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ABSTRACT

Link prediction is a common task on graph-structured data that

has seen applications in a variety of domains. Classically, hand-

crafted heuristics were used for this task. Heuristic measures are

chosen such that they correlate well with the underlying factors re-

lated to link formation. In recent years, a new class of methods has

emerged that combines the advantages of message-passing neural

networks (MPNN) and heuristics methods. These methods perform

predictions by using the output of an MPNN in conjunction with a

“pairwise encoding” that captures the relationship between nodes in

the candidate link. They have been shown to achieve strong perfor-

mance on numerous datasets. However, current pairwise encodings

often contain a strong inductive bias, using the same underlying

factors to classify all links. This limits the ability of existing meth-

ods to learn how to properly classify a variety of di�erent links

that may form from di�erent factors. To address this limitation,

we propose a new method, LPFormer, which attempts to adap-

tively learn the pairwise encodings for each link. LPFormer models

the link factors via an attention module that learns the pairwise

encoding that exists between nodes by modeling multiple factors

integral to link prediction. Extensive experiments demonstrate that

LPFormer can achieve SOTA performance on numerous datasets

while maintaining e�ciency. The code is available at The code is

available at https://github.com/HarryShomer/LPFormer.

CCS CONCEPTS

• Computing methodologies → Machine learning.

KEYWORDS

link prediction, graph transformer

ACM Reference Format:

Harry Shomer, Yao Ma, Haitao Mao, Juanhui Li, Bo Wu, and Jiliang Tang.

2024. LPFormer: An Adaptive Graph Transformer for Link Prediction. In

Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD ’24), August 25–29, 2024, Barcelona, Spain. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3637528.3672025

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’24, August 25–29, 2024, Barcelona, Spain

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0490-1/24/08.
https://doi.org/10.1145/3637528.3672025

Figure 1: Example of multiple heuristic scores for the candi-

date links (source, 5), (source, 6), and (source, 7). Each heuris-

tic corresponds to a di�erent LP factor – local (CNs), global

(Katz), and feature proximity (Feat-Sim).

1 INTRODUCTION

Link prediction (LP) attempts to predict unseen edges in a graph.

It has been adopted in many applications including recommender

systems [21], social networks [14], and drug discovery [1]. Tradi-

tionally, hand-crafted heuristics were used to identify new links in

the graph [2, 38, 55]. Heuristics are often chosen based on factors

that typically correlate well with the formation of new links. For

example, a popular heuristic is common neighbors (CNs), which

assume that the links are more likely to exist between node pairs

with more shared neighbors. It has been found that these factors,

which we refer to as “LP Factors”, often stem from the local and

global structural information and feature proximity [32].We give an

example in Figure 1 that demonstrates di�erent heuristic scores for

multiple candidate links. Each heuristic score corresponds to one of

the LP factors: CNs for local information, Katz for global, and Feat-

Sim for feature proximity. We can observe that the pair (source, 5)

has the highest CN and Katz score of the candidate links, indicating

an abundance of local and global structural information between

the pair. On the other hand, the feature similarity for (source, 5) is

the lowest among the candidate links. This indicates that di�erent

LP factors and heuristics have distinct assumptions about why links

are formed.

More recently, message passing neural networks (MPNNs) [16],

which are able to learn e�ective node representations via message

passing, have been widely adopted for LP tasks. They predict the

existence of a link by combining the node representations of both

nodes in the link. However, such a node-centric view is unable

to incorporate the pairwise information between the nodes in the

link. Because of this, conventional MPNNs have been demonstrated
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to be poor link predictors due to their limited capability to learn

e�ective and expressive link representations [43, 52]. To address

this issue, recent e�orts [51, 56] have attempted to move beyond

the node-centric view of traditional MPNNs by equipping them

with pairwise information speci�c to the link being predicted (i.e.

the “target link”) [51, 56]. This is done by customizing the message

passing process to each target link. However, a concern with this

approach is that it can be prohibitively expensive [9], as message

passing needs to be run for each individual target link. This is as

opposed to traditional MPNNs which only run message passing

once for all target links.

To overcome these ine�ciencies, recent methods [9, 45, 50] have

instead explored ways to inject pairwise information into the model,

without individualizing the message passing to each target link.

This is done by decoupling the message passing and link-speci�c

pairwise information. By doing so, the message passing only needs

to be done once for all target links. To include the pairwise infor-

mation, these methods, which we refer to as “Decoupled Pairwise

MPNNs” (DP-MPNNs), instead learn a “pairwise encoding” to en-

code the pairwise relationship of the target link. The choice of

pairwise encoding is often based on heuristics that correspond to

common LP factors (e.g., common neighbors). DP-MPNNs have

gained attention as they can achieve promising performance while

beingmuchmore e�cient thanmethods that customize themessage

passing mechanism.

However, DP-MPNNs are often limited in the choice of pairwise

encoding, using a one-size-�ts-all solution for all target links. This

has two limitations. (1) The pairwise encoding may fail to consider

some integral LP factors. For example, NCNC [45] only considers

the 1-hop neighborhood when computing the pairwise encoding,

thereby ignoring the global structural information. This suggests

the need for a pairwise encoding that considers multiple types of LP

factors. (2) The pairwise encoding uses the same LP factors for

all target links. This assumes that all target links need the same

factors. However, it may not necessarily be true. Recently, Mao

et al. [32] have shown that di�erent LP factors are necessary to

classify di�erent target links. It is evident that even for the same

dataset, multiple LP factors are needed to properly predict all target

links. This further applies to di�erent datasets, where certain fac-

tors are more prominent than others. As such, it faces tremendous

challenges when considering multiple types of LP factors. While

one factor may e�ectively model some target links, it will fail for

other target links where those patterns aren’t present. It is therefore

desired to consider di�erent LP factors for di�erent target links.

These observations motivate us to ask – can we design an e�cient

method that can adaptively determine which LP factors to incorporate

for each individual target link? Essentially, it requires a pairwise

encoding that (a) models multiple LP factors, (b) can be tailored to

�t each individual target link, and (c) is e�cient to calculate. By

doing so, we can �exibly adapt the pairwise information based on

the existing needs of each target link. To achieve this, we propose

LPFormer – Link Prediction TransFormer. LPFormer is a type

of graph Transformer [35] designed speci�cally for link prediction.

Given a target link (ė, Ę), LPFormer models the pairwise encoding

via an attention module that learns how ė andĘ relate in the context

of various LP factors. This allows for a more customizable set of

pairwise encodings that are speci�c to each target link. Extensive

experiments validate that LPFormer can achieve SOTA on a variety

of benchmark datasets. We further demonstrate that LPFormer

is better at modeling several types of LP factors, highlighting its

adaptability, while also maintaining e�ciency on denser graphs.

2 BACKGROUND

2.1 Related Work

Link prediction (LP) aims to model how links are formed in a graph.

The process by which links are formed, i.e., link formation, is often

governed by a set of underlying factors [5, 30]. We refer to these as

“LP factors”. Two categories of methods are used for modeling these

factors – heuristics and MPNNs. We describe each class of methods.

We further include a discussion on existing graph transformers.

