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ABSTRACT: A Cu-catalyzed highly stereoselective and enantiodivergent syntheses of (Z)- or (E)-B,y-unsaturated ketones from
1,3-butadienyl silanes is developed. The nature of silyl group of the dienes has a significant impact on the stereo- and enantioselec-
tivity of the reactions. Under the developed catalytic systems, the reactions of acyl fluorides with phenyldiemthylsilyl-substituted
1,3-diene gave (Z2)-B,y-unsaturated ketones bearing an o-tertiary stereogenic center with excellent enantioselectivities and high Z-
selectivities, where the reactions with triisopropylsilyl-substituted 1,3-butadiene formed (E)-f,y-unsaturated ketones with high opti-
cal purities and excellent E-selectivities. The products generated from the reactions contain three functional groups with orthogonal
chemical reactivities, which can undergo a variety of transformations to afford synthetically valuable intermediates.

INTRODUCTION

Enantioenriched small molecules with multiple functional
groups are valuable intermediates in synthetic organic chemis-
try.1 In this context, chiral nonracemic, acyclic 3,y-unsaturated
ketones with an a-tertiary stereocenter (e.g., A in Scheme 1)
are of great importance. Such entities are common scaffolds in
bioactive natural products,z’3 and more importantly, the func-
tional groups embedded in these molecules provide useful
handles for further derivatization.* However, several challeng-
es exist for asymmetric syntheses of chiral nonracemic acyclic
B,y-unsaturated ketones A.’ For classic base-mediated enolate
alkylation chemistry, the Enders” SAMP/RAMP chiral auxilia-
ry-assisted ketone a-alkylation for instance, the enolate geom-
etry and the n-facial selectivity of the alkylation will dictate
stereochemical outcomes of the C—C bond formation event.’ In
the cases of ketones B and C, regioselective formation of ste-
reodefined enolates is challenging when R is an alkyl group
with hydrogen atom(s) a to the carbonyl group.7 Moreover, the
a-tertiary stereocenter in A is prone to epimerization via enoli-
zation under basic conditions typically required for the enolate
generation. Modern Pd-catalyzed cross-coupling chemistry has
seen much success in ketone a-vinylation that forms a quater-
nary stereocenter at the ot-position.8 However, an analogous
process to generate enantioenriched acyclic ketones with an a-
tertiary stereocenter has yet to be accomplished, likely owing
to the similar epimerization issue. Moreover, in contrast to the
carbonyl compounds bearing an a-quaternary stereocenter, the
alkene group in ketones A could undergo isomerization to
form thermodynamically more stable o,B-unsaturated ketones
and abolish the stereogenic center at the a-position in A.

Not surprisingly, the development of novel methods that can
overcome these challenges and permit the access to enantioen-
riched acyclic B,y-unsaturated ketones has attracted significant
attention from the organic synthesis community. In the past
ten years, several approaches have been disclosed for asym-
metric syntheses of such ketones.”'’ As shown in Scheme 1,
Fu and coworkers developed an elegant Ni-catalyzed enantio-
convergent cross-coupling of racemic a-bromoketone D with
E-alkenylzirconium reagent E to generate f,y-unsaturated

Scheme 1. Methods for Enantioselective Syntheses of f,y-
Unsaturated Ketones with an a-Tertiary Stereocenter

Approaches to enantioenriched f,y-unsaturated ketones

o [o) o
RJ%W/\\/RZ |:> RJ\/\/R2 or RMRZ + R'X
3 5 .

R!
A
[o]

o o) o]
1l
RJ;‘:‘ Y m— Ar)I\SiMes + R0 P\Sé’tﬂ
R H |
A
Challenges:
-ketone enolate geometry issue (E vs 2)
-regioselectivity issue for enolate generation
-epimerization of o-tertiary stereogenic center
-isomerization to more stable o,f-unsaturated ketones
This work:
[0}
WSiMezPh R X
= Cu(CH3CN),PFg 1
ligand s SiMe,Ph
1a pinB
B,pin,, NaOBu
RCOF, Et,0, rt
(o}
5P RJ\Q/\/Si Prs
N
1g 3 Bpin

