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Abstract

Observations in various applications are frequently represented as a time series of multidimensional arrays,
called tensor time series, preserving the inherent multidimensional structure. In this paper, we present a
factor model approach, in a form similar to tensor CANDECOMP/PARAFAC (CP) decomposition, to the
analysis of high-dimensional dynamic tensor time series. As the loading vectors are uniquely defined but
not necessarily orthogonal, it is significantly different from the existing tensor factor models based on
Tucker-type tensor decomposition. The model structure allows for a set of uncorrelated one-dimensional
latent dynamic factor processes, making it much more convenient to study the underlying dynamics of
the time series. A new high-order projection estimator is proposed for such a factor model, utilizing the
special structure and the idea of the higher order orthogonal iteration procedures commonly used
in Tucker-type tensor factor model and general tensor CP decomposition procedures. Theoretical
investigation provides statistical error bounds for the proposed methods, which shows the significant
advantage of utilizing the special model structure. Simulation study is conducted to further demonstrate
the finite sample properties of the estimators. Real data application is used to illustrate the model and
its interpretations.

Keywords: CANDECOMP/PARAFAC (CP) decomposition, dimension reduction, orthogonal projection, tensor factor
model, tensor time series

1 Introduction

In recent years, information technology has made tensors or high-order arrays observations rou-
tinely available in applications. For example, such data arises naturally from genomics (Alter &
Golub, 2005; Omberg et al., 2007), neuroimaging analysis (Sun & Li, 2017; Zhou et al.,
2013), recommender systems (Bi et al., 2018), computer vision (]. Liu et al., 2012), community
detection (Anandkumar et al., 2014a), longitudinal data analysis (Hoff, 2015), among others.
Most of the developed tensor-based methods were designed for independent and identically dis-
tributed (i.i.d.) tensor data or tensor data with i.i.d. noise.

On the other hand, in many applications, the tensors are observed over time, and hence form a
tensor-valued time series. For example, the monthly import export volumes of multi-categories
of products (e.g. Chemical, Food, Machinery and Electronic, and Footwear and Headwear)
among countries naturally form a dynamic sequence of 3-way tensor-variates, each of which
representing a weighted directional transportation network. Another example is functional
MRI, which typically consists hundreds of thousands of voxels observed over time. A sequence
of 2-D or 3-D images can also be modelled as matrix or tensor time series to preserve temporal
structure. Development of statistical methods for analysing such large-scale tensor-valued time
series is still in its infancy.
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In many settings, although the observed tensors are of high order and high dimension, there is
often hidden low-rank structures in the tensors that can be exploited to facilitate the data analysis.
Such a low-rank condition provides convenient decomposable structures and has been widely used
in tensor data analysis. Two common choices of low-rank tensor structures are CANDECOMP/
PARAFAC (CP) structure and multilinear/Tucker structure, and each of them has their respective
benefits; see the survey in Kolda and Bader (2009).

In dynamic data, the low-rank structures are often realized through factor models, one of the
most effective and popular dimension reduction tools. Over the past few decades, there has been
a large body of the literature in the statistics and econometrics communities on factor models
for vector time series. An incomplete list of the publications includes Chamberlain and
Rothschild (1983), Bai and Ng (2002), Stock and Watson (2002), Bai (2003), Fan et al.
(2011, 2013, 2016), Forni et al. (2000, 2004, 2005), Pena and Box (1987), Pan and Yao
(2008), Lam et al. (2011), and Lam and Yao (2012). Recently, the factor model approach
has been developed for analysing high-dimensional dynamic tensor time series (Chang et al.,
2023; E. Y. Chen & Fan, 2023; E. Y. Chen et al., 2020, 2024; R. Chen et al., 2022; Y. Han
etal., 2020,2022; Y. Han & Zhang, 2023; D. Wang et al., 2019). These existing works utilize
the Tucker low-rank structure in formulating the factor models. Such Tucker-type tensor factor
model is also closely related to separable factor analysis in Fosdick and Hoff (2014) under the
array Normal distribution of Hoff (2011).

In this paper, we investigate a tensor factor model with a CP type low-rank structure, called
TFM-cp. Specifically, let X; be an order K tensor of dimensions d; X dy X ... X dx. We assume

Xt=zwifitai1®ai2®"'®aﬂ<+gt’ t=1, ..., T, (1)
p]

where ® denotes tensor product, w; > 0 represents the signal strength, a;,, i=1, ..., r, are unit
vectors of dimension dj, with ||a; ||, = 1, & is a noise tensor of the same dimension as X, and
{fir, i=1, ..., 7} is a set of uncorrelated univariate latent factor processes. That is, the signal
part of the observed tensor at time # is a linear combination of 7 rank-one tensors,
wian @ ap @ -+ ® a;x. These rank-one tensors are fixed and do not change over time. Here,
{ai, 1 <i<r,1 <k <K} are called loading vectors and the loading vectors for each mode,
{air, 1 <i <7}, are not necessarily orthogonal. The dynamics of the tensor time series are driven
by the 7 univariate latent processes f;;. By stacking the fibres of the tensor X; into a vector, the
TFM-cp can be written as a vector factor model, with 7 factors and a d x r (where d=d ... dx)
loading matrix of a special structure induced by the TFM-cp. More detailed discussion of the mod-
el is given in Section 2.

A standard approach for dynamic factor model estimation is through the analysis of the covari-
ance or autocovariance of the observed process. The autocovariance of a TFM-cp process in (1) is
also a tensor with a low-rank CP structure. Hence, potentially the estimation of (1) can be done
with a tensor CP decomposition procedure. However, tensor CP decomposition is well known
to be a notoriously challenging problem as it is in general NP hard to compute and the CP rank
is not lower semi-continuous (Héastad, 1990; Hillar & Lim, 2013; Kolda & Bader, 2009).
There are a number of works on tensor CP decomposition, which is often called tensor principal
component analysis (PCA) in the literature, including alternating least squares (ALSs) (Comon
et al., 2009), robust tensor power methods with orthogonal components (Anandkumar et al.,
2014b), tensor unfolding approaches (Richard & Montanari, 2014; P.-A. Wang & Lu, 2017),
rank-one ALSs (Anandkumar et al., 2014c¢; Sun et al., 2017), and simultaneous matrix diagonal-
ization (Kuleshov et al., 2015). See also Zhou et al. (2013), M. Wang & Song, 2017, Hao et al.
(2020), Wang and Li (2020), Auddy and Yuan (2023b), R. Han et al. (2023), among others.
Although these methods can be used directly to obtain the low-rank CP components of the auto-
covariance tensors, they have been designed for general tensors and do not utilize the special struc-
ture embedded in the TFM-cp.

In this paper, we develop a new estimation procedure, named as High-Order Projection
Estimators (HOPE), for TEM-cp in (1). The procedure includes a warm-start initialization using
a newly developed composite principal component analysis (cPCA), and an iterative simultaneous
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orthogonalization (ISO) scheme to refine the estimator. The procedure is designed to take the ad-
vantage of the special structure of TFM-cp whose autocovariance tensor has a specific CP structure
with components close to being orthogonal and of a high-order coherence in a multiplicative form.
The proposed cPCA takes advantage of this feature so the initialization is better than using random
projection initialization often used in generic CP decomposition algorithms. The refinement step
makes use of the multiplicative coherence again and is better than the ALSs, the iterative projection
algorithm (Y. Han et al., 2020), and other forms of the high-order orthogonal iteration (HOOI)
(De Lathauwer et al., 2000; Y. Liu et al., 2014; Zhang & Xia, 2018). Our theoretical analysis pro-
vides details of these improvements.

In the theoretical analysis, we establish statistical upper bounds on the estimation errors of the
factor loading vectors for the proposed algorithms. The cPCA vyields useful and good initial esti-
mators with less restrictive conditions, and the iterative algorithm provides faster statistical error
rates under weaker conditions than the generic CP decomposition algorithms. For cPCA, the num-
ber of factors 7 can increase with the dimensions of the tensor time series and is allowed to be larger
than maxy, d;,. We also derive the statistical guarantees of the iterative algorithm under the settings
where the tensor is (sufficiently) undercomplete (r < miny dy,). It is worth noting that the iterative
refinement algorithm has much sharper upper bounds for the statistical error than the cPCA initial
estimators.

The TFM-cp in (1) can also be written as a tensor factor model with a Tucker form
(TFM-tucker) of a special structure. See (3) for the definition of TFM-tucker and Remark 3 for
the comparison between TFM-cp and TFM-tucker from the perspectives of modelling assump-
tions and interpretations. Potentially, the iterative estimation procedures designed for
TFM-tucker can also be used here Y. Han et al. (2020), ignoring the special TFM-cp structure.
However, HOPE has lower computational complexity per iteration, requires less restrictive con-
ditions and exhibits faster convergence rate, by fully utilizing the structure of TFM-cp. See Remark
16 for further discussion. They also share the nice properties that the increase in either the dimen-
sions d1, ..., dy, or the sample size can improve the estimation of the factor loading vectors or
spaces.