Heuristics for Link Prediction. Heuristics methods [38, 55]

attempt to explicitly model the LP factors via hand-crafted mea-

sures. Recently, Mao et al. [32] have shown that there are three

main factors that correlate with the existence of a link: (1) local

structural information, (2) global structural information, and (3) fea-

ture proximity. Local structural information only considers the

immediate neighborhood of the target link. Representative methods

include Common Neighbors (CN) [38], Adamic Adar (AA) [2], and

Resource Allocation (RA) [55]. They are predicated on the assump-

tion that nodes that share a greater number neighbors exhibit a

higher probability of forming connections. Global structural in-

formation further considers the global structure of the graph. Such

methods include Katz [22] and Personalized PageRank (PPR) [7].

These methods posit that nodes interconnected by a higher num-

ber of paths are deemed to have larger similarity and, therefore,

are more likely to form connections. Lastly, feature proximity

assumes nodes with more similar features connect [36]. Previous

work [39, 54] have shown that leveraging the node features are

helpful in predicting links. Lastly, we note that Mao et al. [32] has

recently shown that to properly predict a wide variety of links, it’s

integral to incorporate all three of these factors.

MPNNs for Link Prediction. Message Passing Neural Net-

works (MPNNs) [16] aim to learn node representations via the

message passing mechanism. Traditional MPNNs have been used

for LP including GCN [24], SAGE [18], and GAE [25]. However,

they have been shown to be suboptimal for LP as they aren’t ex-

pressive enough to capture important pairwise patterns [43, 53].

SEAL [51] and NBFNet [56] try to address this by customizing the

message passing process to each target link. This allows for the

message passing to learn pairwise information speci�c to the target

link. However, these methods have been shown to be unduly expen-

sive as they require a separate round of message passing for each

target link. As such, recent methods have been proposed to instead

decouple the message passing and pairwise information [9, 45, 50],

reducing the time needed to do message passing. Such methods

include NCN/NCNC [45] which exploit the common neighbor in-

formation and BUDDY [9] and Neo-GNN [50] which consider the

global structural information.

Graph Transformers. Recent work has attempted to extend

the original Transformer [44] architecture to graph-structured data.

Graphormer [48] learns node representations by attending all nodes

to each other. To properly model the structural information, they
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propose to use multiple types of structural encodings (i.e., struc-

tural, centrality, and edge). SAN [27] further considers the use of

the Laplacian positional encodings (LPEs) to enhance the learnt

structural information. Alternatively, TokenGT [23] considers all

nodes and edges as tokens in the sequence when performing at-

tention. Due to the large complexity of these models, they are

unable to scale to larger graphs. To address this, several graph

transformers [10, 46] have been proposed for node classi�cation

that attempt to e�ciently attend to the graph. However, while some

work [11, 40] have formulated transformers for knowledge graph

completion, to our knowledge, there are no graph transformers

designed speci�cally for LP on uni-relational graphs.

2.2 Preliminaries

We denote a graph as G = {V, E}, where V and E are the sets

of nodes and edges in G, respectively. The adjacency matrix is

represented as ý ∈ R |Ē |× |Ē | . The Ě-dimensional node features are

represented by the matrix Ĕ ∈ R |Ē |×Ě . The set of neighbors for a

node Ĭ is given byN(Ĭ). The set of overlapping neighbors between

two nodes ė andĘ, i.e., the common neighbors (CNs), is expressed by

NCN
(ė,Ę )

. We further denote the set of nodes that are 1-hop neighbors

of only one of ė or Ę as N1

(ė,Ę )
and the nodes that are >1-hop from

both nodes asN>1

(ė,Ę )
. Lastly, the personalized pagerank (PPR) score

for a root node Ĭ and an arbitrary node ī is given by ppr(Ĭ,ī).

3 THE PROPOSED FRAMEWORK

In Section 1, we highlighted the importance of adaptively model-

ing multiple types of LP factors. However, current methods that

use pairwise encodings, i.e., DP-MPNNs, struggle to appropriately

achieve this goal. This is due to two issues: (1) They only attempt

to model a subset of the potential LP factors (e.g., only local struc-

tural information), limiting their ability to model multiple factors.

(2) They use a one-size-�ts-all approach in regard to pairwise en-

coding, using the same combination of LP factors for each target

link. These issues strongly limit the potential of such methods to

properly model a variety of di�erent target links. To overcome

these problems, we propose LPFormer, a new transformer-based

method that can adaptively customize the pairwise information for

each target link by considering a variety of di�erent LP factors in

an e�cient manner.

3.1 A General View of Pairwise Encodings

Recent MPNNs for LP use a decoupled strategy to include the pair-

wise information [9, 45, 50]. These methods, DP-MPNNs, predict

the existence of a link (ė, Ę) via both the node representations and

a pairwise encoding ĩ (ė, Ę). They follow the formulation below:

Ą = MPNN(ý,Ĕ ),

Ħ (ė, Ę) = Ă
(
MLP

(
hė » hĘ ∥ ĩ (ė, Ę)

))
, (1)

where ℎğ is the representation of node ğ encoded by the MPNN.

Various DP-MPNNs adopt di�erent ways to model the pairwise

encoding. For example, NCN [45] models the pairwise encoding

ĩ (ė, Ę) as the summation of the node representations of the CNs.

The pairwise encodings in these existing methods are typically

manually selected or extracted from the graph, which limits the LP

factors they can cover. For example, ĩ (ė, Ę) in NCN and NCNC only

capture the local structural information. BUDDY [9] ignores the

node features when computing the pairwise encoding. To �exibly

model multiple types of LP factors, we propose a general formula-

tion for pairwise encodings as follows,

ĩ (ė, Ę) =
∑
ī∈V

ĭ (ė, Ę,ī) » ℎ(ė, Ę,ī), (2)

whereĭ (ė, Ę,ī) measures the importance of node ī to (ė, Ę), and

ℎ(ė, Ę,ī) is the encoding of node ī relative to (ė, Ę). By considering

which nodes should be considered for (ė, Ę) and how they are related

to the node pair, Eq. (2) can model di�erent LP factors by manually

de�ningĭ (ė, Ę,ī) and ℎ(ė, Ę,ī). In particular, we demonstrate how

the heuristic methods corresponding to di�erent LP factors can �t

into this framework.

Common Neighbors (CNs) [38]: CNs considers the local struc-

tural information and is de�ned for a pair of nodes (ė, Ę) asNCN
(ė,Ę )

=

N(ė) ∩ N (Ę). Eq. (2) is equal to the CNs when ℎ(ė, Ę,ī) = 1 and:

ĭ (ė, Ę,ī) =

{
1, when ī ∈ N (ė) ∩ N (Ę)

0, else

}
. (3)

Katz Index [22]: The Katz index models the global structural

information. It is de�ned as weighted summation of the number of

paths of di�erent lengths connecting ė and Ę and a decay weight

ÿ ∈ [0, 1],

Katz(ė, Ę) =

∞∑
Ģ=1

ÿĢýĢ
ė,Ę

.

This is equivalent to Eq. (2) whereĭ (ė, Ę,ī) =
∑∞
Ģ=1

ÿĢěĐėý
Ģ and

ℎ(ė, Ę,ī) =

{
ěĐ
Ę
, when ī = Ę

0, else

}
,

where ěğ ∈ B
|V | is a one-hot vector for a node ğ .

Feature Similarity: The feature similarity of the pair of nodes

(ė, Ę) is expressed by dis(xė, xĘ ) where xė are the node features

of node ė and dis(·) is a distance function (e.g., euclidean dis-

tance). This can be rewritten as Eq. (2) by substitutingĭ (ė, Ę,ī) =

dis(xė, xī ) and ℎ(ė, Ę,ī) = ěĐ
Ę
.

