

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

AIP/APL

1 *Polarization near Dislocation Cores in SrTiO₃ Single Crystals: The Role of*
2 *Flexoelectricity*

3 **Xiaoxing Cheng^{1, a)} Bo Wang¹ and Long-Qing Chen^{1, b)}**

4 *Material Science and Engineering, The Pennsylvania State University,*
5 *University Park, Pennsylvania, 16802, United States of America*

6 (Dated: 17 March 2024)

7 Spontaneous polarization as large as $\sim 28 \mu C/cm^2$ was recently observed around
8 the dislocation cores in non-polar SrTiO₃ bulk crystals, and its origin was attributed
9 to the flexoelectric effect, i.e., polarization induced by strain gradients. However,
10 the roles of flexoelectricity, relative to other electromechanical contributions, and the
11 nature of dislocations, i.e. edge versus screw dislocations in the induced polarization
12 are not well understood. In this work, we study the role of flexoelectricity in inducing
13 polarization around three types of dislocation cores in SrTiO₃: $b = a(100)$ edge dislo-
14 cation, $b = a(110)$ edge dislocation, and $b = a(010)$ screw dislocation, where b is the
15 Burgers vector. For the edge dislocations, polarization can be induced by electrostricti-
16 tion alone while flexoelectricity is essential for stabilizing the symmetric polarization
17 pattern. The shear component of the flexoelectric tensor has a dominant effect on
18 the magnitude and spatial distribution of the flexoelectric polarization. In contrast,
19 no polarization is induced around the $b = a(010)$ screw dislocation through either
20 electrostriction or flexoelectricity. Our findings provide an in-depth understanding of
21 the role of flexoelectricity in inducing polarization around dislocation cores and offer
22 insights to the defect engineering of dielectric/ferroelectric materials.

^{a)}Current affiliation: Shenzhen Research Institute of Big Data, Guangdong, 518045, China

^{b)}Author to whom correspondence should be addressed: lqc3@psu.edu.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

23 SrTiO₃ is a quantum paraelectric material that undergoes a transition from cubic to
24 tetragonal in its bulk single-crystal form upon cooling below the antiferrodistortive transi-
25 tion temperature of 105 K. Its transverse optical mode softens near 0 K, although no
26 ferroelectric transition is observed^{1–4}. However, ample experimental evidence exists that
27 ferroelectricity can be induced in SrTiO₃ through methods such as non-stoichiometry^{5,6},
28 strain engineering^{7–10}, and isotope substitution¹¹.

29 Recently, polar regions are observed around SrTiO₃ dislocation cores¹², and their ap-
30pearance is attributed to flexoelectricity, a coupling effect between polarization and strain
31 gradient^{13–15}. As a 4th rank tensor, flexoelectricity is present in crystals of all symmetries,
32 unlike piezoelectricity, which is absent in centrosymmetric materials. Although a universal
33 property, the flexoelectric coupling effect is expected to manifest itself only in materials
34 of large dielectric permittivity and under sufficiently large strain gradients^{15–20}. In some
35 ferroelectric thin film systems^{21,22}, researchers have observed strain gradient up to 10⁶ /m,
36 which is large at long-scale but not enough to induce flexoelectric polarization. The locally
37 distorted regions around dislocation cores are known to possess large strain gradients, which
38 can reach up to approximately 10⁸ /m as shown in our simulation, and may give rise to
39 flexoelectric polarization. However, it is known that other electromechanical coupling ef-
40 fects, such as electrostriction, can also stabilize ferroelectric phases^{23,24}. For ferroelectric
41 materials, it is well-known that dislocations influence the polarization domain structure^{25,26}.
42 However, it is extremely challenging, if not possible to explicitly separate the contributions
43 of spontaneous polarization, electrostriction, piezoelectricity, and flexoelectricity to the to-
44 tal polarization through experiments. Therefore, using a dielectric material like SrTiO₃ as
45 a model system is desirable because it allows us to ignore the contribution of spontaneous
46 polarization and piezoelectricity since bulk SrTiO₃ is not ferroelectric/piezoelectric at room
47 temperature. In this work, we use phase-field simulations to investigate the contributions of
48 flexoelectricity and electrostriction to polarization around dislocation cores in bulk single-
49 crystal SrTiO₃. Our phase-field ferroelectric model provides a self-consistent way to isolate
50 and compare the relative contributions of each flexoelectric component.

51 It is worth noting that the presence of dislocations in SrTiO₃ itself may generate a
52 number of complex phenomena²⁷ such as the interaction of dislocation cores with oxy-
53 gen vacancies^{28–30}, the stabilization of local polarization at and near dislocation cores¹²,
54 the dislocation reactions and dynamics^{31–33}. In this work, we focus on the mechanical ef-

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

55 fect arising from the presence of three common types of dislocations, the $b = a(100)$ edge
56 dislocation, which is widely observed at small angle grain boundaries^{12,30} or in plastically
57 deformed crystals at high temperature³⁴⁻³⁶, the $b = a(110)$ edge dislocation, and $b = a(010)$
58 screw dislocation, which are commonly observed in SrTiO₃ that undergoes plastic deforma-
59 tion at low temperature^{34,35,37}. The polarization and local strain distributions around the
60 $b = a(100)$ edge dislocation have already been characterized in the literature using high-
61 resolution STEM³⁰, providing comparisons for the $b = a(100)$ edge dislocation results of
62 Four phase-field calculations.

