Understanding High-Performance Subgraph Pattern Matching: A
Systems Perspective

Akshit Sharma
akshitsharma@mines.edu
Colorado School of Mines

Golden, CO, USA

Abstract

Subgraph isomorphism is a crucial problem in graph-analytics with
wide-ranging applications. This paper examines and compares two
high-performance solutions to this problem: backtracking, repre-
sented by VF3, and compilation, represented by Dryadic. Despite
both strategies being based on vertex-extension mapping, Dryadic
significantly outperforms VF3 across all tests, with speed-ups rang-
ing from a minimum of 4.95x to a maximum of 165x. To understand
these disparities, the paper identifies and explores five key op-
timizations in Dryadic: candidate vertices generation, execution
specificity, data graph storage, matching order, and redundancy
elimination. With these optimizations removed, Dryadic’s perfor-
mance substantially degrades but it is still on average 10x faster
than VF3 due to better spatial locality and search-space pruning.
With the insights gained from these optimizations, we propose and
implement two new techniques: lazy evaluation in Dryadic and
connectivity checks in VF3, resulting in performance improvements
of up to 1.23x and 1.46x, respectively.

CCS Concepts

» General and reference — Surveys and overviews; « Information
systems — Data mining.

Keywords
Subgraph Isomorphism, Dryadic, VF3, Subgraph Pattern Matching

ACM Reference Format:

Akshit Sharma, Dinesh Mehta, and Bo Wu. 2024. Understanding High-
Performance Subgraph Pattern Matching: A Systems Perspective. In 7th Joint
Workshop on Graph Data Management Experiences & Systems (GRADES) and
Network Data Analytics (NDA) (GRADES-NDA ’24), June 14, 2024, Santiago,
AA, Chile. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3661304.3661897

1 Introduction

Graph data is abundant in various domains, including social net-
working [36], cheminfomatics [62], transportation [63], and web
graphs [57]. One of the most useful ways to extract value from such
data is through subgraph pattern matching (SPM), which finds all
instances of a subgraph pattern in the input graph. Unfortunately,

This work is licensed under a Creative Commons Attribution International 4.0
License.

GRADES-NDA °24, June 14, 2024, Santiago, AA, Chile

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0653-0/24/06.

https://doi.org/10.1145/3661304.3661897

Dinesh Mehta
dmehta@mines.edu
Colorado School of Mines
Golden, CO, USA

Bo Wu
bwu@mines.edu
Colorado School of Mines
Golden, CO, USA

SPM is an NP-hard problem [16, 63], demanding heuristic algo-
rithms and corresponding efficient implementations. One popular
strategy to solve SPM is vertex extension-based matching, which
incrementally builds a map of vertices from pattern graph to data
graph, one vertex at a time. An instance of the pattern graph is
found if the induced subgraph based on the mapped vertices in the
data graph is isomorphic to the pattern graph.

The development of vertex extension-based matching techniques
has given rise to two main methodologies, distinguished by their
operational frameworks. Query-agnostic systems such as VF3 [10,
12, 17, 66, 70] leverage backtracking, which involves a recursive
process to align vertices from the pattern graph with those in the
data graph, a strategy often adopted in biotechnological contexts.
Conversely, Query-specific solutions like Dryadic [14, 15, 38, 39, 50]
apply compilation approaches, generating executable that does set
operations on adjacency lists. This approach focuses on minimizing
redundancy and enhancing efficiency in vertex matching.

Our work extends the experimental analysis provided by [54],
which classifies SPM systems into direct-enumeration, indexing-
enumeration, and preprocessing-enumeration, further dividing these
into four components: candidate vertex generation, matching order,
enumerating partial results, and additional optimizations like graph
compression and infeasible set pruning. Our approach is orthogonal
to their method as, (1) Their analysis enables an understanding of
the relative strengths of the different systems, while our classifica-
tion carefully quantifies the relative importance of various factors
that contribute to large runtime differences observed between two
approaches. (2) They try to understand the ability of different sys-
tems to scale with change in the density and number of vertices
in the query graph among other factors, whereas we concentrate
on the impact of optimization approaches on general performance.
This is achieved through the development of several intermediate
implementations between representatives of the two approaches:
VF3 (fastest available in that group) and Dryadic (shown to be better
than CECI [6], a previous state-of-art in the other group). We used
six data graphs and ten pattern graphs, with sizes varying from 3
to 6. The use of smaller, more frequent patterns helps to highlight
the redundancy reduction more clearly. Using geometric mean, we
found Dryadic outperformed VF3 by as much as 165x, found by
applying all the pattern graphs on each data graph. We also found
Dryadic performed better in each data graph with at least 4.95x
geometric mean speedup across all the pattern graphs.

In this paper, we investigate the performance disparity between
Dryadic and VF3, both utilizing vertex extension strategies, by ex-
amining the impact of various optimizations in Dryadic. We specif-
ically looked into the following: 1). Dryadic pre-compiles a unique,
highly optimized executable for each pattern graph, leveraging

GRADES-NDA °24, June 14, 2024, Santiago, AA, Chile

compile-time knowledge for optimization. Conversely, VF3 gener-
ates a single executable capable of processing both pattern and data
graphs dynamically, lacking pattern-specific optimizations. To align
Dryadic’s approach with VF3’s flexibility, we modified Dryadic to
produce a generic matching program that accommodates any sub-
graph pattern, eliminating the need for compiling a new executable
for each pattern (§ 3.2). Comparatively, this adaptation resulted
in slower performance for Dryadic, as expected, but offered the
convenience of not requiring a new executable for each pattern
graph. 2). Further analysis reveals VF3’s usage of binary search for
edge finding and Dryadic’s efficient data structure (§ 3.3) for label
processing and set operations, offering linear time operations as
opposed to VF3’s O(nlogn). By aligning Dryadic closer to VF3’s
binary search approach (§ 3.1), we assessed the performance impli-
cations, finding linear searches more effective in Dryadic’s context.
3). Apart from this we also used matching order (§ 3.4) from VF3
to dryadic, and removed code motion (§ 3.5) and determined that
these changes did not have a significant impact on the performance.
We also improve the system by applying lazy evaluation in Dryadic
to avoid unnecessary pre-computation and optimizing VF3’s con-
nectivity checks for efficiency. This implementation demonstrates
improvements up to 1.23x and 1.46x, respectively.
This paper makes the following contributions:

e Provides a comprehensive evaluation of two subgraph pat-
tern matching systems, Dryadic and VF3, through many
subgraph patterns and a set of real-world graphs.

o Implements five variants of Dryadic to understand the bene-
fits of its optimizations.

e Improves the performance of Dryadic through lazy evalua-
tion with only 100 lines of code change.

o Improves the performance of VF3 by modifying the connec-
tivity constraints check with only 10 lines of code change.

2 Background and Motivation

In this section, we provide a brief overview of subgraph pattern
matching, followed by an explanation of the two systems, Dryadic
and VF3, and a comparison of their performance.

2.1 Subgraph Pattern Matching

Given a data graph D = (Vy, Ey), a subgraph S = (Vs, Es) of D
is defined by Vs C V; and Eg = E; N (Vs X Vs). A pattern graph
P = (Vp, Ep) is said to be a subgraph of D if it is isomorphic to a
subgraph S of D; i.e,, there exists a bijective function f: V, — Vs
such that (p1, p2) € Ep <= (f(p1), f(p2)) € Es. Further, if each
graph vertex v has label [(v), then the labeled subgraph pattern
matching problem additionally requires that the bijective function
f satisfies [(p) = I(f(p)) for any vertex p in Vp. In the example of
Fig. 1b and Fig. 1a below, there are two such bijective functions:
{(po. d3), (p1,d1), (p2.d2), (p3, do)} and {(po. d3), (p1, d1), (p2. d7),
(p3.do)}-

2.2 Matching through Vertex Extension

Vertex extension is crucial in subgraph pattern matching, where
the mapping f is constructed incrementally by matching vertices
from pattern graph P to those in data graph D. This process uses
recursion-tree-based algorithms (e.g., VF3) or set-operation-based

Akshit Sharma, Dinesh Mehta, and Bo Wu

&®

(a) Data

(b) Pattern (c) Matching Tree
Figure 1: Example of subgraph pattern matching.
algorithms (e.g., Dryadic), employing heuristic strategies to find

the optimal for vertex-matching order.

2.3 Dryadic

Dryadic optimizes subgraph pattern matching in two steps: 1). pre-
processing the pattern graph to establish vertex matching order and
generate nested for-loop C++ code; 2). compiling this code to cre-
ate an executable for varied data graphs. This approach, bypasses
symmetric pattern outputs for comparability with VF3. The nested
loops in dryadic iterate over data graph (Fig. 1a) vertices matching
the pattern graph’s (Fig. 1b) ordered vertices (po, p1, p2, p3), em-
ploying set operations based on edge presence (intersection) or
absence (difference) for efficient pattern matching. A more detailed
explanation of this method is provided in Appendix C.

24 VF3

VF3 is a recursive backtracking algorithm (Algorithm 4) that ex-
pands a match by iteratively pairing pattern vertices with data ver-
tices, considering both graphs to determine the matching order. Un-
like Dryadic, VF3 adapts its vertex matching order based on both the
pattern and the current data graph, necessitating pre-computation
for each data graph. We use VF3Light [10], an enhanced version
that optimizes the matching process without a look-ahead step. VF3
iterates through states, checking for goal achievement or dead ends,
and utilizes pattern-data vertex pair feasibility to guide recursion,
ensuring pattern graph isomorphism with the data graph. A more
detailed explanation of this method is provided in Appendix D.