These examples demonstrate that the general formulation can

indeed model many di�erent LP factors including local and global

structural information and feature proximity. We further show in

Appendix A that Eq. (2) can model a variety of additional LP factors

including RA [55], the pairwise encodings used in NCN/NCNC [45]

and Neo-GNN [50]. However, �tting these methods into the for-

mulation in Eq. (2) requires manually de�ning bothĭ (ė, Ę,ī) and

ℎ(ė, Ę,ī). This constrains the information represented by ĩ (ė, Ę)

based on the choice of design. Motivated by this, in the next section

we introduce our method that does not rely on a handcrafting both

ĭ (ė, Ę,ī) and ℎ(ė, Ę,ī).

3.2 Modeling Pairwise Encodings via Attention

In Section 3.1, we introduced a general formulation for pairwise

encodings in Eq. (2), which is able to capture a variety of di�er-

ent LP factors. However, it requires manually de�ning both terms

in the equation. This limits our ability to customize the pairwise

information to each target link. As such, we further aim to move

beyond a one-size-�ts-all pairwise encoding, and enable the model
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Figure 2: An overview of LPFormer. (1) Encode the nodes via a MPNN. (2) For a given target link, we determine which

nodes to attend to (N̂ (ė, Ę)) via the PPR-based thresholding technique in Eq. (10). (3) The pairwise encoding is computed by

attending to each node, ī ∈ N̂ (ė, Ę) using the feature and relative positional encoding rpe(ė,Ę,ī ) . (4) The pairwise encoding, node

representations, and counts of di�erent node types are concatenated and used to compute the �nal probability of the target

link existing.

to produce customized pairwise encoding for each target link. This

allows the model to handle more realistic graphs that often contain

multiple prominent LP factors for di�erent target links as shown

in [32].

In particular, we consider the following question: How can we

model Eq (2) such that it can customize the used LP factors to each tar-

get link? We consider parameterizing bothĭ (ė, Ę,ī) and ℎ(ė, Ę,ī).

This allows us to learn how to personalize them to each target link.

To achieve this, we leverage softmax attention [4]. This is due to its

ability to dynamically learn the relevance of di�erent nodes to the

target link. As such, for multiple target links, it can emphasize the

contributions of di�erent nodes, thereby �exibly modeling di�erent

LP factors. We note that since the attention is between di�erent

sequences (i.e., a target link and nodes), it can be considered a form

of cross attention [44].

To enhance the adaptability of the pairwise encoding for various

links, it is essential to incorporate various types of information. This

allows the attention mechanism to discern and prioritize relevant

information for each target link, facilitating the e�ective modeling

of diverse LP factors. In particular, we consider two types of infor-

mation. The �rst is the feature information. This includes the

feature representation of both nodes in the target link and the node

being attended to. The node features are included due to their role

in link formation and relationship to structural information [36].

Second, we consider the relative positional information. The

relative positional information re�ects the relative position in the

graph of a node ī to the target link (ė, Ę) in the local and global

structural context. Due to the importance of local and global struc-

tural information [15, 20], it is vital to properly encode both. By

including both the structural and feature information, we are able

to cover the space of potential LP factors (see Section 2.1).

We denote the feature representation of a node ī as hī and the

relative positional encoding (RPE) as rpe(ė,Ę,ī ) . The node impor-

tanceĭ (ė, Ę,ī) is modeled via attention as follows:

ĭ̃ (ė, Ę,ī) = č
(
hė, hĘ , hī , rpe(ė,Ę,ī )

)
,

ĭ (ė, Ę,ī) =
exp(ĭ̃ (ė, Ę,ī))∑

Ĭ∈V̄ (ė,Ę ) exp(ĭ̃ (ė, Ę,ī))
, (4)

where V̄ (ė, Ę) = V \ {ė, Ę}. The attention weightĭ (ė, Ę,ī) can be

considered as the impact of a node ī on (ė, Ę) relative to all nodes

in G. This allows the model to emphasize di�erent LP factors for

each target link. The node encoding ℎ(ė, Ę,ī) includes the features

of node ī in conjunction with the RPE and is de�ned as:

ℎ(ė, Ę,ī) = W
[
hī ∥ rpe(ė,Ę,Ĭ)

]
. (5)

By substituting Eq. (4) and Eq. (5) into Eq. (2) we can compute the

pairwise information ĩ (ė, Ę). We further de�ne č (·) in Eq. (4) as the

GATv2 [8] attention mechanism. The detailed formulation is given

in Appendix C. The feature representations hğ are computed via a

MPNN. We use GCN [26] in this work. However, it is unclear how

to properly encode the RPE of a node ī relative to (ė, Ę), rpe(ė,Ę,ī ) .

We aim to design the RPE to capture both the local and global

structural relationship between the node and target link while also
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being e�cient to calculate. In the next section, we discuss our

solution for modeling rpe(ė,Ę,ī ) .

3.3 PPR-Based Relative Positional Encodings

In this section, we introduce our strategy for computing the RPE

of a node ī relative to a target link (ė, Ę). Intuitively, we want the

RPE to re�ect the positional relationship between ī and (ė, Ę) such

that di�erent types of information (i.e., local vs. global) are encoded

di�erently. Using Figure 1 as an example, since node 3 is a CN of

(source, 5) we expect it to have a much di�erent relationship to the

target link than node 6, which is a 2-hop neighbor of both nodes.

An enticing option is to use the double radius node labeling (DRNL)

trick introduced by Zhang and Chen [51]. However, Chamberlain

et al. [9] have shown it to be prohibitively expensive to calculate for

larger graphs. Furthermore, existing RPEs are typically infeasible to

calculate on larger graphs as they often rely on pairwise distances

or the eigenvectors of the Laplacian [41].

As such, we seek an RPE that can both distinguish the relation-

ship of di�erent nodes to the target link while also being e�cient

to calculate. To motivate our RPE design, we draw inspiration from

the following Proposition.

Proposition 1. Consider a target link (ė, Ę) and a node ī ∈ V \

{ė, Ę}. The PPR [7] score of a root node ğ and target node Ġ with

teleportation probability Ă is denoted by ppr(ğ, Ġ). Let Ĩġė (ī) be the

probability of a walk of length ġ beginning at node ė and terminating

at ī. We de�ne Ĩġ
ė,Ę

(ī) := Ĩġė (ī) + Ĩġ
Ę
(ī). We also de�ne a weight

Āġ := Ă (1 − Ă)ġ for all walks of length ġ . The PPR scores, ĦĦĨ (ė,ī)

and ĦĦĨ (Ę,ī), along with the random walk probabilities of disparate

lengths, are interconnected through the following relationship.

�(ė, Ę,ī) = ppr(ė,ī) + ppr(Ę,ī) =

∞∑
ġ=0

ĀġĨġ
ė,Ę

(ī) . (6)

The detailed proof is given in Appendix B. From Proposition 1, we

can make the following observations: (1) The PPR scores encode the

weighted sum of the probabilities of di�erent length random walks

connecting two nodes. (2) Walks of shorter length are given higher

importance, as evidenced by the dampening factor Āġ = Ă (1 − Ă)ġ

which decays with the increase in ġ . These observations imply that

– a larger value of �(ė, Ę,ī) correlates with the existence of

many shorter walks connecting node ī to the both nodes in

the target link (ė, Ę).

