there is an arc from value to variable and for each non-
matching edge, the arc is directed from variable to value.
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1738  Constraint propagation on GPU: AllDifferent

FIGURE 1. Quick overview of Regin’s algorithm on x1, x2,x3,x4 where D1 = {1,2}, D, = {1, 2,3},
D5 = {3}, D4 = {3,4,5}. In (a), we highlight in green the maximum match (step 1). In (b) it is
pictured the residual graph (step 3). In (c), we paint with a different color the various SCCs (step 4);
the arcs that will be removed are pictured in red (step 5).

2. A new sink node ¢ € N1 U N, is added: Ng = N; U N, U {t}.
3. The matching M is used to define the set of arcs between ¢ and the nodes in N,

Ay = {(d,t) : deNy(FxeN)({d,x} e M)} U
{(t,d) : d € N, (3x € N1)({d,x} € M}

4. Finally, the set of arcs Ay is defined as Ap = 41 U A4,.

Let us now review the algorithm to propagate A/lDifferent(x1,...,x,). The algorithm constructs a
bipartite graph G = (N| U N,, E) where:

b Nl = {xl,--~;xn};
e N> = Uy, Di, where D; is the domain of the variable x;, and
e E={{x,d}|i€l.nAnd e D}

The algorithms proceeds as follows (see also Figure 1):

Find a maximum matching M for G(N; U N,, E).

If |M| < n, then the constraint will be unsatisfiable.

Otherwise, construct the residual digraph R(Ng, Ar) from G and M.

Compute the strongly connected components of R.

For every variable x;, remove from its domains all the values d such that there exists an arc
(x;,d) € Ag or (d,x;) € Ag that is not in M and connects two distinct SCCs.

MRS

In our implementation, we use the Hopcroft-Karp’s algorithm for step 1, with a time complexity
O(VIN1|+ N3] - |E]). Step 2 can be performed with complexity O(1), since it is a simple check.
Step 3 has complexity O(|N1|+ |N2| + |E]) (see R construction above). In step 4, we use the Tarjan’s
algorithm with complexity O(|N1| 4+ |N2| + |4]). Finally, step 5 has time complexity O(|4]) since
it scans all the arcs. In practice, the computational time can be reduced using several optimizations
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L2 cache

Global memory

FIGURE 2. Simplified GPU architecture.

[13]. Our implementation mitigates the cost of step 1 using an incremental approach as described
in [13].

Correctness of the procedure follows from a theorem by Berge that characterize the edges
that belongs to some but not to all maximum matchings by just analysing a single maximum
matching [2].

2.4 GPU Computing with CUDA

General-Purpose Computing on Graphics Processing Units (GPGPU) is the use of a Graphics
Processing Units (GPU) to speed up computations traditionally handled by the Central Processing
Unit (CPU). NVIDIA introduced the Compute Unified Device Architecture (CUDA), a general-
purpose programming library that allows programmers to ignore the underlying graphical concepts
in favor of high-performance computing concepts. It has been successfully used to accelerate
computations in a variety of domains, such as physics, bioinformatics and machine learning [41].

The architecture of a GPU (Figure 2) includes a main memory (DRAM), typically off-chip and
used as global memory, an L2 cache and an array of Streaming Multiprocessors (SM). Each SM
contains a small amount of on-chip fast memory, used as L1 cache or scratchpad memory (the
Shared memory), and several CUDA cores, responsible for the actual execution of instructions. The
architecture is designed to enable rapid context switching of lightweight threads.

The underlying conceptual model for parallelism supported by CUDA is Single-Instruction
Multiple-Thread (SIMT), where the same instruction is executed by different threads, while data and
operands may differ from thread to thread. A CUDA program includes parts meant for execution on
the CPU (the host) and parts meant for parallel execution on the GPU (the device). Typically, the
host code transfers data to the device memory (DRAM in Figure 2), starts parallel computations on
the device and retrieves the results from device memory. The CUDA library supports interaction,
synchronization and communication between host and device. Each device computation is described
as a collection of concurrent threads, each executing the same function (called a kernel, in CUDA
terminology). Each thread is executed by a CUDA core; these threads are hierarchically organized
in blocks of threads, assigned to SMs. The threads in a block assigned to an SM execute the same
instruction on different data. In case of control flow divergence among the threads within a block,
their execution is serialized. Device global memory is accessible by all threads, whereas threads of
the same block may access the high-throughput shared memory.
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3 Design and Implementation

In this section, we explore the development of a constraint solver, which supports parallel
propagation of AllDifferent on GPUs. Its code is open-source and is freely available online [34].