ketone A with high enantioselectivity.9"1’b By taking advantage
of the single electron transfer processes in electrochemistry,
the Meggers group showed that enantioenriched ketone A can
be synthesized via nucleophilic a-alkenylation of 2-acyl imid-



azole F with potassium alkenyl trifluoroborate G.”* More re-
cently, Sawamura and coworkers reported a copper-catalyzed
asymmetric acylation of allylic phosphate I with acylsilane H
to generate [,y-unsaturated ketone A under photochemical
conditions.” In spite of these important achievements, meth-
ods that could allow for rapid construction of such enantioen-
riched ketones with the flexibility of controlling the alkene
geometry would be valuable.

As our continuing research interest in asymmetric catalysis,
we report herein Cu-catalyzed enantiodivergent syntheses of
acyclic (E)- or (Z)-B,y-unsaturated ketones with an a-tertiary
stereocenter from 1,3-butadienyl silanes and acyl fluorides
(Scheme 1)."" We discovered that, with an appropriate silyl
group in place, either Z- or E-isomers can be synthesized with
high stereo- and enantioselectivities via distinct a-silyl-allylic
copper intermediates. Intriguingly, the absolute configuration
of the a-tertiary stereocenter in the Z-isomers is opposite to the
one in the E-isomers using the same (R,R)-Ph-BPE ligand. The
products generated from the reactions contain three functional
groups, a ketone, a vinyl silane and an alkyl boronate, which
have orthogonal chemical reactivities. Chemoselective trans-
formations of these functional groups provide a variety of
valuable intermediates for organic synthesis.

RESULTS AND DISCUSSION

Table 1. Evaluation of Reaction Conditions *
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Reaction Development: We began our studies by identifying
a suitable catalytic system to synthesize J3,y-unsaturated ketone
using diene 1a and benzoyl fluoride as the model substrates.'>
As shown in Table 1, initial experiments were conducted with
Cu(CH;CN),PF, as the precatalyst and NaO'Bu as the base.
The reaction did not occur without the ligand (entry 1). In the
presence of 10 mol % of Cu(CH3;CN),PFs, 12 mol % of
Xantphos, 1.5 equiv of B,pin, and NaO'Bu, the reaction of
diene 1a with PhCOF proceeded in Et,0O at ambient tempera-
ture to give racemic product 3aa in 76% yield with excellent
E-selectivity (entry 2). When Xantphos was replaced by a
chiral, nonracemic bidentate phosphine ligand (R)-SegPhos,
ketones ent-3aa and 2a were obtained in 74% combined yield
and 4:1 E-selectivity with 36% ee for ketone 2a (entry 3). The
reaction with (+)-DuanPhos as the ligand gave ent-3aa and 2a
in a similar yield and E-selectivity (83% combined, 4:1) with
poor enantioselectivity for 2a (14% ee, entry 4). In the pres-
ence of ligand (S,5)-QuinoxP, the reaction generated ent-3aa
and 2a in 69% combined yield with 2:1 E-selectivity, although
in this case respectable enantiomeric excess (65% ee) was
observed for ketone 2a (entry 5). The reaction conducted with
(R,R)-Ph-BPE as the ligand, intriguingly, afforded a 7:1 mix-
ture of ketones 2a and ent-3aa, favoring Z-isomer 2a. More
importantly, excellent enantiomeric excess was observed for
2a (99% ee, entry 6). Encouraged by the results, we further
explored the reaction parameters aiming to improve the Z-
selectivity of the reaction. Examining the experiments with
several solvents revealed that the Z-selectivity is not sensitive
to the reaction media (6-7:1), while there is some degree of
variation in enantioselectivities (92-98% ee for 2a, entries 7-
11). In the case with THF as the solvent, a significant amount
of ¢-butyl benzoate was obtained from the reaction of PhCOF
with NaO'Bu, and 2a was isolated only in 29% yield (entry 7).
Varying the copper precatalyst and the base did not improve
the Z-selectivity of the reaction either (data not shown). Grati-
fyingly, when (R,R)-Pr-Duphos was utilized as the ligand,
product 2a was obtained in 81% yield with >20:1 Z-selectivity
and 99% ee (entry 12). The catalyst loadings can be decreased
to 5 mol % or 2.5 mol %; and ketone 2a with an epimerizable
a-tertiary stereocenter was isolated in similar levels of yields,
Z-selectivities and enantioselectivities under these conditions.