The rest of the paper is organized as follows. After a brief introduction of the basic notations and
preliminaries of tensor analysis in Section 1.1, we introduce a tensor factor model with CP low-
rank structure in Section 2. The estimation procedures of the factors and the loading vectors
are presented in Section 3. Section 4 investigates the theoretical properties of the proposed meth-
ods. Section 5 develops some alternative algorithms to tensor factor models, which extend existing
popular CP methods to the autocovariance tensors with cPCA as initialization, and provides some
simulation studies to demonstrate the numerical performance of all the estimation procedures.
Section 6 illustrates the model and its interpretations in real data applications. Section 7 provides
a short concluding remark. All technical details and more simulation results are relegated to the
online supplementary materials.

1.1 Notations and preliminaries
The following basic notations and preliminaries will be used throughout the paper. Define

llxlly = (xT+--+ xg)”q, q > 1, for any vector x = (x1, ..., xp)T. The matrix spectral norm is de-
noted as
.
[Alls= —max [lx Ayl,.
Ixl=1,llyll.=1

For two sequences of real numbers {a,,} and {b,}, write a,, = O(b,,) (resp. a, < b,) if there exists a
constant C such that |a,| < C|b,| (resp. 1/C < a,,/b, < C) holds for all sufficiently large 7, and
write a, = o(b,) if lim,_, »a,/b,, = 0. Write a, < b, (resp. a, 2 b,) if there exists a constant C
such that a,, < Cb,, (resp. a,, > Cb,,).

For any two tensors A € R"™>7"X X7k B g RN denote the tensor product ® as
A Q® B e R™MXXMkxXrxXiN “guch that
b

(AR B, iciinin = Ay i B i
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The k-mode product of A € R™>* 'k with a matrix U € R”*"* is an order K-tensor of size r; X
o X Ppoq Xy X gy X - - X i and will be denoted as A x;, U, such that

Tk
(AXe Uiy i iieniin = E Az, Ui

=1

Given A € R™>™"K and m = ]_[If:1 mj, let vec(A) € R™ be vectorization of the matrix/tensor A,

mat(A) € R/ the mode-k matrix unfolding of .4, and mat(vec(.A)) = maty(A).

2 A tensor factor model with a CP low-rank structure

Again, we specifically consider the following tensor factor model with CP low-rank structure
(TEM-cp) for observations X, € R** ¥ 1 <t < T,

Xy = szfitail Ran® - Qaix + &,

=1

where f;; is the unobserved latent factor process and a;;, are the fixed unknown factor loading vec-
tors. We assume without loss of generality, Ef2 =1, [layll, =1, forall 1 <i<rand 1 <k < K.
Then, all the signal strengths are contained in w;. A key assumption of TEM-cp is that the factor
process f;; is assumed to be uncorrelated across different factor processes, e.g. Ef;;_f;: = 0 fori # j
and b > 1.In addition, we assume that the noise tensor &; are uncorrelated (white) across time, but
with an arbitrary contemporary covariance structure, following Lam and Yao (2012) and R. Chen
et al. (2022). In this paper, we consider the case that the order of the tensor K is fixed but the di-
mensions d1, ..., dg — oo and rank 7 can be fixed or diverging.

Remark 1 By incorporating time, we may stack X; into an order-(K+ 1) tensor
Y e RxdxT \yith time ¢ as the (K + 1)th mode, referred to as the time-
mode. Subsequently, model (1) can be reformulated as

y=zwzﬂi1®ai2®--~®aﬂ<®f,~+5, (2)

i=1

where f; = (fi1, ..., fir)". While it is enticing to directly estimate the signal
part in (2) with standard tensor CP decomposition approaches based on the
assumed CP structure, the dynamics and dependencies in the time direction
(auto-dependency) are pivotal and warrant a distinct treatment. In our model,
the component in the time direction is deemed latent and random.
Consequently, it is crucial to examine the unique role of the time-mode and
the (auto)-covariance structure in the time direction. The assumptions and in-
terpretations inherent in our model, along with the corresponding estimation
procedures and theoretical properties, markedly diverge from those of using
the standard CP decompositions.

Remark 2 Ignoring the random noise &, the CP decomposition in (2) is unique up to scal-
ing and permutation indeterminacy if »,_; R(A) + R(f) > 2r + K, where
Ap=(aapy -5 an), f=(f1, ..., f,) and R(A) = max{s : any s columns of the
matrix A are linearly independent}. Such a requirement provides a sufficient
condition for uniqueness as per Kolda and Bader (2009). In the subsequent es-
timation procedure, we delve into the estimation of the autocovariance tensor
¥, in (5). The sufficient identifiability condition for the CP decomposition of
the autocovariance tensor becomes 2 Zle R(Ap) > 2r+2K—1. This
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Remark 3

Remark 4

condition is significantly milder compared with the condition necessary to en-
sure statistical convergence.

(Comparison of TFM-cp with a Tucker low-rank structure). E. Y. Chen and
Fan (2023), R. Chen et al. (2022), Y. Han et al. (2020, 2022) studied the fol-
lowing tensor factor models with a Tucker low-rank structure (TFM-tucker):

Xt=.7'—¢X1A1X~-~XAK+E¢, (3)

where the core tensor F, € R™*"% is the latent factor process in a tensor
form, and A;’s are d; X r; loading matrices. For example, when K =2 (matrix
time series), the TFM-cp can be rewritten as a TEM-tucker,

X; =A1ftA-2r +E;, (4)

where Ft = diag(flz, . f,z), and A1 = (all, . ﬂ,1) and Az = (6112, . tl,z)
are matrices with the column vectors being a;;’s. There are four major differ-
ences between TFM-tucker and TFM-cp. First, TFM-tucker suffers from a se-
vere identification problem, as the model remains equivalent if F, is replaced
by F; x R and Ay, replaced by A,R™! for any invertible 7} x 7, matrix R. For
the K=2 case, X; = (A;R;")(Rif,R])(A2R5")" + E, are all equivalent under
TFM-tucker. Such ambiguity makes it difficult to find an ‘optimal’ representa-
tion of the model, which often leads to ad hoc and convenient representations
that are difficult to interpret (Bai & Wang, 2014, 2015; Bekker, 1986;
Neudecker, 1990). On the other hand, TFM-cp is uniquely defined up to
sign changes, under an ordering of the signal strengths w; > w, > ... > w,.
As a result, the interpretation of the model becomes much easier. Second, al-
though TFM-cp can be rewritten in the form of (3) with a diagonal core latent
tensor consisting of the individual f;’s, it is not under a typical Tucker form
since TFM-tucker typically adopts the representation that the loading matrices
Ayp’s are orthonormal, due to its identification problem. In TFM-cp, the loading
vectors {a;;, 1 < i < r} are not necessarily orthogonal vectors. In the K =2 ex-
ample in (4), if we find rotation matrices Ry and R; so that A1RI1 and Aszl
are orthonormal, then the corresponding core factor process in (4) becomes
Ryf,R;, no longer diagonal and with ? heavily correlated components, rather
than r uncorrelated components. Third, TFM-cp separates the factor processes
into a set of univariate time series, which enjoys great advantages over the
tensor-valued factor processes in TFM-tucker. Modelling univariate time ser-
ies are much easier and more flexible due to the vast repository of linear and
nonlinear options. Lastly, TFM-cp is often much more parsimonious due to
its restrictions, while enjoying great flexibility. Note that TFM-tucker is also
a special case of TFM-cp, as it can be written as a sum of » =7 ... 7k rank-one
tensors, albeit with many repeated loading vectors. With its condensed formu-
lation, in practical applications, the number of factors r needed under TFM-cp
is typically much smaller than the total number 7; ... 7k of factors needed in
TFM-tucker.

There are two different types of factor model assumptions in the literature. One
type of factor models assumes that the common factors must have impact on
‘most’ (defined asymptotically) of the time series, but allows the idiosyncratic
noise (&;) to have weak cross-correlations and weak autocorrelations; see, e.g.
Forni et al. (2000), Bai and Ng (2002), Stock and Watson (2002), Fan et al.
(2011, 2013), and E. Y. Chen and Fan (2023). PCA of the sample covariance
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matrix is typically used to estimate the factor loading space, with various exten-
sions. The other type of factor models assumes that the factors accommodate
all dynamics, making the idiosyncratic noise ‘white’ with no autocorrelation,
but allows substantial contemporary cross-correlation among the error pro-
cess; see, e.g. Pena and Box (1987), Pan and Yao (2008), Lam et al. (2011),
Lam and Yao (2012), and D. Wang et al. (2019). Under such assumptions,
PCA is applied to the nonzero lagged autocovariance matrices. In this paper,
we adopt the latter type of assumptions in our model development.

3 Estimation procedures

In this section, we focus on the estimation of the factors and loading vectors of model (1). The pro-
posed procedure includes two steps: an initialization step using a new composite PCA (cPCA) pro-
cedure, presented in Algorithm 1, and an iterative refinement step using a new ISO procedure,
presented in Algorithm 2. We call this two-step procedure HOPE (High-Order Projection
Estimators) as it repeatedly perform high order projections on high order moments of the tensor
observations. It utilizes the special structure of the model and leads to higher statistical and com-
putational efficiency, which will be demonstrated later.