2.5 Performance Comparison

We compared the runtime performance of Dryadic and VF3 on
six data graphs, spanning from social networks to citation and
collaboration networks, as detailed in Table 1. The data graphs
vary in size, with vertices ranging from 96K to 3.7M and edges
exceeding 1M, marked with 10 distinct labels according to a uniform
distribution. The experiments utilize ten pattern graphs of up to
six vertices, differentiated by distinct labels, shown in Appendix A.

Table 1: Datasets used in experiments.

‘ Graphs ‘ Symbol ‘ Vertices ‘ Edges ‘ Description
DBLP [64] DBLP 317K 1M Collaboration
MiCo [19] Mico 96K 1.1M Co-authorship

YouTube [64] YT 1.1M 2.9M | Social Network
Cit-Patents [35] CitPa 3.7M 16.5M US Patents
LiveJournal [64] LiJo M 34.7M | Social Network

Orkut [64] Ork 3.1M 117.2M | Social Network

Understanding High-Performance Subgraph Pattern Matching: A Systems Perspective

10°y mEE Dryadic
VF3
105 4
G
E 104
[
£
£
§ 10°
2
=1
3
¢
102 4
101 4
100 4
= g 5 & 5 &
[a) = O

Figure 2: Performance comparison of Dryadic vs VF3.

Our tests were conducted on an Intel Xeon CPU E5-4610, using a
single thread and 188 GB DDR3 RAM. Both Dryadic and VF3 com-
piled with -O3 optimization, running under Ubuntu 18.04 LTS. The
timeout for each run was set to 10 hours. The comparison (Fig. 2)
uses a logarithmic scale due to the significant performance gap
between Dryadic and VF3, highlighting Dryadic’s superiority, par-
ticularly on larger graphs. Notably, Dryadic’s performance on the
Orkut dataset outperformed VF3 by up to two orders of magnitude.

3 Quantifying the Performance Benefits of
Optimizations

In this section, we conduct a systematic experimental analysis
to evaluate the impact of a series of optimizations on the relative
performance of the two approaches. We modify Dryadic in each of
the first 5 subsections below eliminate one optimization to bring it
closer to VF3. For consistency of presentation, each subsection has
four parts: 1) Describing details of the Dryadic implementation 2)
Describing details of the VF3 implementation 3) Describing changes
made to degrade Dryadic and 4) Presenting results and discussion.
While these modifications narrow the gap between (the degraded)
Dryadic and VF3, there remains a sizeable difference between the
two. § 3.6 offers two explanations for the remaining gap.

3.1 Candidate generation

3.1.1 Dryadic Dryadic employs set intersection and difference op-
erations for solving subgraph isomorphism, processing two sorted
arrays of vertex indices. This process parallels the “merge" phase of
mergesort, where pointers initiate at the beginning of each array
and advance based on the comparison outcomes, filling the output
array accordingly. These operations exhibit a time complexity of
O(m + n), with m and n representing the respective sizes of the
two sets involved. Sets may represent neighbors of a vertex with a
specific label N(v, [) or outcomes from preceding intersection and
difference operations, typically smaller than the initial sets.

3.1.2 VF3 VF3 performs two checks in ISFEASIBLEPAIR(p;, d;) (Al-
gorithm 4 Line 10) similar to the two set operations of Dryadic: the
edge-presence and edge-absence checks.

1. Edge-Presence Check: The first check confirms that if a vertex p;
in the pattern subgraph has edges connecting it to vertices already

GRADES-NDA 24, June 14, 2024, Santiago, AA, Chile

matched, then the corresponding vertex d; in the data subgraph
must have analogous edges connecting it to the corresponding
vertices. This is performed by iterating through p;’s neighbors
in the pattern graph. For each neighbor p; that was previously
matched, we identify the corresponding data vertex d, and perform
a binary search for dy in d;’s adjacency list. E.g.,: Consider a partial
mapping (po, d3), (p1,d1), (p2, d7) to which we are adding (p3, de).
We must verify that p3p; has corresponding ded; and p3po has

corresponding m. This is achieved by two binary searches in dg’s
adjacency list for d; and d3, respectively. The search for d; succeeds
whereas the search for ds fails and INFEASIBLEPAIR() returns false.
2. Edge-Absence Check: The edge-absence check is implemented
by checking the contrapositive; i.e., the presence of an edge in the
data subgraph must be confirmed by the presence of the corre-
sponding edge in the pattern subgraph. The algorithm is similar
to the edge-presence check, with the roles of the data and pattern
graphs reversed. Example: To illustrate, consider the data graph
of Fig. 1a) augmented with an edge dsdy. Consider a partial map-
ping (po, da), (p1,ds), (p2,d7) to which we are adding (p3, dg) via
ISFEASIBLEPAIR((p3, ds)). The algorithm iterates over d¢’s neigh-
bors. For each neighbor of dg that was previously matched, we
confirm that an edge exists from p3 to the corresponding vertex
in the pattern subgraph. In the example, vertices d4, d5 and d7 are
neighbors of ds and mapped to pg, p1 and py, respectively. Edges
(m, deds, M) correspond to vertex pairs (p3po, p3p1, p3pz) in
the pattern subgraph. Three binary searches on the neighbor list
of p3 are executed to perform this check. Since p3pz is absent, the
addition of (ps3, dg) will give a data subgraph that is not isomorphic
to the pattern subgraph and ISFEASIBLEPAIR() returns false.

3.1.3 Implementation Changes We modify the Dryadic implemen-
tation so that both set operations are implemented less efficiently.
We iterate on one array and use binary search on the other (sorted)
array to mimic the implementation in VF3. In set intersection, we
iterate on the smaller array: for each element x in the array, we
perform a binary search for x in the other (larger) array. The el-
ement x is added to the output array if and only if the search is
successful. Assuming m < n, the time complexity is O(mlogn). In
set difference, we iterate on the first array: for each element x in
the array, we perform a binary search for x in the second array.
Element x is added to the output array if and only if the search
is not successful. Assuming m and n are the sizes of the first and
second sets, the complexity is O(mlogn). Since the first set is the
result of previous intersection and difference operations while the
second is of the form N(v, [), we expect m < n.

3.14 Results Discussion Figure 3a shows a comparison using the
geometric mean across various patterns, highlighting that ‘dryadic’
outperforms its ‘dryadic + binary search’ counterpart. Our asymp-
totic analysis, assuming m and n are not small constants, reveals
that for arrays of similar size (m = n), the time complexity for
set operations in ‘dryadic’ is O(m + n) = O(n), as opposed to
O(mlogn) = O(nlogn) in the binary search approach. The com-
parison becomes less clear when array sizes significantly differ or
are relatively small. Notably, the largest performance drop was ob-
served in the Ork dataset (1.70x), and the least in the DBLP dataset
(1.06x). It’s important to recognize that Dryadic’s set operations
differ fundamentally from VF3’s pairwise-matching computations,

GRADES-NDA °24, June 14, 2024, Santiago, AA, Chile

Akshit Sharma, Dinesh Mehta, and Bo Wu

10‘°{ BB Dryadic + binary search 100
Dryadic

B Dryadic + binary search
recursive Dryadic + BS

Execution Time (ms)
Execution Time (ms)

2

ork
ork

s ¢ s v & =
H H 5]

S

(a) Binary search. (b) recursive version.

Execution Time (ms)

I recursive Dryadic + BS 10°
recursive Dryadic + BS
+ ONG

recursive Dryadic + BS
mmm + ONG + VF3 MAT
+ No CM

VF3

10°

Execution Time (ms)

Lijo
ork
Lijo

S

DBLP
MiCo
YT
Citpa
DBLP
MiCo
Y
Citpa

(c) Online label matching. (d) All the optimizations removed.

Figure 3: Quantifying the performance benefits of optimizations.

except for triangle patterns where they align. Dryadic employs
intersections for candidate data vertex identification, while VF3
checks for edge presence between the last data vertex and the two
previously mapped vertices. For non-triangle patterns, Dryadic’s
intermediate arrays are smaller, reducing the search space. This
difference complicates direct performance comparisons for other
patterns, a topic further explored in § 3.6.

3.2 Iterative vs Recursive Implementations

3.2.1 Dryadic Since Dryadic computes an execution plan (nested
for-loops) that is specific to a pattern graph, a new execution plan
must be created and compiled whenever a different pattern graph is
used. This gives one executable per pattern. If a new pattern graph
is used, then it should be compiled first. The executable generated
should then be run on the data graph.
3.22 VF3 VF3is more flexible as it uses the same executable for
different combinations of pattern and data graphs. It uses recursion,
with each recursive call attempting to match a new pair of vertices.
VF3’s recursive nature prevents the compiler from inlining the
recursive call because the depth of recursion is unknown at compile
time. Another source of inefficiency in VF3 is the overhead due to
the number of function calls, one for each node in the matching tree.
The size of the tree is loosely related to its height and “width". Its
height is bounded by the number of vertices in the pattern graph;
ie., |Vp|. It's “width" depends on the average number of available
matching vertex pairs at each node. This is specific to each example
and not easy to characterize analytically.
3.2.3 Implementation Changes To facilitate a comparison not de-
pendent on compilation and execution optimizations, we revised
Dryadic’s architecture, substituting for-loops with recursive calls.
The pattern graph’s computation plan generates an instruction list
instead of an executable file. A recursive function uses these in-
structions alongside the data graph to identify matches, mitigating
the need for recompilation for each pattern but increasing function
call overhead. Additionally, these function calls cannot be inlined.
Tail recursion optimization, which can minimize recursive call
stack storage, is inapplicable due to post-recursive call computa-
tions. In this recursive setup, the framework selects the set opera-
tion, array segment and recursion level dynamically. Conversely, in
the original iterative model, these elements were known at compile
time. The specific set operation, target array, and loop position are
established at compile time, enabling the compiler to apply pattern
graph-specific optimizations, such as inlining set operations, rather
than dynamic runtime selection.

