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ABSTRACT

Link prediction is a common task on graph-structured data that
has seen applications in a variety of domains. Classically, hand-
crafted heuristics were used for this task. Heuristic measures are
chosen such that they correlate well with the underlying factors re-
lated to link formation. In recent years, a new class of methods has
emerged that combines the advantages of message-passing neural
networks (MPNN) and heuristics methods. These methods perform
predictions by using the output of an MPNN in conjunction with a
“pairwise encoding” that captures the relationship between nodes in
the candidate link. They have been shown to achieve strong perfor-
mance on numerous datasets. However, current pairwise encodings
often contain a strong inductive bias, using the same underlying
factors to classify all links. This limits the ability of existing meth-
ods to learn how to properly classify a variety of different links
that may form from different factors. To address this limitation,
we propose a new method, LPFormer, which attempts to adap-
tively learn the pairwise encodings for each link. LPFormer models
the link factors via an attention module that learns the pairwise
encoding that exists between nodes by modeling multiple factors
integral to link prediction. Extensive experiments demonstrate that
LPFormer can achieve SOTA performance on numerous datasets
while maintaining efficiency. The code is available at The code is
available at https://github.com/HarryShomer/LPFormer.

CCS CONCEPTS

« Computing methodologies — Machine learning.

KEYWORDS

link prediction, graph transformer

ACM Reference Format:

Harry Shomer, Yao Ma, Haitao Mao, Juanhui Li, Bo Wu, and Jiliang Tang.
2024. LPFormer: An Adaptive Graph Transformer for Link Prediction. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD °24), August 25-29, 2024, Barcelona, Spain. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3637528.3672025

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

KDD °24, August 25-29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0490-1/24/08.
https://doi.org/10.1145/3637528.3672025

bwu@mines.edu
Colorado School of Mines
Golden, USA

tangjili@msu.edu
Michigan State University
East Lansing, USA

CNs: 0

Katz: 2.2

Feat-Sim: 0.7

- CNs: 3

|Source Katz: 2.4

Feat-Sim: 0.5

CNs: 1

Katz: 0.81

Feat-Sim: 0.53

Figure 1: Example of multiple heuristic scores for the candi-
date links (source, 5), (source, 6), and (source, 7). Each heuris-
tic corresponds to a different LP factor — local (CNs), global
(Katz), and feature proximity (Feat-Sim).

1 INTRODUCTION

Link prediction (LP) attempts to predict unseen edges in a graph.
It has been adopted in many applications including recommender
systems [21], social networks [14], and drug discovery [1]. Tradi-
tionally, hand-crafted heuristics were used to identify new links in
the graph [2, 38, 55]. Heuristics are often chosen based on factors
that typically correlate well with the formation of new links. For
example, a popular heuristic is common neighbors (CNs), which
assume that the links are more likely to exist between node pairs
with more shared neighbors. It has been found that these factors,
which we refer to as “LP Factors”, often stem from the local and
global structural information and feature proximity [32]. We give an
example in Figure 1 that demonstrates different heuristic scores for
multiple candidate links. Each heuristic score corresponds to one of
the LP factors: CNs for local information, Katz for global, and Feat-
Sim for feature proximity. We can observe that the pair (source, 5)
has the highest CN and Katz score of the candidate links, indicating
an abundance of local and global structural information between
the pair. On the other hand, the feature similarity for (source, 5) is
the lowest among the candidate links. This indicates that different
LP factors and heuristics have distinct assumptions about why links
are formed.

More recently, message passing neural networks (MPNNs) [16],
which are able to learn effective node representations via message
passing, have been widely adopted for LP tasks. They predict the
existence of a link by combining the node representations of both
nodes in the link. However, such a node-centric view is unable
to incorporate the pairwise information between the nodes in the
link. Because of this, conventional MPNNs have been demonstrated
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to be poor link predictors due to their limited capability to learn
effective and expressive link representations [43, 52]. To address
this issue, recent efforts [51, 56] have attempted to move beyond
the node-centric view of traditional MPNNs by equipping them
with pairwise information specific to the link being predicted (i.e.
the “target link”) [51, 56]. This is done by customizing the message
passing process to each target link. However, a concern with this
approach is that it can be prohibitively expensive [9], as message
passing needs to be run for each individual target link. This is as
opposed to traditional MPNNs which only run message passing
once for all target links.

To overcome these inefficiencies, recent methods [9, 45, 50] have
instead explored ways to inject pairwise information into the model,
without individualizing the message passing to each target link.
This is done by decoupling the message passing and link-specific
pairwise information. By doing so, the message passing only needs
to be done once for all target links. To include the pairwise infor-
mation, these methods, which we refer to as “Decoupled Pairwise
MPNNSs” (DP-MPNNGs), instead learn a “pairwise encoding” to en-
code the pairwise relationship of the target link. The choice of
pairwise encoding is often based on heuristics that correspond to
common LP factors (e.g., common neighbors). DP-MPNNs have
gained attention as they can achieve promising performance while
being much more efficient than methods that customize the message
passing mechanism.

However, DP-MPNN:Ss are often limited in the choice of pairwise
encoding, using a one-size-fits-all solution for all target links. This
has two limitations. (1) The pairwise encoding may fail to consider
some integral LP factors. For example, NCNC [45] only considers
the 1-hop neighborhood when computing the pairwise encoding,
thereby ignoring the global structural information. This suggests
the need for a pairwise encoding that considers multiple types of LP
factors. (2) The pairwise encoding uses the same LP factors for
all target links. This assumes that all target links need the same
factors. However, it may not necessarily be true. Recently, Mao
et al. [32] have shown that different LP factors are necessary to
classify different target links. It is evident that even for the same
dataset, multiple LP factors are needed to properly predict all target
links. This further applies to different datasets, where certain fac-
tors are more prominent than others. As such, it faces tremendous
challenges when considering multiple types of LP factors. While
one factor may effectively model some target links, it will fail for
other target links where those patterns aren’t present. It is therefore
desired to consider different LP factors for different target links.

These observations motivate us to ask — can we design an efficient
method that can adaptively determine which LP factors to incorporate
for each individual target link? Essentially, it requires a pairwise
encoding that (a) models multiple LP factors, (b) can be tailored to
fit each individual target link, and (c) is efficient to calculate. By
doing so, we can flexibly adapt the pairwise information based on
the existing needs of each target link. To achieve this, we propose
LPFormer — Link Prediction TransFormer. LPFormer is a type
of graph Transformer [35] designed specifically for link prediction.
Given a target link (a, b), LPFormer models the pairwise encoding
via an attention module that learns how a and b relate in the context
of various LP factors. This allows for a more customizable set of
pairwise encodings that are specific to each target link. Extensive

2687

Harry Shomer, Yao Ma, Haitao Mao, Juanhui Li, Bo Wu, and Jiliang Tang

experiments validate that LPFormer can achieve SOTA on a variety
of benchmark datasets. We further demonstrate that LPFormer
is better at modeling several types of LP factors, highlighting its
adaptability, while also maintaining efficiency on denser graphs.

