
Exploring Page-based RDMA for Irregular GPUWorkloads
A case study on NVMe-backed GNN execution

Benjamin Wagley∗
bwagley@mines.edu

Colorado School of Mines
Golden, Colorado, USA

Pak Markthub
pak_markthub@hotmail.com

NVIDIA
Japan

James Crea
Bo Wu

Mehmet Belviranli
jcrea@mines.edu
bwu@mines.edu

belviranli@mines.edu
Colorado School of Mines
Golden, Colorado, USA

ABSTRACT
Paged memory systems for GPUs like NVIDIA’s Unified Virtual
Memory, offer a simple method for programmers to create out-of-
core programs on GPUs. In the case of storage backed approaches,
these systems can even handle larger than host memory systems
as NVMe is used to back GPU memory through RDMA. However,
paged memory systems can struggle with irregular access patterns.
In this work, we analyze the limitations of paged, RDMA-backed
GPU memory for out-of-core, irregular workloads, through a case
study of GNN training. We highlight the key limitations of these
systems that must be overcome before the true potential of RDMA
backed GPU memory can be realized in a paged memory architec-
ture.
ACM Reference Format:
Benjamin Wagley, Pak Markthub, James Crea, Bo Wu, and Mehmet Belvi-
ranli. 2024. Exploring Page-based RDMA for Irregular GPU Workloads: A
case study on NVMe-backed GNN execution. In 16th Workshop on Gen-
eral Purpose Processing Using GPU (GPGPU ’24), March 02, 2024, Edinburgh,
United Kingdom. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3649411.3649413

1 INTRODUCTION
NVIDIA’s Unified Virtual Memory (UVM) encompasses memory
across multiple accelerator cards, as well as host system memory,
allowing for a GPU to address a memory space larger than physical
vram. Recent projects like Dragon [9] and Dragon-direct [8] extend
this memory system to further include NVMe storage, creating
a memory framework that leverages storage across the memory
hierarchy. This creates an attractive paradigm for breaking mem-
ory constraints and increasing scalability in GPU accelerated tasks,
which are often bound by memory capacity when running on GPU.
However, it is important to consider the effectiveness of this par-
adigm on irregular memory accesses. To examine this scenario
we will consider the task of graph neural network (GNN) training,
∗Corresponding Author

This work is licensed under a Creative Commons Attribution International
4.0 License.

GPGPU ’24, March 02, 2024, Edinburgh, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1817-5/24/03
https://doi.org/10.1145/3649411.3649413

which often requires out-of-core training techniques that can be
afforded by a unified memory system, and provides an irregular
access pattern.

GPUs limited memory often restricts their effectiveness for gen-
eral tasks. The growing requirement for large GPU memory is
reflected by manufacturers like NVIDIA releasing cards with up to
80 GB of VRAM, tailored to data-center use [2]. Breaking memory
capacity limits is important as data can still out-pace the available
memory from top of the line cards, and often limits the usage of
smaller, more efficient cards for general purpose tasks [7]. We ex-
amine page-based systems for breaking memory limitations due
to their attractiveness to end-users, reducing the workload of a
programmer optimizing out-of-core solutions.

In this work our primary contribution is to examine the limita-
tions of page-backed RDMA memory systems for irregular GPU
workloads, with a case study on GNN training applications. We
highlight why these systems are attractive and valuable to program-
mers, and what limitations exist in current GPU page systems that
restrict their effectiveness.

2 BACKGROUND AND MOTIVATION
2.1 Unified Virtual Memory
NVIDIA’s UVM provides a unified memory space for their GPUs
that leverages GPU page systems to extend GPU memory. At its
core, UVM divides its memory space into 2 MiB virtual address
blocks (va-blocks) that function as the primary memory system
logical division. Each va-block can be further divided into memory
pages equal to the host system page size. When a GPU thread
accesses data that is not already resident on the faulting GPU,
execution of the thread must stop and the required memory must
be fetched. To accomplish this, the GPUmemorymanager generates
a page fault, appends it to a fault buffer on the host system, and
sends an interrupt to signal to the driver that a fault needs to be
serviced. To handle the fault, the driver locates where a valid copy
of the faulting page exists and copies it to the target GPU, then
replays the fault allowing the thread to proceed.