3.24 Results Discussion In comparing ‘dryadic + binary search’
with ‘recursive dryadic + BS’ (Fig. 3b), where BS denotes binary
search, we noted performance drops with recursion. The slowdown
reached from 1.23x for Ork to 2.11x for DBLP against a binary
Drydic version. As expected, the for loop version outperforms the
recursive one due to pattern-specific code optimization.

3.3 Graph Representation

3.3.1 Dryadic Dryadic stores the data graph using binary com-
pressed sparse row (CSR) format [38], augmented to efficiently store
and retrieve vertex label information. Table 2 illustrates the data
graph organization by labels Fig. 1a. The vertices array stores vertex
indices sorted by their labels. It is indexed by the labels array so that
vertices with label [are stored in locations labels[l], ..., labels[] +
1] — 1 in wvertices. In the example, vertices with label 2 are stored
in locations wvertices[4...5], containing vertices 2 and 7. Fig. 1a
confirms that both d; and d7 have label 2. This data organization
permits each vertex in L(label) to be computed in constant time.
The modified-CSR representation in Dryadic similarly stores vertex
adjacencies (edges) organized by labels. Although Table 3a uses
two dimensions for convenience, it is stored and understood as the
1D array obtained by traversing the 2D array in row-major order.

Table 2: Vertex storage by label

[labels [0 [2]4[6]8]
[vertices [3[4[1[5[2]7]0]¢6]

Thus, N(u,), the neighbors of vertex v with label [are stored in
locations vertldx[v *nL +1], .. ., vertldx[v * nL +1+1]—1 in the neigh
array. Here, nL is the number of distinct labels in the data graph.
In the example of Fig. 1a, nL = 4. Accordingly, the neighbors of
vertex 6 with label 1 may be found in locations 24 and 25 in neigh.
The 1D neigh array is depicted using two rows in row-major order
in Table 4, with the elements in locations 24 and 25 in boldface.
3.3.2 VF3 VF3 stores the labels per vertex id in an array. The labels
are mapped to vertices by their index. In the array (3, 1,2, 0,0, 1, 3, 2),
the label of vertex id 3 is 2. This array allows VF3 to check the label
of a particular vertex in constant time (O(1)). VF3 stores neighbors
of the vertices in the data graph in the form of an adjacency list
(Table 3b). Each adjacency list is stored as an array with vertex id
in increasing order. This helps VF3 to perform a binary search to
check if a vertex is a neighbor of another or not (explained in § 3.1).

Understanding High-Performance Subgraph Pattern Matching: A Systems Perspective

Table 3: Combined tables of Vertex Index and Adjacency List

(a) Vertex index table (b) Storage of adjacency lists in

Ln refers to the labels VE3S
vertldx Idx | Adjacency list

Idx | Lo | L1 L2 | L3 0 1 3 4 6

0 0] 2|33 112 3 6 7

1 4 5 5 7 2 1 3

2 10 | 11 | 11 310 1 2 4 7

3 11 |12 | 13 | 15 410 3 5 6 7

4 |16 | 17 | 18 | 19 5 |4 6

5 |21 22|22 22 6 |0 1 4 5 7

6 | 23|24 26| 27 711 3 4 6

7 | 28|30 |31]|31

Table 4: Neighbors table: indices shown for first and last
elements

0 15
314(1(6(3|2(7]0|6|3[1|4|1|2|7|0
315(7(0(6|4(6|4|1[5|7|0|3[|4|1]6
16 31

Picking next candidate data vertex: The VF3 implementation of
NExTPAIR() performs a linear search through the adjacency list of
the last mapped data graph vertex for a data vertex d, with the
same label as the pattern vertex to be matched. Assuming labels
are uniformly distributed, the average time for this search is ©(nL),
where nL is the number of labels. (Recall nL = 10, in our bench-
mark graphs.) In contrast, the label-aware CSR-based data structure
described earlier can perform this search in O(1) time.

As VF3 runs binary search on both pattern and data graphs, it
stores the neighbors in both graphs in a sorted adjacency list. In
the beginning, while finding the vertices to match the first pattern
vertex (in the matching order), VF3 has a time complexity of O(|Vy]).
Otherwise the first and third step, VF3 has a time complexity of
O(Vgeq) and O(Vyeglog(|Vpl)) (Where Vg, is the maximum degree
of a vertex in data graph). For Dryadic, the step similar to the
first has constant time complexity to retrieve and linear to iterate
over (it also iterates over vertices with match labels). Also, the set
operations in the original Dryadic are linear but have been changed
to one using binary search from version ‘binary’ since § 3.1.

3.3.3 Implementation Changes We downgraded Dryadic to con-
struct the label-specific arrays online. Every time, L() or N() is
called, the program iterates over the vertices and inserts ones with
matched labels into an intermediate array. The new version ‘recur-
sive dryadic + BS + ONG’ (ONG is Online Neighbor Generation) is
compared to the previous version ‘recursive dryadic + BS’.

3.3.4 Results Discussion The results between the two versions
can be seen in Fig. 3c. This modification degraded Dryadic’s per-
formance by maximum 5.29x on Ork with the geometric mean
across pattern graphs. As expected, calculating the neighbor list on
runtime is more expensive and thus leads to worse execution time.

3.4 Matching Order

Matching order, the sequence in which pattern graph vertices
are matched against data graph candidates, significantly influences
execution time. We compare two matching sequences, in Fig. 1b:

GRADES-NDA 24, June 14, 2024, Santiago, AA, Chile

{po, p1, p2, p3} and {po, p2, p3, p1}. The latter sequence identifies
a wedge in the data graph after matching the first three vertices,
whereas the former finds a triangle. Triangles necessitate a fully
connected trio of vertices, unlike wedges, which require only a
shared vertex between two edges. Given real-world graphs’ spar-
sity, wedges are more prevalent than triangles, making triangle
formation a more stringent criterion for pruning candidate vertices.
3.4.1 Dryadic Dryadic establishes matching order by analyzing
the pattern graph, generating various enumerations that differ in
their sequence of set operations (intersection and difference) based
on vertex order. These enumerations are evaluated excluding sym-
metric cases (automorphisms), converting each to an execution plan.
An analytical model approximates the cost of each matching order
using the G(n, p) randomized graph model, with the best order
found by ranking (based on intermediate array size) the outcomes.
3.4.2 VF3 VF3 integrates characteristics of both the pattern and
data graphs, estimating the likelihood of matching data graph ver-
tices to pattern graph vertices. This process involves computing
label occurrence probabilities, as well as the indegree and outde-
gree ratios between the graphs [12]. By independently evaluating
these factors and combining their probabilities, VF3 prioritizes ver-
tices with the lowest match likelihood for early matching attempts.
This strategy aims to minimize the number of vertices considered,
enhancing matching efficiency.

3.4.3 Implementation Changes We modified Dryadic to use the
same matching order as VF3.

3.4.4 Results Discussion This new version is referred to in our
experiments as ‘recursive dryadic + BS + ONG + vf3 matching order’
(mat) and is compared to the previous version ‘recursive dryadic
+ BS + ONG’ (vector) (shown in Appendix B). In our results, the
mat version performed better in a few datasets such as citPa and
DBLP while the vector performed better in MiCo and Ork. The mat
version performed better in a few datasets such as citPa and DBLP
while the vector performed better in MiCo and Ork. Some datasets
such as LiJo and YT performed better with different matching order
techniques based on different pattern graphs.

Over the geometric mean of all the pattern graphs, mat per-
formed worse than vector for Ork which had a speed degradation
of 0.98x. While for all the other datasets, the mat version performed
better than the vector version with speedup of 1.26x for DBLP, 1.01x
for Mico, 1.04x for YT, for 1.13x for CitPa and 1.06x for LiJo. VF3’s
matching order considers both pattern and data graph. It is able to
prune the candidate vertices better with its matching order.

3.5 Code Motion

3.5.1 Dryadic In § 2.3, we presented a simplified description of
Dryadic in Algorithm 3 but the generated program may lead to sub-
stantial computation redundancy. Consider the operation N(a, 3) N
N(b,3) in Line 7. This operation is performed once in Line 7 to
compute the set of vertices variable d will iterate over. However,
the identical N(a,3) N N(b,3) computation is repeated for each
value of the ¢ variable in the for loop of Line 6. The redundancy
can be removed by moving the N(a,3) N N(b,3) computation to
before the for loop of Line 6. This technique to avoid redundant
computations called code motion is incorporated in Dryadic, with
the revised implementation of Algorithm 3 shown in Algorithm 1.