Therefore, the PPR scores can be used as an intuitive and useful

method to understand the structural relationship between node

ī and both nodes in the target link (ė, Ę). If both scores, ppr(ė,ī)

and ppr(Ę,ī), are high, there exists a high probability that many

shorter walks connect ī to both nodes in the target link. This

implies that node ī has a stronger impact on the nodes in the target

link. On the other hand, if both PPR scores are low, there is likely

very little relationship between ī and the target link. This allows

for a convenient way of di�erentiating how a node structurally

relates to the target link. Furthermore, we note that the PPR matrix

can be e�ciently pre-computed using the algorithm introduced

by Andersen et al. [3], allowing for easy computation and use.

Following this idea, to calculate the RPE of a node ī, we use the

PPR scores of a nodeī relative to both nodes in the target link (ė, Ę).

Instead of considering the sum of PPR scores as in Proposition 1,

we further parameterize �(·) via an MLP,

rpe(ė,Ę,ī ) = MLP (ppr(ė,ī), ppr(Ę,ī)) . (7)

By introducing learnable parameters to �(·), it allows for the model

learn the importance of individual PPR scores and how they interact

with each other. To ensure that Eq. (7) is invariant to the order of

the nodes in the target link, i.e., (ė, Ę) and (Ę,ī), we further set the

RPE to be equal to the summation of the representations given by

both (ė, Ę) and (Ę, ė):

rpe(ė,Ę,ī ) = rpe(ė,Ę,ī ) + rpe(Ę,ė,ī ) . (8)

However, a concern with Eq. (8) is that it is not guaranteed to be able

to distinguish certain types of nodes from each other. For example,

it is necessary to clearly distinguish CNs from other nodes due

to their important role in link formation [38]. To overcome this

issue, we �t three separate MLPs for when ī is a: CN of (ė, Ę), a

1-hop neighbor of either ė and Ę, and a >1-hop neighbor of both

ė and Ę. This ensures that we can properly distinguish between

these three types of nodes. We verify the e�ectiveness of this design

in Section 4.4. Lastly, we note that while other work [29, 34] has

considered the use of random-walk based positional encodings,

they are only designed for use on the node-level and are unable to

be used for link-level tasks like LP.

3.4 E�ciently Attending to the Graph Context

The proposed attention mechanism in Section 3.2 attends to all

nodes in the graph, sans those in the link itself. This makes it

di�cult to scale to large graphs. Motivated by selective [33] and

sparse [13] attention, we opt to attend to only a small portion of

the nodes.

At a high level, we are interested in determining a subset of

nodes N̂ (ė, Ę) ∈ V to attend to for the target link (ė, Ę). Our

goal is to choose the set of nodes N̂ (ė, Ę) such that they are (a)

few in number to improve scalability and (b) provide important

contextual information to the pair (ė, Ę) to best learn the pairwise

information. This can be achieved by only considering all nodes

where the importance of the node ī to the target link (ė, Ę) is

considered high. Formally, we can write this as the following where

I(ė, Ę,ī) is a function that denotes the importance of a node ī to

the target link (ė, Ę):

N̂ (ė, Ę) = {ī ∈ V \ {ė, Ę} | I(ė, Ę,ī) > ā}. (9)

The threshold ā allows us to distinguish those nodes that are su�-

ciently important to the target link. This allows for a simple and

e�cient way of determining the set N̂ (ė, Ę). However, what do we

use to model the importance I(ė, Ę,ī)? For ease of optimization and

better e�ciency, we avoid parameterizing the function I(ė, Ę,ī).

Instead, we want to choose a metric such that can properly serve

as a proxy for the importance of a node ī to (ė, Ę) while also being

concentrated in a small subset of nodes. Such a metric will allow

Eq. (9) to choose a small but in�uential set of nodes to attend to.

A measure that satis�es both criteria is Personalized Pagerank

(PPR) [7]. In Section 3.3 we discussed that the PPR score can serve

as a good tool to model the in�uence of a one node on another.

Furthermore, existing work [3, 17, 37] shows that the PPR scores

tend to be highly localized in a small subset of nodes. Therefore by
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making I(ė, Ę,ī) contingent on the PPR scores of (ė,ī) and (Ę,ī)

we can extract a small but important set of nodes to attend to for

the target link.

Following this idea, for a target link (ė, Ę), we keep all nodes

whose PPR score is above some threshold ā relative to both nodes

in the target link. As such, we only keep a node ī if it is related

in some capacity to at least one of the nodes in the target link.

Similarly to Section 3.3, we treat CN, 1-Hop, and >1-Hop nodes

di�erently by applying a di�erent threshold for them. The �ltered

node set for each category of nodes is given by:

N̂ÿ
(ė,Ę )

= {ī ∈ Nÿ
(ė,Ę )

| ppr(ė,ī) > āÿ , ppr(Ę,ī) > āÿ }, (10)

where N̂ÿ
(ė,Ę )

is the �ltered node set for all nodes of the type ÿ ∈

{CN, 1−Hop, >1−Hop} and āÿ is the corresponding PPR threshold.

We note that while other work [6, 49] has used PPR to �lter the

nodes on the node-level, no existing work has done so on the link-

level.

We corroborate this design by demonstrating that LPFormer can

achieve SOTA performance in LP (Section 4.2) while achieving a

faster runtime than the second-best method, NCNC [45], on denser

graphs (Section 4.8). This is despite the fact that LPFormer can

attend to a wider variety of nodes. We further show in Section 4.5

that the performance is stable with regards to the values of ā chosen,

allowing us to easily choose a proper threshold on any dataset.

3.5 LPFormer
We now de�ne the overall framework – LPFormer. The overall pro-
cedure is given in Figure 2: (1) We �rst learn node representations
from the input adjacency and node features via an MPNN. We note
that this step is agnostic to the target link. (2) For a target link (ė, Ę)

we extract the nodes to attend to, i.e. N̂ (ė, Ę). This is done via the
PPR thresholding technique de�ned in Section 3.4. (3) We apply
Ĉ layers of attention, using the mechanism de�ned in Section 3.2.
The output is the pairwise encoding ĩ (ė, Ę). (4) We generate the
prediction of the target link using three types of information: the
element-wise product of the node representation, the pairwise en-
coding, and the number of CN, 1-Hop, and >1-Hop nodes identi�ed
by Eq. (10). The score function is given by:

Ħ (ė,Ę ) = Ă
(
MLP

(
hė » hĘ ∥ ĩ (ė,Ę ) ∥ | N̂CN

(ė,Ę)
| ∥ | N̂1

(ė,Ę)
| ∥ | N̂>1

(ė,Ę)
|
))
(11)

We demonstrate in Section 4.4 that the inclusion of the node counts

is helpful, as it provides complementary information to the pairwise

encoding.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the

e�ectiveness of LPFormer. Speci�cally, we attempt to answer the

following questions: (RQ1) Can LPFormer consistently outperform

baseline methods on a variety of di�erent benchmark datasets?

(RQ2) Is LPFormer able to model a variety of di�erent LP factors?

(RQ3) Can LPFormer be run e�ciently on large dense graphs? We

further conduct studies ablating each component of our model and

analyzing the e�ect of the PPR-based threshold on performance.