Through this page-based system, UVM allows a programmer to
break memory limits easily, while still utilizing a single address
space. In practice, this means a programmer can build an out-of-core
application by simply changing the allocation of their GPU data to
UVM’s managed memory. However, much of memory pipeline is
out of the control of the programmer and can incur excessive costs

7

https://doi.org/10.1145/3649411.3649413
https://doi.org/10.1145/3649411.3649413
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3649411.3649413
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649411.3649413&domain=pdf&date_stamp=2024-04-28


GPGPU ’24, March 02, 2024, Edinburgh, United Kingdom Wagley et al.

depending on workload. While the programmer can mitigate some
of this overhead through careful consideration of their memory
accesses, limitations incurred through the system cannot be easily
rectified [1].

2.2 Expanding GPU memory with RDMA
Dragon-direct extends the UVM paradigm by allowing for page-
faults to be serviced by RDMA transfers fromNVMe directly to GPU
memory. Dragon-direct is a built-in extension of the nvidia-uvm
Linux kernel module, allowing for a minimal impact on user-space
programming, much like UVM [8]. To a programmer, Dragon-direct
functions much like Linux’s mmap. To create a NVMe backed GPU
allocation, the user calls dragon_map from the interfacing library,
specifying the allocation size, and location of a backing file on an
NVMe device. To a NVIDIA CUDA kernel, this allocation appears to
be a standard UVM (managed memory) allocation. However, when
a page fault is issued, Dragon-direct intercepts it and initiates a
RDMA request for data from the NVMe backed allocation to be sent
directly to the GPU. This system bypasses host memory entirely, in
theory allowing for faster NVMe -> GPU transfers, and opens up a
new paradigm for data management, similar to memory-mapped
files in C++. Our work leverages Dragon-direct to evaluate RDMA
performance through the UVM page system.

3 CASE STUDY: GRAPH NEURAL NETWORKS
Graph Neural Networks (GNNs) have arisen as the predominate
method for analyzing graph data with deep learning. GNNs learn
aggregators that collect feature data from the neighborhood around
the target vertex or edge, and can be trained with supervised and
unsupervised methods. In general, GNNs focus on vertex-level,
edge-level, or graph-level tasks [12]. GNNs can be found in rec-
ommendation systems [15], molecular fingerprinting [3], drug dis-
covery [4], citation network analysis and many other domains [6].
This case study focuses on the common application of vertex-level
tasks, in particular vertex-level prediction.

GNNs are an attractive case study for out-of-core memory sys-
tems due to their high memory pressure and complex access pat-
terns. They represent a problem class that is highly dependent
on memory system performance, often utilizing small computa-
tional kernels resulting in memory-transfer dominated latency. A
common approach to GNN training leverages mini-batches, which
implicitly transfer well to the out-of-core scenario. This is because
in mini-batch training, only the sampled portion of the graph, as
well as the model parameters and sampled labels, are required to
fit into GPU memory. Commonly, systems store the whole graph
in host memory or in non-volatile storage. Then the system can
sample the graph on the CPU before serving batches to the GPU
for training, or in the case of pre-sampled graphs, serve batches
directly for storage to the GPU. Mini-batch training for GNNs was
popularized with GraphSAGE [5], which remains a benchmark
model for basic GNN tasks. Distributed training methods operate
similarly, leveraging multiple GPUs or compute nodes to work on
separate mini-batches in parallel [13].

3.1 GraphSAGE Training Pipeline
In this paper, we examine the GraphSAGE training pipeline as a typ-
ical vertex-classification GNN training pipeline. When training in
GraphSAGE the target training graph is divided into mini-batches
of random 𝑘-hop samples. Each of these samples represents a ran-
dom selection of training vertices and the 𝑘-hop neighborhoods
around the sampled vertices. Then, during the forward pass for
each mini-batch, 𝑘 aggregators are used to aggregate neighboring
node data down to the target nodes, with the 𝑖th aggregator func-
tioning on the 𝑖th hop in the neighborhoods. Finally, prediction can
be performed on the target training nodes[5].

By focusing on training neighborhood-based aggregators, the
GraphSAGE approach utilizes small aggregators and opens the door
to mini-batch training. This also leaves the memory system to play
a critical role in training latency, as transferring batches to the GPU
for training can dominate the small training forward-pass. Since
generating batches can be seen as a graph partitioning problem,
many GNN training works focus on improving batch sampling to
minimize feature reuse across batches (partition uniqueness). This
allows mini-batches to be more efficient in regard to knowledge
learned per batch, and minimizes redundant transfers, but neces-
sitates complex sampling methods and memory systems [16] [10]
[11] [14].