Table 2. Evaluation of the Impact of Silyl Group of Diene 1
on the Selectivities of the Reaction *
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entry [Si] ZIEY  vyield (%)° ee(2) (%)¢ ee(ent3) (%)
1 SiMey,Ph (la)  7:1 90 99 ND
2 SiMes (1b) 6:1 73 90 ND
3 SiMePh,(1c)  3:1 89 95 68
4 SiEts (1d) 111 75 94 7
5 SiMe,Bu (le) 1:2 83 98 86
6 SiPh,Bu (1) 1:>20 82 ND 90
7  SiPry(1g) 1:>20 93 ND 96

(a) Reaction conditions: diene 1a (0.1 mmol, 1.0 equiv), Cu(CH;CN),PF,
(10 mol %), ligand (12 mol %), B,pin, (1.5 equiv), NaO'Bu (1.5 equiv),
PhCOF (1.5 equiv), Et;O (1.5 mL), rt. (b) The Z/E-selectivities were de-
termined by 'H NMR analysis of the crude reaction products. (c) Yields of
isolated products are listed (2a and ent-3aa combined). (d) Enantioselec-
tivities were determined by HPLC analysis using a chiral stationary phase.

(a) Reaction conditions: diene 1 (0.1 mmol, 1.0 equiv), Cu(CH;CN),PFs
(2.5 mol %), ligand (3 mol %), B,pin, (1.5 equiv), NaO'Bu (1.5 equiv),
PhCOF (1.5 equiv), Et;0 (1.5 mL), rt. (b) The Z/E-selectivities were de-
termined by 'H NMR analysis of the crude reaction products. (c) Yields of
isolated products are listed (2 and ent-3 combined). (d) Enantioselectivi-
ties were determined by HPLC analysis using a chiral stationary phase.



Scheme 2. Scope of Acyl Fluorides in Reactions with Dienes 1 aed
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(2) Reaction conditions: dienylsilane 1 (0.1 mmol, 1.0 equiv), Cu(CH;CN)PFs (5 mol %), ligand (6 mol %), B,pin, (1.5 equiv), NaO'Bu (1.5 equiv), acyl
fluoride (1.5 equiv), Et;O (1.5 mL), rt, 0.5-3 h. Reactions with 2.5 mol % catalyst and 3 mol % ligand loadings gave products with similar levels of yields,
E/Z-selectivities and enantioselectivities. (b) The E/Z-selectivities were determined by 'H NMR analysis of the crude reaction mixture. (c) Yields of isolated
products are listed. (d) Enantiomeric excesses were determined by HPLC analysis using a chiral stationary phase. (e) B,pin, (1.05 equiv) was used.



Scheme 3. Reactions with Complex Molecule-Derived Acyl Fluorides ad
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(a) Reaction conditions: dienylsilane 1 (0.10 mmol, 1.0 equiv), [Cu] catalyst (5 mol %), ligand (6 mol %), B,pin, (1.5 equiv), NaO'Bu (1.5 equiv), acyl
fluoride (1.5 equiv), Et,O (1.5 mL), rt. (b) The E/Z-selectivities and diastereoselectivities were determined by 'H NMR analysis of the crude reaction mix-
ture. (c) Yields of isolated products are listed. (d) Enantiomeric excess of 7 was determined by HPLC analysis using a chiral stationary phase.