Algorithm 1 Initialization based on composite PCA (cPCA)

Input: The observations X, € R4 ;=1 T, the number of factors r, and the time lag h.
1: Evaluate X, in (6), and unfold it to d x d matrix 2”;
2: Obtain ;, 1 < i < r, the top r eigenvectors of (2”,: +2}:T)/2.

3: Compute a3} ~* as the top left singular vector of mat,(#;) € R/ forall 1 < k < K.

~cpca

Output: @, i=1,..,r, k=1,..,K

For X, following (1), the lagged cross-product operator, denoted by %, is the (2K)-tensor sat-
isfying

T
X, = E Xt—h ® X,
T-h
t=h+1

li,h(ail Ranp®---Q aiK)®2 e Rdlx»-»xdxxdlx-»-de’

r
i=1

for a given h>1, where 4, =w?Ef;, ,fi;. Note that the tensor X, is expressed in a
CP-decomposition form with each a;;, used twice. Let 3, be the sample version of X,

Xt—h®Xt

2= T—h

t=h+1

(6)

When X, is weakly stationary and &; is white noise, a natural approach to estimating the loading
vectors is via minimizing the empirical squared loss

2
,  (7)
HS

(ai, ain, ..., aix, 1 <i<r)=  argmin
;1,7 i1 <i<r,
llaill2=...=llaill,=1

,
2, =Y diplan ®an ® - ® a)®*
i=1
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Algorithm 2 [terative Simultaneous Orthogonalization (ISO)

Input: The observations X; € R*"*d t =1, .. T, the number of factors r, the warm-start initial estimates ﬁﬁg),
1 <i<rand1 <k <K, the time lag b, the tolerance parameter ¢ > 0, and the maximum number of iterations

M.

1: Compute BY) = AD@AOTA) = 310 BY) with AV = @7, ..., 3%) e R% for k=1, ..., K. Set
m=0.

2: repeat

3: Letm=m+1.

4 for k=1 to K.

5: fori=1tor.

6 Given previous estimates Eﬁ:’_l), calculate

TmT 11
Z‘t’:}j =X BT %y - Xy b,,2 | Xt bl W Xpga - Xk BT,
fort=1, ..., T. Let

- 1 &
(m) — (m) (m)
2 (Zlﬂz’T,ik) “T-h Z th,ik ® Zz?k'

t=h+1
Compute @} as the top eigenvector of fh(Z(l”f)T,ik)/Z +f;,(2(1’"m)T/2.
7: end for
~ T ~ N
8: Compute BL"” =Ak (A A Iyt (b(fz), cees b(,Zt)) with A(km) = (a(]yz)a s a(,:f))-
9: end for
10: until m =M or
)T _ ~m=1)=(m
ama —-a a, <
et e AL AC SR AL

Output: Estimates

alzo_’df;”)’ i=1,...,1’, k=1,...,K,

) T -~ 2\
@ = (T3 (X< bi-,i””) . i=1
=1
fiso = {[;i.s")_ xk]b i=1,...,r, t=1, ..., T,

X}SD—ZXIXklb xk, ay, t=1,..,T.

where the Hilbert Schmidt norm for a tensor A is defined as || Al|ys = [[vec(A)|l,. In other words,
a1 ®ap Q-+ ® aj can be estimated by the leading principal component of the sample autoco-
variance tensor 2,. However, due to the nonconvexity of (7) or its variants, a straightforward im-
plementation of many local search algorithms, such as gradient descent and alternating
minimization, may easily get trapped into local optima and result in suboptimal statistical per-
formance. As shown by Auffinger et al. (2013), there could be an exponential number of local op-
tima and the great majority of these local optima are far from the best low-rank approximation.
However, if we start from an appropriate initialization not too far from the global optimum, then
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a local optimum reached may be as good an estimator as the global optimum. A critical task in
estimating the factor loading vectors is thus to obtain good initialization.

We develop a warm initialization procedure, the composite PCA (cPCA) procedure. Note that,
if we unfold X, into a d X d matrix 2}, where d = d} ... dk, then (5) implies that

=Y dipaal, (8)
=1

a sum of 7 rank-one matrices, each of the form a;a], where a; = vec( ®%_, a;,). This is very close to
the principal component decomposition of X7}, except that a;’s are not necessarily orthogonal in
this case. However, the following intuition provides a solid justification of using PCA to obtain
an estimate of a;. We call this estimator the cPCA estimator.

The accuracy of using the principal components of 2} as the estimate of a; heavily depends on
the coherence of the components, defined as 9 = maxi <j<j< laa il, the maximum pairwise correl-
ation among the a;’s. When the components are orthogonal (3 = 0), there is no error in using PCA.
The main idea of cPCA is to take advantage of the special structure of TFM-cp, which leads to a
multiplicative high-order coherence of the CP components. In the following, we provide an ana-
lysis of $ under TFM-cp.

Let Ay = (@, ..., a;) € R% be the matrix with a;, as its columns, and AjA, = (i) rre As

ik = llaill3 = 1, the correlation among columns of A, can be measured by

12
T
9= max loyel, Ok=IAFA—Lls, np=| D_ opx) - (9)
1<i<j<r . L
i€[r\{j}
Similarly, we use
_ T AT
= max |ai a/'; 6_||A A_Ir”Sa (10)
1<i<j<r

to measure the correlation of the matrix A= (ay, ..., a,) € R™ with a; = vec( ®F_, ai) and
d =TIk, di. Tt can be seen that the coherence $ has the bound 9 < [Tj; % < 95.., due to

ala;= ]_[,Ij:l ajaj, = ]_[kK=1 01~ The spectrum norm d is also bounded by the multiplicative of cor-
relation measures in (9). More specifically, we have the following proposition.

.. . K/2-1

Proposition 1 Define x, = max; ming, , maXig; [ [k, gty keix) V71056l /M € (1,7 /2-1]
as the (leave-two-out) mutual coherence of Ay, ..., Ax. Then, J <
minlsksK 5/@ and

K
d<(r—=1)9, and I<[[% <9 (11)
k=1
K K
§ < p K2 maxl_[ Njk < K2 Hék. (12)
J<r
k=1 k=1

When (most of) the quantities in (9) are small, the products in (11) would be very small so that
the a;’s are nearly orthogonal. For example, if (411, a21) and (a12, a22) both have i.i.d. bi-variate
random rows with correlation coefficients p; and p,, and independent, then the population correl-
ation coefficient of vec(ai; ® a12) and vec(ay; ® azy) is pyp,, though the variation of the sample
correlation coefficient depends on the length of the a;;.’s.

202 1sNBny 62 U0 Jasn (10) 10S YieaH Ateiai Aq 0v€G292/9€09B3b/ASSSINEBO L 0L/10p/aI01E-80UBADE/qSSSIl /W00 dNo"olWapede//:sdny Wolj papeojumoq



J R Stat Soc Series B: Statistical Methodology 9

Remark 5  Let polylog denote the polynomial of the logarithm. The incoherence condition
such as Imax S ploylog(dmin)/v/ dmin is commonly imposed in the literature for
generic CP decomposition; see e.g. Anandkumar et al. (2014b, 2014c¢), Sun
etal. (2017), and Hao et al. (2020). Proposition 1 establishes a connection be-
tween J, J; and the $; in the same framework of incoherence considerations.
The parameters J; and § quantify the nonorthogonality of the factor loading
vectors, and play a key role in our theoretical analysis, as the performance
bound of cPCA estimators involves d. Differently from the existing literature
depending on 9,x, the cPCA exploits d or the much smaller ¢ (comparing to
Ymax ), thus has better properties when K > 2. Note that the idea of using tensor
unfolding to enhance incoherence can be traced back to Huang et al. (2015),
Jain and Oh (2014), and Allman et al. (2009), though their incoherence meas-
ure is slightly different from ours. The most notable advances from these stud-
ies is that we establish a nonasymptotic bound for the estimated loading vectors
in the presence of noise (c.f. Theorem 1).

The pseudo-code of cPCA is provided in Algorithm 1. Though X7 is symmetric, its sample ver-
s1on2”‘ in general is not. We use (Z* + 2”* )/2 to ensure symmetry and reduce the noise. The cPCA
produces definitive initialization vectors up to the sign change.

After obtaining a warm start via cPCA (Algorithm 1), we engage an ISO algorithm (Algorithm
2) to refine the solution of a;;, and obtain estimations of the factor process f;; and the signal strength
w;. Algorithm 2 can be viewed as an extension of HOOI (De Lathauwer et al., 2000; Zhang & Xia,
2018) and the iterative projection algorithm in Y. Han et al. (2020) to undercomplete ( < dmin)
and nonorthogonal CP decompositions. It is motivated by the following observation. Define A, =
(@1ks .. ay) and By = A(A[Ag) ™" = (b, ..., by) € R Let

T T T T
Zyie =X X1 by Xa -+ Xpem1 by g Xpq1 by gy ey -+ Xk by (13)
T T T T
52;’13 =& X1 bil X2 v X1 bi,k—l Xb+1 bi,k+1 Xpt2 = XK biK' (14)
Since a ,bir. = Ii—j), model (1) implies that
Ziik = wifitaik + g:ib (15)

Here Z, ; is a vector, and (15) is in a factor model form with a univariate factor. The estimation of
aj, can be done easily and much more accurately than dealing with the much larger X;. The oper-
ation in (13) achieves two objectives. First, by multiplying a vector on every mode except the kth
mode to X7, it reduces the tensor to a vector. It also serves as an averaging operation to reduce the
noise variation. Second, as by is orthogonal to all aj;, except aj, it is an orthogonal projection op-
eration that eliminates all ®X_, 2, terms in (1) except the ith term, resulting in (15). If the matrix

A Ay is not ill-conditioned, i.e. {@;, 1 < i < 7} are not highly correlated, then By, and all individual
b,k are well defined and this procedure shall work well. Under proper conditions on the combined
noise tensor &y, estimation of the loading vectors a; based on Z,; can be made significantly
more accurate, as the statistical error rate now depends on d, rather than did,...d.
Intuitively, b;, can also be viewed as a form of (normalized) residuals of a;;, projected onto the
space spanned by {a;,j #i,1<j<r}.