4 EXPERIMENTS
For our case study we examine a simple training architecture that
leverages Dragon-direct backed feature and label tensors. Since
features dominate memory complexity of GNN training, we allo-
cate topology on host-memory backed UVA tensors. Detail of the
memory architecture of this experiment can be seen in Figure1.
This work focuses on graphs from the Open Graph Benchmark
(OGB) vertex prediction datasets ogbn-arxiv, ogbn-products, and
ogbn-papers100M. All three graphs are for multi-class GNN classifi-
cation, and represent different scales of similar problems. ogbn-arxiv
and ogbn-papers100M are both paper citation networks of largely
different scales. ogbn-products is anAmazon product co-purchasing
network [6].

4.1 Theoretical Improvements
An interesting side-effect of this naive implementation is that inter-
batch feature data reuse does not necessitate a memory transfer.
This is because, by leveraging a paged-memory system like Dragon-
direct, pages can remain resident on the training GPU between
batches (if GPU memory allows). We utilize a pre-sampled training
pipeline, allowing us to focus on memory transfers during training.
Note that pre-sampled training pipelines are sometimes leveraged
in production training for efficiency and data stability [16].

Table 1: Mean Probability for Feature Data Reuse for OGB
Node Prediction Datasets, with Expected Subgraph Size, 2-
hop samples.
Graph 5% 10% 20%
arxiv 0.127 10.5 MiB 0.242 20.0 MiB 0.440 36.4 MiB
products 0.141 132 MiB 0.268 250 MiB 0.482 450 MiB
papers100M 0.106 5.61 GiB 0.203 10.8 GiB 0.376 19.9 GiB

8



Exploring Page-based RDMA for Irregular GPU Workloads GPGPU ’24, March 02, 2024, Edinburgh, United Kingdom

NVMe

CPU

GPU

DRAGON Modified UVM Driver

Add PF 
to 

queue

Group PFs 
by va-block, 

dispatch 
faults to 
handler

Issue 
RDMA 
request

CPU Memory

Graph Topology

GPU Memory
DGL Training Variables

DGL Graph Struct

Topology

Labels

Features

Feature Store

Label Store

Initiate 
RDMA

Training Loop:
(for each mini-batch)

Sample or read 
batch topology

Aggregate Batch 
Features and Labels

GNN forward & 
backward passFeatures dynamically 

fill GPU memory. 
Eviction controlled by 
GPU mem. manager.

Figure 1: Experimental Setup with UVA-backed topology, and Dragon-direct backed features and labels.

By using a page-backed unified memory system we can expect
training latency to decrease due to the feature data reuse between
batches. Consider the probability of a feature being sampled in
a given mini-batch. Since batch samples are independent, this is
equivalent to the probability of a feature being included in two
consecutive batches. We can model this probability numerically to
understand the potential overhead in memory copies that a paged
memory system eliminates. Consider 𝑃0 to be the probability vector
that any given vertex is selected for sampling. This is the ratio of
batch size to graph size. Given an adjacency matrix 𝐴 for the given
graph, we can compute the probability that a feature is sampled
in the 𝑘th hop of the neighborhood around a sampled node with
𝑃𝑘 = 𝑃0𝐴𝑘 . This allows us to derive a numerical model for feature
reuse probability. For example, the 2-hop neighborhood sample can
be modeled with,

P(𝑣 ∈ 𝑆) = 𝑃0𝑣 + 𝑃1𝑣 + 𝑃2𝑣 − (𝑃0𝑣𝑃1𝑣 + 𝑃0𝑣𝑃2𝑣 + 𝑃1𝑣𝑃2𝑣 )+
(𝑃0𝑣𝑃1𝑣𝑃2𝑣 )

We outline feature-data reuse in Table 1. We can see that if only
5% of a graph is selected to perform a 2−hop sample around for a
mini-batch there is greater than a 10% probability that feature data
will be reused between two batches for all graphs we evaluated.
This increases in relation to the ratio of batch sample size to graph
size.