To investigate whether the nature of silyl group has any im-
pact on the E/Z-selectivity and enantioselectivity of the reac-
tion, we synthesized a variety of 1,3-dienes 1b-g with different
silyl groups13 and conducted the reactions under the standard
conditions with (R,R)-Ph-BPE as the ligand. As shown in Ta-
ble 2, the reaction with Me;Si-substituted diene 1b formed Z-
isomer 2 as the major product (Z:E = 6:1) with 90% ee (entry
2). Poor E/Z-selectivities were observed for MePh,Si-, Et;Si-,
or ‘BuMe,Si-substituted diene 1c, 1d or 1e (entries 3-5). While
the optical purities of Z-products 2 are high in these reactions
(94-98% ee), the enantiomeric excesses of the E-isomers ent-3
are moderate (68-86% ee). Unexpectedly, when the reactions
were conducted with Ph,'BuSi- or ‘Pr;Si-substituted diene, 1f
or 1g, excellent E-selectivities (>20:1) were observed, and
formation of the Z-isomers was not detected (entries 6-7). In
the case of 'Pr;Si-substituted diene 1g, the enantioselectivity of
the E-product was 96% ee (entry 7). Slightly lower enantiose-
lectivity (90% ee) was observed for the reaction with diene 1f
(entry 6). It is worth mentioning that, under identical catalytic
system with (R,R)-Ph-BPE as the ligand, the absolute configu-

ration of the a-tertiary stereocenter in the Z-isomer 2 (entry 6,
Table 1) is opposite to that in the E-isomer ent-3 (entries 6-7,
Table 2), although the Z-selectivity can be further improved by
employing (R,R)-"Pr-Duphos as the ligand (entry 12, Table 1).

Substrate Scope: Scheme 2 summarizes the scope of acyl
fluorides that participated in the reactions with dienes 1 under
the optimized conditions. For diene 1a, (R,R)-Pr-Duphos was
employed as the ligand, and in the case of diene 1g, ligand
(S,S)-Ph-BPE was utilized. In general, the reactions worked
well with a broad range of acyl fluorides, including aromatic,
heteroaromatic and aliphatic acyl fluorides to generate ketones
2 or 3 in good yields with high enantioselectivities. For in-
stance, reactions of 1a with para-substituted benzoyl fluorides
gave products 2b-d in 82-90% yields with 99% ee and excel-
lent Z-selectivities (>20:1). In the case of 2e, the Z-selectivity
is moderate, although the enantiomeric excess remains high
(99% ee). Reactions of benzoyl fluorides bearing a substituent
at either the meta- or ortho-position proceeded smoothly to
furnish ketones 2f-h in 81-84% yields with 99% ee and 9-20:1



Scheme 4. Transformation of Reaction Products from Diene 1
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Z-selectivities. The reaction tolerates alkenes with various
substitution patterns, affording ketones 2i-k in 61-90% yields
with 98-99% ee and >20:1 Z-selectivities. Benzoyl fluoride
with a cyclic acetal is also a suitable substrate for the reaction,
and ketone 21 was isolated in 84% yields with 99% ee and
>20:1 Z-selectivity. Acyl fluorides containing a heterocycle
such as an indole, benzothiophene, furan, or thiophene reacted
under the standard conditions to generate products 2m-p in
70-84% yields with 98-99% ee and high Z-selectivities. The
reaction with an o, B-unsaturated acyl fluoride gave ketone 2q
in 75% yield with 99% ee and >20:1 Z-selectivity. Important-
ly, a variety of aliphatic acyl fluorides participated in the reac-
tions to deliver products 2r—t with 99% ee and excellent Z-
selectivities, albeit in moderate yields (51-68%). The absolute
configuration of tertiary stereocenter was assigned by modi-
fied Mosher ester analysis of the diol derivatives and coupling
constant analysis of the acetonides derived from the diols (c.f.,
compounds 13 and 15, Scheme 4)."* The scope of acyl fluo-
rides that reacted with diene 1g in the presence of ligand (S,S)-
Ph-BPE was explored next. As shown in the bottom panel of
Scheme 2, a range of acyl fluorides reacted with diene 1g to
give ketones 3a-1 in 67-94% yields with 84-96% ee. Although
in general the enantioselectivity in this series is not as high as
those from the reactions with diene 1a, the stereoselectivity
remains excellent (>20:1 E-selectivities in all cases).