4.1 Experimental Settings

Datasets. We include Cora, Citeseer, and Pubmed [47] and ogbl-

collab, ogbl-ppa, ogbl-ddi, and ogbl-citation2 [19]. Furthermore, for

Cora, Citeseer, and Pubmed we experiment under a single �xed

split as in Li et al. [28]. The detailed statistics for each dataset are

shown in Table 1.

Baseline Models. We compare LPFormer against a wide va-

riety of baselines including: CN [38], AA [2], RA [55], GCN [26],

SAGE [18], GAE [25], SEAL [51], NBFNet [56], Neo-GNN [50],

BUDDY [9], NCN [45], and NCNC [45]. Results on Cora, Citeseer,

and Pubmed are taken from Li et al. [28]. Results for the heuristic

methods are from Hu et al. [19]. All other results are either from

their respective study or Chamberlain et al. [9].

Hyperparameters: The learning rate is tuned from {1ě−3, 5ě−3},

the decay from {0.95, 0.975, 1}, and the dropout from [0, 0.7], and

the weight decay from {0, 1ě−4, 1ě−7}. The size of the hidden di-

mension is set to 64 for ogbl-ppa and ogbl-citation2, 128 for Cora,

Pubmed, and ogbl-collab, and 256 for Citeseer. Lastly, the PPR

threshold is tuned from {1ě−2, 1ě−3, 1ě−4}.

EvaluationMetrics. Each positive target link is evaluated against

a set of given negative links. The rank of the positive link among

the negatives is used to evaluate performance. The two types of

metrics that are used to evaluate this ranking are Hits@K and MRR.

For the OGB datasets we use the metric used in the original study.

This includes Hits@50 for ogbl-collab, Hits@100 for ogbl-ppa and

MRR for ogbl-citation2. For Cora, Citeseer, Pubmed we follow Li

et al. [28] and use MRR. Lastly, the same set of negative links is used

for all positive links except on ogbl-citation2, where [19] provides

a customized set of 1000 negatives for each individual positive link.

4.2 Main Results

We present the results of LPFormer compared with baselines on

multiple benchmark datasets. Note that we omit ogbl-ddi from the

main results due to recent issues discovered by Li et al. [28]. The

results are shown in Table 2. We observe that LPFormer can achieve

SOTA performance on 5/6 datasets, signi�cantly outperforming

other baselines. Moreover, LPFormer is also the most consistent of

all the methods, achieving strong performance on all datasets. This

is as opposed to previous SOTAmethods, NCNC and BUDDY, which

tend to struggle on Cora and Pubmed. We attribute the consistency

of LPFormer to the �exibility of our model, allowing it to customize

the LP factors needed to each link and dataset.

4.3 Performance by LP Factor

In this section, we measure the ability of LPFormer to capture

a variety of di�erent LP factors. To measure this, we identify all

positive target linkswhen there is only one dominant LP factor.

For example, one group would contain all target links where the

only dominant factor is the local structural information.We focus on

links that correspond to one of the three groups identi�ed in [32]:

local structural information, global structural information, and

feature proximity.

We identify these groups by using popular heuristics as proxies

for each factor. For local structural information, we use CNs [38],

for global structural information we use PPR [7] as it’s the most

computationally e�cient of all global methods, and for feature
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Table 1: Dataset statistics. The split ratio is the % of samples for train/validation/test.

Cora Citeseer Pubmed ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2

#Nodes 2,708 3,327 18,717 235,868 4,267 576,289 2,927,963

#Edges 5,278 4,676 44,327 1,285,465 1,334,889 30,326,273 30,561,187

Split Ratio 85/5/10 85/5/10 85/5/10 92/4/4 80/10/10 70/20/10 98/1/1

Table 2: Results on benchmark datasets. OOM is an out of memory error. Colored are the results ranked �rst, second, and third.

Cora Citeseer Pubmed ogbl-collab ogbl-ppa ogbl-citation2 Mean Rank

Metric MRR MRR MRR H@50 H@100 MRR

CN 20.99±0.00 28.34±0.00 14.02±0.00 56.44±0.00 27.65±0.00 51.47±0.00 11.0

AA 31.87±0.00 29.37±0.00 16.66±0.00 64.35±0.00 32.45±0.00 51.89±0.00 8.5

RA 30.79±0.00 27.61±0.00 15.63±0.00 64.00±0.00 49.33±0.00 51.98±0.00 8.7

GCN 32.50±6.87 50.01±6.04 19.94±4.24 44.75±1.07 18.67±1.32 84.74±0.21 8.0

SAGE 37.83±7.75 47.84±6.39 22.74±5.47 48.10±0.81 16.55±2.40 82.60±0.36 7.7

GAE 29.98±3.21 63.33±3.14 16.67±0.19 OOM OOM OOM NA

SEAL 26.69±5.89 39.36±4.99 38.06±5.18 64.74±0.43 48.80±3.16 87.67±0.32 6.2

NBFNet 37.69±3.97 38.17±3.06 44.73±2.12 OOM OOM OOM NA

Neo-GNN 22.65±2.60 53.97±5.88 31.45±3.17 57.52±0.37 49.13±0.60 87.26±0.84 7.0

BUDDY 26.40±4.40 59.48±8.96 23.98±5.11 65.94±0.58 49.85±0.20 87.56±0.11 5.7

NCN 32.93±3.80 54.97±6.03 35.65±4.60 64.76±0.87 61.19±0.85 88.09±0.06 3.8

NCNC 29.01±3.83 64.03±3.67 25.70±4.48 66.61±0.71 61.42±0.73 89.12±0.40 3.8

LPFormer 39.42±5.78 65.42±4.65 40.17±1.92 68.14±0.51 63.32±0.63 89.81±0.13 1.2

proximity, we use the cosine similarity of the features. Using these

heuristics, we determine if only one factor is dominant by com-

paring the relative score of each heuristic. This is done by �rst

computing the score for each factor ğ for the target link (ė, Ę) –

ĩğ (ė, Ę). For each factor, we then compute the score corresponding

to the Ħ-th percentile among all links, ĩ̂ğ . We choose a larger value

of Ħ (i.e. 90%) such that a score g ĩ̂ğ indicates that a signi�cant

amount of pairwise information exists for that factor. For a single

target link, we then compare the score of each factor ĩğ (ė, Ę) to ĩ̂ğ . If

ĩğ (ė, Ę) g ĩ̂ğ is true for only one factor, this implies that the score

for only one factor is “high”. Therefore there is a notable amount

of pairwise information existing for only one factor for the link

(ė, Ę). This ensures that only one factor is strongly expressed. If

this is true, we then assign the target link (ė, Ę) to factor ğ . Please

see Appendix D.2 for a more detailed explanation.

We demonstrate the results on Cora, Citeseer, and ogbl-collab

in Figure 3. We observe that LPFormer typically performs best for

each individual LP factor on all datasets. Furthermore, it is also the

most consistently well-performing on each factor as compared to

other methods. For example, on Cora the other methods struggle

for links that correspond to the feature proximity factor. LPFormer,

on the other hand, is able to signi�cantly outperform them on

those target links, performing around 33% better than the second

best method. Lastly, we note that most methods tend to perform

well on the links corresponding to the global factor, even if they

don’t explicitly model such information. This is caused by a strong

correlation that tends to exist between local and global structural

information, often resulting in considerable overlap between both

factors [32]. These results show that LPFormer can indeed adapt to

multiple types of LP factors, as it can consistently perform well on

samples belonging to a variety of di�erent LP factors. Additional

results are given in Appendix E.