GRADES-NDA °24, June 14, 2024, Santiago, AA, Chile

As before, this is based on the pattern graph of Fig. 1b and assumes
pattern vertices will be matched in the order (po, p1, p2, p3). Also,
as before, the algorithm consists of nested for-loops in Lines 5,
9, 12 and 14, but these are interspersed with set computations to
remove redundant computations. The code generation is careful
not to perform unnecessary computations (e.g., N(a, 1) N N (b, 1)).

Algorithm 1 Dryadic CM

1: Input Data Graph D = (Vg, E;), Order PO = (po, p1, P2, p3)
2: Output All bijections f

3. procedure PROCESSGRAPH(g)

4: L0 « L(O)

5: for all a € L0 do

6: y1l1 « N(a,1)

7 Y112 « N(a,2)

8: y1i3 « N(a,3)

9: for all b € y1l1 do

10: yly2l3 « y1I13 N N(b, 3)

1 yly2l2 « y112 N N(b, 2)

12: for all c € y1y2i2 do

13: yly2n3l3 « y1y2l3 — N(c, 3)
14: for all d € y1y2n3i3 do

15: output {(po, a), (p1,b), (p2.¢), (p3,d)}

Observe specifically that Lines 8 and 10 together perform the
N(a,3) N N(b,3) partial computation corresponding to Line 7 from
Algorithm 3.

3.5.2 VF3 VF3 checks candidate data vertex when required (i.e.
IsFEASIBLEPAIR()) and doesn’t store any intermediate results.

3.5.3 Implementation Changes Code motion was disabled by mod-
ifying the generated plans, in Dryadic. These generated plans are
read by the recursive program as input and converted to inter-
nal representation. This representation is used by the recursive
algorithm to perform subgraph isomorphism.

3.54 Results Discussion We compared the recursive version of
Dryadic with a computation pattern similar to (Algorithm 3) vs
previous section (§ 3.4) with code motion disabled (Algorithm 1).
We compared between ‘recursive dryadic + BS + ONG + VF3 MAT’
vs ‘recursive Dryadic BS + ONG + VF3 + No CM’ (No code Motion)
(Appendix B). The results are mixed with ‘recursive dryadic + BS
+ ONG + VF3 MAT’ performing better than ‘recursive Dryadic
BS + ONG + VF3 + NO CM’ on four data graphs (MiCo, YT, LiJo,
and Ork) and worse on two (DBLP, and CitPa). The geometric
mean of speedups for ‘recursive dryadic + BS + ONG + VF3 MAT’
over ‘recursive Dryadic BS + ONG + VF3 + No CM’ over the ten
pattern graphs are as follows: MiCo (1.35x), YT (1.14x), LiJo (1.43x),
and Ork (2.01x), while ‘recursive Dryadic BS + ONG + VF3 + No
CM’ performs better in DBLP (1.07x) and CitPa (1.16x). The results
reflect that while pre-computed set operations have the potential
to remove computation redundancy, they may incur unnecessary
computation. For e.g., when the set y1y2I2 in line 12 of Algorithm 1
is empty, the operation to compute y1y2I3 in line 10 is useless.

3.6 Discussion

In the preceding sections, we started with Dryadic and made a
series of 5 modifications to align it with VF3. The resulting Dryadic

Akshit Sharma, Dinesh Mehta, and Bo Wu

implementation ‘recursive dryadic + BS + ONG + vf3 matching
order’ (MO), done to align Dryadic with VF3, was compared with
VF3, as shown in Fig. 3d. We see that ‘recursive dryadic + BS + ONG
+ VF3 MAT + No CM’ beats ‘vf3’ in each case and sometimes as
large as 10x (e.g., Ork). We believe that the remaining difference in
the performance of the two approaches can be explained as follows,
3.6.1 Spatial locality The sorted array is fundamental to Dryadic’s
efficiency, enabling quick set operations through batched computa-
tions that leverage spatial locality by combining results into a single
array. In contrast, VF3 iterates over a data graph’s neighboring ver-
tices with the NEXTPAIR(p;, d;) function, requiring a subsequent
call to ISFEASIBLEPAIR(pj, d;) to confirm matches. This recursive
approach might lead to cache eviction for the neighbor list of d;,
necessitating data re-loading for subsequent NEXTPAIR(p;, d;) calls.
Conversely, Dryadic’s cache-aware intermediate set operations
prevent unnecessary data eviction, offering a more efficient compu-
tation compared to VF3’s method involving ISFEASIBLEPAIR() and
ADDPAIR().

3.6.2 Better pruning of search space Dryadic effectively prunes
candidate vertices from the data graph more efficiently than VF3,
due to its intermediate representation. As Dryadic progresses in
mapping vertices, the size of intermediate arrays reduces, enhanc-
ing pruning efficiency (discussed in § 3.1). For instance, when map-
ping (po,ds), (p1,d1), (p2,d2) (Fig. 1) with p3 as the next vertex,
Dryadic’s set operations (intersection and difference) pinpoint dy
as the sole candidate. Conversely, VF3, iterating over d;’s neigh-
bors, initially considers dy, d¢ based on label matches. However,
de is eliminated after failing the feasibility check. This example
demonstrates Dryadic’s superior pruning capability. When applied
to larger graphs, the disparity in the algorithms’ search spaces
becomes even more pronounced.

Thus, we attribute Dryadic’s superior performance to the better
graph representation, spatial locality, search-space pruning, and
due to the generation of query-specific executables. Whereas, the
matching order and code motion optimizations, while beneficial,
do not significantly impact performance.

4 Improving Both Systems

4.1 Dryadic Improvements

4.1.1 Lazy Evaluation Even though code motion avoids redundant
computations, it sometimes performs pre-computations that are
not used: Suppose y1y2/2 computed on Line 11 in Algorithm 1 is
the empty set. Then, the for loop of Line 12 is not executed and
the result of y1y2I3 (computed on Line 10) is not used. This makes
the computation of y1y2I3 wasteful. We address this by using lazy
evaluation as shown in Algorithm 2. This is an approach similar
to memoization in dynamic programming that only performs a
computation if the results are needed, and having done so, stores the
results in case they are needed again later. This is different from [37],
in the fact that Graphmini uses an auxiliary graph data structure
to prune the search space, while we are using lazy evaluation to
avoid unnecessary computation.

Algorithm 2 has a similar structure (four nested for-loop) to that
of Algorithm 1. Each intermediate result is stored in a variable
which is only calculated when it is required. The algorithm uses the

Understanding High-Performance Subgraph Pattern Matching: A Systems Perspective

‘OP’ class to separate initialization from computation. Code with set
operations is replaced with ‘OP’ class constructors. (For example,
y1i13 N N(b, 3) is replaced by OP(N,y1i3,N(b, 3)).) The OP class
stores references to the inputs in variables mA and mB. It also stores
the type and results of operation in mT and mR respectively. When
the result of an operator is required, then the CompUTE() method is
called. ComPUTE() returns the result if it is already computed or (if
not) computes, stores and returns the result.

Algorithm 2 Dryadic Lazy

: Input Data Graph D = (V, E;), Order PO = (po, p1, p2, P3)
: Output All bijections f

: procedure OP::OP(type, a, b)
: storemA «— &a

1

2

3

4 > stores reference
5: storemB «— &b

6

7

8

9

> stores reference
> stores result
> value: N or —

storemR «— 0
storemT « type
return this
: procedure OP::COMPUTE
10: if mR # () then return mR
1t: if mT = N then
12: return mR <« mA.comPUTE() N mB.cOMPUTE()
13: return mR < mA.coMPUTE() — mB.COMPUTE()

14: procedure OP::Loop
15: return this.coMPUTE()

16: procedure PROCESSGRAPH(g)
17: L0 « L(0)

18: for all a € L0.Loor() do

19: yll1 « N(a, 1)

20: y112 « N(a,2)

21: y113 « N(a,3)

22: for all b € y1.Loor() do

23: yly2l3 « OP(N,y1I3,N(b, 3))

24: yly2l2 « OP(N, y1I2,N(b, 2))

25: for all ¢ € y1y2I2.L00p() do

26: yly2n3I3 « OP(—,y1y2I3,N(c, 3))
27: for all d € y1y2n3i3.Loor() do

28: output {(po, a), (p1.b), (p2,¢), (p3,d)}

Consider the data graph (Fig. 1a) and pattern graph (Fig. 1b).
For the matching order po, p1, p2, p3, we have already mapped
{(po,d3), (p1,d1), (p2,d2)}. At this point, our program is about to
execute Line 27. When y1y2n3/3.LOOP() is called, CompUTE() will
be called on the object. Since this is the first time, the function
is called on an uninitialized object mR. The y1y2n31/3.CoMPUTE()
requires its inputs (y1y2I3 and N(c, 3)). As y1y2I3.ComPUTE() is
also called for the first time, its result is also uninitialized. So,
y1y2I3 will first compute the intersection (mT = N) between y1I/3
and N(b, 3). The result {dp} is stored in mR and returned. Next,
y1y2n313.ComrUTE() computes the difference (nT = —) between
y1y2I3 and N(c, 3). The result of this operation (y1y2n3I3.CoMPUTE())
is also {do}. So, d = dj.

Later, we have mapping {(po, d3), (p1,d1), (p2, d7)}, and our pro-
gram is about to execute Line 27: Similarly to before y1y2n313.LOOP()
is called which calls CompUTE(). The CoMPUTE() requires results

GRADES-NDA 24, June 14, 2024, Santiago, AA, Chile

from y1y2I3 and N(c, 3). Since the result for y1y2I3 is already popu-
lated, we do not need to re-compute the intersection operation. The
difference operation has to be calculated again (its result is again
{dp}). This technique helps us reuse the calculated set operations.