Reactions with Complex Molecule-Derived Acyl Fluorides:
To probe whether the reaction can be applied to more complex
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systems, we prepared several acyl fluorides 4-6 derived from
lithocholic acid, (S)-naproxen and indomethacin.”” As shown
in Scheme 3, the reaction of acyl fluoride 6 with diene 1a uti-
lizing (R,R)-Pr-Duphos as the ligand gave ketone 7 in 53%
yield with 98% ee and 7:1 Z-selectivity. The reactions between
acyl fluoride 4 and diene 1a with either (R,R)-"Pr-Duphos or
(S,S)-Pr-Duphos as the ligand gave ketones 8a—b in 62-83%
yields and excellent diastereoselectivities. A slightly lower Z-
selectivity (18:1) was observed in the case of 8a. Similar re-
sults were achieved in reactions with diene 1g, furnishing ke-
tones 8c—d in 83-89% yields with excellent diastereoselectivi-
ties and E-selectivities. For (S)-naproxen-derived acyl fluoride
5 with an epimerizable tertiary stereocenter, reactions with
diene 1a were conducted with CuOAc as the precatalyst to
achieve higher conversions. Ketone products 9a-b were iso-
lated in 72-74% yields with >20:1 Z-selectivities and diastere-
oselectivities. The reaction with diene 1g employing (S.,S)-Ph-
BPE as the ligand gave ketone 9¢ in 76% yield with 10:1 dia-
stereoselectivity and >20:1 E-selectivity. A synthetically use-
ful diastereoselectivity (6:1) and E-selectivity (12:1) were
observed when the reaction was conducted with (R,R)-Ph-BPE
as the ligand, affording 9d as the major product (84% com-
bined yield). These data indicate that reactions with complex
molecule-derived acyl fluorides proceeded under the catalyst-
control with good to excellent diastereoselectivities. Notably,
the mild conditions tolerate racemizable acyl fluorides such as
5, and the results from these diastereoselective reactions bode
well for further synthetic applications of this method.



Scheme 5. Product Derivatization
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Product Derivatization: Ketone products 2 generated from
the reactions with diene 1a contain three functional groups,
ketone, alkyl boronate and Z-alkenyl silane, which can under-
go a variety of chemoselective transformations to afford syn-
thetically valuable building blocks. As shown in Scheme 4,
oxidation of the alkyl boronate group of 2a with NaBO; gave
keto-alcohol 10 in 92% yield. Chelation-controlled vinyl Gri-
gnard addition to 10 afforded tertiary alcohol 11 in 59% yield
with 6:1 diastereoselectivity. ' The stereochemistry of 11 was
assigned by nOe analyses of acetonide derivative 12. Treat-
ment of 10 sequentially with NaH, TiCly and LiBH, provided
diol 13 in 87% yield with >20:1 diastereoselectivity. "7 Alter-
natively, direct reduction of 10 with NaBH, gave diol 13 in
90% yield with 12:1 diastereoselectivity.18 The primary hy-
droxyl group of diol 13 was selectively converted into an azide
group, and product 14 was isolated in 74% yield by using the
two-step reaction sequence. Diol 13 was transformed into ace-
tonide 15 under the standard conditions. The coupling constant
analyses established the anti-relative stereochemistry of 13."
Tosylation of diol 13 occurred selectively at the primary hy-
droxyl group to give 16 in 80% yield. Treatment of tosylate 16
with BuLi formed oxetane 17 in 54% yield.20 Mesylation of
both hydroxyl groups of diol 13 gave product 18 in 86% yield.
Exposure of bismesylate 18 to BnNH, at 100 °C gave azet-
idine 19 in 63% yield. ! The Bpin group in ketones 2 also
offers a handle for product derivatization. For instance, reduc-
tion of the carbonyl group of 2a followed by protection of the
resulting alcohol gave TBS-ether 20a in 59% yield with a 13:1
dr. Amination of the Bpin group using the protocol developed
by the Morken group furnished product 21 in 78% yield. > By
adopting the method developed by the Aggarwal group, > the
Bpin group was converted into a furyl group, and product 22
was isolated in 76% yield. Similarly, ketone 2a was converted
into TES-ether 20b in 61% yield. Subsequent vinylation of the
Bpin group afforded product 23 in 87% yield. **