4.4 Ablation Study

We further include an ablation study to verify the e�ectiveness of

the proposed components in LPFormer. In particular, we introduce

6 variants of LPFormer. (a) w/o Learnable Att: No attention is

learned. As such, we set all attention weights to 1 and remove

the RPE. (b) w/o Features in Att: We remove the node feature

information from the attention mechanism. (c) w/o RPE in Att:

We remove the RPE from the attention mechanism. (d) w/o PPR

RPE: We replace the PPR-based RPE with a learnable embedding

for each of CN, 1-Hop, and >1-Hop nodes. (e) w/o PPR RPE by

Node Type: We don’t �t a separate function for each node type

when determining the PPR RPE (see Section 3.3). Instead we use one

for all nodes. (f) w/o Counts: We remove the counts of di�erent

nodes from the scoring function.

The results are shown in Table 3. We include ogbl-collab, ogbl-

ppa, and Citeseer. We observe that ablating a component always de-

creases the performance. However, the magnitude of the decrease is

dataset-dependent. For example, on ogbl-collab, ablating the feature

information in the attention marginally a�ects the performance.

However, on ogbl-ppa and Citeseer, removing the feature informa-

tion results in a large decrease in performance. On the other hand,



KDD ’24, August 25–29, 2024, Barcelona, Spain Harry Shomer, Yao Ma, Haitao Mao, Juanhui Li, Bo Wu, and Jiliang Tang

(a) Cora (b) Citeseer (c) ogbl-collab

Figure 3: Performance on links that contain one dominant LP factor. Results are on (a) Cora, (b) Citeseer, and (c) ogbl-collab.

while removing learnable attention results in a modest decrease

on ogbl-ppa, for the other two datasets we see a large drop. This

highlights the importance of each component of our framework, as

they are each necessary for consistently strong performance across

multiple datasets.

Table 3: Ablation Study on LPFormer

Method ogbl-collab ogbl-ppa Citeseer

w/o Learnable Att 65.05±0.50 62.77±1.03 56.23±1.75

w/o Features in Att 68.04±0.79 56.98±1.55 53.40±9.30

w/o RPE in Att 65.26±0.56 61.20±0.69 56.70±3.79

w/o PPR RPE 67.09±0.51 61.91±1.22 51.96±15.2

w/o PPR RPE by Node Type 67.95±0.54 62.92±1.06 57.40±5.71

w/o Counts 67.75±0.41 44.37±1.89 54.39±5.30

LPFormer 68.14±0.51 63.32±0.63 65.42±4.65

Table 4: E�ect of Varying the PPR Thresholds

Threshold ogbl-collab ogbl-citation2

1-Hop >1−Hop 1-Hop >1−Hop

1e-4 68.24±0.25 67.73±0.65 89.81±0.13 89.14±0.22

1e-2 67.60±0.31 68.24±0.25 89.49±0.18 89.81±0.13

1 67.08±0.65 68.14±0.51 89.49±0.16 89.26±0.39

4.5 E�ect of the PPR Thresholds

We examine the e�ect of varying the PPR threshold for both 1-Hop

and >1−Hop nodes as described in Eq. (10). The results for ogbl-

collab and ogbl-citation2 are shown in Table 4. When varying the

1-Hop threshold, we �x the value of the >1−Hop threshold to 1e-2

for both datasets. When varying the >1−Hop threshold, we �x the

value of the 1-Hop threshold to 1e-4 for both datasets.

We can observe that modifying the threshold has little e�ect

on the underlying performance of the model. For both datasets, a

value of 1e-2 works well for the >1−Hop threshold and 1e-4 works

well for the 1-Hop threshold. We typically �nd that setting both

values to 1e-2 provides a good trade-o� between performance and

e�ciency.

4.6 Performance on HeaRT Setting

We further test the performance of our method on the HeaRT [28]

evaluation setting, which considers a more realistic and di�cult

evaluation setting for link prediction. This is done by introducing a

much harder and more realistic set of negative samples during eval-

uation. Li et al. [28] observe that this results in a large decrease in

performance on all datasets. Furthermore, compared to the original

evaluation setting, MPNNs designed speci�cally for link prediction

are often outperformed by heuristics or other MPNNs.

The full results can be found in Table 5. We observe that LP-

Former performs considerably better than all other models. For

instance, the mean rank of LPFormer is 3.1x better than the 2nd

best-performing model, NCN. This indeed shows the advantage

of LPFormer, as it can consistently achieve extraordinary perfor-

mance across all datasets under the much more challenging HeaRT

evaluation setting. This is as opposed to other LP-speci�c methods

that often perform similarly to standard MPNN methods.

4.7 Performance on Heterophilic Datasets

In this section we evaluate LPFormer on multiple heterophilic

datasets. Heterophily refers to the tendency of dissimilar nodes

to be connected. This is as opposed to homophily, in which nodes

with similar attributes are more likely to be connected. Since most

graphs used for benchmark datasets tend to contain homophilic pat-

terns, heterophilic graphs present an interesting challenge regard-

ing the e�ectiveness of graph-based methods. For a more detailed

discussion on heterophilic graphs, please see [31].

We test on two prominent heterophilic datasets, Squirrel and

Chameleon [42]. The statistics for each are in Table 6. We limit our

comparison to those LP methods that tend achieve the best results,

including GCN, BUDDY, and NCNC. In Table 7, we report the

MRR over �ve random seeds. Note that we test under the original

evaluation setting and not HeaRT. We observe that LPFormer can

achieve a large increase over other methods, with a 14% and 9%

increase in performance on Squirrel and Chameleon, respectively.
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Table 5: Results (MRR) under HeaRT. Highlighted are the results ranked �rst, second, and third.

Models Cora Citeseer Pubmed ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2 Mean Rank

CN 9.78 8.42 2.28 4.20 6.71 25.70 17.11 11.1

AA 11.91 10.82 2.63 5.07 6.97 26.85 17.83 9.6

RA 11.81 10.84 2.47 6.29 8.70 28.34 17.79 8.1

GCN 16.61 ± 0.30 21.09 ± 0.88 7.13 ± 0.27 6.09 ± 0.38 13.46 ± 0.34 26.94 ± 0.48 19.98 ± 0.35 4.7

SAGE 14.74 ± 0.69 21.09 ± 1.15 9.40 ± 0.70 5.53 ± 0.5 12.60 ± 0.72 27.27 ± 0.30 22.05 ± 0.12 4.7

GAE 18.32 ± 0.41 25.25 ± 0.82 5.27 ± 0.25 OOM 3.49 ± 1.73 OOM OOM NA

SEAL 10.67 ± 3.46 13.16 ± 1.66 5.88 ± 0.53 6.43 ± 0.32 9.99 ± 0.90 29.71 ± 0.71 20.60 ± 1.28 6.4

NBFNet 13.56 ± 0.58 14.29 ± 0.80 >24h OOM >24h OOM OOM NA

BUDDY 13.71 ± 0.59 22.84 ± 0.36 7.56 ± 0.18 5.67 ± 0.36 12.43 ± 0.50 27.70 ± 0.33 19.17 ± 0.20 5.9

Neo-GNN 13.95 ± 0.39 17.34 ± 0.84 7.74 ± 0.30 5.23 ± 0.9 10.86 ± 2.16 21.68 ± 1.14 16.12 ± 0.25 7.4

NCN 14.66 ± 0.95 28.65 ± 1.21 5.84 ± 0.22 5.09 ± 0.38 12.86 ± 0.78 35.06 ± 0.26 23.35 ± 0.28 4.4

NCNC 14.98 ± 1.00 24.10 ± 0.65 8.58 ± 0.59 4.73 ± 0.86 >24h 33.52 ± 0.26 19.61 ± 0.54 4.8

LPFormer 16.80 ± 0.52 26.34 ± 0.67 9.99 ± 0.52 7.62 ± 0.26 13.20 ± 0.54 40.25 ± 0.24 24.70 ± 0.55 1.4

These results indicate the superior ability of LPFormer to accurately

model LP on heterophilic graphs, as compared to other methods.