Now, consider mapping {(po, da), (p1,ds)}, with the program

about to execute Line 25. The result for y1y212 is) and the program
does not iterate over the loop at Line 25. Therefore, the operation
at Line 10 is never executed. So, we will not calculate set operations
unless they are required.
4.1.2 Performance Analysis Fig. 4a shows all three executable
versions of Dryadic, with and without code motion along with
lazy evaluation. Let’s first compare ‘dryadic’ and ‘no cm’ versions.
These versions are similar to disabling code motion as mentioned
in § 3.5. The geometric mean of speedups for ‘dryadic’ over ‘no cm’
over the ten pattern graphs are as follows: MiCo (1.48x), YT (1.21x),
LiJo(1.59x) and Ork (2.12x), while ‘no cm’ outperforms ‘dryadic’
in DBLP (1.09x) and CitPa (1.19x). These results are similar to the
recursive versions discussed previously.

Lazy evaluation (‘lazy’) simultaneously eliminates the drawbacks
of both ‘dryadic’ and ‘no cm. Thus, ‘lazy’ can be seen (Fig. 4a) to
be consistently faster than both versions. Comparing ‘lazy’ to the
better of ‘dryadic’ and ‘no cm’ gives the following speedups: 2.12x
(DBLP), 1.66x (CitPa) (‘lazy’ wrt ‘no cm’), and 1.60x (MiCo), 1.91x
(YT), 1.52x (LiJo), 1.23x (Ork) (wrt ‘dryadic’).

4.2 VF3 Improvements

Recall (from § 2.4) that VF3 performs an edge-absence check
in ISFEASIBLEPAIR(p;, d;). This considers edges from the most re-
cently matched data vertex (d;) to previously matched vertices in
the matched data subgraph; and verifies that each such edge has a
corresponding edge in the matched pattern subgraph. VF3 imple-
ments this by iterating over the adjacency list of d; and for each
vertex in the adjacency list, determining whether it belongs to the
data subgraph in O(1) time. (VF3 maintains an array indexed on
data vertices that is initialized to NULL. If a data vertex is matched,
the array entry contains the corresponding pattern vertex.) If the
vertex does belong to the data subgraph, it verifies that the pattern
subgraph contains the corresponding edge.

Typically, one would expect the degree of a vertex in the data
graph to be much larger than the number of vertices in the pattern
graph. For example, in our data graphs, the average maximum
degree of any data vertex over the six data graphs is 26K (the
maximum degree overall is 66K in Orkut). The average degree of
vertices in DBLP, MiCo, YT, CitPa, LiJo, and Ork is 3.31, 11.17, 2.63
4.37,8.67 and 38.14 respectively. In contrast, our pattern graphs have
at most six vertices (so the number of already mapped vertices is at
most five). In these situations, VF3 searches a very large adjacency
list for a handful of mapped data vertices.

We modified the implementation of VF3 to first identify the (at
most five) already-mapped data vertices from a mapping table (e.g.,
Table 5). For each such data vertex x, we perform a binary search for
x in d;’s adjacency list (recall that the adjacency list is implemented
as a sorted array). If x is found, we must confirm that the pattern
subgraph has the corresponding edge.

Example: In Fig. 1a, suppose we have mapped {(po, d3), (p1,d1)}
and are executing ISFEASIBLEPAIR(p2, d7). The original VF3 algo-
rithm iterates over all of the neighbors of dy (i.e., d1, d3, dy, dg) and

GRADES-NDA °24, June 14, 2024, Santiago, AA, Chile

Table 5: Mapped vertices storage

indices | 0 1 2 3

patt Po | P1 | P2 | P3
data ds | di | d7 | do

checks if they were already mapped. In the modification, we main-
tain a list of mapped pairs and only iterate over them (i.e. d3 and
d1). We check whether these vertices are neighbors of d7 (via two
binary searches on d7’s adjacency list). If yes, then the edge-absence
step proceeds as before.

The number of matched pairs increases as VF3 goes deeper into
the matching tree. In Fig. 1c, ds and d4 are the roots of the tree.
When ds; and dy4 are mapped, there are no previous vertices to
consider. When d; or dg are being mapped at depth 1, VF3 only
has to check if edges to d3 and d4 exist. For the matching pairs
in Table 5, Original VF3 explores the neighboring vertices of each
data vertex in the table {5, 5,4, 4} number of times. Modified VF3
explores neighboring data vertices {0, 1, 2, 3} number of times (same
as depth of matching pair).

1o+] ™= Dryadic 10w VF3
Dryadic - code motion VF3 modified
B Dryadic + lazy evaluation 10°
3 100 =
£ E 10
2 2
13 13
E £
§10 §10°
E 810
10!
I 100
100 100
g H = g e 5 g g & £ E) 5
(a) Dryadic (b) VF3

Figure 4: Benefits of optimization

VF3 performed better with this optimization (Fig. 4b). Iterating
over neighbors of the data vertex is more expensive than iterating
over matched vertices and checking if they are the neighbors of
the data vertex. We saw up to 1.46x improvement from the CitPa
dataset in latency. For other data graphs DBLP, MiCo, YT, LiJo,
and Ork, we saw improvement by 1.45x, 1.96x, 1.67x, 2.08x, and
2.36x respectively. We note that the modification may not always
outperform the original VF3. Let vertex d; have degree n and let k
denote the number of matched pairs. The complexity of the edge-
absence check in original VF3 is O(n) while modified VF3 has
complexity k log n. When k << n (as in our benchmarks), modified
VF3 is superior. However, when k and n are comparable, the original
VF3 is expected to perform better. Although this scenario is not
expected in real-world benchmarks, the edge-absence check can
be implemented using a hybrid strategy that switches between the
two approaches based on an empirical comparison of k and n.

5 Related Work

There are many approaches for subgraph pattern matching, the
oldest is Ullmann’s algorithm [59], but it doesn’t exploit pruning
and hence does not scale well for larger graphs. GraphQL [22], Tur-
bolso [21], CFL [7] use candidate set-based filtering to prune the

Akshit Sharma, Dinesh Mehta, and Bo Wu

search space for subgraph matching. EmptyHeaded [1] and Graph-
Flow [28] use intersection set operations to generate candidate sets.
As these do not handle missing edges, we consider Dryadic [38]
which is a similar algorithm that comes under this category. More
works for filtering are [20, 30, 45, 55]. On the other hand, VF2++ [27],
SPath [70], QuickSi [48], and RI [8] generate candidate set from the
neighbors of matched vertices and pass them through filters. This
approach is similar to VF3 [12], which is an advanced version of
VF2 with multiple sophisticated optimizations. Pruning can also be
done by setting up constraints on the vertices and edges and then
stopping the search when the constraints are violated [5, 23]. Apart
from these methods, historical data can also be used to prune the
search space [24]. Another way is to use effective graph editing or
splitting of graphs to reduce the search space [25, 37].

Graphlt [68] is a domain-specific language (DSL) for graph an-
alytics. GG [9] is an extension of GraphlIT that achieves high per-
formance on both CPUs and GPUs. Compilation-based algorithms
reduce the burden on programmers as the system can perform
optimizations like tiling on the graph [67] to increase cache lo-
cality. Dryadic uses such optimizations specialized for subgraph
pattern matching. Other methods that are specifically developed to
improve sub-graph matching on a specific hardware platform, such
as FPGA [51], GPU [3, 56], but that is not the focus of this paper.

Different systems propose various methods to generate matching
orders. A good heuristic for matching order can reduce the explo-
ration space. Dryadic ranks the enumerated matching orders based
on an analytical model and chooses the best one. Instead, VF3 uses
both pattern and data graphs to generate probabilities of the least
possible matches and a matching order based on the estimate. Kim
et al. [29] use static equivalences of vertices to generate matching
orders and dynamic equivalences of vertices to prune redundant
search space. Sun et al. [54] compare the matching order generation
methods of different systems.

There are different implementations of shared-memory paral-
lel algorithms for subgraph isomorphism [1, 11, 13, 18, 26, 28, 31,
40, 44, 52, 53, 69]. They typically focus on optimized pruning [6],
load balancing [60], or compilation based algorithms to operate on
subpatterns [14]. Subgraph isomorphism is widely researched in dis-
tributed systems [2, 4, 6, 32-34, 41-43, 46, 47, 49, 50, 57, 58, 61, 65]
by considering communication and computation constraints, a good
e.g., being a comprehensive study [34] of various matching algo-
rithms implemented in a generic distributed computing framework.

6 Conclusion

In this paper, we compared two state-of-the-art subgraph pattern
matching systems, VF3 and Dryadic, through comprehensive ex-
periments. They represent two of the most popular implementation
approaches of the same algorithmic strategy for subgraph pattern
matching. However, Dryadic is roughly two orders of magnitude
faster than VF3. We implemented multiple variants of Dryadic to
understand the reasons for the gigantic performance gap between
the two systems. Based on the understanding, we improved Dryadic
via lazy evaluation and VF3 by narrowing the search scope for con-
nectivity checks. We tested the single-threaded version and will
test the multi-threaded version in future work.