OH
/\/\"/'\/\\/\, e
° E\OH

mollipilin D

aureonitol

aldgamycin O

Figure 1. Selected natural products

Scheme 5 summarizes the transformations of ketone prod-
ucts 3 generated from diene 1g. Ketone 3a was transformed
into a TBS-ether using the same reduction-protection reaction
sequence, affording 24 in 58% yield and 17:1 dr. Amination,
arylation or vinylation of the Bpin group of 24 delivered prod-
ucts 25-27 in 64-85% yields. The alkyl boronate group of 3a
also underwent oxidation with NaBOj; to give keto-alcohol 28
in 84% yield. Reduction of the carbonyl group of 28 with
NaBH, formed diol 29 in 94% yield with 20:1 diastereoselec-
tivity. The anti-relative stereochemistry of 29 was confirmed
by coupling constant analyses of acetonide derivative 30. To-
sylation of the primary alcohol of diol 29 and base-mediated



cyclization afforded oxetane 31 in 63% yield. Diol 29 was
converted into azetidine 32 in 52% yield using a mesylation-
cyclization reaction sequence. Additionally, the vinyl silane
group of diol 29 can also participate in reactions to construct a
C-C bond. Protection of diol 29 under the standard conditions
gave silyl ether 33. Treatment of 33 with NIS and 2,6-lutidine
furnished vinyl iodide 34 in 81% yield.” Pd-catalyzed Stille
coupling of 34 with E-vinylstannane 35 generated E,E-1,3-
diene 36 in 87% yield.26 Such a diene is a common structural
motif in numerous natural products, for instance, mollipilin D,
mycinolide IV and aldgamycin O (Figure 1).” Vinyl iodide 34
also reacted with Z-vinyl stannane 37 to afford E,Z-diene 38 in
84% yield. Sonogashira coupling of 34 with ethyl propiolate
39 occurred to deliver enyne 40 in 77% yield. *® These derivat-
ization studies (Schemes 4 and 5) highlight the synthetic utili-
ties of ketones 2 and 3, as these reactions provide a variety of
highly valuable building blocks for organic synthesis.

Scheme 6. Alkene Isomerization Approach to Highly En-
antioenriched o-Tertiary (E)-f,y-Unsaturated Ketones
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Alkene Isomerization Studies: As shown in Scheme 2, the
enantiopurities of ketone 3 with an E-alkene group are not as
high as ketone 2 with a Z-alkene. One factor might contribute
to such a discrepancy is the potential racemization of ketone 3
under the reaction conditions, owing to the acidity of the al-
lylic hydrogen in 3. As shown in Scheme 6, for ketone 2 with
a Z-alkene unit, the allylic hydrogen (highlighted in red in
compound 2, Scheme 6) should occupy an eclipse position
with the SiMe,Ph group to minimize the A" allylic strain.”’
Such a spatial arrangement would only permit the C—H bond
to be perpendicular to the carbonyl group, which is stereoelec-
tronically required for the deprotonation event as shown by
Evans in his pioneering studies.” Consequently, the pKa of
the allylic hydrogen in 2 should be close to the pKa of an hy-
drogen at the a-position of a simple ketone. Therefore, depro-
tonation-enolization of 2 is likely prevented under the reaction
conditions. By contrast, for ketone 3 with an E-alkene group,
the lack of A'? allylic strain would allow the allylic hydrogen
(highlighted in blue in compound 3, Scheme 6) to orient or-
thogonally to both m—systems of the carbonyl and the alkene

groups, which enforces the overlap between the o orbital of
the scissile C-H bond and both t* orbitals of the carbonyl and
E-alkene groups. Such a stereoelectronic alignment will sub-
stantially increase the acidity of the allylic hydrogen of 3.
Therefore, slow racemization could occur to erode the enanti-
opurity of 3 under basic reaction conditions (NaO'Bu).