4.2 Implementation Details
To better understand the impact of the memory system on GNN
training we evaluate two systems. First, we implement a baseline
where each batch is copied to the GPU from disk before training.We

copy from disk to GPU as this is the same path the data must take
when using a Dragon-direct backed buffer. Second, we implement
our test using Dragon-direct backed features, which should allow
some feature data to remain resident on GPU between batches. For
this approach, graph topology is sampled ahead of time and stored
on disk. During each batch topology is read and feature data is
coalesced. See Algorithms 1 and 2 for pseudo-code.

Table 2: Test Configurations
Test Fanouts Topology Feature/Label
Baseline Pre-Sampled [16, 16] cudaMalloc/UVA cudaMalloc/UVA
RDMA Pre-Sampled [16, 16] cudaMalloc/UVA Dragon-direct

4.3 Target System
All experiments were run on a system with 2x AMD Epyc 7402
processors, 512GiB of host memory, 2x NVIDIA Titan RTX, and
an ADATA XPG SX8200 NVMe PCIE 3.0 SSD. Due to the fact that
Dragon-direct is built into a modified NVIDIA UVM driver this
server is running a customized NVIDIA driver 455.23.05 with a
CUDA 11.1 stack. The OS page-cache is cleared between tests to
eliminate any variance it may cause.

4.4 Results
When considering pre-sampled training, we can see that the two
smaller graphs that we test show promising speedup as reused
feature data can remain resident on GPU. Note that latency when
training products plateaus, this is likely due to the fact that the
fanouts (16 at each layer) are substantially smaller than the aver-
age node degree of ogbn-products (50.5). This likely limits the

9



GPGPU ’24, March 02, 2024, Edinburgh, United Kingdom Wagley et al.

Table 3: Latency of Pre-Sampled Training
Baseline RDMA

Graph (Sampled Center Vertices) Accuracy Avg Time Per Epoch Accuracy Avg Time Per Epoch Speedup
arxiv (8467) 0.661 7.167 0.663 3.669 1.953
arxiv (16934) 0.674 8.207 0.675 4.607 1.781
arxiv (33869) 0.685 10.282 0.684 7.098 1.449
products (122452) 0.756 108.673 0.755 72.445 1.500
products (244903) 0.752 140.197 0.753 99.792 1.405
products (489806) 0.754 139.64 0.753 100.141 1.394
papers100M (55530)𝑎 0.71 130.21 0.76 60783.90 0.002

𝑎papers100M results collected after a single epoch due to execution time

input :Set of training subgraphs S, Untrained model M for target
graph

output :Trained GraphSAGE model M
for 𝑖 ← 1 to num_epochs do

for s ∈ S do
read s from disk
inputs, labels← feats(s), labels(s)
predictions← M(s, inputs)
Compute Loss, Backpropagate,

end
end

Algorithm 1: Baseline Pre-Sampled Training

input :Set of training subgraphs S, Dragon-direct mapped
features, labels feats, labels, Untrained model M for
target graph

output :Trained GraphSAGE model M
for 𝑖 ← 1 to num_epochs do

for s ∈ S do
read s from disk
o_idx← original vertex ids sampled from target graph
inputs, labels← feats[o_idx], labels[o_idx]
compact inputs, labels to dense format.
predictions← M(s, inputs)
Compute Loss, Backpropagate,

end
end

Algorithm 2: RDMA Pre-Sampled Training

available speedup from feature reuse. Furthermore, the arxiv and
products datasets can reside entirely on GPU, meaning that all
feature pages should fit in GPU memory, and by the end of the test
the entire graph will be resident, eliminating all transfers between
batches. We can see however, that even we do not see such speedup
for our large out-of-core test with papers100M. Full results can be
seen in Table 3.

4.5 Memory System Performance
To understand the limitations of a paged RDMA system with out-of-
core workloads, we further measured memory system performance.
These experiments outline the limitation of CPU managed, page
based systems, and highlight their particular failings when working
with irregular access patterns.

First, we examine the effect of page size on memory pressure.
UVM (and by extension, Dragon-direct), utilize 2 MiB va-blocks as
a course-grained boundary for page operations. This is controlled

by a defined parameter in the nvidia-uvm driver. We evaluated
memory pressure generated by various va-block sizes from 4 KiB
to 2 MiB, when accessing 8192 floating-point features of dimension
128. These features were spaced out such that each feature lie 2 MiB
apart in memory. The physical size of only the features accessed is
therefore 4 MiB. We can see that highly excessive memory pressure
is created, up to ∼4,342x. Full results are in Table 4. Note that
this extra memory pressure does include Pytorch management
structures, however as these structures are not allocated by UVM
or Dragon-direct, their size does not change as we change the UVM
page size.