The first step in this process consists of selecting an existing constraint solver suitable to host a
GPU-enabled AllDifferent. We looked at the fastest solvers of the recent MiniZinc challenges [38]
and selected OR-Tools [28], JaCoP [21] and Gecode [37]. We realized soon that their efficiency
is also due to several optimizations that make unsuitable to the modifications required to exploit
parallelism.

Our choice converged on MiniCP [26], a lightweight solver specifically designed to enable
research and exploration of diverse search and propagation methodologies. MiniCP provides a
comprehensive documentation and a clean design. In particular, our research builds on MiniCPP
[16], a C4++ implementation of MiniCP, suitable to host C++ CUDA kernels. With minor
optimizations, MiniCPP proved comparable to Jacop in terms of search time when they explore
the same search tree on a collection of benchmarks.

To facilitate the use of MiniCPP we extend it with a front-end for the MiniZinc language. A
MiniZinc model is a text file describing a constraint problem in a high-level, solver-independent
way. The model is compiled (i.e. ‘flattened’) into a low-level format, called FlatZinc. A FlatZinc
file is a text file that specifies variables, domains and constraints in an easy-to-parse way. A
solver compatible with MiniZinc takes as input a FlatZinc file, creates the variables, domains and
constraints specified in it and solves the problem.

Different solvers have different capabilities (e.g. a propagator for a specific constraint) and
MiniZinc can take advantage of that if properly configured [39]. If a solver does not provide a
propagator for a specific constraint, the flattening process decompose such constraint into basic
constraints. MiniZinc allows us to enrich variables and constraints with annotations (i.e. tags) to
provide additional information. Such annotations are not part of the model itself and a solver is free
to either exploit them or ignore them.

We enable MiniCPP to read FlatZinc files using the skeleton parser provided by Gecode.
Moreover, we create the necessary configuration files to inform the MiniZinc compiler of the
MiniCPP’s AllDifferent propagator, and to allow the custom : : gpu annotation (see Listing ??).
In this way, when MiniCPP parses an AllDifferent constraint annotated with : : gpu, it uses the GPU
algorithm in place of the standard CPU algorithm.

include "alldifferent.mzn";

include "minicpp.mzn";

constraint alldifferent(...) ::gpu;
LISTING 1.1: MiniZinc annotation for selecting the GPU propagator.

3.1 Parallelization
The key components of the filtering algorithm for Al/lDifferent propagation are (see Section 2.3):

1. the computation of a Maximum Matching in a bipartite graph (MM), and
2. the computation of the Strongly Connected Components (SCCs) of a directed graph.
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TABLE 1.  Average time to calculate MM and SCCs (in milliseconds) for the Travelling Salesman
Problem (a), N-Queens (b) and Langford’s Problem (c)

Instance SCCs MM Instance SCCs MM Instance SCCs MM

kroA200 0.012 0.003 200 0.046 0.008 2_100 0.014 0.003
rat575 0.028 0.005 600 0.364 0.056 2300 0.039 0.010
dsj1000 0.052 0.014 1000 1.009 0.195 2500 0.369 0.080
d2103 0.249 0.046 2000 4.271 0.712 2_1000 1.464 0.387

15934 35.845  9.109 6000 108.793 9.358 2_3000 34.134  3.870

Maximum Matching The results of the empirical study in [13] suggest that improving the
computation of the SCCs is more beneficial than improving the incremental computation of MM.
To verify such claim, we analysed the solving process of some instances of three problems:
Travelling Salesman Problem, N-Queens and Langford’s Problem (a description of these problems,
the instances and the experimental setup are given in Section 4). We considered instances of
increasing size and set 1 hour timeout. The results are reported in Table 1 and confirm that most
of the computation time is spent in computing the SCCs. As a consequence of this observation, in
our approach, we decided to keep the computation of MM on the CPU and exploit the GPU to speed
up the computation of the SCCs.