2 BACKGROUND
2.1 Related Work

Link prediction (LP) aims to model how links are formed in a graph.
The process by which links are formed, i.e., link formation, is often
governed by a set of underlying factors [5, 30]. We refer to these as
“LP factors”. Two categories of methods are used for modeling these
factors — heuristics and MPNNs. We describe each class of methods.
We further include a discussion on existing graph transformers.

Heuristics for Link Prediction. Heuristics methods [38, 55]
attempt to explicitly model the LP factors via hand-crafted mea-
sures. Recently, Mao et al. [32] have shown that there are three
main factors that correlate with the existence of a link: (1) local
structural information, (2) global structural information, and (3) fea-
ture proximity. Local structural information only considers the
immediate neighborhood of the target link. Representative methods
include Common Neighbors (CN) [38], Adamic Adar (AA) [2], and
Resource Allocation (RA) [55]. They are predicated on the assump-
tion that nodes that share a greater number neighbors exhibit a
higher probability of forming connections. Global structural in-
formation further considers the global structure of the graph. Such
methods include Katz [22] and Personalized PageRank (PPR) [7].
These methods posit that nodes interconnected by a higher num-
ber of paths are deemed to have larger similarity and, therefore,
are more likely to form connections. Lastly, feature proximity
assumes nodes with more similar features connect [36]. Previous
work [39, 54] have shown that leveraging the node features are
helpful in predicting links. Lastly, we note that Mao et al. [32] has
recently shown that to properly predict a wide variety of links, it’s
integral to incorporate all three of these factors.

MPNNs for Link Prediction. Message Passing Neural Net-
works (MPNNs) [16] aim to learn node representations via the
message passing mechanism. Traditional MPNNs have been used
for LP including GCN [24], SAGE [18], and GAE [25]. However,
they have been shown to be suboptimal for LP as they aren’t ex-
pressive enough to capture important pairwise patterns [43, 53].
SEAL [51] and NBFNet [56] try to address this by customizing the
message passing process to each target link. This allows for the
message passing to learn pairwise information specific to the target
link. However, these methods have been shown to be unduly expen-
sive as they require a separate round of message passing for each
target link. As such, recent methods have been proposed to instead
decouple the message passing and pairwise information [9, 45, 50],
reducing the time needed to do message passing. Such methods
include NCN/NCNC [45] which exploit the common neighbor in-
formation and BUDDY [9] and Neo-GNN [50] which consider the
global structural information.

Graph Transformers. Recent work has attempted to extend
the original Transformer [44] architecture to graph-structured data.
Graphormer [48] learns node representations by attending all nodes
to each other. To properly model the structural information, they
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propose to use multiple types of structural encodings (i.e., struc-
tural, centrality, and edge). SAN [27] further considers the use of
the Laplacian positional encodings (LPEs) to enhance the learnt
structural information. Alternatively, TokenGT [23] considers all
nodes and edges as tokens in the sequence when performing at-
tention. Due to the large complexity of these models, they are
unable to scale to larger graphs. To address this, several graph
transformers [10, 46] have been proposed for node classification
that attempt to efficiently attend to the graph. However, while some
work [11, 40] have formulated transformers for knowledge graph
completion, to our knowledge, there are no graph transformers
designed specifically for LP on uni-relational graphs.

2.2 Preliminaries

We denote a graph as G = {7V, E}, where V and & are the sets
of nodes and edges in G, respectively. The adjacency matrix is
represented as A € RIVIXIVI The d-dimensional node features are
represented by the matrix X € RIVIXd The set of neighbors for a
node v is given by N (v). The set of overlapping neighbors between
two nodes a and b, i.e., the common neighbors (CNs), is expressed by

N (Cal\;;) . We further denote the set of nodes that are 1-hop neighbors

of only one of a or b as

both nodes as N(Z’lb).

for a root node v and an arbitrary node u is given by ppr(v, u).

N (la b) and the nodes that are >1-hop from

Lastly, the personalized pagerank (PPR) score

3 THE PROPOSED FRAMEWORK

In Section 1, we highlighted the importance of adaptively model-
ing multiple types of LP factors. However, current methods that
use pairwise encodings, i.e., DP-MPNNS, struggle to appropriately
achieve this goal. This is due to two issues: (1) They only attempt
to model a subset of the potential LP factors (e.g., only local struc-
tural information), limiting their ability to model multiple factors.
(2) They use a one-size-fits-all approach in regard to pairwise en-
coding, using the same combination of LP factors for each target
link. These issues strongly limit the potential of such methods to
properly model a variety of different target links. To overcome
these problems, we propose LPFormer, a new transformer-based
method that can adaptively customize the pairwise information for
each target link by considering a variety of different LP factors in
an efficient manner.

3.1 A General View of Pairwise Encodings

Recent MPNNS for LP use a decoupled strategy to include the pair-
wise information [9, 45, 50]. These methods, DP-MPNNSs, predict
the existence of a link (g, b) via both the node representations and
a pairwise encoding s(a, b). They follow the formulation below:

H = MPNN(A, X),

p(ab) =0 (MLP (ha ohy || s(a b))), o

where h; is the representation of node i encoded by the MPNN.
Various DP-MPNNs adopt different ways to model the pairwise
encoding. For example, NCN [45] models the pairwise encoding
s(a, b) as the summation of the node representations of the CNs.
The pairwise encodings in these existing methods are typically
manually selected or extracted from the graph, which limits the LP
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factors they can cover. For example, s(a, b) in NCN and NCNC only
capture the local structural information. BUDDY [9] ignores the
node features when computing the pairwise encoding. To flexibly
model multiple types of LP factors, we propose a general formula-
tion for pairwise encodings as follows,

s(a,b) = Z w(a,b,u) © h(a,b,u),

uevV

@)

where w(a, b, u) measures the importance of node u to (a, b), and
h(a, b, u) is the encoding of node u relative to (a, b). By considering
which nodes should be considered for (a, b) and howthey are related
to the node pair, Eq. (2) can model different LP factors by manually
defining w(a, b, u) and h(a, b, u). In particular, we demonstrate how
the heuristic methods corresponding to different LP factors can fit
into this framework.

Common Neighbors (CNs) [38]: CNs considers the local struc-
tural information and is defined for a pair of nodes (a, b) as N, (Cal\}]) =
N (a) N N(b). Eq. (2) is equal to the CNs when h(a, b, u) = 1 and:

1, whenu e N(a) N N(b) }

0, else
Katz Index [22]: The Katz index models the global structural
information. It is defined as weighted summation of the number of
paths of different lengths connecting a and b and a decay weight

B elo,1],

w(a,b,u) = { (3)

Katz(a, b) = Z ﬁlAla b

I=1
This is equivalent to Eq. (2) where w(a, b,u) = Z}il ﬂl eaTAl and

3

where e; € B!V is a one-hot vector for a node i.