63 For all three types of dislocations, only one single dislocation is introduced in all cases.
64 In the real world, however, $b = a(110)$ edge dislocation may dissociate into a pair of par-
65 tial dislocations, but that is beyond the discussion of this paper. We also recognize that
66 the dislocation core may be charged, which definitely will influence the local polarization
67 distribution. The effect of charges at the dislocation core on the local polarization will be
68 addressed in a future publication.

69 The phase-field method is employed to simulate the polarization evolution of bulk SrTiO₃
70 in the presence of dislocations^{23,38}. The temporal evolution of local polarization and oxygen
71 octahedral tilt can be described by the time-dependent Ginzburg Landau (TDGL) equation
72 (S1) with two sets of order parameters P, the polarization, and Q, the oxygen octahedral
73 tilt. Detailed forms for each free energy term are presented in Equation S3 to S7 of the
74 supplementary material. Comparisons between the numerical and analytical stress distri-
75 butions are shown in Figure S1. The strain distributions for all three types of dislocations
76 are shown in Figure S2.

77 A self-consistent steady-state order parameter distribution can be obtained through the
78 coupled solution of TDGL equation (S1), mechanical equilibrium equation (S8), and Poisson
79 equation (S9). All coefficients are listed in the supplementary material table (S1), which
80 are the same as in reference³⁹. More details of the simulation setup and how we choose the
81 flexoelectric coefficients for all cases are explained in Figure S3.

82 Figure 1 shows the stress distribution and strain gradient distribution around $b = a(100)$
83 edge dislocation. σ_{11} has the largest magnitude because it is directly affected by the disloca-
84 tion eigenstrain due to the additional atomic plane inside the dislocation loop. Electrostric-
85 tion, as a quadruple relationship between strain and polarization, can affect the shape of
86 total free energy in Equation S2, and thus equilibrium polarization value⁴⁰. This is illustrated

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

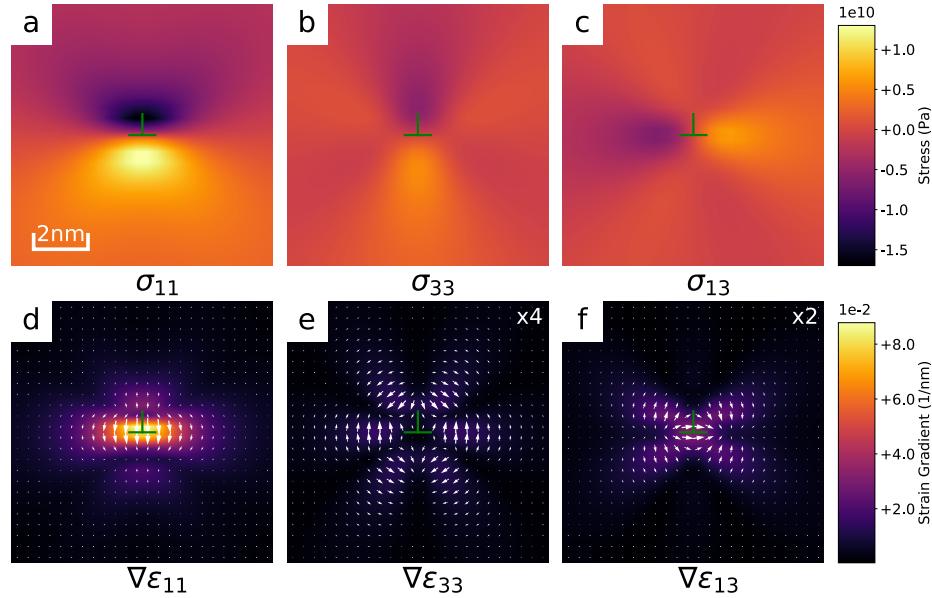


FIG. 1. Stress and strain gradient distributions around $b = a(100)$ edge dislocation core. Background color shows the magnitude of the corresponding data, (a) σ_{11} , (b) σ_{33} , (c) σ_{13} , (d) $\nabla\epsilon_{11}$, (e) $\nabla\epsilon_{33}$, (f) $\nabla\epsilon_{13}$. Subscript 1 means the horizontal axis to the right, subscript 3 means the vertical axis to the up, and the y axis is pointing into the paper. The dislocation core is located at the center of the region marked by the green T. White arrows in (d), (e), and (f) is the gradient vector with scaling factor shown at the top right corner.

in Figure S4 that a moderate tensile stress leads to the ferroelectric phase with polarization along the tensile direction, while compressive stress still leads to the paraelectric phase. The flexoelectric effect, on the other hand, correlates the polarization orientation to the strain gradient, which breaks the central symmetry and stabilizes the ferroelectric phase directly.