Table 6: Heterophilic Dataset Statistics.

Squirrel Chameleon

#Nodes 5201 2277

#Edges 198,353 31,371

Split Ratio 85/5/10 85/5/10

Table 7: Results on Heterophilic Datasets.

Method Squirrel Chameleon

GCN 22.77 ± 4.54 20.74 ± 8.08

BUDDY 9.69 ± 0.99 6.30 ± 2.40

NCNC 32.37 ± 5.46 26.24 ± 3.37

LPFormer 36.77 ± 2.77 28.61 ± 6.68

% Improvement 14% 9%

4.8 Runtime Analysis

In this section, we compare the runtime of LPFormer against NCNC,

which is the strongest performing baseline. The results are shown

in Figure 4 on all four OGB datasets We further include the mean

degree of each dataset in parentheses. We observe that LPFormer

shines on denser datasets, taking signi�cantly less time to train one

epoch. This is despite that LPFormer can attend to nodes beyond

the 1-hop radius of the target link. This underscores the importance

of the PPR thresholding technique introduced in Section 3.4, as it

allows for e�cient attention to a wider variety of nodes. Lastly,

we note that LPFormer struggles on the ogbl-citation2 dataset due

to the large number of nodes in the dataset (i.e., 2,927,963), which

requires the sparse PPR matrix to be quite large. For future work

we plan on exploring pre-computing the necessary PPR scores as

an e�cient pre-processing step, thereby removing the need to store

the costly PPR matrix.

Figure 4: Comparison of training time of 1 epoch between

LPFormer and NCNC. The mean degree is in parentheses.

5 CONCLUSION

In this paper we introduce a new framework, LPFormer, that aims

to integrate a wider variety of pairwise information for link predic-

tion. LPFormer does this via a specially designed graph transformer,

which adaptively considers how a node pair relate to each other

in the context of the graph. Extensive experiments demonstrate

that LPFormer can achieve SOTA performance on a wide vari-

ety of benchmark datasets while retaining e�ciency. We further

demonstrate LPFormer’s supremacy at modeling multiple types of

LP factors. For future work, we plan on exploring other methods

of incorporating multiple LP factors with an emphasis on global

structural information.
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A SPECIAL CASES OF THE GENERAL
PAIRWISE ENCODING

In this section we demonstrate that multiple popular heuristics

and pairwise encodings can be formulated as special cases of the

general pairwise encoding given in Eq. (2).

Common Neighbors (CNs) [38]: The CNs of a pair of nodes (ė, Ę)

is de�ned the overlapping 1-hop neighbors of both nodes,NCN
(ė,Ę )

=

N(ė) ∩ N (Ę). Eq. (2) is equal to the CNs when ℎ(ė, Ę,ī) = 1 and

ĭ (ė, Ę,ī) is:

ĭ (ė, Ę,ī) =

{
1, when ī ∈ N (ė) ∩ N (Ę)

0, else

}
. (12)

Adamic-Adar (AA) [2]: AA further weights each common neigh-

bor by the reciprocal of its log-degree, i.e., 1/log(Ěī ) for node

ī, allowing us to rewrite Eq. (2) as ℎ(ė, Ę,ī) = 1/log(Ěī ) where

ĭ (ė, Ę,ī) is equal to Eq. (12).

Resource Allocation (RA) [55]: RA is similar to AA except that it

is omits the log, resulting in 1/Ěī . As before, Eq. (2) can be rewritten

as the RA when ℎ(ė, Ę,ī) = 1/Ěī andĭ (ė, Ę,ī) is equal to Eq. (12).

Katz Index [22]: The Katz index is a global structural measure. It is

de�ned as weighted summation of the number of paths of di�erent

lengths connecting ė and Ę. It is given by the following where the

decay weight ÿ ∈ [0, 1],

Katz(ė, Ę) =

∞∑
Ģ=1

ÿĢýĢ
ė,Ę

. (13)

This is equivalent to Eq. (2) when:

ĭ (ė, Ę,ī) =

∞∑
Ģ=1

ÿĢěĐėý
Ģ , (14)

where ěğ ∈ B
|V | is a one-hot vector for a node ğ . We further set,

ℎ(ė, Ę,ī) =

{
ěĐ
Ę
, when ī = Ę

0, else

}
. (15)

Personalized Pagerank (PPR) Score [7]: The personalized pager-

ank score is the pagerank score localized to a root nodeī. Eq. (2) can

be rewritten as the PPR score when setting ℎ(ė, Ę,ī) equal to (15)

and, following Chung [12], settingĭ (ė, Ę,ī) to:

ĭ (ė, Ę,ī) = Ă

∞∑
Ģ=0

(1 − Ă)ĢěĐė (Ā
−1ý)Ģ . (16)

Feature Similarity: The feature similarity of the pair of nodes

(ė, Ę) is expressed by dis(xė, xĘ ) where xė are the node features

of node ė and dis(·) is a distance function (e.g., euclidean dis-

tance). This can be rewritten as Eq. (2) by substitutingĭ (ė, Ę,ī) =

dis(xė, xī ) and ℎ(ė, Ę,ī) = ěĐ
Ę
where ěğ ∈ B

|V | is a one-hot vector

for a node ğ .

NCN [45]: The pairwise encoding used in NCN is de�ned as the

summation of the representations for the CNs of a link. Eq. (2) can

be rewritten as NCN whenĭ (ė, Ę,ī) is equal to Eq. (12). ℎ(ė, Ę,ī)

is equal to the node representation ī encoded by a MPNN, i.e.,

ℎ(ė, Ę,ī) = hī where Ą = MPNN(ý,Ĕ ).

NCNC [45]: NCNC extends NCNC by further weighting the 1-hop

(non-CN) by their probability of linking to the other nodes. Given

Eq. (2), the weight ĭ (ė, Ę,ī) is equal to following where 1-hop

neighbors are weighted by their probability of linking with the

other node:

ĭ (ė, Ę,ī) =




1, when ī ∈ NCN
(ė,Ę )

NCN(ý,Ĕ,Ę,ī) when ī ∈ N (ė)

NCN(ý,Ĕ, ė,ī) when ī ∈ N (Ę)

0, else



. (17)

NCN(ý,Ĕ, ė,ī) is the probability of ė and ī being linked using the

NCN model. We further de�ne ℎ(ė, Ę,ī) = hī .

Neo-GNN [50]: The pairwise encoding used in Neo-GNN considers

the higher-order neighborhood overlap between two nodes. The

formulation is given in Section A. When Ģ = 1, it can be expressed

using Eq. (2) by setting:

ℎ(ė, Ę,ī) = Ĝ1
©­
«

∑
Ĭ∈N(ī )

Ĝ2 (ýīĬ)
ª®¬
2

, (18)

andĭ (ė, Ę,ī) as equal to Eq. (12).