Feature Similarity: The feature similarity of the pair of nodes
(a,b) is expressed by dis(xg4, x;) where x, are the node features
of node a and dis(-) is a distance function (e.g., euclidean dis-
tance). This can be rewritten as Eq. (2) by substituting w(a, b, u) =
dis(xg,%y) and h(a, b,u) = e};.

These examples demonstrate that the general formulation can
indeed model many different LP factors including local and global
structural information and feature proximity. We further show in
Appendix A that Eq. (2) can model a variety of additional LP factors
including RA [55], the pairwise encodings used in NCN/NCNC [45]
and Neo-GNN [50]. However, fitting these methods into the for-
mulation in Eq. (2) requires manually defining both w(a, b, u) and
h(a, b,u). This constrains the information represented by s(a, b)
based on the choice of design. Motivated by this, in the next section
we introduce our method that does not rely on a handcrafting both
w(a, b,u) and h(a, b, u).

eg, whenu =0

h(a,b,u) = { 0

else

3.2 Modeling Pairwise Encodings via Attention

In Section 3.1, we introduced a general formulation for pairwise
encodings in Eq. (2), which is able to capture a variety of differ-
ent LP factors. However, it requires manually defining both terms
in the equation. This limits our ability to customize the pairwise
information to each target link. As such, we further aim to move
beyond a one-size-fits-all pairwise encoding, and enable the model



KDD ’24, August 25-29, 2024, Barcelona, Spain Harry Shomer, Yao Ma, Haitao Mao, Juanhui Li, Bo Wu, and Jiliang Tang

1) Encode the Nodes via a MPNN 2) Extract Neighborhood N (a, b) for the Target Link (a, b)

J

Adjacency Representation
: Matrix for Node i ° e “ E
: A |
MPNN ——> h; o (v} :‘l> @) @ o
Node O
: Features Lo :
: X G @ >1-Hop ]

L. Elementwise Features N :
h, Pairwise hy ® hy Probability of (a,b)
: Encoding o being linked '
| h, Multi-head Pairwise Encoding :
i h Attention s(a, b) s(a,b) MLP — p(a,b) :
1 U i :
rP€(4,h,u) ( # of Nodes of each 1 E
" o Type

Figure 2: An overview of LPFormer. (1) Encode the nodes via a MPNN. (2) For a given target link, we determine which
nodes to attend to (N (a, b)) via the PPR-based thresholding technique in Eq. (10). (3) The pairwise encoding is computed by
attending to each node, u € N (a, b) using the feature and relative positional encoding rpe ,py)- (4) The pairwise encoding, node
representations, and counts of different node types are concatenated and used to compute the final probability of the target
link existing.

to produce customized pairwise encoding for each target link. This structural context. Due to the importance of local and global struc-
allows the model to handle more realistic graphs that often contain tural information [15, 20], it is vital to properly encode both. By
multiple prominent LP factors for different target links as shown including both the structural and feature information, we are able
in [32]. to cover the space of potential LP factors (see Section 2.1).

In particular, we consider the following question: How can we We denote the feature representation of a node u as hy, and the
model Eq (2) such that it can customize the used LP factors to each tar- relative positional encoding (RPE) as rpe(, 3, ,,)- The node impor-
get link? We consider parameterizing both w(a, b, u) and h(a, b, u). tance w(a, b, u) is modeled via attention as follows:

This allows us to learn how to personalize them to each target link.
To achieve this, we leverage softmax attention [4]. This is due to its w(a,b,u) =¢ (ha, hy, hy, rpe( a,b,u)) ,
ability to dynamically learn the relevance of different nodes to the

exp(w(a, b,u))

target link. As such, for multiple target links, it can emphasize the w(a,b,u) = (4)
contributions of different nodes, thereby flexibly modeling different
LP factors. We note that since the attention is between different
sequences (i.e., a target link and nodes), it can be considered a form
of cross attention [44].

To enhance the adaptability of the pairwise encoding for various
links, it is essential to incorporate various types of information. This
allows the attention mechanism to discern and prioritize relevant
information for each target link, facilitating the effective modeling
of diverse LP factors. In particular, we consider two types of infor-
mation. The first is the feature information. This includes the
feature representation of both nodes in the target link and the node
being attended to. The node features are included due to their role
in link formation and relationship to structural information [36].
Second, we consider the relative positional information. The
relative positional information reflects the relative position in the
graph of a node u to the target link (a, b) in the local and global

Z:ve(‘}(a,b) exp(‘;’(a, b, u)) ’

where V (a,b) =V \ {a, b}. The attention weight w(a, b, u) can be
considered as the impact of a node u on (a, b) relative to all nodes
in G. This allows the model to emphasize different LP factors for
each target link. The node encoding h(a, b, u) includes the features
of node u in conjunction with the RPE and is defined as:

h(a,b,u) =W [hu I rpe(a,b,u)]. )

By substituting Eq. (4) and Eq. (5) into Eq. (2) we can compute the
pairwise information s(a, b). We further define ¢(-) in Eq. (4) as the
GATv2 [8] attention mechanism. The detailed formulation is given
in Appendix C. The feature representations h; are computed via a
MPNN. We use GCN [26] in this work. However, it is unclear how
to properly encode the RPE of a node u relative to (a, b), rpe(, p )
We aim to design the RPE to capture both the local and global
structural relationship between the node and target link while also
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being efficient to calculate. In the next section, we discuss our
solution for modeling rpe, 4, ,)-

3.3 PPR-Based Relative Positional Encodings

In this section, we introduce our strategy for computing the RPE
of a node u relative to a target link (a, b). Intuitively, we want the
RPE to reflect the positional relationship between u and (a, b) such
that different types of information (i.e., local vs. global) are encoded
differently. Using Figure 1 as an example, since node 3 is a CN of
(source, 5) we expect it to have a much different relationship to the
target link than node 6, which is a 2-hop neighbor of both nodes.
An enticing option is to use the double radius node labeling (DRNL)
trick introduced by Zhang and Chen [51]. However, Chamberlain
et al. [9] have shown it to be prohibitively expensive to calculate for
larger graphs. Furthermore, existing RPEs are typically infeasible to
calculate on larger graphs as they often rely on pairwise distances
or the eigenvectors of the Laplacian [41].

As such, we seek an RPE that can both distinguish the relation-
ship of different nodes to the target link while also being efficient
to calculate. To motivate our RPE design, we draw inspiration from
the following Proposition.