The strain gradient distribution in Figure 1(d), (e), and (f), shows that the gradients of ϵ_{11} and ϵ_{33} are mainly along (001) direction while ϵ_{13} gradient is along (100) direction. Additionally, the ϵ_{11} gradient has the largest magnitude, nearly three times those of ϵ_{33} and ϵ_{13} . To activate the flexoelectric effect, a significant strain gradient and a large flexoelectric coefficient are two necessities. Since $\epsilon_{11,3}$ dominates among all strain gradients in the $b = a(100)$ edge dislocation case, according to the relationship $E_3^{flexo} = V_{3333}\epsilon_{33,3} + V_{3311}\epsilon_{11,3} + 2V_{3113}\epsilon_{13,1}$, the flexoelectric field along the z-direction has the largest value, thus we will

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

naturally expect the polarization to be along the z-direction. Surprisingly, the simulation results prove our intuition wrong, the reason for which will become clear as we discuss the results in Figure 2 and 3.

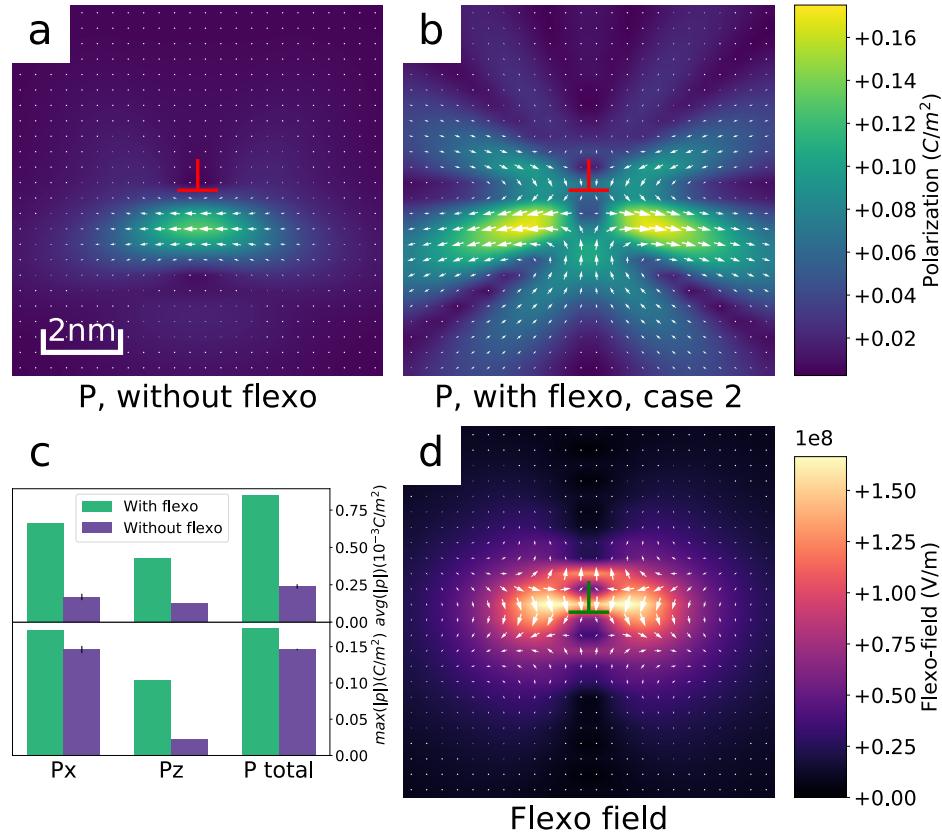


FIG. 2. Comparison of polarization distributions with and without flexoelectric effect. (a) Polarization distribution without flexoelectricity. (b) Polarization distribution considering flexoelectricity, $V_{1111} = 0.08$ V, $V_{1122} = 2.6$ V, $V_{1212} = 2.2$ V. The quivers in (a),(b) indicate the polarization vector and the background heat plot illustrates the magnitude of polarization. (c) Statistics of the average and maximum P_x , P_z , and P total. (d) Flexoelectric field distribution, quivers indicate the flexoelectric field and the background heat plot shows the magnitude of the flexoelectric field.

The polarization distributions with and without the flexoelectric contribution are shown in Figure 2. The result in Figure 2(a) is consistent with the analysis in Figure 1(a) and

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

103 Figure S4(b,c) that when considering only electrostriction, it is possible to stabilize the
104 polar state in the tensile region below the dislocation core with the polarization orienting
105 along the tensile stress direction, while the material remains in the paraelectric phase in the
106 compressive region above the dislocation core. The reason why the polarization in Figure
107 2(a) is pointing towards the left is merely due to the initial random noise. We have also
108 observed the other degenerate state with polarization pointing towards the right if starting
109 from a different initial noise. Figure 2(b) shows that when flexoelectricity is taken into
110 consideration (case 2 setup), the polarization becomes mirrored with respect to the z-axis.
111 The flexoelectric field in Figure 2(d) demonstrates more clearly the symmetric relationship
112 of the flexoelectric driving force for polarization around the dislocation core. However, the
113 final polarization distributions are totally different from the flexoelectric field, indicating
114 that though there is a significant change in polarization pattern when flexoelectricity is
115 considered, the electrostrictive effect still plays an important role in determining the final
116 polar state in Figure 2(b). We can draw the same conclusion based on the fact that the
117 polarization distributions in Figure 2(b) have a much larger magnitude in the tensile re-
118 gion below the defect compared to the compressive region above the dislocation. The bar
119 plot in Figure 2(c) shows that flexoelectricity significantly boosts the average polarization
120 magnitude within the plotted region because the "with flexoelectricity" case shows a much
121 larger influential region than the "without flexoelectricity" case. On the other hand, flex-
122 oelectricity has a limited effect on the value of maximum polarization, since the maximum
123 always appears below the dislocation in the tensile region where the role of flexoelectricity is
124 more of reorienting the polarization that is already stabilized by electrostriction. The large
125 increase in the maximum P_z value is because in the pure electrostriction case the tensile
126 strain along the x-direction suppresses the occurrence of polarization along the z-axis.