To obtain ketone 3 with high optical purity, conditions that
could prevent deprotonation-enolization would be desirable.
While we were not able to perform the reaction under neutral
conditions, we were intrigued whether it is possible to isomer-
ize the Z-alkene of ketone 2 to an F-alkene using a transition
metal complex. The conditions for alkene isomerization are
typically neutral, which should prevent product racemization.
To validate this hypothesis, we conducted alkene isomeriza-
tion with ketone 10 first. Upon exposure of 10 (99% ee) to Pd-
complex, [Pd(u-Br)'BusP],, in DCE for 2 h, ketone 41 with an
E-alkene was isolated in 97% yield and >50:1 E-selectivities,
and remarkably, with 96% ee (Scheme 6).31 We also per-
formed isomerization studies with ketones 2¢ (99% ee) and 2i
(98% ee), which contain an aryl bromide or an alkene group
that may not be compatible with the Pd complex. To our satis-
faction, products 42 and 43 were obtained in 84-96% yields
and >50:1 E-selectivity with minimum loss of enantiomeric
purities (94-95% ee). To test whether racemization could oc-
cur under basic conditions to erode the optical purities of ke-
tones 2 and 3, we subjected ketones 2¢ (Z-alkene, 99% ee) and
43 (E-alkene, 95% ee) separately to the reaction conditions
shown in Scheme 2. After two hours, the recovered ketone 43
suffered a substantial loss of enantiopurity (84% ee), while the
ee of ketone 2¢ remained the same (even after 12 h). This ob-
servation provides the support for our analyses of different
acidity of allylic hydrogen of ketones 2 and 3. Slow racemiza-
tion of ketones 3 under basic reaction conditions is likely the
origin of lower enantioselectivities of ketones 3. This issue can
be solved through alkene isomerization of ketones 2 to access
highly enantioenriched ketones with an E-alkene unit.

Mechanistic Analyses: While the mechanism of Cu-catalyzed
alkene addition with boron reagents has been well established,
the stereochemical outcomes and enantiodivergence we ob-
served are worthy of commenting.32 One of the elementary
steps in the Cu-catalyzed reaction with 1a is the diene addition
with ligand-bound copper complex, L*Cu-Bpin, generated
from Cu(CH;CN),PF,, (R,R)-Ph-BPE, B,pin, and NaO'Bu. It
has been shown that a bidentate phosphine-ligated Cu-Bpin
complex reacted with 1,3-dienes in a 1,2-addition manner.”
Therefore, it is anticipated that the initially generated Cu-
complex from diene addition should be 44 (Scheme 7) where
the (R,R)-Ph-BPE-ligated Cu-Bpin complex adds to the termi-
nal alkene group of diene 1a. Owing to facile and reversible
1,3-metallo shifts of allylcopper species,”* complex 44 should
equilibrate with 1"r]—allylcopper species 45, 46, and 47, or
*n-allylcopper species (structures not shown).*> Reactions of
allylcopper with aldehydes are known to proceed by way of a
cyclic, Zimmerman-Traxler transition state.***® Tt is therefore
reasonable to assume that an analogous chairlike transition
state is operable for the reactions of allylcopper with acyl fluo-
rides. The structural features of product 2 indicate that a-silyl
allylcopper 45 and/or 47 should be the reactive intermediates,
as a ketone product with a vinyl silane unit will be generated
through the allyl addition from these two copper species via a
chairlike transition state.’” As shown in Scheme 7, the addition
of 45 to the si face of the acyl fluoride via transition state TS-1



forms ketone 2. The competing transition state TS-2 via re
face addition gives ketone 48. The reaction of allylcopper 47
with the acyl fluoride should proceed via TS-3 preferentially
through minimization of A" allylic strain to deliver ketone 48
as well.”” Transition state TS-1 leading to ketone 2 is favored
likely owing to the pseudoaxial orientation of the SiMe,Ph
group to minimize the steric interaction. In comparison, the
competing transition states TS-2 and TS-3 suffer the nonbond-
ing steric interactions between pseudoequatorially positioned
SiMe,Ph group and the ligand on copper (shown with red ar-
rows in TS-2 and TS-3), and therefore are disfavored. In addi-
tion, the exceptional optical purities (98-99% ee) of ketones 2
indicate the borocupration step that forms allylic copper 44
intermediate is highly enantioselective, because the optical
purity of copper species 45 (derived from 44) dictates the en-
antiomeric excess of ketones 2 as the reactions of 45 with acyl
fluorides proceed with a chirality transfer process.