Proposition 1. Consider a target link (a,b) and a nodeu € V \
{a,b}. The PPR [7] score of a root node i and target node j with
teleportation probability a is denoted by ppr(i, j). Let rk (u) be the
probability of a walk of length k beginning at node a and terminating
at u. We define r]aib(u) = rlg(u) + r];(u). We also define a weight
yk =a(l-a)k for all walks of length k. The PPR scores, ppr(a, u)
and ppr(b,u), along with the random walk probabilities of disparate
lengths, are interconnected through the following relationship.

T(a,b,u) = ppr(a,u) + ppr(b,u) = Z yRrk (). (6)

k=0

The detailed proofis given in Appendix B. From Proposition 1, we
can make the following observations: (1) The PPR scores encode the
weighted sum of the probabilities of different length random walks
connecting two nodes. (2) Walks of shorter length are given higher
importance, as evidenced by the dampening factor y* = a(1 — a)¥
which decays with the increase in k. These observations imply that
- a larger value of I'(a, b, u) correlates with the existence of
many shorter walks connecting node u to the both nodes in
the target link (a,b).

Therefore, the PPR scores can be used as an intuitive and useful
method to understand the structural relationship between node
u and both nodes in the target link (g, b). If both scores, ppr(a, u)
and ppr(b, u), are high, there exists a high probability that many
shorter walks connect u to both nodes in the target link. This
implies that node u has a stronger impact on the nodes in the target
link. On the other hand, if both PPR scores are low, there is likely
very little relationship between u and the target link. This allows
for a convenient way of differentiating how a node structurally
relates to the target link. Furthermore, we note that the PPR matrix
can be efficiently pre-computed using the algorithm introduced
by Andersen et al. [3], allowing for easy computation and use.

Following this idea, to calculate the RPE of a node u, we use the
PPR scores of a node u relative to both nodes in the target link (a, b).
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Instead of considering the sum of PPR scores as in Proposition 1,
we further parameterize I'(-) via an MLP,

™)

By introducing learnable parameters to I'(-), it allows for the model
learn the importance of individual PPR scores and how they interact
with each other. To ensure that Eq. (7) is invariant to the order of
the nodes in the target link, i.e., (a,b) and (b, u), we further set the
RPE to be equal to the summation of the representations given by

both (a, b) and (b, a):

Ipe (44, = MLP (ppr(a, u), ppr(b, u)) .

®)

However, a concern with Eq. (8) is that it is not guaranteed to be able
to distinguish certain types of nodes from each other. For example,
it is necessary to clearly distinguish CNs from other nodes due
to their important role in link formation [38]. To overcome this
issue, we fit three separate MLPs for when u is a: CN of (a,b), a
1-hop neighbor of either a and b, and a >1-hop neighbor of both
a and b. This ensures that we can properly distinguish between
these three types of nodes. We verify the effectiveness of this design
in Section 4.4. Lastly, we note that while other work [29, 34] has
considered the use of random-walk based positional encodings,
they are only designed for use on the node-level and are unable to
be used for link-level tasks like LP.

TP€(4bu) = TP€(apbu) T TPE(hau)-

3.4 Efficiently Attending to the Graph Context

The proposed attention mechanism in Section 3.2 attends to all
nodes in the graph, sans those in the link itself. This makes it
difficult to scale to large graphs. Motivated by selective [33] and
sparse [13] attention, we opt to attend to only a small portion of
the nodes.

At a high level, we are interested in determining a subset of
nodes N(a,b) € V to attend to for the target link (a,b). Our
goal is to choose the set of nodes N(a, b) such that they are (a)
few in number to improve scalability and (b) provide important
contextual information to the pair (a, b) to best learn the pairwise
information. This can be achieved by only considering all nodes
where the importance of the node u to the target link (a,b) is
considered high. Formally, we can write this as the following where
T (a,b,u) is a function that denotes the importance of a node u to
the target link (a, b):

N(ab)={ueV\{ab}|I(abu) >n} 9)

The threshold 7 allows us to distinguish those nodes that are suffi-
ciently important to the target link. This allows for a simple and
efficient way of determining the set N (a, b). However, what do we
use to model the importance I (a, b, u) ? For ease of optimization and
better efficiency, we avoid parameterizing the function 7 (a, b, u).
Instead, we want to choose a metric such that can properly serve
as a proxy for the importance of a node u to (g, b) while also being
concentrated in a small subset of nodes. Such a metric will allow
Eq. (9) to choose a small but influential set of nodes to attend to.
A measure that satisfies both criteria is Personalized Pagerank
(PPR) [7]. In Section 3.3 we discussed that the PPR score can serve
as a good tool to model the influence of a one node on another.
Furthermore, existing work [3, 17, 37] shows that the PPR scores
tend to be highly localized in a small subset of nodes. Therefore by
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making 7 (a, b, u) contingent on the PPR scores of (a,u) and (b, u)
we can extract a small but important set of nodes to attend to for
the target link.

Following this idea, for a target link (a, b), we keep all nodes
whose PPR score is above some threshold 7 relative to both nodes
in the target link. As such, we only keep a node u if it is related
in some capacity to at least one of the nodes in the target link.
Similarly to Section 3.3, we treat CN, 1-Hop, and >1-Hop nodes
differently by applying a different threshold for them. The filtered
node set for each category of nodes is given by:

Ny ={u € N{, ) Ippr(a,u) > 0™, ppr(b,u) > "}, (10)

where N(’Z b) is the filtered node set for all nodes of the type « €

{CN, 1-Hop, >1-Hop} and 5" is the corresponding PPR threshold.
We note that while other work [6, 49] has used PPR to filter the
nodes on the node-level, no existing work has done so on the link-
level.

We corroborate this design by demonstrating that LPFormer can
achieve SOTA performance in LP (Section 4.2) while achieving a
faster runtime than the second-best method, NCNC [45], on denser
graphs (Section 4.8). This is despite the fact that LPFormer can
attend to a wider variety of nodes. We further show in Section 4.5
that the performance is stable with regards to the values of 7 chosen,
allowing us to easily choose a proper threshold on any dataset.

3.5 LPFormer

We now define the overall framework — LPFormer. The overall pro-
cedure is given in Figure 2: (1) We first learn node representations
from the input adjacency and node features via an MPNN. We note
that this step is agnostic to the target link. (2) For a target link (a, b)
we extract the nodes to attend to, i.e. NV (a, b). This is done via the
PPR thresholding technique defined in Section 3.4. (3) We apply
L layers of attention, using the mechanism defined in Section 3.2.
The output is the pairwise encoding s(a, b). (4) We generate the
prediction of the target link using three types of information: the
element-wise product of the node representation, the pairwise en-
coding, and the number of CN, 1-Hop, and >1-Hop nodes identified
by Eq. (10). The score function is given by:

pla.b) = o (MLP (s 01y [| s, [|ING 1|18 185, 1))

(11)
We demonstrate in Section 4.4 that the inclusion of the node counts
is helpful, as it provides complementary information to the pairwise
encoding.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the
effectiveness of LPFormer. Specifically, we attempt to answer the
following questions: (RQ1) Can LPFormer consistently outperform
baseline methods on a variety of different benchmark datasets?
(RQ2) Is LPFormer able to model a variety of different LP factors?
(RQ3) Can LPFormer be run efficiently on large dense graphs? We
further conduct studies ablating each component of our model and
analyzing the effect of the PPR-based threshold on performance.
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4.1 Experimental Settings

Datasets. We include Cora, Citeseer, and Pubmed [47] and ogbl-
collab, ogbl-ppa, ogbl-ddi, and ogbl-citation2 [19]. Furthermore, for
Cora, Citeseer, and Pubmed we experiment under a single fixed
split as in Li et al. [28]. The detailed statistics for each dataset are
shown in Table 1.