While excessive memory pressure leading to thrashing does
increase the latency of memory accesses (and therefore the training
pipeline), long page fault handling times also lead to this latency.
To examine this, we can turn to the throughput of each memory
system, which will showcase how well each system utilizes the
bandwidth of each tier in the GPU memory hierarchy. For each
test, we are measuring the throughput of reading data from NVMe
to GPU memory. For all tests except gdsio and cudaMalloc, we
utilize a test written for Dragon-direct that optimizes accesses per-
warp for each UVM page for the page-fault initiated transfers. We
compare these results to gdsio, the Nvida utility formeasuring GPU
Direct RDMA performance with NVMe, which is the underlying
technology that Dragon-direct builds on. The gdsio tests represent
a best-case scenario of sequential RDMA transfers, and showcase
the theoretical upper limit of performance for a NVMe -> GPU
RDMA system. Note that gdsio requires a newer NVIDIA driver to
function (520.61.05). The Dragon and Dragon-direct tests are run
over 256 MiB test files to mitigate the performance impact of the
256 MiB BAR1 on the testing GPUs. All other tests are over a 1 GiB
test file. The theoretical bandwidth of the SSD in the system is 3500
MB/s per the manufacturer specifications.

Table 4: UVM Memory Pressure
va_block Size (KiB) Memory Pressure (MiB)
2048 17368.37
1024 1392.19
512 1342.12
256 1316.06
128 1304.0
64 1298.0
32 910
16 910
8 910
4 910

10



Exploring Page-based RDMA for Irregular GPU Workloads GPGPU ’24, March 02, 2024, Edinburgh, United Kingdom

We observe in Table 5, Dragon and Dragon-direct do not utilize
the full bandwidth of the NVMe device, and comparing Dragon-
direct against gdsio, we can see that Dragon-direct does not equal
theoretical bandwidth for RDMA transfers on the system hardware,
implying that utilizing a paged system memory system has severe
limitations.

5 ANALYSIS
Our experiments show that out-of-core pipelines leveraging a uni-
fied memory system do not affect the accuracy of GNN training, and
could be used as a most basic extension to out-of-core training, at
the cost of efficiency. In the case of using Dragon-direct for NVMe
backed training, such as system could be effectively leveraged to
allow out-of-core training on graphs larger than GPU and host
memory, given the graph can fit within NVMe.

However, we see that the efficiency of training drops dramat-
ically when we approach out-of-core workloads. Primarily, this
inefficiency comes from the inability of the UVM page system to
keep up with such irregular workloads. First, the large page size
leveraged by UVM created excessive memory pressure on the GPU
when used with sparse accesses. Second, page-faults are generated
and handled inefficiently.

5.1 UVM Page Size
By default, UVM uses 2 MiB va-blocks for its core page size. This
provides a low-granularity logical address block for page operations,
and allows for effective prefetching within va-blocks for sequential
workloads. Each va-block is further divided into system pages,
meaning that within a va-block, not every system-level page may
be serviced. Consequentially, we observed on our test system that
even if only a single 4 KiB system page within a va-block has been
serviced by the driver, the GPU memory manager marks an entire
2 MiB section of memory as allocated, increasing memory pressure
by an extra 2044 KiB compared to the actual usage.

While this behavior has little impact when accessing a contigu-
ous region of memory, as excess memory pressure would only be
generated by edge regions, it is hazardous when accessing sparse
data. In the worst case, sparse data may entirely lie within inde-
pendent va-blocks, effectively creating 2 MiB of memory pressure
per item accessed. As a result of this abnormally high memory pres-
sure, the GPU memory manager may issue more page-faults than
needed, causing thrashing on the GPU, and critically impacting per-
formance. This effect can be somewhat mitigated by lowering the
UVM va-block size, allowing for better page handling for random,
sparse workloads. However, in the case of the papers100M dataset,
an individual feature has an in-memory size of 512B, so even using
4 KiB va-blocks results in 8x extra memory usage. Fundamentally,
to be effective for irregular access patterns on GPU, a page system
needs to leverage smaller page sizes, or a user-controlled page size.