In practice, we do not know by, for 1 <i<r, 1 <l < Kand!# k. Similar to back-fitting algo-
rithms, we iteratively estimate the loading vector a;, at iteration number 7 based on

mT T m=1)T m=1)T
ZZ:Z =X, X bl;n X 0 Xp—1 bi,rZ—l Xb+1 bifZ+1 Xpt2 -+ XK b v

3
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using the estimate bi.lm_]),k<l$K, obtained in the previous iteration and the estimate

i;glm)’ 1 < I <k, obtained in the current iteration. As we shall show in the next section, such an it-
erative procedure leads to a much improved statistical rate in the high-dimensional tensor factor
model scenarios, asifall b;, 1 <i<r,1 <[ <K, # k,are known and we indeed observe Z,, that
follows model (15). Note that the projection error is

(m)
Zt,ik ltk_zw/ff,té,/ a/k"'g;,k - tlk
j=1

where

K
ar =[Tlakby"1 [T lagby "1 -z, (16)

=1 =k+1

and EZ%‘) is that in (14) with by, replaced with b\~ or by”. The multiplicative measure of pro-
jection error Ifﬁ;")l decays rapidly since, forj # i, a;zbf;") goes to zero quickly as the iteration m in-
creases, and ff-;") is a product of K — 1 such terms. In fact, the higher the tensor order K is, the faster
the error goes to zero.

Remark 6 (Comparison with alternating least square). The updates in Algorithm 2 can
be viewed as a variant of ¢ the standard alternating least-squares procedure.
For example, suppose thatb 711 <i<r 2<k<K, arefixed. Then the op-
timization problem to update "11 m) for each 1 <i < r can be rewritten as

arg mm
a,leR 1

m-1) J2K  J(m—1) T
), ¥k b Xi=ks2 bij_x — widina; HF

This is a least-squares problem. However, the algorithm cannot be viewed as
an alternating least-square procedure since we do not have an over-arching
(least-square) objective function such that every iteration is done to minimize
the objective function given other components. This is due to the construction
and involvement of b;, in the algorithm. As a matter of fact, if one uses stand-
ard ALS to minimize the objective function in (7), to update mode k, it would

involve the inverse of the Hadamard product of AZ,A,E, for k' # k. In contrast,
due to the nice property of Z, ;;, (defined based on By, for k" # k), we only need

to compute the inverse of A, Ay for each &’ # k, not their Hadamard product.

Remark 7 (Therole of ). In Algorithm 1, we use a fixed h > 1. Letjl\l,h > //1\2,;, > > //l\d,h
be the eigenvalues on’Z = (2”,‘; +2’ZT)/Z. In practice, we may select » to maxi-
mize the fraction of the explained variance Z;ﬁ,{h / Z?:Jﬁh under different

lag values 1 < b < by, given some pre-specified maximum allowed lag 5.
Step 2 in Algorithm 1 can be improved by accumulating information from dif-

ferent time lags. For example, let U'”) € R be a matrix with its columns #;’s
being the top r eigenvectors ofE‘Z. With such U'”) as the initialization, we may
iteratively refine U™ to be the top  eigenvectors of ZZ‘;l E’ZU(”’_] gl )TZ'Z.

Remark 8 (Condition number of A A ). Our theoretical analysis assumes that the
condition number of the matrlx AJA, is bounded. However, in practice, the
condition number of A ”’)TA in Algorithm 2 may be very large, especially
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Remark 9

Remark 10

Remark 11

when m = O We suggest a simple regularized strategy. Deﬁne the eigen decom-
posmonA TA "= V >A(km)Vk "7 For all eigenvalues 1nA ) that are smaller
than a numenc constant c(e.g.c=0.1), we set them to c Denote the resultlng
matrix as A ) and get the corresponding B ) by A vt k V(m )t
Many alternatlve empirical methods can also be apphed to bound the cond1-
tion number.

Algorithm 1 requires that § < 1 in order to obtain reasonable estimates. And it
can accommodate the case that 7 > day. In contrast, Algorithm 2 needs stron-
ger conditions that 6, < 1 and 7 < dyy;, to rule out the possibility of colinearity,
as A] A, needs to be invertible. It may not hold under certain situations. For
example, ay, = a,;, would lead to an ill-conditioned AkAk In such cases, the
incoherence condition commonly required in the literature, e.g. Inax < 1, is
also violated. It is possible to extend our approach to a more sophisticated pro-
jection scheme so the conditions can be weakened. As it requires more sophis-
ticated analysis both on the methodology and on the theory, we do not purse
this direction in this paper.

As mentioned before, a;; ® ap ® - - - ® a;x can be regarded as the principal
component of the autocovariance tensor Xj,. Hence, our HOPE estimators
(Algorithms 1 and 2 together) can also be characterized as a procedure of
principal component analysis for order 2K autocovariance tensor, albeit
with a special structure in (5).

(The number of factors). Here the estimators are constructed with given rank
7, though in the theoretical analysis it is allowed to diverge. Determining the
number of factors in a data-driven way has been an important research topic
in the factor model literature. Bai and Ng (2002, 2007), and Hallin and Liska
(2007) proposed consistent estimators in the vector factor models based on
the information criteria approach. Lam and Yao (2012) and Ahn and
Horenstein (2013) developed an alternative approach to study the ratio of
each pair of adjacent eigenvalues. Recently, Y. Han et al. (2022) established
a class of rank determination approaches for the factor models with Tucker
low-rank structure, based on both the information criterion and the eigen-
ratio criterion. Those procedures can be extended to TFM-cp.

4 Theoretical properties

In this section, we shall investigate the statistical properties of the proposed algorithms described
in the last section. Our theories provide theoretical guarantees for consistency and present statis-

tical error rates in

the estimation of the factor loading vectors a;,, 1 <i<r, 1 <k <K, under

proper regularity conditions. As the loading vector a;;, is identifiable only up to the sign change,

Wwe use

~ T T ~ 2 T~
@y, — apaglls =/ 1 — (@)a;)” = sup [2" ayl
2lay,

to measure the distance between @, and ;.. Recall 2, = EX), =>"7_ 4, (a1 @ ap @ -+ ® aix)®?,

as in (5) and

Ak =(d1k, “'9ark) €
dmin =min{dy, ...,

dip =w?Efipfir. We will also continue to wuse the notations
R, and By = Ap(AfAL) ™ = (bigs ..., by) € RW. Let d=T[[._, di,
dK}, dmax = max {d1, ey dK} and d—k = H/’#k d,'.

To present theoretical properties of the proposed procedures, we impose the following

assumptions.
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12 Han et al.

Assumption1  The error process &; are independent Gaussian tensors, conditioning on the
factor process {fi;, 1 <i < r, t € Z}. In addition, there exists some constant
o> 0, such that

E(u"vec(£)? < Allul?, ue R

Assumption2  Assume the factor process f;;, 1 < i < ris stationary and strong ¢-mixing in
t, with Ef2=1, Efypfie #0, Efypfz=0 for all i#j and h>1. Let
F;=(fit> ... ). For any v € R" with ||v]|, =1,

max P ‘UTFt‘ > x) < crexp(—cax’?), (17)

where c1, ¢, are some positive constants and 0 <y, < 2. In addition, the
mixing coefficient satisfies

a(m) < exp(—com’) (18)

for some constant ¢p > 0 and 0 < y; < 1, where

alm) = sup HP(A nB)— [FD(A)[P’(B)’ A€olfs,1<i<r,s<t),B

Ea(ﬂs,lsisr,52t+m)}.

Assumption 3 Assume b < T/4 is fixed, and Ay, ..., 4, are all distinct. Without loss of
generality, let Ay, > 4, > --- > 4,;, > 0. Here, we emphasize that 4, de-
pends on b, though in other places when 5 is fixed we will omit 4 in the
notation.