Understanding High-Performance Subgraph Pattern Matching: A Systems Perspective

References

(1]

[10]

(11

[12

[13]

[16]

[17]

[18]

[19]

[20]

[21]

ABERGER, C. R, LaMB, A,, Tu, S., N6TZLI, A., OLUKOTUN, K., AND RE, C. Empty-
headed: A relational engine for graph processing. ACM Transactions on Database
Systems (TODS) 42, 4 (2017), 20.

Arrarty F. N, FoTakis, D., AND ULLMAN, J. D. Enumerating subgraph instances
using map-reduce. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE) (Piscataway, NJ, USA, 2013), IEEE, Insitute of Electrical and Electronics
Engineers, pp. 62-73.

AHMAD, A., YUAN, L., YaN, D., Guo, G., CHEN, J., AND ZHANG, C. Accelerating
k-core decomposition by a gpu. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE) (Piscataway, NJ, USA, 2023), IEEE, Insitute of Electrical
and Electronics Engineers, pp. 1818-1831.

AMMAR, K., MCSHERRY, F., SALIHOGLU, S., AND JOGLEKAR, M. Distributed evalua-
tion of subgraph queries using worst-case optimal and low-memory dataflows.
PVLDB 11, 6 (2018), 691-704.

ARAL J., FUITWARA, Y., AND ONI1ZUKA, M. Gup: Fast subgraph matching by
guard-based pruning. Proc. ACM Manag. Data 1, 2 (jun 2023).

BHATTARAL B., Liu, H., AND HuaNnG, H. H. CECI: compact embedding cluster
index for scalable subgraph matching. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019 (New York, NY, USA, 2019), P. A. Boncz,
S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska, Eds., ACM, pp. 1447—
1462.

Br, F.,, CHANG, L., LIN, X., QIN, L., AND ZHANG, W. Efficient subgraph matching by
postponing cartesian products. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26
- July 01, 2016 (New York, NY, USA, 2016), F. Ozcan, G. Koutrika, and S. Madden,
Eds., ACM, pp. 1199-1214.

Bonnicr, V., GiugNo, R., PULVIRENTI, A., SHASHA, D., AND FERRO, A. A sub-
graph isomorphism algorithm and its application to biochemical data. BMC
bioinformatics 14, 7 (2013), 1-13.

BRAHMAKSHATRIYA, A., ZHANG, Y., Hong, C., KamiL, S., SHUN, J., AND AMA-
RASINGHE, S. P. Compliation techniques for graphs algorithms on gpus. CoRR
abs/2012.07990 (2020).

CARLETTI, V., FOGGIA, P., GRECO, A., VENTO, M., AND VIGILANTE, V. Vf3-light: a
lightweight subgraph isomorphism algorithm and its experimental evaluation.
Pattern Recognition Letters 125 (2019), 591-596.

CARLETTL, V., FOGGIA, P., RITROVATO, P., VENTO, M., AND VIGILANTE, V. A parallel
algorithm for subgraph isomorphism. In Graph-Based Representations in Pattern
Recognition: 12th IAPR-TC-15 International Workshop, GbRPR 2019, Tours, France,
Fune 19-21, 2019, Proceedings 12 (Berlin Heidelberg, 2019), Springer, Springer,
pp- 141-151.

CARLETTI, V., FOGGIA, P., SAGGESE, A., AND VENTO, M. Challenging the time
complexity of exact subgraph isomorphism for huge and dense graphs with
vf3. IEEE transactions on pattern analysis and machine intelligence 40, 4 (2017),
804-818.

CHEN, H,, L1u, M, ZHAO, Y., YAN, X,, YAN, D., AND CHENG,]. G-miner: an efficient
task-oriented graph mining system. In Proceedings of the Thirteenth EuroSys
Conference (New York, NY, USA, 2018), EuroSys "18, Association for Computing
Machinery.

CHEN, J., AND QIAN, X. Dwarvesgraph: A high-performance graph mining system
with pattern decomposition, 2020.

CHEN, J., AND Q1AN, X. Kudu: An efficient and scalable distributed graph pattern
mining engine. arXiv preprint arXiv:2105.03789 (2021).

CooK, S. A. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing (New York, NY, USA,
1971), Association for Computing Machinery, pp. 151-158.

CORDELLA, L. P., FoGaIa, P., SANSONE, C., AND VENTO, M. A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell.
26,10 (2004), 1367-1372.

Dias, V., TEIXEIRA, C. H. C., GUEDES, D., MEIRA, W., AND PARTHASARATHY, S.
Fractal: A general-purpose graph pattern mining system. In Proceedings of the
2019 International Conference on Management of Data (New York, NY, USA, 2019),
SIGMOD 19, Association for Computing Machinery, p. 1357-1374.

ELSEIDY, M., ABDELHAMID, E., SKIADOPOULOS, S., AND KALNIS, P. GRAMI: frequent
subgraph and pattern mining in a single large graph. PVLDB 7, 7 (2014), 517-528.
Han, M., Kim, H,, Gu, G,, PARK, K., AND HaN, W. Efficient subgraph matching:
Harmonizing dynamic programming, adaptive matching order, and failing set
together. In Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019
(New York, NY, USA, 2019), P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande,
and T. Kraska, Eds., ACM, pp. 1429-1446.

HaN, W,, LEE, J., AND LEE, J. Turbojg,: towards ultrafast and robust subgraph
isomorphism search in large graph databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013 (New York, NY, USA, 2013), K. A. Ross, D. Srivastava, and
D. Papadias, Eds., ACM, pp. 337-348.

[22]

[23

[24]

[26

[27

(28]

[29]

(30]

[31

[36

(37]

[38

[39

[40

[41]

[43

[44]

GRADES-NDA 24, June 14, 2024, Santiago, AA, Chile

HE, H., AND SINGH, A. K. Graphs-at-a-time: query language and access methods
for graph databases. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data (New York, NY, USA, 2008), Association for
Computing Machinery, pp. 405-418.

JamsHibp, K., MARIAPPAN, M., AND VORA, K. Anti-vertex for neighborhood con-
straints in subgraph queries. In Proceedings of the 5th ACM SIGMOD Joint Inter-
national Workshop on Graph Data Management Experiences & Systems (GRADES)
and Network Data Analytics (NDA) (New York, NY, USA, 2022), Association for
Computing Machinery, pp. 1-9.

JiaN, X, L1, Z., AND CHEN, L. Suff: Accelerating subgraph matching with historical
data. Proc. VLDB Endow. 16, 7 (mar 2023), 1699-1711.

JIANG, Z., ZHANG, S., L1u, B., Hou, X., YuaN, M., AND You, H. Fast subgraph
matching by dynamic graph editing. IEEE Transactions on Services Computing
(2023), 1-12.

JiN, X,, YANG, Z., LIN, X, YANG, S., QIN, L., AND PENG, Y. Fast: Fpga-based subgraph
matching on massive graphs. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE) (Piscataway, NJ, USA, 2021), IEEE, Insitute of Electrical and
Electronics Engineers, pp. 1452-1463.

JUTTNER, A., AND MADARASI, P. Vf2++—an improved subgraph isomorphism
algorithm. Discrete Applied Mathematics 242 (2018), 69-81.

KANKANAMGE, C., SAHU, S., MHEDBHI, A., CHEN, J., AND SALIHOGLU, S. Graph-
flow: An active graph database. In Proceedings of the 2017 ACM International
Conference on Management of Data (New York, NY, USA, 2017), ACM, Association
for Computing Machinery, pp. 1695-1698.

Kim, H., CHor, Y., PArk, K., Lin, X., HonG, S.-H., AND HaN, W.-S. Versatile
equivalences: Speeding up subgraph query processing and subgraph matching. In
Proceedings of the 2021 International Conference on Management of Data (New York,
NY, USA, 2021), SIGMOD 21, Association for Computing Machinery, p. 925-937.
Kim, K., SEo, I, HAN, W., LEE, J., HONG, S., CHAFI, H., SHIN, H., AND JEONG, G.
Turboflux: A fast continuous subgraph matching system for streaming graph
data. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018 (New York, NY,
USA, 2018), G. Das, C. M. Jermaine, and P. A. Bernstein, Eds., ACM, pp. 411-426.
KimmiG, R., MEYERHENKE, H., AND STRASH, D. Shared memory parallel sub-
graph enumeration. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW) (Piscataway, NJ, USA, 2017), IEEE, Insitute of
Electrical and Electronics Engineers, pp. 519-529.

Lar L., QIn, L, LiN, X., AND CHANG, L. Scalable subgraph enumeration in
mapreduce. Proceedings of the VLDB Endowment 8, 10 (2015), 974-985.

Lar, L., QIN, L., LIN, X., ZHANG, Y., AND CHANG, L. Scalable distributed subgraph
enumeration. PVLDB 10, 3 (2016), 217-228.

Lar L, QING, Z., YANG, Z., JIN, X,, LA1, Z., WANG, R, Hao, K., LIN, X, QIN, L.,
ZHANG, W., ZHANG, Y., QIAN, Z., AND ZHOU,]. Distributed subgraph matching
on timely dataflow. Proc. VLDB Endow. 12, 10 (2019), 1099-1112.

LESKOVEC, J., KLEINBERG, J., AND FALOUTs0s, C. Graphs over time: densification
laws, shrinking diameters and possible explanations. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining
(New York, NY, USA, 2005), Association for Computing Machinery, pp. 177-187.
LESKOVEC, J., AND SosI¢, R. Snap: A general-purpose network analysis and graph-
mining library. ACM Transactions on Intelligent Systems and Technology (TIST) 8,
1(2016), 1.