Scheme 7. Reaction Pathway Analyses of Dienylsilane 1a
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In the case of 'PrySi-substituted diene 1g with the same
(R,R)-Ph-BPE as the ligand, products ent-3 with an E-alkene
unit are formed. Assuming the reactions also proceeded
through a chairlike transition state,** the E-alkene group in ent-
3 indicates that the Pr;Si- group occupies a pseudoequatorial
position in the reaction transition state. For the two potentially
reactive intermediates, a-silyl allylcopper 49 and 50, the reac-
tion of 49 with benzoyl fluoride via transition state TS-4 gives
E-product ent-3a (Scheme 8). By contrast, the reaction of 49

Scheme 8. Reaction Pathway Analyses of Dienylsilane 1g
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via transition state TS-5 leads to Z-product 51, which is not a
favorable reaction pathway as the formation of any Z-product
was not detected. Meanwhile, the reaction of Z-o-silyl-allyl
copper 50 with benzoyl fluoride also produces E-isomer ent-
3a via transition state TS-6. To discern which allylic copper



species, 49 or 50, ¥ is involved in the reaction, or both inter-
mediates are involved, we compared the energies of transition
states TS-4, TS-5 and TS-6 using computation studies. The
density functional theory (DFT) studies were performed at the
®B97xd/6-31G* density functional level of theory for struc-
ture optimization and energy calculation. As shown in Scheme
8, the results from computation studies suggest that TS-6, the
reaction transition state of Z-allyl copper intermediate S0 with
benzoyl fluoride, has the lowest energy. Transition state TS-4,
which features allyl addition to benzoyl fluoride with E-allyl
copper intermediate 50, is 1.8 kcal/mol higher in energy than
TS-6. Although transition state TS-4 also leads to the for-
mation of the same product ent-3a as TS-6, it is deemed to be
a minor reaction pathway at most. Meanwhile, the addition to
benzoyl fluoride with E-allyl copper 50 via TS-5, which leads
to Z-isomer 51, has the highest activation barrier (AAG*= 2.6
kcal/mol). Such an energy difference is in good accord with
the observed experimental data where the formation of any Z-
isomer was not detected in reactions using diene 1g.

Based on these data, we propose that the initial addition of
L*Cu-Bpin complex to diene 1 forms a y-silyl allylic copper
intermediate (e.g., 44, Scheme 7). This step generates a stere-
ogenic center o to the Cu, and it is the enantio-determining
step. However, this initial adduct is not reactive toward the
addition to acyl fluorides. Instead, it equilibrates with a-silyl
allylcopper species (e.g., 45-47, Scheme 7, or 49-50, Scheme
8) via reversible 1,3-metallo shifts. Depending on the nature of
the silyl group of dienes 1 and the ligand on Cu, the reaction
of acyl fluorides operates under the Curtin-Hammett principle
to give either Z-isomers 2 or E-isomers 3 through either E-
allylcopper 45 or Z-allylcopper 50, respectively.39 It is remark-
able that the different silyl groups of dienes 1 could drastically
impact the nature of reactive intermediate a-silyl allylcopper
species and the stereoselectivities of the reactions.

CONCLUSIONS

In summary, we developed a diastereoselective and enantio-
divergent syntheses of (Z)- or (E)-B,y-unsaturated ketones
from 1,3-butadienyl silanes.”’ The nature of the silyl group of
the dienes not only dictates the reactive allylic copper inter-
mediates (45 or 50) in the reactions with acyl fluorides, but
also has a significant impact on the face-selective addition to
acyl fluorides to control the E/Z-selectivities and enantioselec-
tivities of the products. Under the developed catalytic systems,
the reactions of acyl fluorides with PhMe,Si-substituted 1,3-
diene gave (Z)-P,y-unsaturated ketones bearing an o-tertiary
stereocenter with high Z-selectivities and excellent enantiose-
lectivities, while reactions with ‘PriSi-substituted 1,3-diene
formed (E)-B,y-unsaturated ketones with high optical purities
and excellent E-selectivities. Computational studies were con-
ducted to provide the support to these fundamentally important
discoveries. The products generated from the reactions contain
three functional groups with orthogonal chemical reactivities,
which can undergo a variety of transformations to afford syn-
thetically valuable intermediates. Synthetic applications of this
method are currently ongoing.
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