Assumption 1 is similar to those on the noise imposed in Lam et al. (2011), Lam and Yao (2012),
and Y. Han et al. (2020). It accommodates general patterns of dependence among individual time
series fibres, but also allows a presentation of the main results with manageable analytical com-
plexity. The normality assumption, which ensures fast statistical error rates in our analysis, is im-
posed for technical convenience. In theory, it can be supplanted by a sub-Gaussian condition, or
replaced with more general distributions with heavier tails. However, adopting such weaker con-
ditions would significantly complicate the formulae, statistical outcomes, and requisite conditions
within our time series framework. This added complexity would likely detract from the paper’s
readability, without providing additional statistical insights. Our primary goal is to maintain
the readers’ focus on the core content of the paper, and thus, we have chosen to assume additive
Gaussian errors. This choice simplifies the exposition without compromising the fundamental ten-
ets and the findings of our study.

Assumption 2 is standard. It allows a very general class of time series models, including causal
ARMA processes with continuously distributed innovations; see also Tong (1990), Bradley
(2005), Tsay (200S5), Fan and Yao (2003), Rosenblatt (2012), and Tsay and Chen (2018), among
others. The restriction y; < 1 is introduced only for presentation convenience. Assumption 2 re-
quires that the tail probability of f;; decays exponentially fast. In particular, when y, =2, f; is
sub-Gaussian.

Assumption 3 is sufficient to guarantee that all the factor loading vectors a;, can be uniquely
identified up to the sign change. The parameters 4; can be viewed as an analogue of eigenvalues
in the order-2K tensor X),. Similar to the eigen decomposition of a matrix, if some /; are equal, es-
timation of the loading vectors @;, may suffer from label shift across i. When 5 is fixed and
Efiefisop < 1, 4 < w?. The signal strength of each factor is measured by ;.

202 1sNBny 62 U0 Jasn (10) 10S YieaH Ateiai Aq 0v€G292/9€09B3b/ASSSINEBO L 0L/10p/aI01E-80UBADE/qSSSIl /W00 dNo"olWapede//:sdny Wolj papeojumoq



J R Stat Soc Series B: Statistical Methodology 13

Let us first study the behaviour of the cPCA estimators in Algorithm 1. Theorem 1 presents the
performance bounds, which depends on the coherence (the degree of nonorthogonality) of the fac-
tor loading vectors.

Let

A* = min {/‘L,‘,] —/1,'} (19)

1<i<r+1
with g = 00, 4,41 = 0, be the minimum gap between the signal strengths of the factors.

Theorem 1  Suppose Assumptions 1, 2, 3 hold. Let 1/y=1/y; +2/y,, h < T/4,and 6 < 1
with 6 defined in (10). In an event with probability at least 1 — (Tr)~“ — 79,
the following error bound holds for the estimation of the loading vectors a;,
using Algorithm 1 (cPCA).

(20)

22 C,R©
||al§£caﬁ§]fcaT _aika;i ”S < (1 + 1>5+ 2

A e

forall1 <i<r, 1<k <K, where Cy, C, are some positive constants, and

1/y
0) _ P [r+logT (r+logT) \/E \/g
R —rlré?éwt ( T + T + o* T+ arlrgs)fw, T (21)

Remark 12 We note that the eigengap A, in Algorithm 1 (cPCA) is not a requisite for the
iterative Algorithm 2 (ISO). Algorithm 1 (cPCA) necessitates a significant sep-
aration among the different singular values 4;’s. This condition can be relaxed
through the use of random slicing (Anandkumar et al., 2014¢; Auddy &
Yuan, 2023a), a widely recognized method for initialization in tensor CP de-
composition. In our framework, the core step of random slicing is the con-
struction of a projected autocovariance tensor X, X gr Xx+k &, Where g
and g, are independently generated Gaussian random vectors. Due to the
randomness of g, and g, even if all 4;’s are equal, the singular values of
2}, Xp, 8k X4k 8, Will inherently differ. Furthermore, we can generate a suffi-
ciently large eigengap between the top two singular values of the projected au-
tocovariance tensor through multiple rounds of random slicing, so that the
leading component of the projected autocovariance tensor is identifiable.
Since X, Xp gk X4k & is an order 2K — 2 tensor, we can still employ cPCA
and utilize the benefits of higher-order coherence in Proposition 1 when
K > 2. The existing results in Theorem 1 can be extended to such settings,
although it would require more sophisticated theoretical analysis.

The first term in the upper bound (20) is induced by the nonorthogonality of the loading vectors
a;;, which can be viewed as bias. The second term in (20) comes from a concentration bound for
the random noise, and thus can be interpreted as stochastic error. By Proposition 1, it implies that a
larger K (e.g. higher order tensors) leads to smaller bias and higher statistical accuracy of cPCA. If
0 2 R/}, then the error bound (20) is dominated by the bias related to d, otherwise it is domi-
nated by the stochastic error. Equation (21) shows that R® in the stochastic error comes from the
fluctuation of the factor process f;; (the first two terms) and the noise &; in (1) (the other two terms).
When Y 4 =x7ly <rwt and R9/; +T/d $ 1, the terms related to the noise becomes
7/T/~/SNR, where the signal-to-noise ratio (SNR) is

2 r
[ENERs = Y w}/(o7d) < ria/(o7d). (22)

HS =1

r
Z wifir ®jy ik

i=1

SNR:=E
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Roughly speaking though not completely correct, the term A; — 4,41 can be viewed as the gap of ith
and (i + 1)th largest eigenvalues of X7 with X} given in (8). In particular, if 2y < --- < 4, < w3, then
Ay < wh /7. In this case, the bound (20) can be simplified to

—~cpca-~cpcaT T
lag, "a;,  —apalls

+logT (r+logT)'"\ Cic*rvd Cyorvd (23)
< Cyro+ Car[ /- + + + _
37 4r< T T w% T wlﬁ

Then, by (23) and Proposition 1, the consistency of the cPCA estimators only requires the incoher-
ence parameter to be at most Jyay S 772K,

Next, let us consider the statistical performance of the iterative algorithm (Algorithm 2) after
cPCA initialization, i.e. HOPE estimators. As discussed earlier, the operation in (13) achieves
dimension reduction by projecting X; into a vector and retains only one of the r factor terms,
hence eliminates the interaction effects between different factors. As we update the estimation
of each individual loading vector a;;, separately in the algorithm, ideally this would remove
the bias part in (20) which is due to the nonorthogonality of the loading vectors, and replace
the eigengap A, in (20) by i,, as (15) only involves one eigenvector. It also leads to the elimination
of the first two terms of R'?). As mentioned in Sectlon 3, when updating 3" o ) we take advantages
of the multiplicative nature of the project error 5 in (16) and the rapid growth of such benefits
as the iteration number m grows. Thus we expect that the rate of HOPE estimators would
become

max max [[@xay — axaklls < CoxRUdeab, (24)
1<i<r 1<k<K
where
02 d
Riideab Vg k and RO4€aD oy max glideab (25)
1<i<r 1<k<K >
Note that R 1deal )replaces all d = d; ... dk in the noise component of the stochastic error in (20)

by dj, due to dlmension reduction. The following theorem provides conditions under which this
ideal rate is indeed achieved.
Let the statistical error bound of the initialization used in Algorithm 2 be . For cPCA,

216+ RO
Yo =/17,

where A, is the eigengap defined in (19) and R” is defined in (21).
Theorem 2 Suppose Assumptions 1, 2, 3 hold. Assume that dmax = maxy<x d < 1 with
defined in (9), and r=O(T). Let 1/y=1/y,+2/y,, h<T/4, and

d=d; ---dg. Suppose that for a proper numeric constant Cy g depending
on K only, we have

1 = Omax — (12 + 1)y //1 = 1/(47) > 0, (27)

1/y
C1,1<( )WZK 3+C1K\/:< /r+17?gT+(r+lo%gT) >w§‘2$p<l (28)
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Then, after at most M = O( log log (,/ R(ideal))) iterations of Algorithm 2, in an
event with probability atleast 1 — (Tr)™¢ — 3 » €%, the HOPE estimator satisfies

~iso-sisoT T ideal

I@a5T — agajlls < CoxRUCT, (29)
foralll <i<r,1 <k < K,where Cy ¢ isa constant depending on K only and Cis
a positive numeric constant.

The detailed proof of the theorem is in online supplementary material, Appendix 1. The key idea
of the analysis of HOPE is to show that the iterative estimator has an error contraction effect in
each iteration. Theorem 2 implies that HOPE will achieve a faster statistical error rate than the
typical Op(T~'/2) whenever 4, > ¢* maxy, d;.. As vec(X;) has d elements, the strong factors setting
in the literature (R. Chen et al.,, 2022; Y. Han et al., 2020; Lam et al., 2011) typically
assumes SNR x<1. In our case it is similar to assuming the signal strength
Bl Y, wifi ®f=1 aikllfls = o2d. When r is fixed and 1; < --- < A,, the statistical error rate will
be reduced to Op(T’”zd:}e/z), where d_ =[] d;.

Remark 13  (Iteration complexity). Theorem 2 implies that Algorithm 2 achieves the de-
sired estimation error R19€al after at most M = O( loglog (l//O/R“deal)))
number of iterations. In this sense, after at most double-logarithmic number
of iterations, the iterative estimator in Algorithm 2 converges to a neighbour-
hood of the true parameter a;;, up to a statistical error with a rate O(R14€21),
We observe that Algorithm 2 typically converges within very few steps in
practical implementations.