L1u, J., POLISETTY, S., GUAN, H., AND SERAFINI, M. Graphmini: Accelerating graph
pattern matching using auxiliary graphs. In 2023 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT) (Piscataway, NJ, USA,
2023), IEEE, Insitute of Electrical and Electronics Engineers, pp. 211-224.
MAWHIRTER, D., REINEHR, S., HAN, W., FIELDS, N., CLAVER, M., HoLMmES, C.,
McCLugrg, J., Liu, T., AND Wu, B. Dryadic: Flexible and fast graph pattern
matching at scale. In 2021 30th International Conference on Parallel Architectures
and Compilation Techniques (PACT) (Piscataway, NJ, USA, 2021), IEEE, Insitute of
Electrical and Electronics Engineers, pp. 289-303.

MAWHIRTER, D., AND Wu, B. Automine: harmonizing high-level abstraction and
high performance for graph mining. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (New York, NY, USA, 2019), ACM, Association
for Computing Machinery, pp. 509-523.

MHEDHBI, A., AND SALTHOGLU, S. Optimizing subgraph queries by combining
binary and worst-case optimal joins. Proc. VLDB Endow. 12, 11 (2019), 1692-1704.
MURRAY, D. G., MCSHERRY, F., IsaAcs, R., ISARD, M., BARHAM, P., AND ABADI, M.
Naiad: a timely dataflow system. In ACM SIGOPS 24th Symposium on Operating
Systems Principles, SOSP ’13, Farmington, PA, USA, November 3-6, 2013 (New York,
NY, USA, 2013), Association for Computing Machinery, pp. 439-455.
PLANTENGA, T. Inexact subgraph isomorphism in mapreduce. Journal of Parallel
and Distributed Computing 73, 2 (2013), 164-175.

Q1a0, M., ZHANG, H., AND CHENG, H. Subgraph matching: on compression and
computation. PVLDB 11, 2 (2017), 176-188.

RaMAN, R., VAN REsT, O., HONG, S., Wu, Z., CHAFI, H., AND BANERJEE, J. Pgx.iso:
Parallel and efficient in-memory engine for subgraph isomorphism. In Proceedings
of Workshop on GRAph Data Management Experiences and Systems (New York,
NY, USA, 2014), GRADES 14, Association for Computing Machinery, p. 1-6.

GRADES-NDA °24, June 14, 2024, Santiago, AA, Chile

[45]

[46]

[47]

[48]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

(59

[60]

[61]

[62

[63]

[64]

[65]

[66]

[67]

[68]

REN, X., AND WANG, J. Exploiting vertex relationships in speeding up subgraph
isomorphism over large graphs. Proceedings of the VLDB Endowment 8, 5 (2015),
617-628.

REN, X., WANG, J., HAN, W.-S., AND Yu, . X. Fast and robust distributed subgraph
enumeration. Proceedings of the VLDB Endowment 12, 11 (2019), 1344-1356.
SERAFINI, M., DE FRANCISCI MORALES, G., AND SIGANOS, G. Qfrag: distributed
graph search via subgraph isomorphism. In Proceedings of the 2017 Symposium
on Cloud Computing (New York, NY, USA, 2017), SoCC ’17, Association for
Computing Machinery, p. 214-228.

SHANG, H., ZHANG, Y., LIN, X., AND Yu, J. X. Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism. Proc. VLDB Endow. 1, 1
(2008), 364-375.

SHAO, Y., Cur, B, CHEN, L., Ma, L., Yao, J., AND Xu, N. Parallel subgraph listing in
a large-scale graph. In International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014 (New York, NY, USA, 2014), C. E.
Dyreson, F. Li, and M. T. Ozsu, Eds., ACM, pp. 625-636.

SH1, T, ZHAIL, M., XU, Y., AND ZHAL, J. Graphpi: High performance graph pat-
tern matching through effective redundancy elimination. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis
(Piscataway, NJ, USA, 2020), Insitute of Electrical and Electronics Engineers,
pp. 1-14.

Su, X, LIN, Y., AND Zov, L. Fasi: Fpga-friendly subgraph isomorphism on massive
graphs. In 2023 IEEE 39th International Conference on Data Engineering (ICDE)
(Piscataway, NJ, USA, 2023), IEEE, Insitute of Electrical and Electronics Engineers,
pp. 2099-2112.

SuN, S., CHE, Y., WANG, L., AND Luo, Q. Efficient parallel subgraph enumeration
on a single machine. In 35th IEEE International Conference on Data Engineering,
ICDE 2019, Macao, China, April 8-11, 2019 (Piscataway, NJ, USA, 2019), IEEE,
pp. 232-243.

SuN, S., AND Luo, Q. Parallelizing recursive backtracking based subgraph match-
ing on a single machine. In 2018 IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS) (Piscataway, NJ, USA, 2018), IEEE, Insitute of
Electrical and Electronics Engineers, pp. 1-9.

SuN, S., AND Luo, Q. In-memory subgraph matching: An in-depth study. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Piscataway, NJ, USA, 2020), Insitute of Electrical and Electronics Engineers,
pp. 1083-1098.

SUN, S., AND Luo, Q. Subgraph matching with effective matching order and
indexing. IEEE Transactions on Knowledge and Data Engineering 34, 1 (2020),
491-505.

Sun, X., AND Luo, Q. Efficient gpu-accelerated subgraph matching. Proc. ACM
Manag. Data 1, 2 (jun 2023).

SUN, Z., WANG, H., WANG, H., SHAO, B., AND L1, J. Efficient subgraph matching
on billion node graphs. Proceedings of the VLDB Endowment 5, 9 (2012).
TeIXEIRA, C. H. C,, FONSECA, A. J., SERAFINI, M., SIGANOS, G., ZAKI, M. J., AND
ABOULNAGA, A. Arabesque: a system for distributed graph mining. In Proceedings
of the 25th Symposium on Operating Systems Principles (New York, NY, USA, 2015),
SOSP ’15, Association for Computing Machinery, p. 425-440.

ULLMANN, J. R. An algorithm for subgraph isomorphism. J. ACM 23, 1 (1976),
31-42.

Vora, K., Xu, G., AND GUPTA, R. Load the edges you need: A generic i/o optimiza-
tion for disk-based graph processing. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16) (Denver, CO, 2016), USENIX Association, pp. 507-522.

WANG, Z., Gu, R., Hu, W,, YuaN, C., AND HUuaNg, Y. BENU: distributed subgraph
enumeration with backtracking-based framework. In 35th IEEE International Con-
ference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019 (Piscataway,
NJ, USA, 2019), Insitute of Electrical and Electronics Engineers, pp. 136-147.
WILLETT, P. Chemoinformatics: a history. Wiley Interdisciplinary Reviews: Com-
putational Molecular Science 1, 1 (2011), 46-56.

WILLEY, L. C., AND SALMON, J. L. A method for urban air mobility network design
using hub location and subgraph isomorphism. Transportation Research Part C:
Emerging Technologies 125 (2021), 102997.

YANG, J., AND LESKOVEC, J. Defining and evaluating network communities based
on ground-truth. Knowledge and Information Systems 42, 1 (2015), 181-213.
YANG, Z., Lar, L., LiN, X., Hao, K., AND ZHANG, W. Huge: An efficient and scalable
subgraph enumeration system. In Proceedings of the 2021 International Conference
on Management of Data (New York, NY, USA, 2021), SIGMOD ’21, Association
for Computing Machinery, p. 2049-2062.

ZHANG, S., L1, S., AND YANG, J. Gaddi: distance index based subgraph matching
in biological networks. In Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology (New York, NY,
USA, 2009), EDBT °09, Association for Computing Machinery, p. 192-203.
ZHANG, Y., KIRIANSKY, V., MENDIS, C., AMARASINGHE, S., AND ZAHARIA, M. Mak-
ing caches work for graph analytics. In 2017 IEEE International Conference on
Big Data (Big Data) (Piscataway, NJ, USA, 2017), IEEE, Insitute of Electrical and
Electronics Engineers, pp. 293-302.

ZHANG, Y., YANG, M., BAGHDADI, R., Kami1L, S., SHUN, J., AND AMARASINGHE,
S. P. Graphit: a high-performance graph DSL. PACMPL 2, OOPSLA (2018),

Akshit Sharma, Dinesh Mehta, and Bo Wu

121:1-121:30.

[69] Znao, C., ZHANG, Z., XU, P., ZHENG, T., AND GUO, J. Kaleido: An efficient out-of-
core graph mining system on a single machine. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE) (Piscataway, NJ, USA, 2020), Insitute of
Electrical and Electronics Engineers, pp. 673-684.

[70] Znao, P., AND HAN, J. On graph query optimization in large networks. Proc.
VLDB Endow. 3, 1 (2010), 340-351.

A Pattern Graphs

The 10 pattern graphs used in the paper.

> .

(a) patto1 (b) patt02 (c) patt03 (d) patto4 (e) patt05
(f) patt06 (g) patt07 (h) patt08 (i) patt09 (j) patt10

Figure 5: Pattern Graphs. Each distinct color represents a
unique label.