For the sake of completeness, we report the main approaches for computing the maximum
matching on GPU: Breadth-First Search (BFS) [5], auction [44] and push-relabel [47] algorithms.

Breadth-First Search Such approaches are based on the Hopcroft—Karp algorithm [17] and make
use of a GPU-accelerated parallel BFS to find the augmenting paths.

Auction algorithm It works as an auction where agents compete for object by raising their prices. It
alternates bidding and assignment phases until all agents have been assigned an object. The
bidding and assignment phases are offloaded on the GPU, where bids and assignments are
computed in parallel.

Push-relabel algorithm It solves the maximum matching reducing it to a maximum flow problem.
It alternates push operations where flow is pushed through an edge, and relabel operation to
mark the nodes with an excess of ingoing flow. Such alternation is repeated until no nodes,
except 7, have an excess of ingoing flow. The push and relabel phases are offloaded to the GPU
where each node is processed in parallel.

We also explored the use of a GPU-accelerated push-relabel algorithm to speedup the computation
of MM but it does not scale [18] and it is slower than the CPU incremental approach [13].

Strongly Connected Components. The majority of the approaches to calculate the SCCs on GPUs
[1, 23] exploits, as a fundamental step, a parallel BFS to compute forward/backward reachability
[11]. Moreover, these approaches mainly focuses on the case of huge sparse graphs with millions of
nodes. This scenario does not fit well in our context, where we are faced with these specific aspects:

1. a major constraint leads to a dense graph of hundreds/thousands of nodes
2. we aim for low latency and GPU implementations of BFS notoriously suffers from load
imbalance [42].
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Because of (a), we decided to compute SCCs using forward reachability as follows. Let 4 be the
adjacency (binary) matrix of the graph, namely 4(i,j) = 1 iff there is an edge between node i and
node j. Then:

1. Compute the forward reachability matrix F' from A4.

2. Transpose F to obtain the backward reachability matrix B.

3. Create a matrix C such that C(i,j) = F(i,j) - B(i,j). That is, C(i,j) = 1 if and only if there is a
cycle containing node i and node .

4. Set an identifier of each SCC as the minimum node 7 in that SCC (i.e. the SCC of the node i is
identified by the minimum j such that C(i,;) = 1).

To fulfill the requirement (b), about optimal latency and load balance, we considered possible
alternatives to BFS. In particular, we considered the following algorithms exploitable to compute the
reachability matrix of a graph G(V, E):

Matrix multiplication This approach starts with a Boolean matrix My = I + A where [ is the
identity matrix and 4 is the adjacency matrix of the graph. Then it performs the multiplication
My, = MM; fori = 1,...,[log,(|V])]. The matrix M; represents the nodes reachable
in 2/ steps, hence, to calculate the reachability matrix are necessary [log,(|V])] matrix
multiplications,’ for a total computational complexity of O(|V|>8Tlog, (|V'])1) [10].

Warshall algorithm This algorithm is the core of the best known Floyd—Warshall algorithm that
computes the shortest path between all the pairs of nodes. It starts from a Boolean matrix
M = I + A where [ is the identity matrix and 4 is the adjacency matrix of the graph. Then
it updates M for | V| times. The k-th update modifies each element of the current Boolean matrix
by putting M (i,j) = M(i,j) vV (M (i, k) A M(k,j)) (for each 1 < i,j < |V]). This procedure has
total computational complexity O(| V13) [46].

ALGORITHM 1 Naive matrix multiplication algorithm.

Data: A, B squared matrices of size n X n
Result: C = AB

for i =1 to n do
for j=1tondo
C(Z7J) =0
for k=1 to n do

IThe elements of the matrices are considered Boolean values, and +, - are replaced with Vv, A.
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ALGORITHM 2 Warshall algorithm.

Data: I, A identity matrix and adjacency matrix of size n X n
Result: M reachability matrix

M=I+A
for k=1 ton do
for i =1 ton do
for j =1 tondo
L | M(i,5) = M(i,j5) vV (M(i, k) N M(k, 7))

The Warshall algorithm and the matrix multiplication have similar structures (see Algorithms 1
and 2), but since matrix multiplication is a fundamental operation in many different fields it is
more studied and optimized. For example, the loops in the matrix multiplication algorithm are often
rearranged to obtain better performances by processing the matrices according to their memory
layout (i.e. row-major or column-major).