Remark 14  Condition (27) requires 7'/2y, to be small. It is a relatively strong condition
due to the extra multiplier 7!/2 on the error of the initial estimators. This is a
technical issue due to the need to invert the estimated A} A in our analysis to
construct the mode-k projection in Algorithm 2. In fact the 7!/? term may be
eliminated by applying a shrinkage procedure on the singular values of A,
after obtaining the updates of @j,, 1 < i < r, similar to the procedure proposed
by Anandkumar et al. (2014c).

Furthermore, the condition given by (28) originates from the multiplicative
nature of the projection error fi.'”), as seen in (16) for i # j. If y, signifies the
error bound for cPCA estimators, then condition (28) is satisfied when
(A1/2, w353 < 1. In comparison, the iterative algorithm of Anandkumar et
al. (2014c) requires that the initialization fulfills w, < 4,/41 + 1/+/dmin, a con-
dition that is more stringent than (28). The ratio 44 /4, in (28) is unavoidable.
When updating the estimates of a;;, in Algorithm 2, we need to remove the ef-
fect of other factors (j # i) on the ith factor, which introduces the ratio of fac-
tor strengths 11 /4, in the analysis.

In particular, if 2; < --- < 4,, the shrinkage procedure can reduce condi-
tions (27) and (28) to

Cixyy <1, (30)

where ) is the cPCA error bound in (26). It ensures that, with high probabil-
ity, ||ﬁ§2’2i§.2w — aja), s are sufficiently small, so that the cPCA initialization is

sufficiently close to the ground truth as in (30).

Remark 15 (Comparison with general tensor CP-decomposition methods). To estimate
a;, in (5), one can use the standard tensor CP-decomposition algorithms,
such as those in Anandkumar et al. (2014c), Hao et al. (2020), and Sun
et al. (2017), without utilizing the special features of TEM-cp. The random-
ized initialization estimators in these algorithms typically require the
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Remark 16
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incoherence condition $max S poly log (dmin)/+/ @min- In contrast, the condi-
tion for ISO needs Imax < 775/2K) which is weaker when 7= o(dﬁ{j).
Similarly, we prove that the cPCA yields useful estimates when 729 “is
small, or dna S 772K, In other words, as long as 7 is not exceedingly large
(e.g.r= o(dﬁ{ﬁ)), both ¢cPCA and ISO permit a more lenient incoherence con-
dition among the CP basis. Furthermore, the high-order coherence in TFM-cp
leads to an impressive computational super-linear convergence rate of
Algorithm 2, which is faster than the computational linear convergence
rate of the iterative projection algorithm in Y. Han et al. (2020) or other var-
iants of alternating least-squares approaches in the literature, that are at most
linear with the required number of iterations M = O( log (z//O/R“deal))).

(Comparison between TFM-cp and TFM-tucker Models). As discussed in
Remark 3, TEM-cp can be written as a TFM-tucker with a special structure.
One can ignore the special structure and treat it a generic TFM-tucker in (3)
and estimate the loading spaces spanned by {a;,, 1 < i < 7} using the iterative
estimation algorithm in Y. Han et al. (2020). In fact, ISO (as detailed in
Algorithm 2) can be viewed as an enhancement of the iterative algorithm pre-
sented in Y. Han et al. (2020) to utilize the special structure of TFM-cp. This
is achieved by permitting nonorthogonality in A, and estimating each a;;, 1 <
i <r, individually.

Here we provide a brief comparison in the estimation accuracy between
the estimators under these two settings to show the impact of the additional
structure in TFM-cp. Note that for TFM-tucker, only the linear space
spanned by A, can be estimated hence the estimation accuracy is based on
a specific space representation, different from that for the TFM-cp. For sim-
plicity, we consider the case 1y < --- < /,.

(i) The iterative refinement algorithm (Algorithm 2) for TEM-cp requires
similar conditions on the initial estimators as the iterative projection al-
gorithms for TFM-tucker. Under many situations, both methods only
require the initialization to retain a large portion of the signal, but
not the consistency.

(ii) The statistical error rate of HOPE in (29) is the same as the upper bound
of the iterative projection algorithms for estimation of the fixed rank
TFM-tucker, c.f. Corollary 3.1 and 3.2 in Y. Han et al. (2020), which
is shown to have the minimax optimality. It follows that HOPE also
achieves the minimax rate-optimal estimation error under fixed r.

(iii) When the rank r diverges and SNR =< 1 where SNR is defined in (22),
the estimation error of the loading spaces by the iterative estimation
procedures, iTOPUP and TIPUP-iTOPUP procedures in Y. Han et al.

(2020) applied to the specific TFM-tucker model implied by the TFM-

cp model, is of the order Op( max r3K/2_1T_1/2d:,1/2), a rate that is al-

ways larger than Op(max; r//2T-12d"}/%), the error rate of HOPE
for TFM-cp model. The iTIPUP procedure for TEM-tucker model is
Op(max, 71/2+<K‘1)CT‘1/2d:,1/2) where { controls the level of signal can-
cellation (see Y. Han et al., 2020 for details). When there is no signal
cancellation, { = 0, the rate of the two procedures are the same. Note
that iTIPUP only estimates the loading space, while HOPE provides es-
timates of the unique loading vectors. The error rate of HOPE is better
when ¢ > 0. This demonstrates that HOPE is able to utilize the specific
structure in TFM-cp to achieve more accurate estimation than simply
applying the estimation procedures designed for general TFM-tucker.
(iv) It can be seen that, computationally, the complexities for the initializa-
tion of both TFM-cp and TEM-tucker are the same, yet, the per iteration
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complexity of TEM-cp is lower than that of TFM-tucker by a factor of
K2

where 71 =...=rg =r in TFM-tucker model.

Theorem 3  Suppose Assumptions 1, 2, 3 hold. Assume that 6, < 1 with §, defined in (9),
o* < ), and condition (27) holds. Let dpmax = max;, di. Then the HOPE estima-
tor in Algorithm 2 using a specific b satisfies:

02 |6%dmax
=Op \/A:,Jr‘, T (31)

w—l ﬁ/iSO,\lSO _ wf
i i lit it

and
-1, -1 1 L ~isorisoZiso  7iso 1 L
w; w; T—h E wi Wiy T TT_h g wiwifit—h*fit
* 4 *
t=h,+1 t=h,+1
2d
o max
= Op 32
AT (32)

for1<ij<r,1<t<Tandalll<h, <T/4.

Theorem 3 specifies the convergence rate for the estimated factors f;;. When 4, > 0*dmax + T,
wi s fis° — w,f,,| is much smaller than the parametric rate T-1/2. If all the factors are strong
(Lam et al, 2011) such that A <1, <0*d, (31) implies that w;l|@wifl —w,fy|=
Op(d=1? + dY/2.d~1/>T~1/2). Then, as long as d;, — o0 and K > 2, the estimated factors are con-
sistent, even under a fixed T. In comparison, the convergence rate of the estimated factors in
Theorem 1 of Bai (2003) for vector factor models is Op(d~/? + T~!). Moreover, (32) shows
that the error rates for the sample autocross-moment of the estimated factors to the true sample
autocross-moment is also op(T~/2) when 4, 3 ¢®>dmayx. This implies that it is a valid option to
use the estimated factor processes as the true factor processes to model the dynamics of the factors.
When the estimation of these time series models only required autocorrelation and partial auto-
correction functions, the results are expected to be the same as using the true factor process, with-
out loss of efficiency. The statistical rates in Theorem 3 lay a foundation for further modelling of
the estimated factor processes with vast repository of linear and nonlinear options.

5 Simulation studies

5.1 Alternative algorithms for estimation of TFM-cp

Here we present two alternative estimation algorithms for TFM-cp, by extending the popular rank
one ALS algorithm of Anandkumar et al. (2014¢) and orthogonalized alternating least square
(OALS) of Sharan and Valiant (2017) designed for CP decomposition of noisy tensors, because
%), in (5) is indeed in a CP form, but with repeated components. In addition, we use cPCA estimates
for initialization, instead of randomized initialization used for general CP decomposition. We will
denote the algorithms as cALS (Algorithm 3) and cOALS (Algorithm 4), respectively. The simu-
lation study below shows that, although cALS and cOALS perform better than the straightforward
implementation of ALS and OALS with randomized initialization, they do not perform as well as
the proposed HOPE algorithm. Hence we do not investigate their theoretical properties in this

paper.

5.2 Simulation

In this section, we compare the empirical performance of different procedures of estimating the
loading vectors of TEM-cp, under various simulation setups. We consider the cPCA initialization
(Algorithm 1) alone, the iterative procedure HOPE, and the intermediate output from the iterative
procedure when the number of iteration is 1 after initialization. The one-step procedure will be
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Algorithm 3 cPCA-initialized Rank One Alternating Least Square (CALS)

Input: Observations X, € RY* %4 for =1, ..., T, the number of factors 7, the time lag b, the cPCA initial
estimate (@], ..., @5 ), 1 <i <, the tolerance parameter ¢ > 0, and the maximum number of iterations M.

1: Compute 2, defined in (6).

2: Initialize unit vectors 352) :Aq)Lq for1<k<K,1<i<r Setm=0.
3:fori=1tor.