B Additional results

In this section, we present the results that are omitted in the
paper due to space constraints. Specifically we show the results for
the impact that the VF3 matching order has on latency, by adding
matching order to ‘recursive dryadic + BS + ONG’ (§ 3.4). As can
be seen in Fig. 6a, the matching order does not make a significant
difference. In Fig. 6b, we show the impact of code motions in latency
(discussed in § 3.5), which varies depending on the data graph and
pattern graph considered.

recursive Dryadic + BS
+ ONG + VF3 MAT

100 recursive Dryadic + BS
+ ONG

recursive Dryadic + BS
+ ONG + VF3 MAT

- 1077

recursive Dryadic + BS
10¢ + ONG + VF3 MAT
+ No CM

Execution Time (ms)
Execution Time (ms)

8 s 8 s
£ £

citea

2 S
a8 I+

2
a8

(a) Different matching orders. (b) Dryadic rec. w/o code motion.

Figure 6: Rest of graphs quantifying the performance of
Dryadic versions.

C Dryadic

Algorithm 3 shows the nested-for-loop code for the pattern graph
in Fig. 1b based on the pattern vertex matching order (po, p1, p2, p3)-
Thus, the outermost for loop corresponds to py, the first vertex in

Understanding High-Performance Subgraph Pattern Matching: A Systems Perspective

the pattern order and the innermost for loop corresponds to ps,
the last vertex in the pattern order. In the algorithm, L(I) returns
all vertices in the data graph with label / and N(v,l) returns all
neighboring vertices of v in the data graph with label I. Set opera-
tions are determined by the relationship of the new pattern vertex
with previous vertices in the pattern order. A set intersection is used
when an edge is present and a set difference when an edge is absent.

Algorithm 3 Set operation-based matching in Dryadic.

1: Input Data Graph D = (V, E;), Order PO = (po, p1, p2, P3)
2: Output All bijections f
3: procedure PROCESSGRAPH(g)
4: for all a € L(0) do
for all b € N(q,1) do
for all ¢ € N(a,2) NN(b,2) do
for all d € N(a,3) N N(b,3) — N(c,3) do
output {(po, a), (p1, b), (p2,¢), (p3,d)}

The first vertex in the pattern order is po, which has the label 0.
The algorithm therefore calls L(0), which returns all data vertices
with label 0 (Line 4) and iterates over these vertices using the
variable a. The second vertex in the pattern order is p;, which
has label 1 and has an edge to po. Thus, Line 5 considers all data
vertices with label 1 that are adjacent to a and iterates over them
using variable b. The third vertex in the pattern order is p, which
has label 2 and is adjacent to both po and p1. Thus, in Line 6, we
use variable ¢ to iterate over vertices in the data graph that are
adjacent to both a and b and have label 2. The last vertex in the
pattern order is p3, which has label 3 and is connected to pg and p1
but not py. Hence, we see our first use of the difference operation.
Line 7 subtracts the neighbors of a and b from the neighbors of ¢
(all with label 3) and iterates over these vertices using d. Finally,
inside the innermost loop, the algorithm outputs a matching.

We illustrate the algorithm (Algorithm 3) on the data graph
(Fig. 1a). Line 4 iterates a over all data vertices with label 0 (L(0) =
{ds,ds}). With a = d3, Line 5 sets b to di (N(d3,1) = {d1}). Next,
Line 6 computes the intersection N(ds, 2) N N(d1, 2), which gives

{dy,d7}. With ¢ = dy, Line 7 subtracts N (da, 3)(0) from N(ds,3)({dp})N

N(d1,3)({do, ds}), giving {dp}. d is set to dp and the first match
is the output: {(po, d3), (p1,d1), (p2, d2), (p3,dp)}. In the next iter-
ation, c is set to d7 on Line 6. The intersection N(ds3,2)({dp}) N
N(di,2)({dp}) is computed and followed by subtracting (d7, 2)(0).
This leads to the second match: {(po, d3), (p1, d1), (P2, d7), (p3,do)}-
After exhausting the inner loops, the system next iterates on Line 4
with a = dy. Line 5 sets b to ds. Line 6 computes the intersection of
N(ds, 2)({d7}) and N(ds, 2)(0), which is 0. Thus, the for loop on
Line 6 is not executed and no further matches are obtained. The
matching paths mentioned in the above procedure are shown in
Fig. 1c.

D VF3

Algorithm 4 utilizes the following functions.

IsGoaL() returns true if all pattern vertices are mapped. ISDEAD()
analyzes edges leaving the pattern and data subgraphs of state s
and returns “true" if this analysis shows that any matches that
build on s will surely fail. In this case, the recursion is terminated.

GRADES-NDA 24, June 14, 2024, Santiago, AA, Chile

Algorithm 4 Backtracking-based matching algorithm in VF3.

1: Input State s
2: Output (vp,v4) € M where v, € Vp and vg € Vy
3: procedure PROCESSGRAPH(S)
4: if s.IsGoAL() then
5 output s.matches
6: return
7 if s.IsDEAD() then return
8: pi < di «— NULL
while s NEXTPAIR(p;, d;) do

10: if s.ISFEASIBLEPAIR(p;, d;) then
11: Snew < S

12: Snew-ADDPAIR(p;, d;)

13: PROCESSGRAPH (Spevy)

NEXTPAIR(p;, d;) returns a candidate vertex d; from the data graph
whose label matches the label of p;. The pattern vertex p; is uniquely
determined from the matching order and the depth of the recursive
call. ISFEASIBLEPAIR(p;, d;) checks whether the pattern and data
subgraphs resulting from adding p; and d;, respectively, are isomor-
phic. This entails two checks: (1) the edge presence check ensures
that any edge in the pattern subgraph from p; to a previous pattern
vertex p; has a corresponding edge from d; to the data vertex that
was matched to p; in an earlier recursive step. (2) the edge absence
check similarly ensures if there is not an edge (p;, pj) in the pattern
subgraph, then the corresponding edge from d; is also absent. Note
that the edge absence check is implemented by checking the con-
trapositive: i.e., if there is an edge from d; to a previously matched
vertex in the data subgraph, then there is a corresponding edge
from p; to the corresponding vertex in the pattern graph.

ADDPAIR(p;, d;) adds the matching pair (p;, d;) to state s in prepa-
ration for the next recursive call.

We illustrate the operation of VF3 using the examples from Fig. 1a
and Fig. 1b. The pattern vertex matching order is (po, p1, p2, p3), as
before. First, NEXTPAIR() (Line 9) initializes p; and d; to po and ds.
IsFEASIBLEPAIR() (Line 10) returns “true” since the data and pattern
subgraphs do not yet contain edges. The next state speqy is obtained
by adding (po, d3) to state s (Line 12) and Line 13 makes a recursive
call.

At level 2 of the recursion, p; is set to p1 (which has label 1). The
only possible candidate vertex for d; is di (neighbors of d3 with
label 1). So, NEXTPAIR() sets d; to dj. This time, ISFEASIBLEPAIR()
also confirms that since p;py exists in the pattern graph, then there
must be a corresponding edge dyds in the data graph. Since this is
true, the algorithm adds this pair and makes the next recursive call.

At level 3, NEXTPAIR() maps p to dy (neighbor of d;). IsFEAsI-
BLEPAIR(), cross-checks the pattern subgraph edges from p» (i.e.,
D2p1, P2po) with corresponding edges from dj (dody, dads). After
passing the feasibility test, the algorithm adds a matching pair
(p2, da).

At level 4, in NEXTPAIR(), p3 will be mapped and the function
will return candidate vertex dy first. Inside ISFEASIBLEPAIR(), the al-
gorithm will check if all the edges of pattern subgraph with pattern
vertex ps (p3po, p3p1) are present in the data subgraph with data
vertex dy as well (M, M). It also checks that the data subgraph

GRADES-NDA °24, June 14, 2024, Santiago, AA, Chile

does not contain any edges from dy to already mapped vertices in
the data subgraph that is not present in the pattern subgraph. Since
dp satisfies both of these conditions, (p3, do) are added.

At level 5, IsGoaL() (Line 4) returns true. So, the first output
generated will be {(po, d3), (p1,d1), (p2, d2), (p3,do)}, after which
the the program returns to level 4. At level 4, the next iteration of
the while loop considers dg as a possible match for p3 in Line 9.
ISFEASIBLEPAIR() returns false, as there is no edge from dg in the
data graph that corresponds to p3po.

Akshit Sharma, Dinesh Mehta, and Bo Wu

At level 3, d7 is mapped to py and a series of recursive calls
outputs {(po, d3), (p1,d1), (p2,d7), (p3,do) } and unwinds the recur-
sion.

At level 1, NExTPAIR()(Line 9) maps po to dy and at level 2, maps
ds to p1. Since ds has no neighbors with label 2, the recursion
terminates. The program also terminates as there are no other
matching paths. The matching tree followed by the algorithm is
shown in Fig. 1c.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Subgraph Pattern Matching
	2.2 Matching through Vertex Extension
	2.3 Dryadic
	2.4 VF3
	2.5 Performance Comparison

	3 Quantifying the Performance Benefits of Optimizations
	3.1 Candidate generation
	3.2 Iterative vs Recursive Implementations
	3.3 Graph Representation
	3.4 Matching Order
	3.5 Code Motion
	3.6 Discussion

	4 Improving Both Systems
	4.1 Dryadic Improvements
	4.2 VF3 Improvements

	5 Related Work
	6 Conclusion
	References
	A Pattern Graphs
	B Additional results
	C Dryadic
	D VF3