127 To further understand the influence of flexoelectricity, we took advantage of simulation
128 and performed a series of calculations varying the flexoelectric coefficients. Figure 3 shows
129 the polarization and flexoelectric field distributions for three sets of flexoelectric coefficients.
130 Comparing the polarization patterns in Figure 3 (a), (b), and (c) with the ones in Figure 2(a)
131 and (b), we find that Figure 3(c) resembles Figure 2(b), both have the mirrored shape, while
132 Figure 3(a) and (b) roughly maintain the uni-directional distribution as in the "without
133 flexoelectricity" case in Figure 2(a). These results indicate that for the $b = a(100)$ edge
134 dislocation case, V_{1212} plays a more important role in shaping the polarization distribution

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

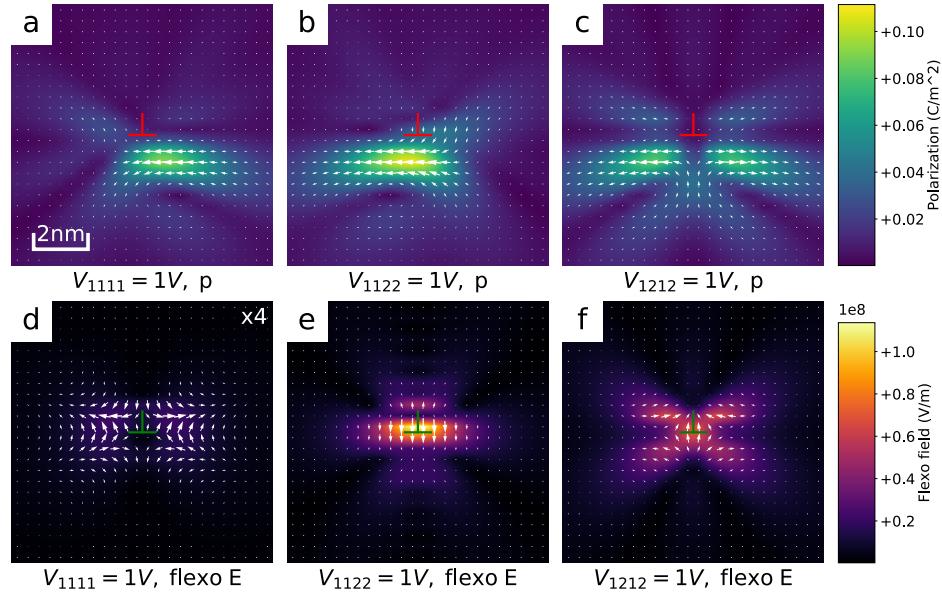


FIG. 3. The polarization and flexoelectric field distributions under different flexoelectric coefficients for $b = a(100)$ edge dislocation. White quiver represents the plotted vector field, and the background heat plot shows the magnitude of the vector. (a, b, c) Polarization distribution. (d, e, f) Flexoelectric field distribution. (a, d) Non-zero longitudinal flexoelectric coefficient. (b, e) Non-zero transverse flexoelectric coefficient. (c, f) Non-zero shear flexoelectric coefficient.

135 than the other two independent flexoelectric coefficients. As shown in Figure 1 and S5, a
 136 non-zero V_{1111} activates $\epsilon_{11,1}$ and $\epsilon_{33,3}$, but because both strain gradients and the coefficient
 137 are small, the magnitude of flexoelectric field in Figure 3(d) is small and thus the polarization
 138 pattern is only slightly changed compared to the "without flexoelectricity" case. Non-zero
 139 V_{1122} value leads to a huge z component in the flexoelectric field due to the large $\epsilon_{11,3}$ value,
 140 but such a large driving force does not transform into enhanced polarization along the
 141 z-axis. Similar to how strain engineering works in epitaxial thin film, tensile strain favors
 142 polarization along the same tensile direction, but not the perpendicular direction^{23,40}. While
 143 for V_{1212} , the combination of V_{1212} and $\epsilon_{13,3}$ aligns the largest flexoelectric field along the
 144 x-direction, as shown in Figure S5, thus stabilizing a symmetric polarization distribution
 145 with respect to the dislocation inclusion plane along the x-direction. Some papers suggest
 146 that the flexoelectric coefficient may be negative^{20,41,42}, so we performed several additional

Main text

¹⁴⁷ simulations with negative flexoelectric coefficients as shown in Figure S6. To make the
¹⁴⁸ discussion more complete, Figure S7 shows the case with zero electrostrictive coefficients
¹⁴⁹ while maintaining non-zero flexoelectric coefficients.