4: repeat

S Setm=m+1.
6: k=1rtoK.
7

: Computea =3, xkz %ﬁ?) xK kﬂm ur xf+1’§+11 32") X2 I(+k+la( ~UT " where '{iﬁ}"*l) —A%"KI for
£>K.

8: Compute @y =a /@7,

9: end for

10:  until m = M or mgLX/e ||Zi(11';’)22(,:”)T Af;” ”ﬁﬁ Mis <e.

11:  LetaMS=23", 1 <k <K.

12: end for

Output: @S, i=1,..,r, k=1,..,K

Algorithm 4 cPCA-initialized Orthogonalized Alternating Least Square (cOALS)

Input: Observations X; € R4 for ¢ = , T, the number of factors , the time lag b, the cPCA initial
estimate (@;1", ..., dix ), 1 <i<r, the tolerance parameter € > 0, the maximum number of iterations M.

1: Compute 3, defined in (6).

2: Initialize unit vectors ﬁ(g) =a; " for1<k<K,1<i<r SetA =(a 1(2, vy Zi(,z)) and m = 0.

3: repeat

4: Setm=m+1.

5:  Find QR decomposition of XZ"’*”, set X(km*l) = Q(k’"fl)Rmel) for1 <k <K.

6: fork=1toK.

7 Compute KL =mat,(Z))( 2K o QV), where Q™" = QI"¢" for £ > K and * is the Khatri-Rao product.
8: end for

9: until 72 = M or max; max;, ||ﬁ*i£")ﬁ*i;"” —71\3: 1) Aﬁ,’: DThs

Output: 504 =sz.,':), i=1,.,7, k=1,.,K

denoted as THOPE. We also check the performance of the alternative algorithms ALS, OALS,
cALS, and cOALS as described above. The estimation error shown is given by
max;, |axa), — apallls.

We demonstrate the performance of all procedures under TEM-cp with K =2 (matrix time ser-
ies) with

r

X = Z wfipan @ ap + &x. (33)

i=1
For K =2 with model (33), we consider the following three experimental configurations:
(I) Setr=2,d; =d> =40, T =400, w = 6 and vary J in the set [0, 0.5]. The purpose of this set-

ting is to verify the theoretical bounds of cPCA and HOPE in terms of the coherence par-
ameter 6.
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(IT) Setr=2,dy =d, =40,6=0.2. We vary the sample size T and the signal strength w to in-
vestigate the impact of § against signal strength and sample size.

(II) Setr =3, dy =d, =40, T =400, w =8 and vary J to check the sensitivities of ¢ for all the
proposed algorithms and compare with randomized initialization.

Results from an additional simulation settings under K =2 and K = 3 cases are given in online
supplementary material, Appendix 2. We repeat all the experiments 100 times. For simplicity,
we set h=1.

_The loading vectors are generated as follows. First, the elements of matrices
Ay =Gy ..., dy) € R 1 <k <K, are generated from i.i.d. N(0, 1) and then orthonormal-
ized through QR decomposition. Then if 6 =0, set A, = A, otherwise, set a1, =, and a;, =
(Ghp, + 6a3)/ | @1, + Ay, for all i>2 and 1 <k <K, with $=5/(r— 1) and 6= (9K = 1)V/2,
The commonly used incoherence measure (Anandkumar et al., 2014¢; Hao et al., 2020) under
this construction is $. = (1 + 92)_1/2 = gl/k,

The noise &, in the model is white &; L &,,,,, b > 0, and generated according to &; = ‘I’%/ZZH‘;/Z
where all of the elements in the dy X d, matrix Z; are i.i.d. N(0, 1). Furthermore, ¥;, ¥, are the
covariance matrices along each mode with the diagonal elements being 1 and all the off-diagonal
elements being vy, w,. Throughout this section, we set the off-diagonal entries of the covariance
matrices of the noise as y; = .

Under Configurations I and II with r = 2, the factor processes f1; and f5; are generated as two
independent AR(1) processes, following fi;=0.8f1,—1 +e1:, f2r=0.6f2_1 +e2. Under
Configuration III and Configurations IV and V in online supplementary material, Appendix 2,
with =3, fi, fo, f3:+ are generated as independent AR(1) processes, with
f1: = 0.8f1—1 + e1s, for = 0.7f21-1 + €2z, f3: = 0.63,1 + e3:. Here, all of the innovations follow
i.i.d. N(0, 1). The factors are not normalized.

Figure 1 shows the boxplots of the estimation errors for cPCA and HOPE under configuration I,
for different 4. It can be seen that the performance of cPCA deteriorates as J increases, while that of
HOPE remains almost unchanged. The median of the cPCA estimation errors increases almost lin-
early with J, with a R? of 0.977. This linear effect of § on the performance bounds of cPCA is con-
firmed by the theoretical results in (20).

The experiment of Configuration I is conducted to verify the theoretical bounds on different
sample sizes T and signal strengths w. Figures 2 and 3 show the logarithm of the estimation errors
under different (w, T) combinations. It can be seen from Figure 2 that the estimation error of cPCA
decreases to a lower bound as w and T increases. The lower bound is associated with the bias term
in (20) that cannot be reduced by a larger w and T. This is the baseline error due to the nonortho-
gonality. In contrast, the phenomenon of HOPE is very different. Figure 3 shows that the perform-
ance improves monotonically as w or T increases. Again, this is consistent with the theoretical
bounds in (29).

Figure 4 shows the boxplots of the logarithm of the estimation errors for 7 different methods
with choices of d under configuration III. ALS and OALS are implemented with L = 200 random
initiations. It can be seen that HOPE outperforms all the other methods. Again, the choice of d does
not affect the performance of HOPE significantly. One-step method (1IHOPE) is better than the
cPCA alone, and the iterative method HOPE is in turn better than the one-step method. When
the coherence J decreases, all methods perform better, but the advantage of HOPE over one-step
method and the advantage of one-step method over the ¢cPCA initialization become smaller. For
the extremely small 6 =0.01, all loading vectors are almost orthogonal to each other. In this
case, all the iterative procedures, including the one-step HOPE, perform similarly. In addition,
ALS and cALS are always the worst under the cases d > 0.1. The hybrid methods cALS and
cOALS improve the original randomized initialized ALS and OALS significantly, showing the ad-
vantages of the cPCA initialization. It is worth noting that cOALS has comparable performance
with THOPE and HOPE when ¢ is small.

6 Applications

In this section, we demonstrate the use of TFM-cp model using the taxi traffic data set used in
R. Chen et al. (2022). The data set was collected by the Taxi & Limousine Commission of
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New York City, and published at https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
Within Manhattan Island, it contains 69 predefined pick-up and drop-off zones and 24 hourly pe-
riod for each day from 1 January 2009 to 31 December 2017. The total number of rides moving
among the zones within each hour is recorded, yielding a X', € R¢**¢9%2* tensor for each day, using
the hour of day as the third dimension.

One natural way to model the hourly traffic data is to consider X, € R®™*% for
t=1, ...,24x N, where N is the total number of days. It is apparent that such hourly data
have two types of seasonality: weekly seasonality and daily seasonality. We handle the weekly
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Figure 4. Boxplots of the logarithm of the estimation error under experiment configuration Ill. Seven methods with
seven choices of d are considered in total.

seasonality by separating the time series into two parts: business-day series and nonbusiness-day
series. The length of the business-day series is 2,262 days, and that of the nonbusiness-day is 1,025
days. The daily seasonality is a more interesting and important issue. It is clear that taxi usage
heavily depends on time of the day (morning and evening rush hours, lunch hours, etc).
Seasonal time series models have been extensively studied for univariate time series (Box &
Jenkins, 1976; Reinsel, 2003; Shumway & Stoffer, 2006; Tsay, 2005), but these parametric mod-
els are difficult to be extended to deal with high dimensional matrix time series. Segmenting the
24-hour day into distinct intervals, such as morning rush hours and business hours, loses the de-
tailed hourly information and requires pre-determined segmentation scheme (Zhang & Wang,
2019; Zhu et al., 2022). Here we adopt the nonparametric approach by stacking the hourly ob-
servations into a (multidimensional) daily observation. This is equivalent to turning hourly obser-
vations into daily 24-dimensional vector observations in the univariate time series case, a
commonly used approach. By jointly modelling the 24-hourly observations within the day to-
gether, the detailed daily pattern can be captured more accurately and more flexibly without a
parametric model assumption. This way, the daily pattern is built into the model simultaneously,
and the interaction among the geographic and temporal patterns will be revealed.