Baseline Models. We compare LPFormer against a wide va-
riety of baselines including: CN [38], AA [2], RA [55], GCN [26],
SAGE [18], GAE [25], SEAL [51], NBFNet [56], Neo-GNN [50],
BUDDY [9], NCN [45], and NCNC [45]. Results on Cora, Citeseer,
and Pubmed are taken from Li et al. [28]. Results for the heuristic
methods are from Hu et al. [19]. All other results are either from
their respective study or Chamberlain et al. [9].

Hyperparameters: The learning rate is tuned from {1e =3, 5¢ 73},
the decay from {0.95,0.975, 1}, and the dropout from [0, 0.7], and
the weight decay from {0, le74, le_7}. The size of the hidden di-
mension is set to 64 for ogbl-ppa and ogbl-citation2, 128 for Cora,
Pubmed, and ogbl-collab, and 256 for Citeseer. Lastly, the PPR
threshold is tuned from {le_z, 1e73, 16_4}.

Evaluation Metrics. Each positive target link is evaluated against
a set of given negative links. The rank of the positive link among
the negatives is used to evaluate performance. The two types of
metrics that are used to evaluate this ranking are Hits@K and MRR.
For the OGB datasets we use the metric used in the original study.
This includes Hits@50 for ogbl-collab, Hits@100 for ogbl-ppa and
MRR for ogbl-citation2. For Cora, Citeseer, Pubmed we follow Li
et al. [28] and use MRR. Lastly, the same set of negative links is used
for all positive links except on ogbl-citation2, where [19] provides
a customized set of 1000 negatives for each individual positive link.

4.2 Main Results

We present the results of LPFormer compared with baselines on
multiple benchmark datasets. Note that we omit ogbl-ddi from the
main results due to recent issues discovered by Li et al. [28]. The
results are shown in Table 2. We observe that LPFormer can achieve
SOTA performance on 5/6 datasets, significantly outperforming
other baselines. Moreover, LPFormer is also the most consistent of
all the methods, achieving strong performance on all datasets. This
is as opposed to previous SOTA methods, NCNC and BUDDY, which
tend to struggle on Cora and Pubmed. We attribute the consistency
of LPFormer to the flexibility of our model, allowing it to customize
the LP factors needed to each link and dataset.

4.3 Performance by LP Factor

In this section, we measure the ability of LPFormer to capture
a variety of different LP factors. To measure this, we identify all
positive target links when there is only one dominant LP factor.
For example, one group would contain all target links where the
only dominant factor is the local structural information. We focus on
links that correspond to one of the three groups identified in [32]:
local structural information, global structural information, and
feature proximity.

We identify these groups by using popular heuristics as proxies
for each factor. For local structural information, we use CNs [38],
for global structural information we use PPR [7] as it’s the most
computationally efficient of all global methods, and for feature
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Table 1: Dataset statistics. The split ratio is the % of samples for train/validation/test.

Cora  Citeseer Pubmed ogbl-collab ogbl-ddi  ogbl-ppa  ogbl-citation2

#Nodes 2,708 3,327 18,717 235,868 4,267 576,289 2,927,963
#Edges 5,278 4,676 44,327 1,285,465 1,334,889 30,326,273 30,561,187
Split Ratio  85/5/10  85/5/10  85/5/10 92/4/4  80/10/10 70/20/10 98/1/1

Table 2: Results on benchmark datasets. OOM is an out of memory error. Colored are the results ranked first, second, and third.

Cora Citeseer Pubmed ogbl-collab ogbl-ppa ogbl-citation2 ‘ Mean Rank

Metric MRR MRR MRR H@50 H@100 MRR \

CN 20.99+0.00  28.34+0.00 14.02+0.00 56.44+0.00 27.65+0.00 51.47+0.00 11.0
AA 31.87+0.00  29.37+0.00  16.66+0.00 64.35+0.00 32.45+0.00 51.89+0.00 8.5
RA 30.79+0.00  27.61+0.00  15.63+0.00 64.00+0.00 49.33+0.00 51.98+0.00 8.7
GCN 32.50+6.87 50.01+6.04 19.94+4.24 44.75+1.07 18.67+1.32 84.74+0.21 8.0
SAGE 37.83+7.75 47.84+6.39  22.74+5.47 48.10+0.81 16.55+2.40 82.60+0.36 7.7
GAE 29.98+3.21 63.33+3.14  16.67+0.19 OOM OOM OOM NA
SEAL 26.69+5.89  39.36+4.99 38.06+5.18 64.74+0.43 48.80+3.16 87.67+0.32 6.2
NBFNet 37.69+3.97 38.17+3.06 44.73+2.12 OOM OOM OOM NA
Neo-GNN  22.65+2.60 53.97+5.88  31.45+3.17 57.52+0.37 49.13+0.60 87.26+0.84 7.0
BUDDY 26.40+4.40  59.48+8.96  23.98+5.11 65.94+0.58 49.85+0.20 87.56+0.11 5.7
NCN 32.93+3.80  54.97+6.03  35.65+4.60 64.76+0.87 61.19+0.85 88.09+0.06 3.8
NCNC 29.01+3.83 64.03+3.67 25.70+4.48 66.61+0.71 61.42+0.73 89.12+0.40 3.8
LPFormer 39.42+578 65.42+4.65 40.17+1.92 68.14+0.51 63.32+0.63 89.81+0.13 1.2

proximity, we use the cosine similarity of the features. Using these
heuristics, we determine if only one factor is dominant by com-
paring the relative score of each heuristic. This is done by first
computing the score for each factor i for the target link (a,b) -
s'(a, b). For each factor, we then compute the score corresponding
to the p-th percentile among all links, §'. We choose a larger value
of p (i.e. 90%) such that a score > §' indicates that a significant
amount of pairwise information exists for that factor. For a single
target link, we then compare the score of each factor s’ (a, b) to §%. If
si(a,b) = § is true for only one factor, this implies that the score
for only one factor is “high”. Therefore there is a notable amount
of pairwise information existing for only one factor for the link
(a, b). This ensures that only one factor is strongly expressed. If
this is true, we then assign the target link (a, b) to factor i. Please
see Appendix D.2 for a more detailed explanation.