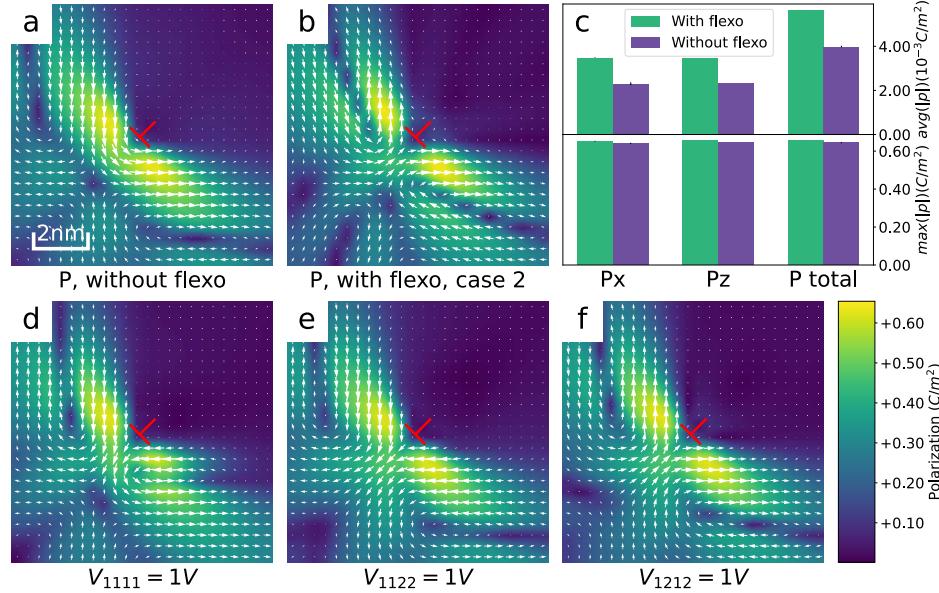


FIG. 4. The polarization distribution under different flexoelectric coefficients for $b = a(110)$ edge dislocation. (a) No flexo. (b) Experimental flexoelectric coefficient $V_{1111} = 0.08$ V, $V_{1122} = 2.6$ V, $V_{1212} = 2.2$ V. (c) Statistics of the average and maximum Px, Pz and P total. (d) Non-zero longitudinal flexoelectric coefficient. (e) Non-zero transverse flexoelectric coefficient. (f) Non-zero shear flexoelectric coefficient.

¹⁵⁰ Next, we perform the same set of calculations and analysis for $b = a(110)$ edge dislocation.
¹⁵¹ In this case, the stress/strain tensor is rotated by 45° , and Burgers vector is longer compared
¹⁵² to the $b = a(100)$ edge dislocation, which leads to a larger maximum stress/strain component
¹⁵³ and a rotated strain gradient vector (see Figure S2 and S8), both have a significant influence
¹⁵⁴ on the polarization distribution.

¹⁵⁵ As shown in Figure 4(a), a ferroelectric phase can be stabilized by $b = a(110)$ edge dislocation
¹⁵⁶ through the electrostrictive effect alone. It has a much larger polarization magnitude
¹⁵⁷ and area compared to the $b = a(100)$ edge dislocation case due to the larger stress/strain
¹⁵⁸ values around the $b = a(110)$ edge dislocation core. When flexoelectricity is considered, as

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

159 shown in Figure 4(b), the flexoelectric field reshapes the polarization into a roughly sym-
160 metric pattern with respect to the dislocation inclusion plane. The bar plot in Figure 4(c)
161 displays the average and the maximum polarization magnitudes within the plotted region.
162 We observe that, firstly, both the average and maximum values are several times larger
163 than those of the $b = a(100)$ edge dislocation case due to a much larger local stress/strain
164 distribution. Secondly, flexoelectricity can increase the average polarization value, while it
165 has little effect on the maximum polarization.

166 In Figure S9 and Figure 4 (d), (e), and (f) we isolate the contribution from each of the
167 flexoelectric coefficients. Similar to the $b = a(100)$ edge dislocation case, the shear flexoelec-
168 tric coefficient has the most significant influence on polarization distributions. In all cases,
169 the polarization is stabilized and aligned predominantly along the tetragonal directions. The
170 electrostrictive effect primarily stabilizes the polarization by shaping the free energy profile
171 into a double well configuration, which determines the permissible polarization directions
172 (e.g., $px+$ or $px-$, with no inherent preference) and its magnitude. Flexoelectricity's princi-
173 pal impact resembles that of an electric field which tilts the free energy profile, forcing the
174 polarization to align with the flexoelectric field. The results for $b = a(010)$ screw dislo-
175 cation show that neither electrostriction nor flexoelectricity can stabilize any polar state, more
176 details are discussed in Figure S10.