B PROOF OF PROPOSITION 1

Proposition 1. Consider a target link (ė, Ę) and a node ī ∈ V \

{ė, Ę}. The PPR [7] score of a root node ğ and target node Ġ with

teleportation probability Ă is denoted by ppr(ğ, Ġ). Let Ĩġė (ī) be the

probability of a walk of length ġ beginning at node ė and terminating

at ī. We de�ne Ĩġ
ė,Ę

(ī) := Ĩġė (ī) + Ĩġ
Ę
(ī). We also de�ne a weight

Āġ := Ă (1 − Ă)ġ for all walks of length ġ . The PPR scores, ĦĦĨ (ė,ī)

and ĦĦĨ (Ę,ī), along with the random walk probabilities of disparate

lengths, are interconnected through the following relationship.

�(ė, Ę,ī) = ppr(ė,ī) + ppr(Ę,ī) =

∞∑
ġ=0

ĀġĨġ
ė,Ę

(ī) . (6)

Proof. Per Chung [12], the PPR vector for a root node ĩ , prĩ , is

equivalent to:

prĩ = Ă

∞∑
ġ=0

(1 − Ă)ġē ġĮĩ , (19)

whereē is a the random walk matrix and Įĩ is a preference vector

that is a one-hot vector for element ĩ . We note that prĩ (Ī) repre-

sents the landing probability of node Ī given the root node ĩ . As

such, by de�nition, prĩ (Ī) = ppr(ĩ, Ī). Furthermore, it is clear that

Ĩġĩ =ē ġĮĩ ∈ RV represents the probability of a walk of length ġ

beginning at node ĩ and stop all other nodes, individually. Also, the
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probabilities of all walks of length ġ are weighted byĀġ = Ă (1−Ă)ġ .

� (ė, Ę,ī) can be obtained by �rst taking the sum of the PPR vectors

for nodes ė and Ę,

prė + prĘ = Ă

∞∑
ġ=0

(1 − Ă)ġē ġĮė + Ă

∞∑
ġ=0

(1 − Ă)ġē ġĮĘ ,

prė,Ę = Ă

∞∑
ġ=0

(1 − Ă)ġē ġ (Įė + ĮĘ ) , (20)

where prė,Ę = prė + prĘ . From this, we can express �(ė, Ę,ī) as:

�(ė, Ę,ī) = ppr(ė,ī) + ppr(Ę,ī),

= prė,Ę (ī), (21)

= prė (ī) + prĘ (ī),

which as shown in Eq. (20) is equivalent to the probability of a walk

that originates from either node ė or Ę and terminates at node ī.

This completes the proof. □

C ATTENTION FORMULATION

For a target link (ė, Ę), LPFormer attends to the nodes in the set

V̄ (ė, Ę). The attention mechanism used in LPFormer is de�ned in

Section 3 as follows whereĭ (ė, Ę,ī) is the attention weight of ī to

the target link and V̄ (ė, Ę) = V \ {ė, Ę}:

ĭ̃ (ė, Ę,ī) = č
(
hė, hĘ , hī , rpe(ė,Ę,ī )

)
,

ĭ (ė, Ę,ī) =
exp(ĭ̃ (ė, Ę,ī))∑

Ĭ∈V̄ (ė,Ę ) exp(ĭ̃ (ė, Ę,ī))
. (22)

The functionč (·) is modeled via the attentionmechanism de�ned in

GATv2 [8]. We de�ne ė ∈ R2Ě
′
andē ∈ RĚ×Ě

′
. The raw attention

weights are then given by:

ĭ̃ (ė, Ę,ī) = aĐ LeakyReLU
[
ē hė ∥ē hĘ ∥ē hī ∥ rpe(ė,Ę,ī )

]
.

(23)

The �nal attentionweights,ĭ (ė, Ę,ī), are given by passing ĭ̃ (ė, Ę,ī)

through a softmax activation layer.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 Computation of the PPR Matrix

We compute the PPR matrix via the e�cient approximation algo-

rithm introduced by Andersen et al. [3]. The estimation is controlled

by a tolerance parameter Ċ . We use: Ċ = 1ě−7 for Cora and Citeseer,

Ċ = 5ě−5 for ogbl-collab and ogbl-ppa, Ċ = 1ě − 5 for Pubmed, and

Ċ = 5ě−3 for ogbl-Citation2. The value of Ċ is chosen as a trade-o�

between accuracy and sparsity to allow for ease of storage in GPU

memory.

D.2 Splitting Target Links by LP Factor

In Section 4.3 we demonstrate the performance on samples that

correspond to a single LP factor. In this section we further detail

the algorithm used to determine the set of samples corresponding

to each factor. We consider the three main factors: local structural

information, global structural information, and feature proximity.

We measure each using a single representative heuristic: CNs [38]

for local information, PPR [7] for global information, and cosine

feature similarity for feature proximity. For each sample, we check
if the score is only high in one heuristic. In this way, it tells us that

there is a dominant factor present in the pairwise information. The

detailed algorithm is given in Algorithm 1.

We note that each target link may not belong to a category.

This can be due to there being no or many dominant LP factor.

We further set the percentile equal to 90% on all datasets except

for ogbl-collab for which we use 80%. These values were chosen

as we wanted the percentile to be suitably high such that we are

con�dent that the corresponding factor is relevant to the target

link. Furthermore, we use a lower value for ogbl-collab as we found

it produced a more even distribution of links by factor.

Algorithm 1 Determining Samples by LP Factor

Require:

CN( ·) = Maps (ğ, Ġ ) to # of CNs of the pair

PPR( ·) = Maps (ğ, Ġ ) to PPR score of the pair

FS( ·) = Maps (ğ, Ġ ) to feature cosine similarity of the pair

Ħ = Percentile used to determine whether a factor is present

Etest = Positive test links

1: De�ne the Ħ-th percentile for each heuristic: ĩ̂CN, ĩ̂FS, ĩ̂PPR

2: Create empty lists ĈCN, ĈPPR, and ĈFS

3: for (ğ, Ġ ) ∈ Etest do

4: link-cn = CN(ğ, Ġ )

5: link-fs = FS(ğ, Ġ )

6: link-ppr = PPR(ğ, Ġ )

7: // Assign sample to corresponding list based on scores

8: if link-cn g ĩ̂CN and link-fs < ĩ̂FS and link-ppr < ĩ̂PPR then

9: Append(ĈCN, (ğ, Ġ ))

10: else if link-cn < ĩ̂CN and link-fs g ĩ̂FS and link-ppr < ĩ̂PPR then

11: Append(ĈFS, (ğ, Ġ ))

12: else if link-cn < ĩ̂CN and link-fs < ĩ̂FS and link-ppr g ĩ̂PPR then

13: Append(ĈPPR, (ğ, Ġ ))

14: end if

15: end for

16: return ĈCN, ĈPPR, ĈFS

E ADDITIONAL LP FACTOR EXPERIMENTS

Additional results by LP factor are given in Figure 5 for ogbl-ppa and

Pubmed. We note that for ogbl-ppa, since the feature are one-hot

encodings, the feature similarity is not useful and is this omitted.

(a) Pubmed (b) ogbl-ppa

Figure 5: Additional LP Factor results on (a) Pubmed and (b)

ogbl-ppa.
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