We demonstrate the results on Cora, Citeseer, and ogbl-collab
in Figure 3. We observe that LPFormer typically performs best for
each individual LP factor on all datasets. Furthermore, it is also the
most consistently well-performing on each factor as compared to
other methods. For example, on Cora the other methods struggle
for links that correspond to the feature proximity factor. LPFormer,
on the other hand, is able to significantly outperform them on
those target links, performing around 33% better than the second
best method. Lastly, we note that most methods tend to perform
well on the links corresponding to the global factor, even if they
don’t explicitly model such information. This is caused by a strong
correlation that tends to exist between local and global structural
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information, often resulting in considerable overlap between both
factors [32]. These results show that LPFormer can indeed adapt to
multiple types of LP factors, as it can consistently perform well on
samples belonging to a variety of different LP factors. Additional
results are given in Appendix E.

4.4 Ablation Study

We further include an ablation study to verify the effectiveness of
the proposed components in LPFormer. In particular, we introduce
6 variants of LPFormer. (a) w/o Learnable Att: No attention is
learned. As such, we set all attention weights to 1 and remove
the RPE. (b) w/o Features in Att: We remove the node feature
information from the attention mechanism. (c) w/o RPE in Att:
We remove the RPE from the attention mechanism. (d) w/o PPR
RPE: We replace the PPR-based RPE with a learnable embedding
for each of CN, 1-Hop, and >1-Hop nodes. (¢) w/o PPR RPE by
Node Type: We don’t fit a separate function for each node type
when determining the PPR RPE (see Section 3.3). Instead we use one
for all nodes. (f) w/o Counts: We remove the counts of different
nodes from the scoring function.

The results are shown in Table 3. We include ogbl-collab, ogbl-
ppa, and Citeseer. We observe that ablating a component always de-
creases the performance. However, the magnitude of the decrease is
dataset-dependent. For example, on ogbl-collab, ablating the feature
information in the attention marginally affects the performance.
However, on ogbl-ppa and Citeseer, removing the feature informa-
tion results in a large decrease in performance. On the other hand,
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Figure 3: Performance on links that contain one dominant LP factor. Results are on (a) Cora, (b) Citeseer, and (c) ogbl-collab.

while removing learnable attention results in a modest decrease
on ogbl-ppa, for the other two datasets we see a large drop. This
highlights the importance of each component of our framework, as
they are each necessary for consistently strong performance across
multiple datasets.

Table 3: Ablation Study on LPFormer

Method ‘ ogbl-collab ogbl-ppa  Citeseer
w/o Learnable Att 65.05+0.50 62.77+1.03  56.23+1.75
w/o Features in Att 68.04+0.79 56.98+1.55  53.40+9.30
w/o RPE in Att 65.26+0.56 61.20£0.69  56.70+3.79
w/o PPR RPE 67.09+0.51 61.91+1.22  51.96+15.2
w/o PPR RPE by Node Type 67.95+0.54 62.92+1.06  57.40+5.71
w/o Counts 67.75+0.41 44.37+1.89  54.39+5.30
LPFormer | 68.14z051  63.32:0.63 65.42:4.65

Table 4: Effect of Varying the PPR Thresholds

Threshold ogbl-collab ogbl-citation2
‘ 1-Hop >1-Hop ‘ 1-Hop >1-Hop
le-4 68.24+0.25 67.73+0.65 | 89.81+0.13 89.14+0.22
le-2 67.60+0.31  68.24+0.25 | 89.49+0.18 89.81+0.13
1 67.08+0.65 68.14+0.51 | 89.49+0.16 89.26+0.39

4.5 Effect of the PPR Thresholds

We examine the effect of varying the PPR threshold for both 1-Hop
and >1-Hop nodes as described in Eq. (10). The results for ogbl-
collab and ogbl-citation2 are shown in Table 4. When varying the
1-Hop threshold, we fix the value of the >1—-Hop threshold to 1le-2
for both datasets. When varying the >1-Hop threshold, we fix the
value of the 1-Hop threshold to 1e-4 for both datasets.

We can observe that modifying the threshold has little effect
on the underlying performance of the model. For both datasets, a
value of le-2 works well for the >1-Hop threshold and 1e-4 works
well for the 1-Hop threshold. We typically find that setting both
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values to le-2 provides a good trade-off between performance and
efficiency.

4.6 Performance on HeaRT Setting

We further test the performance of our method on the HeaRT [28]
evaluation setting, which considers a more realistic and difficult
evaluation setting for link prediction. This is done by introducing a
much harder and more realistic set of negative samples during eval-
uation. Li et al. [28] observe that this results in a large decrease in
performance on all datasets. Furthermore, compared to the original
evaluation setting, MPNNs designed specifically for link prediction
are often outperformed by heuristics or other MPNNS.

The full results can be found in Table 5. We observe that LP-
Former performs considerably better than all other models. For
instance, the mean rank of LPFormer is 3.1x better than the 2nd
best-performing model, NCN. This indeed shows the advantage
of LPFormer, as it can consistently achieve extraordinary perfor-
mance across all datasets under the much more challenging HeaRT
evaluation setting. This is as opposed to other LP-specific methods
that often perform similarly to standard MPNN methods.

4.7 Performance on Heterophilic Datasets

In this section we evaluate LPFormer on multiple heterophilic
datasets. Heterophily refers to the tendency of dissimilar nodes
to be connected. This is as opposed to homophily, in which nodes
with similar attributes are more likely to be connected. Since most
graphs used for benchmark datasets tend to contain homophilic pat-
terns, heterophilic graphs present an interesting challenge regard-
ing the effectiveness of graph-based methods. For a more detailed
discussion on heterophilic graphs, please see [31].

We test on two prominent heterophilic datasets, Squirrel and
Chameleon [42]. The statistics for each are in Table 6. We limit our
comparison to those LP methods that tend achieve the best results,
including GCN, BUDDY, and NCNC. In Table 7, we report the
MRR over five random seeds. Note that we test under the original
evaluation setting and not HeaRT. We observe that LPFormer can
achieve a large increase over other methods, with a 14% and 9%
increase in performance on Squirrel and Chameleon, respectively.
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Table 5: Results (MRR) under HeaRT. Highlighted are the results ranked first, second, and third.