177 In this study, we explore the role of flexoelectricity in inducing polarization around three
178 types of dislocation cores in bulk SrTiO_3 , $b = a(100)$ edge dislocation, $b = a(110)$ edge dislo-
179 cation, and $b = a(010)$ screw dislocation. The effects of electrostriction and flexoelectricity
180 are compared and contributions from the longitudinal, transverse, and shear flexoelectric
181 coefficients are also discussed. Our findings reveal that for both edge dislocation cases, elec-
182 trostriction alone is sufficient to stabilize the spontaneous polarization within the tensile
183 region by creating the double well free energy profile. The primary role of flexoelectricity
184 is to align the polarization with the flexoelectric field, taking into account the restrictions
185 of the stabilized polarization directions. This leads to a symmetric polarization distribution
186 with respect to the dislocation inclusion plane. Consequently, it is the synergistic influence
187 of both flexoelectricity and electrostriction that determines the final polarization pattern.
188 Polarization values as large as 0.18 C/m^2 and 0.66 C/m^2 are obtained for the $b = a(100)$
189 edge dislocation and $b = a(110)$ edge dislocation cases respectively, when considering the
190 flexoelectric effect. Our study identifies that the shear component of the flexoelectric tensor

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

¹⁹¹ is predominantly responsible for the polarization induced around the dislocation core. Additionally, for the $b = a(010)$ screw dislocations, neither electrostriction nor flexoelectricity ¹⁹³ can stabilize any polar phase.

¹⁹⁴ The simulations in this work largely corroborate the existing experimental observations of ¹⁹⁵ $b = a(100)$ edge dislocation by explicitly analyzing the contributions of flexoelectricity and ¹⁹⁶ electrostriction. We predict the polarization patterns around $b = a(110)$ edge dislocation ¹⁹⁷ and the absence of polarization in $b = a(010)$ screw dislocation, both of which await validation ¹⁹⁸ through future experimental endeavors. Several topics require further investigation. ¹⁹⁹ Firstly, our results for oxygen octahedral tilt are 0 at the dislocation core, which is a natural ²⁰⁰ outcome based on the current Landau parameters, but this does not compare well with experimental ²⁰¹ results. Secondly, the effect of defect charges on the polarization distribution at ²⁰² the dislocation core demands further study. Lastly, the interaction of multiple dislocations ²⁰³ in SrTiO₃ and its impact on the domain pattern requires a comprehensive examination.

²⁰⁴ SUPPLEMENTARY MATERIAL

²⁰⁵ The supplementary material includes a detailed description of the phase-field model, ²⁰⁶ along with additional figures to complement our discussions.

²⁰⁷ ACKNOWLEDGEMENTS

²⁰⁸ X.X.C. and L.-Q.C. were supported by the U.S. Department of Energy, Office of Basic ²⁰⁹ Energy Sciences, under Award DE-SC0020145. B.W. was partially supported by the National ²¹⁰ Science Foundation (NSF) grant number DMR-1744213 and DMR- 2133373. Computations ²¹¹ for this research were performed on the Roar supercomputer at the Institute for ²¹² Computational and Data Sciences supercomputer of the Pennsylvania State University. All ²¹³ simulations in this study were conducted using the commercial ferroelectric phase-field ²¹⁴ simulation software from Mu-PRO LLC.

²¹⁵ REFERENCES

²¹⁶ ¹R. C. Neville, B. Hoeneisen, and C. A. Mead, "Permittivity of Strontium Titanate," ²¹⁷ Journal of Applied Physics **43**, 2124–2131 (1972).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

- ²¹⁸²K. A. Müller and H. Burkard, "SrTiO₃: An intrinsic quantum paraelectric below 4 K," Physical Review B **19**, 3593–3602 (1979).
- ²²⁰³H. Unoki and T. Sakudo, "Electron Spin Resonance of Fe³⁺ in SrTiO₃ with Special Reference to the 110K Phase Transition," Journal of the Physical Society of Japan **23**, 546–552 (1967).
- ²²³⁴P. A. Fleury, J. F. Scott, and J. M. Worlock, "Soft Phonon Modes and the 110K Phase Transition in SrTiO₃," Physical Review Letters **21**, 16–19 (1968).
- ²²⁵⁵H. W. Jang, A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych, C. W. Bark, C. T. Nelson, C. M. Folkman, S. H. Baek, N. Balke, C. M. Brooks, D. A. Tenne, D. G. Schlom, L. Q. Chen, X. Q. Pan, S. V. Kalinin, V. Gopalan, and C. B. Eom, "Ferroelectricity in Strain-Free SrTiO₃ Thin Films," Physical Review Letters **104**, 197601 (2010).
- ²²⁹⁶D. A. Tenne, A. K. Farrar, C. M. Brooks, T. Heeg, J. Schubert, H. W. Jang, C. W. Bark, C. M. Folkman, C. B. Eom, and D. G. Schlom, "Ferroelectricity in nonstoichiometric SrTiO₃ films studied by ultraviolet Raman spectroscopy," Applied Physics Letters **97**, 142901 (2010).
- ²³³⁷J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craig, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, "Room-temperature ferroelectricity in strained SrTiO₃," Nature **430**, 758 (2004).
- ²³⁷⁸M. D. Biegalski, E. Vlahos, G. Sheng, Y. L. Li, M. Bernhagen, P. Reiche, R. Uecker, S. K. Streiffer, L. Q. Chen, V. Gopalan, D. G. Schlom, and S. Trolier-McKinstry, "Influence of anisotropic strain on the dielectric and ferroelectric properties of SrTiO₃ thin films on DyScO₃ substrates," Physical Review B **79**, 224117 (2009).
- ²⁴¹⁹R. Wördenweber, E. Hollmann, R. Kutzner, and J. Schubert, "Induced ferroelectricity in strained epitaxial SrTiO₃ films on various substrates," Journal of Applied Physics **102**, 044119 (2007).
- ²⁴⁴¹⁰R. Xu, J. Huang, E. S. Barnard, S. S. Hong, P. Singh, E. K. Wong, T. Jansen, V. Harbola, J. Xiao, B. Y. Wang, S. Crossley, D. Lu, S. Liu, and H. Y. Hwang, "Strain-induced room-temperature ferroelectricity in SrTiO₃ membranes," Nature Communications **11**, 3141 (2020).
- ²⁴⁸¹¹M. Itoh and H. Taniguchi, "Ferroelectricity of SrTiO₃ Induced by Oxygen Isotope Exchange," in *Ferro- and Antiferroelectricity: Order/Disorder versus Displacive, Structure*