To determine which approach is the best choice in our context, we compared our GPU-accelerated
Warshall algorithm (see Section 3.2) with state-of-the-art GPU-accelerated implementations of the
binary matrix multiplication [19, 22], and with cuBLAS [40], the GPU-accelerated dense linear
algebra library provided by NVIDIA.

The plot in Figure 3 shows the time spent to perform a single matrix multiplication and to
perform the Warshall algorithm on random matrices of increasing size. It can be noted that one
implementation of binary matrix multiplication complete faster than the Warshall implementation.
However, we have to consider that in order to compute SCCs, the matrix multiplication have to be
repeated up to [log,(|V])] times (possibly, less if a fixpoint is reached). This makes the Warshall
algorithm more convenient and, consequently, we opted for it.

3.2 Implementation Details

Let us describe the main design choices we made concerning the data representation and the parallel
Warshall algorithm.

Data representation. We choose to represent the residual graph’s adjacency matrix as a bit matrix
because it enables the use of bitwise operations and it can be initialized by dumping the domains’
internal representation. Moreover, preliminary tests showed that transfer the bit matrix to the GPU
is more efficient than transfer the domains, the match, and generate the matrix on the GPU. This is
because, in our case, most of the transmission cost regards the initialization phase than the actual
data transfer. The SCCs are returned to the CPU as an array of integers where the i-th element is the
identifier of the SCC containing the i-th node.

Warshall Algorithm. The majority of the GPU implementations of the Warshall algorithm that use
an adjacency matrix representation [20, 25] is based on a tiled version of the algorithm [45]. Such
an algorithm was developed to maximize CPU’s cache utilization, and it is particularly efficient
in exploiting GPU’s shared memory. As the Warshall algorithm, its tiled version starts from an
adjacency matrix of size #n x n and iteratively updates it to obtain the reachability matrix. First, it
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FIGURE 3. Comparison between GPU-accelerated matrix multiplication and GPU-accelerated
Warshall algorithm.

splits the n x » matrix in ¢ X ¢ tiles,? each one identifying a submatrix T, for 1 < r,c < % Then
it updates the entire matrix 7 times. An update (step, in the following) is performed in three phases,
performed in sequence, each one updating a different set of tiles and accessing the tiles updated by
previous phases/steps.

Let us describe the three phases of each step (see also Figure 4). At step s € [1, 7], the phases

work as follow:

Phase 1: This phase updates T, the s-th tile of the main diagonal (Figure 4a). Each element T (i, j)
(for 1 <i,j <t) of Ty is updated as follows:
Tss(i,)) = Tss (0, )) V (Tss (8, k) A Tys(k,j)) forall k € {1,..., ¢}
Notice that this phase only depends on the values of elements of 7.
Phase 2: This phase updates the tiles of the s-th row and s-th column, excluding 7, (Figure 4b).
More specifically, a tile in the s-th row and c-th column (for ¢ # s) is updated by putting:
Toe(0,)) = Toe(,)) V (Tss (i, k) A Tye(k, ), for 1 < i, j,k <t
Similarly, a tile of the s-th column and r-th row (for r # s) is updated as follows:
Tis(,)) = Trs (@, )) vV (T (i, k) A Ts(k, ), for 1 < i,j,k <t.
Notice that this phase only reads 7y (the tile updated in the previous phase) and the tile
being updated.
Phase 3: This phase modifies all the remaining tiles (Figure 4¢). A tile T} (for c,r # s) is updated
in this manner:
Tr(,‘(iaj) - T}’C(ivj) \% (TVC(ia k) A TVS(kaj))ﬂ for 1 5 i;j’k S t
As before, this phase uses the outcome of previous phases to complete the step.

2Ifnisnota multiple of # it is increased to t[%'l, and the matrix is padded with Os.
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FIGURE 4. Illustration of the three phases of the 4-th step (s = 4 in Section 3.2) of the tiled Warshall
algorithm on a matrix divided in 5 x 5 tiles. The tiles updated in each phase are highlighted in grey,
while the tiles read (and already processed in previous phases) are colored in blue. Updates direction
are denoted by arrows.