Models Cora Citeseer Pubmed  ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2 Mean Rank
CN 9.78 8.42 2.28 4.20 6.71 25.70 17.11 11.1
AA 11.91 10.82 2.63 5.07 6.97 26.85 17.83 9.6
RA 11.81 10.84 2.47 6.29 8.70 28.34 17.79 8.1

GCN 16.61 + 0.30 21.09 + 0.88 7.13 £0.27 6.09 + 0.38 13.46 + 0.34  26.94 £ 0.48 19.98 + 0.35 4.7
SAGE 14.74 £+ 0.69 21.09 = 1.15 9.40 £ 0.70 5.53+£0.5 12.60 £ 0.72 27.27 £ 0.30 22.05 £ 0.12 4.7
GAE 18.32 £ 0.41 25.25+0.82  5.27 £ 0.25 OOM 3.49 +1.73 OOM OOM NA
SEAL 10.67 + 3.46 13.16 + 1.66 5.88 £ 0.53 6.43 + 0.32 9.99 + 0.90 29.71 £ 0.71 20.60 + 1.28 6.4
NBFNet 13.56 £+ 0.58 14.29 £+ 0.80 >24h OOM >24h OOM OOM NA
BUDDY 13.71 £ 0.59 22.84 + 0.36 7.56 + 0.18 5.67 + 0.36 12.43 £ 0.50 27.70 + 0.33 19.17 £ 0.20 5.9
Neo-GNN 13.95 £ 0.39 17.34 + 0.84 7.74 £ 0.30 5.23+0.9 10.86 + 2.16 21.68 + 1.14 16.12 + 0.25 7.4
NCN 14.66 + 0.95 28.65 £ 1.21 5.84 £ 0.22 5.09 £ 0.38 12.86 + 0.78 35.06 + 0.26 23.35 £ 0.28 4.4
NCNC 14.98 + 1.00 24.10 + 0.65 8.58 £ 0.59 4.73 + 0.86 >24h 33.52 + 0.26 19.61 + 0.54 4.8
LPFormer ‘ 16.80 + 0.52  26.34 £ 0.67 9.99 +0.52 7.62+0.26 13.20+ 0.54 40.25 + 0.24 24.70 £+ 0.55 ‘ 1.4
These results indicate the superior ability of LPFormer to accurately 2800 Training Time per Epoch
model LP on heterophilic graphs, as compared to other methods. = NCNC ek
I LPFormer
.1 s L. 2100+
Table 6: Heterophilic Dataset Statistics. w
o
Squirrel Chameleon £ 1400
-
#Nodes 5201 2277 5
#Edges 198,353 31,371 700
Split Ratio  85/5/10 85/5/10

Table 7: Results on Heterophilic Datasets.

Method ‘ Squirrel  Chameleon
GCN 22.77 £ 4.54  20.74 £ 8.08
BUDDY 9.69 £ 0.99 6.30 £ 2.40
NCNC 3237 £546  26.24 +3.37
LPFormer 36.77 £ 2.77 28.61 + 6.68
% Improvement 14% 9%

4.8 Runtime Analysis

In this section, we compare the runtime of LPFormer against NCNC,
which is the strongest performing baseline. The results are shown
in Figure 4 on all four OGB datasets We further include the mean
degree of each dataset in parentheses. We observe that LPFormer
shines on denser datasets, taking significantly less time to train one
epoch. This is despite that LPFormer can attend to nodes beyond
the 1-hop radius of the target link. This underscores the importance
of the PPR thresholding technique introduced in Section 3.4, as it
allows for efficient attention to a wider variety of nodes. Lastly,
we note that LPFormer struggles on the ogbl-citation2 dataset due
to the large number of nodes in the dataset (i.e., 2,927,963), which
requires the sparse PPR matrix to be quite large. For future work
we plan on exploring pre-computing the necessary PPR scores as
an efficient pre-processing step, thereby removing the need to store
the costly PPR matrix.
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Figure 4: Comparison of training time of 1 epoch between
LPFormer and NCNC. The mean degree is in parentheses.

5 CONCLUSION

In this paper we introduce a new framework, LPFormer, that aims
to integrate a wider variety of pairwise information for link predic-
tion. LPFormer does this via a specially designed graph transformer,
which adaptively considers how a node pair relate to each other
in the context of the graph. Extensive experiments demonstrate
that LPFormer can achieve SOTA performance on a wide vari-
ety of benchmark datasets while retaining efficiency. We further
demonstrate LPFormer’s supremacy at modeling multiple types of
LP factors. For future work, we plan on exploring other methods
of incorporating multiple LP factors with an emphasis on global
structural information.
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A SPECIAL CASES OF THE GENERAL
PAIRWISE ENCODING

In this section we demonstrate that multiple popular heuristics
and pairwise encodings can be formulated as special cases of the
general pairwise encoding given in Eq. (2).

Common Neighbors (CNs) [38]: The CNs of a pair of nodes (a, b)
is defined the overlapping 1-hop neighbors of both nodes, N, 8})) =
N(a) N N(b). Eq. (2) is equal to the CNs when h(a, b,u) = 1 and
w(a, b,u) is:

1’ }

w(a,b,u) = { 0 (12)

Adamic-Adar (AA) [2]: AA further weights each common neigh-
bor by the reciprocal of its log-degree, i.e., 1/log(dy) for node
u, allowing us to rewrite Eq. (2) as h(a,b,u) = 1/log(dy,) where
w(a, b, u) is equal to Eq. (12).

Resource Allocation (RA) [55]: RA is similar to AA except that it
is omits the log, resulting in 1/d,,. As before, Eq. (2) can be rewritten
as the RA when h(a, b,u) = 1/d,, and w(a, b, u) is equal to Eq. (12).

when u € N(a) N N(b)

else

Katz Index [22]: The Katz index is a global structural measure. It is
defined as weighted summation of the number of paths of different
lengths connecting a and b. It is given by the following where the
decay weight f € [0, 1],

Katz(a, b) = Z ,BlAfl b (13)
I=1
This is equivalent to Eq. (2) when:
w(a,b,u) = Z plelal, (14)

I=1

where e; € B!V is a one-hot vector for a node i. We further set,

whenu =b
h(a,b,u) = { else } .

T
eh,

0. (15)

Personalized Pagerank (PPR) Score [7]: The personalized pager-
ank score is the pagerank score localized to a root node u. Eq. (2) can
be rewritten as the PPR score when setting h(a, b, u) equal to (15)
and, following Chung [12], setting w(a, b, u) to:

(o9

w(a,b,u) = aZ(l —a)leZ(D_lA)l. (16)

1=0
Feature Similarity: The feature similarity of the pair of nodes
(a, b) is expressed by dis(x4, X;) where x, are the node features
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of node a and dis(-) is a distance function (e.g., euclidean dis-
tance). This can be rewritten as Eq. (2) by substituting w(a, b, u) =
dis(xg4,xy) and h(a, b,u) = eZ where e; € B!Vl is a one-hot vector
for a node i.

NCN [45]: The pairwise encoding used in NCN is defined as the
summation of the representations for the CNs of a link. Eq. (2) can
be rewritten as NCN when w(a, b, u) is equal to Eq. (12). h(a, b, u)
is equal to the node representation u encoded by a MPNN, i.e.,
h(a,b,u) = h, where H = MPNN(A, X).