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

- 250 and Bonding, edited by N. S. Dalal and A. Bussmann-Holder (Springer Berlin Heidelberg,
251 Berlin, Heidelberg, 2007) pp. 89–118.
- 252 ¹²P. Gao, S. Yang, R. Ishikawa, N. Li, B. Feng, A. Kumamoto, N. Shibata, P. Yu, and
253 Y. Ikuhara, “Atomic-Scale Measurement of Flexoelectric Polarization at SrTiO_3 Disloca-
254 tions,” *Physical Review Letters* **120**, 267601 (2018).
- 255 ¹³B. Wang, Y. Gu, S. Zhang, and L.-Q. Chen, “Flexoelectricity in Solids:
256 Progress, Challenges, and Perspectives,” *Progress in Materials Science* (2019),
257 10.1016/j.pmatsci.2019.05.003.
- 258 ¹⁴J. Fousek, L. E. Cross, and D. B. Litvin, “Possible piezoelectric composites based on the
259 flexoelectric effect,” *Materials Letters* **39**, 287–291 (1999).
- 260 ¹⁵W. Ma and L. E. Cross, “Flexoelectric polarization of barium strontium titanate in the
261 paraelectric state,” *Applied Physics Letters* **81**, 3440–3442 (2002).
- 262 ¹⁶P. Zubko, G. Catalan, and A. K. Tagantsev, “Flexoelectric Effect in Solids,” *Annual
263 Review of Materials Research* **43**, 387–421 (2013).
- 264 ¹⁷W. Ma and L. E. Cross, “Flexoelectric effect in ceramic lead zirconate titanate,” *Applied
265 Physics Letters* **86**, 072905 (2005).
- 266 ¹⁸G. Catalan, A. Lubk, A. H. G. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens,
267 G. Rijnders, D. H. A. Blank, and B. Noheda, “Flexoelectric rotation of polarization in
268 ferroelectric thin films,” *Nature Materials* **10**, 963–967 (2011).
- 269 ¹⁹D. Lee, A. Yoon, S. Y. Jang, J.-G. Yoon, J.-S. Chung, M. Kim, J. F. Scott, and T. W.
270 Noh, “Giant Flexoelectric Effect in Ferroelectric Epitaxial Thin Films,” *Physical Review
271 Letters* **107**, 057602 (2011).
- 272 ²⁰T. Xu, J. Wang, T. Shimada, and T. Kitamura, “Direct approach for flexoelectricity
273 from first-principles calculations: Cases for SrTiO_3 and BaTiO_3 ,” *Journal of Physics:
274 Condensed Matter* **25**, 415901 (2013).
- 275 ²¹Y. L. Tang, Y. L. Zhu, X. L. Ma, A. Y. Borisevich, A. N. Morozovska, E. A. Eliseev,
276 W. Y. Wang, Y. J. Wang, Y. B. Xu, Z. D. Zhang, and S. J. Pennycook, “Observation of
277 a periodic array of flux-closure quadrants in strained ferroelectric PbTiO_3 films,” *Science*
278 **348**, 547–551 (2015).
- 279 ²²Y. L. Tang, Y. L. Zhu, Y. Liu, Y. J. Wang, and X. L. Ma, “Giant linear strain gradient with
280 extremely low elastic energy in a perovskite nanostructure array,” *Nature Communications*
281 **8**, 15994 (2017).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