Note that the updates performed by phase 2 are independent from each other. Hence, all tiles of
the s-th row and of the s-th column can be updated in parallel. Similarly, all tiles updated in phase
3 can be computed in parallel. These independent updates map well into the GPU computational
model: tiles can be processed in parallel by different CUDA blocks. The parallelization of phase 2
and phase 3 are illustrated in Figure 5a and Figure 5b, respectively, where the mapping of tiles to
CUDA blocks is shown.

Moreover, the update of each ¢ x  tile can be parallelized by using t CUDA threads within a block:
each of these threads is responsible for computing the elements of one row of the tile.

Considering the specific GPU we used and version of CUDA we employed, the most convenient
value for ¢ turned out to be 128. With such a choice for 7, the GPU is allowed to read each row using
a single memory access, as one uint4 (32 - 4 bits) and manipulating it by executing two 64-bit
operations.

4 Experiments and Analysis

We compared our GPU-accelerated A/lDifferent propagator (i.e. MiniCPP-GPU) with the (CPU) one
present in MiniCPP. It is expected that a GPU implementation is advantageous on large instances,
as the setup overhead would otherwise overshadow the benefits of the parallel execution. We chose
three different benchmarks based on the AllDifferent constraint:

Travelling Salesman Problem Given a list of # cities and the distances between them, this problem
asks to find the shortest possible route that visits each city exactly once and returns to the origin
city. The Travelling Salesman Problem is suitable for our purposes because it can be modeled
using a Circuit constraint, which internally makes use of A//Different. Moreover, there is an
established set of large instances available [30].

N-Queens Given a nxn chessboard, this problem asks to place #» non-attacking queens on the board.
Such problem can be easily modeled using with three AllDifferent constraints and is an
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FIGURE 5. Parallelization of phase 2 (top) and phase 3 (bottom) of the tiled Warshall algorithm on
GPU. The arrows show the mapping between matrix tiles (left) and CUDA blocks (right). The blocks
responsible for tiles already processed (in blue) do not perform operations.

established test [13, 15, 24, 48] often used in benchmarks. Moreover, it is very easy to generate
large instances by simply increasing the value of 7.

Langford’s Problem Given & copies of digits 1,...,m this problem consist to arrange them so
that any two consecutive copies of digit d are separated by d other digits. We choose this popular
benchmark [13, 15, 48] in our experimentation because its model contains an AllDifferent
constraint involving k-m variables, hence, one can obtain arbitrarily large instances by increasing
k and m.

To give an effective and concise presentation, we defined two, partially overlapping, sets of (sizes
of) instances:

e big-size: instances with 100, 200, 400, 600, 800, 1000 variables in the scope of the Al/lDifferent
constraint(s);

e huge-size: instances with 1000, 2000, 4000, 6000, 8000, 10000 variables in the scope of the
AllDifferent constraint(s).
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FIGURE 6. Speedup for the Travelling Salesman Problem.
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FIGURE 7. Speedup for the N-Queens.

Instances of the N-Queens and the Langford’s problems where generated for each size of these
sets by selecting values for the parameters n and k,m. For the Travelling Salesman Problem, we
selected from [30] the instances with the size closest to the required one. Note that, we did not find
in [30] any instance of size 10000. The models, instances and benchmark scripts are available [35].

To perform the tests in a reasonable amount of time, we limited the search process to 1 hour and we
focus on the amount of work effectively done by each algorithm/implementation. The experiments
are executed on a system equipped with an Intel Core 17-10700K, 32GB of RAM and a GeForce
RTX 3080 running Ubuntu 22.04 and CUDA 11.8.

The results are illustrated in Figures 6, 7 and 8. The bars represent how faster MiniCPP-GPU
explores the search tree compared to MiniCPP. In detail, the speedup is defined as the quantity

Speed MiniCPP-GPU
Speed MiniCPP

where the speed is the ratio between the number of explored nodes and the search time.

Figures 6, 7 and 8 show how the speedup varies with respect to the size if the instance (namely, the
number of variables in the AllDifferent constraint). In Figures 7 and 8, the x-axes indicate the size of
the instance (cf., the two classes of sizes described earlier, namely, big-size and huge-size instances).