Table 5: Memory System Throughput
Test Throughput (MiB/s)
fread + cudaMalloc 1804
fread + UVM 1665
Dragon 727
Dragon-direct 901
gdsio 2183

5.2 Memory System Throughput
We measured the throughput of the various memory system work-
flows copying data from NVMe to GPU memory, as it can indicate
where a system has limitations. Our evaluation shows that initiat-
ing data transfer by page-fault has inherent, measurable slowdown.
This can be seen in slowdown between the cudaMalloc and UVM
experiments and the gdsio and Dragon-direct results. Note that
UVM leverages intra va-block prefetching which cannot be easily
disabled, boosting its performance. As these tests were performed
over sequential buffers, a more optimal memory layout, they also
represent a best-case throughput measurement. We can infer that
the random performance is no better than the measured results.

We theorize that the CPU serves as a limitation for the number
of page faults that can be processed at any given time in the UVM
system. This is touched on within Allen and Ge’s analysis of UVM
[1], however we find that when leveraging Dragon-direct backed
tensors, and therefore giving up the intra va-block prefetching
that UVM utilizes, the effect is pronounced. Fundamentally, a GPU
kernel operating on a large, sparse dataset may generate a large
number of page faults at any given time. Consider NVIDIA’s H100,
which features 144 streaming multiprocessors (SMs) per GPU, with
each SM capable of running 64 warps concurrently [2]. If utilizing
an architecture that issues 1 page fault per warp, such a system
could theoretically generate 9216 page faults simultaneously. This
highlights the capability mismatch of a SIMD device generating
page faults across sparse, irregular access patterns, and the SISD
nature of a kernel thread handling page faults.

Given the latency of handling page-faults, and the systems lim-
ited ability to process page-faults on demand, it is important for
page-faults to be issued as optimally as possible. Unfortunately, this
can be a struggle with random, sparse accesses as we see during
feature aggregation during GNN training. When analyzing fault
handling utilizing NVIDIA’s nsys profiling utility, we noticed how
few page-faults are handled at any given time. When profiling the
page-faults of our throughput tests, which accesses pages in a warp-
optimal pattern, we observe the driver handling 2.64 page faults
per handler on average. This is despite the fact that the majority
of page faults over the test 256 MiB region should be issued at the
same time.

UVM performs slightly better, but also has a similar bottleneck,
achieving an average of 3.28 page faults per handler. This high-
lights that page-faults are not arriving at the driver efficiently. Note
that while these numbers were observed using nsys profiling, the
profiler should not impact that all page-faults should be issued at
the same time. This may be evidence of GPU memory-manager
inefficiency when issuing page-faults, which would require fur-
ther examination. Primarily, we can see that beyond the logical
many-few bottleneck of having a CPU handle page faults, these
page faults appear to not be issues optimally, compounding the
bottleneck effect.

These results show us that, beyond page size considerations, a
GPU page systemmust be able to handle page faults simultaneously,
as well as generating and sending those page faults to their handler
more efficiently. Our analysis shows that UVM’s page system is
not capable of this, and restricts its effectiveness with irregular
workloads. Furthermore, we show that even when utilizing RDMA

11



GPGPU ’24, March 02, 2024, Edinburgh, United Kingdom Wagley et al.

to simplify the disk - GPU memory hierarchy, the page system
remains the primary limitation.

6 CONCLUSION
In this work we have discussed the page-based system that UVM
provides to the GPGPU environment, and how this system can be
extended to encompass a memory hierarchy from NVMe disk to the
GPU memory. We have show how a paged memory system can be
attractive, even for irregular memory applications through our case
study of GNN training workloads. We then analyze a paged, NVMe
backed memory system and identify that its primary limitations
arise from the underlying paged architecture.

We believe that an effective paged memory system for GPUs
must encompass two primary traits – flexible, smaller page sizes,
and parallel handling of page faults. In irregular, sparse workloads
the detrimental effects of a large page size easily outweigh the
simplified page-table architecture it affords, which quickly limits
UVM’s page system and subsequently Dragon-direct’s ability to
issue RDMA requests. However, utilizing smaller page sizes does not
remedy the issue that a SIMD device like a GPU can generate a large
number of page faults simultaneously, overwhelming traditional
page-handling mechanisms operating in the kernel, such as in UVM
and Dragon-direct. To fully utilize the potential of a parallel fault
handling architecture, the GPU fault issuing system must also be
optimized for a large number of faulting accesses at once.