- ²⁸² ²³Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. Trolier-McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, "Phase transitions and domain structures in strained pseudocubic (100) SrTiO₃ thin films," *Physical Review B* **73**, 184112 (2006).
- ²⁸⁶ ²⁴K. Masuda, L. Van Lich, T. Shimada, and T. Kitamura, "Periodically-arrayed ferroelectric nanostructures induced by dislocation structures in strontium titanate," *Physical Chemistry Chemical Physics* **21**, 22756–22762 (2019).
- ²⁸⁹ ²⁵M. Höfling, X. Zhou, L. M. Riemer, E. Bruder, B. Liu, L. Zhou, P. B. Groszewicz, F. Zhuo, B.-X. Xu, K. Durst, X. Tan, D. Damjanovic, J. Koruza, and J. Rödel, "Control of polarization in bulk ferroelectrics by mechanical dislocation imprint," *Science* **372**, 961–964 (2021).
- ²⁹³ ²⁶N. Li, R. Zhu, X. Cheng, H.-J. Liu, Z. Zhang, Y.-L. Huang, Y.-H. Chu, L.-Q. Chen, Y. Ikuhara, and P. Gao, "Dislocation-induced large local polarization inhomogeneity of ferroelectric materials," *Scripta Materialia* **194**, 113624 (2021).
- ²⁹⁶ ²⁷K. Szot, C. Rodenbücher, G. Bihlmayer, W. Speier, R. Ishikawa, N. Shibata, and Y. Ikuhara, "Influence of Dislocations in Transition Metal Oxides on Selected Physical and Chemical Properties," *Crystals* **8**, 241 (2018).
- ²⁹⁹ ²⁸W. Jiang, M. Norman, Y. M. Lu, J. A. Bain, P. A. Salvador, and M. Skowronski, "Mobility of oxygen vacancy in SrTiO₃ and its implications for oxygen-migration-based resistance switching," *Journal of Applied Physics* **110**, 034509 (2011).
- ³⁰² ²⁹D. Marrocchelli, L. Sun, and B. Yildiz, "Dislocations in SrTiO₃: Easy To Reduce but Not so Fast for Oxygen Transport," *Journal of the American Chemical Society* **137**, 4735–4748 (2015).
- ³⁰⁵ ³⁰P. Gao, R. Ishikawa, B. Feng, A. Kumamoto, N. Shibata, and Y. Ikuhara, "Atomic-scale structure relaxation, chemistry and charge distribution of dislocation cores in SrTiO₃," *Ultramicroscopy* **184**, 217–224 (2018).
- ³⁰⁸ ³¹T. Matsunaga and H. Saka, "Transmission electron microscopy of dislocations in SrTiO₃," *Philosophical Magazine Letters* **80**, 597–604 (2000).
- ³¹⁰ ³²Z. Mao and K. M. Knowles, "Dissociation of lattice dislocations in SrTiO₃," *Philosophical Magazine A* **73**, 699–708 (1996).
- ³¹² ³³S. Kondo, T. Mitsuma, N. Shibata, and Y. Ikuhara, "Direct observation of individual dislocation interaction processes with grain boundaries," *Science Advances* **2**, e1501926

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0202453

Main text

- ³¹⁴ (2016).
- ³¹⁵ ³⁴P. Hirel, P. Carrez, and P. Cordier, "From glissile to sessile: Effect of temperature on
³¹⁶ $\langle 110 \rangle$ dislocations in perovskite materials," *Scripta Materialia* **120**, 67–70 (2016).
- ³¹⁷ ³⁵S. Taeri, D. Brunner, W. Sigle, and M. Rühle, "Deformation behaviour of strontium
³¹⁸ titanate between room temperature and 1800 K under ambient pressure," *Zeitschrift für
319 Metallkunde* **95**, 433–446 (2004).
- ³²⁰ ³⁶L. Porz, T. Frömling, A. Nakamura, N. Li, R. Maruyama, K. Matsunaga, P. Gao,
³²¹ H. Simons, C. Dietz, M. Rohnke, J. Janek, and J. Rödel, "Conceptual Framework for
322 Dislocation-Modified Conductivity in Oxide Ceramics Deconvoluting Mesoscopic Struc-
323 ture, Core, and Space Charge Exemplified for SrTiO₃," *ACS Nano* **15**, 9355–9367 (2021).
- ³²⁴ ³⁷W. Sigle, C. Sarbu†, D. Brunner, and M. Rühle, "Dislocations in plastically deformed
325 SrTiO₃," *Philosophical Magazine* **86**, 4809–4821 (2006).
- ³²⁶ ³⁸L.-Q. Chen, "Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric
327 Thin Films: A Review," *Journal of the American Ceramic Society* **91**, 1835–1844 (2008).
- ³²⁸ ³⁹G. Sheng, Y. L. Li, J. X. Zhang, S. Choudhury, Q. X. Jia, V. Gopalan, D. G. Schlom,
329 Z. K. Liu, and L. Q. Chen, "A modified Landau–Devonshire thermodynamic potential for
330 strontium titanate," *Applied Physics Letters* **96**, 232902 (2010).
- ³³¹ ⁴⁰F.-Y. Lin, X. Cheng, L.-Q. Chen, and S. B. Sinnott, "Strain effects on domain structures
332 in ferroelectric thin films from phase-field simulations," *Journal of the American Ceramic
333 Society* **101**, 4783–4790 (2018).
- ³³⁴ ⁴¹R. Maranganti and P. Sharma, "Atomistic determination of flexoelectric properties of
335 crystalline dielectrics," *Physical Review B* **80**, 054109 (2009).
- ³³⁶ ⁴²M. Stengel, "Unified ab initio formulation of flexoelectricity and strain-gradient elasticity,"
337 *Physical Review B* **93**, 245107 (2016).