20z 1SNBNY 6z U0 159nB AQ 68606 L/7E L L/8/EE/RI01E/W00B0|/W00" dNo"olWapeE/:Sd)Y WOy papeojumod



1748  Constraint propagation on GPU: AllDifferent

81 —— 1x speedup
74
6

2_300 2_400 2_500 2_1000 2_2000 2_3000 2_4000 2_5000
Instance size

Speedup
w ) w
|

N

-

©

FIGURE 8. Speedup for the Langford’s Problem.

MiniCPP (Tarjan)
—— MiniCPP-GPU (Warshall)

SCCs computation time

Instance size

FIGURE 9. Qualitative representation of the computational time of MiniCPP (O(x)) and MiniCPP-
GPU (0(n?)).

For the Travelling Salesman Problem (Figure 6), the x-axis reports the name of the instance, as
retrieved from [30], which includes the number of variables of the constraint (e.g. instance £13793
involves 3793 variables). The y-axes report the speedup as previously described.

It can be seen that in all three sets of experiments the speedup increases as the instance size
increases, up to a maximum (8x in these experiments) and then decreases. This can be explained
by considering the fact that we are using the GPU to accelerate an algorithm that has O(n®) time
complexity, while Tarjan algorithm used in MiniCPP exposes linear complexity. Figure 9 depicts
this situation. The shape of the curve depends on the hardware computational power and the
problem/instance characteristics. However, the picture suggests that it is not convenient to offload
the computation of the SCCs when there are too few variables (in our experiments this happens
for instances having less than 300400 variables). On the other hand, there is a point where the
cubic complexity of the algorithm is not compensated by the speed of the parallel hardware. In
our experiments the point of diminishing returns occurs around 6000—8000 variables. Note that this
range, from 300 to 8000 variables, identifies a relevant class of problems. For this class the use of
GPUs is significantly advantageous.
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FIGURE 10. Evolution of SCCs’ calculation time while the search is moving down in the search tree.

A less trivial circumstance where the GPU offload is inconvenient is when the search reaches
the lower part of the search tree. At this stage, several edges of the original bipartite graph do
not exist anymore because the relative variables have been fixed during the previous part of the
computation. Having many variables already assigned allows MiniCPP to quickly calculate the
SCCs by traversing the remaining few edges. On the opposite, the MiniCPP-GPU algorithm has
to work on the entire (sparse) adjacency matrix. To emphasize the phenomenon, we selected
rat575, d2103, £13795 among the instances of the Travelling Salesman Problem and timed
the SCCs calculation on both MiniCPP and MiniCPP-GPU. The results are illustrated in Figure 10.
Note the logarithmic scale and the fact that because the graphs are bipartite their density %
cannot be larger than 0.25. Considering the progress of the computation, each of the three plots
has to be read from right to left, since the density of the graphs decreases during the search. As
expected, the CPU become faster as the graphs become less dense, while the GPU exhibits constant
calculation time.

5 Conclusion and Future Works

Motivated by the benefits that GPUs offer in terms of computational power, we designed and
implemented a GPU-accelerated propagator for the AllDifferent constraint. We described the process
of developing such a propagator, which challenges we encountered, and the motivations behind the
main implementation choices. The propagator has been integrated into an existing solver. We tested
our implementation on large instances of different benchmarks and obtained speedups up to 8 times
in terms of number of nodes explored in the unit of time. Unlike other parallel approaches that run
on a cluster of PCs or are tailored to a specific application, our method is easy accessible thanks
to the MiniZinc compatibility and the common presence of a GPU in modern PCs. Despite the
performances of our approach can be improved in the lower part of the search tree, the empirical
results show that GPGPU can be successfully applied in CP.

The analysis suggests that the application of GPUs to accelerate constraint propagation is limited
by two factors: the amount of useful parallelizable work and the CPU-GPU communication overhead.
As future work, we plan to investigate these limitations. The first limitation can be mitigated by
parallelizing algorithms with strong filtering, which usually have high computational complexity.
By utilizing GPUs, we aim to achieve fast computation and robust filtering, in contrast with the
current trend of sacrificing filtering strength for low computational complexity. The second limiting
factor can be mitigated by offloading multiple constraints simultaneously to the GPU. The aim is
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to improve overall efficiency by overlapping data communication and computation, which would be
particularly beneficial for small and medium-sized problems where the GPU hardware is not fully
utilized.
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