NCNC [45]: NCNC extends NCNC by further weighting the 1-hop
(non-CN) by their probability of linking to the other nodes. Given
Eq. (2), the weight w(a, b,u) is equal to following where 1-hop
neighbors are weighted by their probability of linking with the
other node:

1, when u € N((ﬁ;)

w(a,b,u) = NCN(A,X,b,u) whenu € N(a) (17)
NCN(A, X,a,u) whenu e N(b)
0, else

NCN(A, X, a, u) is the probability of a and u being linked using the
NCN model. We further define h(a, b,u) = h,,.

Neo-GNN [50]: The pairwise encoding used in Neo-GNN considers
the higher-order neighborhood overlap between two nodes. The
formulation is given in Section A. When [ = 1, it can be expressed
using Eq. (2) by setting:

2

> A4,

ve N(u)

h(a,b,u) = fi (18)

and w(a, b, u) as equal to Eq. (12).

B PROOF OF PROPOSITION 1

Proposition 1. Consider a target link (a,b) and a nodeu € V \
{a,b}. The PPR [7] score of a root node i and target node j with
teleportation probability « is denoted by ppr(i, j). Let rK (u) be the
probability of a walk of length k beginning at node a and terminating
at u. We define rsb(u) = r]a‘(u) + rf(u). We also define a weight
yk = a(1-a)k for all walks of length k. The PPR scores, ppr(a, u)
and ppr(b, u), along with the random walk probabilities of disparate
lengths, are interconnected through the following relationship.

T'(a,b,u) = ppr(a,u) + ppr(b,u) = Z ykr]a‘,b (u).
k=0

(6)

Proor. Per Chung [12], the PPR vector for a root node s, pry, is
equivalent to:

[oe]
prg = 0{2(1 - oc)kaxs, (19)
k=0
where W is a the random walk matrix and x; is a preference vector
that is a one-hot vector for element s. We note that pry(t) repre-
sents the landing probability of node t given the root node s. As
such, by definition, pr,(t) = ppr(s, t). Furthermore, it is clear that
ré‘ = Wkx; € RV represents the probability of a walk of length k
beginning at node s and stop all other nodes, individually. Also, the



KDD ’24, August 25-29, 2024, Barcelona, Spain

probabilities of all walks of length k are weighted by y* = a(1-a)k.
T (a, b, u) can be obtained by first taking the sum of the PPR vectors
for nodes a and b,

pr, +pr, = aZ(l - a)kaxa +a Z(l - a)kaxb,

k=0 k=0
(e8]

Prap = aZ(l - a)ka (xq +xp), (20)
k=0

where pr, ;, = pr,, + pr;,. From this, we can express I['(a, b, u) as:
I'(a, b, u) = ppr(a,u) + ppr(b,u),
=prgp(w),
= pr, () +pry (w),
which as shown in Eq. (20) is equivalent to the probability of a walk

that originates from either node a or b and terminates at node u.
This completes the proof. O

(1)

C ATTENTION FORMULATION

For a target link (g, b), LPFormer attends to the nodes in the set
V(a, b). The attention mechanism used in LPFormer is defined in
Section 3 as follows where w(a, b, u) is the attention weight of u to

the target link and V' (a,b) =V \ {a, b}:
w(a,b,u) = ¢ (ha, hy, hy,, rpe(a’b’u)),
exp(w(a, b, u))
2ve(l;'(a,b) exp(w(a, b,u)) '

The function ¢ (-) is modeled via the attention mechanism defined in
GATv2 [8]. We define a € R24 and W € R?%9" The raw attention
weights are then given by:

w(a,b,u) =

(22)

w(a,b,u) = aT LeakyReLU [W h, ” W hy, ” W hy || rpe(a’b’u)] .
(23)

The final attention weights, w(a, b, u), are given by passing w(a, b, u)
through a softmax activation layer.

D ADDITIONAL EXPERIMENTAL DETAILS
D.1 Computation of the PPR Matrix

We compute the PPR matrix via the efficient approximation algo-
rithm introduced by Andersen et al. [3]. The estimation is controlled
by a tolerance parameter . We use: € = 1e~ for Cora and Citeseer,
€ = 5¢~° for ogbl-collab and ogbl-ppa, € = 1e — 5 for Pubmed, and
€ = 5¢~3 for ogbl-Citation2. The value of € is chosen as a trade-off
between accuracy and sparsity to allow for ease of storage in GPU
memory.

D.2 Splitting Target Links by LP Factor

In Section 4.3 we demonstrate the performance on samples that
correspond to a single LP factor. In this section we further detail
the algorithm used to determine the set of samples corresponding
to each factor. We consider the three main factors: local structural
information, global structural information, and feature proximity.
We measure each using a single representative heuristic: CNs [38]
for local information, PPR [7] for global information, and cosine
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feature similarity for feature proximity. For each sample, we check
if the score is only high in one heuristic. In this way, it tells us that

there is a dominant factor present in the pairwise information. The
detailed algorithm is given in Algorithm 1.

We note that each target link may not belong to a category.
This can be due to there being no or many dominant LP factor.
We further set the percentile equal to 90% on all datasets except
for ogbl-collab for which we use 80%. These values were chosen
as we wanted the percentile to be suitably high such that we are
confident that the corresponding factor is relevant to the target
link. Furthermore, we use a lower value for ogbl-collab as we found
it produced a more even distribution of links by factor.

Algorithm 1 Determining Samples by LP Factor

Require:
CN(-) = Maps (i, j) to # of CNs of the pair
PPR(-) = Maps (i, j) to PPR score of the pair
FS(-) = Maps (i, j) to feature cosine similarity of the pair
p = Percentile used to determine whether a factor is present
&t = Positive test links

1: Define the p-th percentile for each heuristic: GON gFS gPPR

2: Create empty lists L°N, LPPR and LFS

3. for (i, j) € &' do

4: link-cn = CN(4, j)

5: link-fs = FS(4, j)

6: link-ppr = PPR(4, j)

7: /] Assign sample to corresponding list based on scores

8: if link-cn > $°N and link-fs < $ and link-ppr < $*R then

9: Append(LEN, (i, j))

10: else if link-cn < $*N and link-fs > §™ and link-ppr < §*'R then
11: Append(LS, (i, j))

12: else if link-cn < §°N and link-fs < $™ and link-ppr > $"R then
13: Append(LF™R, (i, j))

14: end if

15: end for

16: return LCN, LPPR, LFs

E ADDITIONAL LP FACTOR EXPERIMENTS

Additional results by LP factor are given in Figure 5 for ogbl-ppa and
Pubmed. We note that for ogbl-ppa, since the feature are one-hot
encodings, the feature similarity is not useful and is this omitted.
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100 3 s
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Figure 5: Additional LP Factor results on (a) Pubmed and (b)
ogbl-ppa.
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