Paged memory architectures offer many advantages to users, and
can be powerful when leveraged effectively, however current GPU
paged architectures are severely limited, in particular for irregular
access patterns. By approaching GPU paging with a higher view of
parallelism than is reflected in current architectures would open
the doors for the advantages of paged memory the be realized in the
GPU environment, and when used with systems like Dragon-direct
would allow transparent access to terabyte-scale memory for GPU
workloads.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation (NSF) under Grants No. CCF-2124010 and CCF-1750760.
Any opinions, findings, or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the
views of NSF.

REFERENCES
[1] Tyler Allen and Rong Ge. 2021. In-Depth Analyses of Unified Virtual Memory

System for GPU Accelerated Computing. In SC21: International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–14. https:
//doi.org/10.1145/3458817.3480855

[2] Jack Choquette. 2023. NVIDIA Hopper H100 GPU: Scaling Performance. IEEE
Micro 43, 3 (2023), 9–17. https://doi.org/10.1109/MM.2023.3256796

[3] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
networks on graphs for learning molecular fingerprints. Advances in neural
information processing systems 28 (2015).

[4] Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep,
Gertrude Liu, Jeremy BRHayter, Richard Vickers, Charles Roberts, Jian Tang, et al.
2021. Utilizing graph machine learning within drug discovery and development.
Briefings in bioinformatics 22, 6 (2021), bbab159.

[5] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[6] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[7] Youjie Li, Amar Phanishayee, Derek Murray, Jakub Tarnawski, and Nam Sung
Kim. [n. d.]. Harmony: Overcoming the Hurdles of GPU Memory Capacity to
Train Massive DNN Models on Commodity Servers. ([n. d.]).

[8] Pak Markthub. 2019. Improving GPU-NVMe Data Transfer in Unified Virtual
Memory Space. Technical Report.

[9] Pak Markthub, Mehmet E Belviranli, Seyong Lee, Jeffrey S Vetter, and Satoshi
Matsuoka. 2018. DRAGON: breaking GPU memory capacity limits with direct
NVM access. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 414–426.

[10] Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun Xiong, Eiman
Ebrahimi, Deming Chen, and Wen-mei Hwu. 2021. Large graph convolutional
network training with gpu-oriented data communication architecture. arXiv
preprint arXiv:2103.03330 (2021).

[11] Jeongmin Brian Park, Vikram Sharma Mailthody, Zaid Qureshi, and Wen-mei
Hwu. 2023. Accelerating Sampling and Aggregation Operations in GNN Frame-
works with GPU Initiated Direct Storage Accesses. arXiv preprint arXiv:2306.16384
(2023).

[12] Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and Alexander B.
Wiltschko. 2021. A Gentle Introduction to Graph Neural Networks. Distill
(2021). https://doi.org/10.23915/distill.00033 https://distill.pub/2021/gnn-intro.

[13] Yingxia Shao, Hongzheng Li, Xizhi Gu, Hongbo Yin, Yawen Li, Xupeng Miao,
Wentao Zhang, Bin Cui, and Lei Chen. 2022. Distributed Graph Neural Network
Training: A Survey. arXiv preprint arXiv:2211.00216 (2022).

[14] Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkatara-
man. 2023. MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural
Networks. In Eighteenth European Conference on Computer Systems (EuroSys’ 23).

[15] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[16] Dalong Zhang, Xin Huang, Ziqi Liu, Zhiyang Hu, Xianzheng Song, Zhibang
Ge, Zhiqiang Zhang, Lin Wang, Jun Zhou, Yang Shuang, et al. 2020. Agl: a
scalable system for industrial-purpose graph machine learning. arXiv preprint
arXiv:2003.02454 (2020).

12

https://doi.org/10.1145/3458817.3480855
https://doi.org/10.1145/3458817.3480855
https://doi.org/10.1109/MM.2023.3256796
https://doi.org/10.23915/distill.00033

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Unified Virtual Memory
	2.2 Expanding GPU memory with RDMA

	3 Case Study: Graph Neural Networks
	3.1 GraphSAGE Training Pipeline

	4 Experiments
	4.1 Theoretical Improvements
	4.2 Implementation Details
	4.3 Target System
	4.4 Results
	4.5 Memory System Performance

	5 Analysis
	5.1 UVM Page Size
	5.2 Memory System Throughput

	6 Conclusion
	Acknowledgments
	References