After some exploratory analysis, we decide to use the TFM-cp with =4 factors for both
business-day series and nonbusiness-day series, and estimate the model with » =1. For the
nonbusiness-day series, TFM-cp explains 63.0% of the variability in the data. In comparison,
treating the tensor time series as a 114,264 (=69 x 69 x 24) dimensional vector time series, the
traditional vector factor model with 4 factors explains about 90.0% variability, but uses 4 x
114, 264 parameters for the loading matrix. R. Chen et al. (2022) used TFM-tucker with 4 x 4 x
4 core factor tensor process. Using iTIPUP estimator of Y. Han et al. (2020), TFM-tucker explains
80.1% variability. Similarly, for the business-day series, the explained fractions of variability by
the TFM-cp with 4 factors, vector factor model with 4 factors, and TFM-tucker with 4 X 4 x 4
core factor tensor are 68.1%, 90.9%, 84.0%, respectively. Comparison of model complexity be-
tween TEM-cp and TFM-tucker is substantially more complex compared to that of traditional ten-
sor decomposition, owing to the stochastic nature of the latent factor process. Since both models
are estimated through the sample autocovariance tensor, we may count, under each model, the
number of parameters required in the population version of the autocovariance tensor. Both mod-
els require (69 + 69 + 24) x 4 number of parameters in terms of loading matrices or vectors,
though the degree of freedom for TFM-tucker is slightly smaller due to orthonormal requirements
of the loading matrices. However, for the lag-1 autocovariance of the factor processes, TFM-cp
only requires four parameters (for the four uncorrelated factor process) while TEM-tucker re-
quires (4 X 4 x 4)* parameters (minus certain savings from rotation ambiguity). More important-
ly, TFM-cp harbours a much smaller dimensional factor process (f, € R*) than TFM-tucker
(F: € R™™4) thereby simplifying subsequent modelling of the latent factor process.

The literature on Markov process models, for example Zhang and Wang (2019) and Zhu et al.
(2022), regards each trip as a transition from the pickup location to the drop-off location,
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Figure 5. Loadings on four pickup factors for business-day series.

Figure 6. Loadings on four drop-off factors for business-day series.

rendering the data as a collection of fragmented sample paths representative of a city-wide Markov
process. When one aggregates the individual trips within a time period to form a traffic volume
matrix, the model, with an assumed fixed (reduced rank) Markov transition matrix, essentially in-
duces an order-1 autoregressive model on the volume matrix time series. Therefore, the distinction
between the Markov process models and the CP factor models parallels that between autoregres-
sive models and factor models.

Figures 5 and 6 show the heatmap of the estimated loading vectors (a1, ..., a41) (related to
pick-up locations) and (a1, ..., a42) (related to drop-off locations) of the 69 zones in
Manhattan, respectively, for the business-day series. Table 1 shows the corresponding loading vec-
tors (@13, ..., a43) on the time of day dimension. For a more meaningful interpretation, we have
re-scaled the loading vectors a;;, and the factors w;f;; such that |||y = 1,for1 <i<4,1 <k < 3.
Figure 7 shows the estimated four factors (w;f;;) for business-day series in 1,000. (Please note the
significant difference in scale.) For a more detailed examination, we show the four factor series in
the third year (year 2011) in online supplementary material, Figure 3 in Appendix 3.

It is seen that the estimated loading vectors and the factors are predominantly positive, although
there are a few small negative values which we will ignore. When the loading vectors are scaled to
sum to 1 (hence percentages), the model has the following interesting interpretation. First, the ex-
pected daily total volume (Zi, e Xeijk) 18 the sum of the four factors w1 fi; + ... + wafa;. Hence the
daily traffic volumes essentialfy consist of taxi rides following four different patterns, each corre-
sponding to the rank-1 tensor a;; ® @ @ aiz, i =1, ..., 4. One may also imagine that there are
four types of taxi users in the city, each following one specific traffic pattern (of course an individ-
ual may take multiple trips in a day and follow different patterns for each trip).
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Table 1. Estimated four loading vectors aj € R?* (i=1, ..., 4), for hour of day mode

0to 24 2 4 6 8 10 12 2 4 6 8 10 12
i=1 5§ 3 2 1 1 1 1 2 2 3 3 3 3 4 4 4 3 5 7 8 9 9 9 8
i=2 0 0 0 0 1 3 12 16 13 11 7 6 5§ 4 4 3 2 2 3 3 2 2 1 1
i=3 1. 0 0 0 0 0 2 N 7 6 6 7 7 7 7 8 6 7 7 6 4 3 2 1
i=4 1 1 0 0 0 0 1 3 5 4 5 5 6 6 7 7 6 8 9 8 6 5 4 3

Note. Business day. Values are in percentage.
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Figure 7. Estimated four factors for business-day series.

It is interesting to study the component of the rank-1 tensor a; ® a; ® a;3. Specifically,
a;;3 shows how the total volume of traffic pattern i (w;f;) is distributed to different hours
of the day. For example, Table 1 shows that 16% of pattern 2 volume w;fy, is allotted
to between 7a.m. and 8a.m., while only 3% of pattern 4 volume wuf4; is allotted to that
hour. The rank-1 matrix a;1a}, shows the spatial pattern of traffic pattern 7, where a;; shows
the percentage of pattern 7 volume (w;f;;) at each hour being picked up in each location, and
a; shows the percentage of pattern i volume w;f;; being dropped-off in each location, and
ajpape is the percentage of pattern i volume w;f;, from location k to location #. This spatial
pattern does not change through the day, but the volume in each hour is controlled by
aizwifis.

From Table 1, it is seen that Factor 1 (or traffic pattern 1) roughly corresponds to the evening
hours of 6p.m. to 12a.m., by the loading vector a3, with main activities in the SoHu and lower
east side as both the pick-up and drop-off locations. From the estimated factor series plot in
Figure 7, it seems that this traffic pattern (pattern 1) has the largest overall volume, but with
a very strong yearly seasonal pattern and a large daily variation. Intuitively, people use less
taxi service when the weather is nice, hence the volume is relatively small in summer and early
fall, even though there are more evening activities in the summer. The large daily variation is
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Figure 8. Estimated Factor 1 for business-day series in the 3-months business-day period from 1 January 2011 to 31
March 2011. Vertical lines mark the end of business week.

due to a weekly effect. Figure 8 shows the 3-month business-day period from 1 January 2011 to
31 March 2011, in which the vertical line marks the end of working week (Friday or the day
before holiday). It is clearly seen that, for this mainly evening-activity traffic pattern, the vol-
ume in the end of working week is almost twice as large as that in the beginning of the working
week.

Again from Table 1, it is seen that Factor 2 (or traffic pattern 2) roughly corresponds to the
morning rush hours of 6a.m. to 12a.m., by the loading vector a,3, with main activities in the mid-
town area as the pick-up locations, and Times square and Sth Avenue as the drop-off locations.
About 23.1% (defined as Y ,wafo;/ Y., Y wifa) of the total traffic follows this pattern. From
Figure 7, it is seen that Factor 2 is quite stable throughout the year, which is again intuitively
understandable as the traffic pattern is mainly used by the steady population of people commuting
to work in morning rush hours. There is a large number of (small value) outliers, most of them
corresponding to the business days before or after major holidays. It can be seen more clearly
from online supplementary material, Figure 3 in Appendix 3.

For Factors 3 and 4, the areas that load heavily on the factors for pick-up are quite similar to that
for drop-off, i.e. upper east side (with affluent neighbourhoods and museums) on Factor 3, and
upper west side (with affluent neighbourhoods and performing arts) on Factor 4. The conventional
business hours are heavily and almost exclusively loaded on these factors. From Figure 7, it seems
that both patterns have a yearly seasonal effect, small in the summer and early fall, which can be
seen more clearly in online supplementary material, Figure 3 in Appendix 3. Their volumes are
relatively small than that of Factors 1 and 2.

We note that TEM-cp representation is unique which facilitates a more ‘unique’ interpretation.
On the other hand, TFM-tucker is subject to arbitrary rotation. Using TFM-tucker to analyse the
same data set, R. Chen et al. (2022) used varimax rotation to obtain one specific representation of
their estimated model and provided interesting interpretations. Their results are quite different
from that of TFM-cp. First, since TFM-tucker representation requires orthonormal loading matri-
ces, the discovered patterns in the loading matrices are forced to be different. For example, the dai-
ly patterns revealed in R. Chen et al. (2022) have quite distinct periods, while Table 1 shows more
intertwined (nonorthogonal) patterns. Second, TFM-tucker requires 4 X 4 X 4 factor processes.
The column loading vectors in each loading matrices work on all these factors, instead of on
only one factor as in TFM-cp. The interpretation of these loading vectors are more convoluted.
For example, in TFM-tucker, the volume from all four heavily loaded pick-up areas identified
by ai1,i=1, ..., 4 can be travelling to all four heavily loaded drop-off areas a;,i=1, ..., 4.
But in TFM-cp, the rank-1 matrix @;1a;, shows the exact proportion of pattern i traffic from
each of the pick-up area identified by a;; to the drop-off area a;;. In particular, it is seen that a;;
is very similar to aj for i =1, 3, 4. This observation suggests that our TFM-cp model may offer

202 1sNBny 62 U0 Jasn (10) 10S YieaH Ateiai Aq 0v€G292/9€09B3b/ASSSINEBO L 0L/10p/aI01E-80UBADE/qSSSIl /W00 dNo"olWapede//:sdny Wolj papeojumoq


http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae036#supplementary-data
http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae036#supplementary-data

J R Stat Soc Series B: Statistical Methodology 25

0.180
0.162
0.144
0.126
0.108
0.090
0.072

Y, 0.036
0.018
0.000

Figure 9. Loadings on four pick-up factors for nonbusiness-day series.

Figure 10. Loadings on four drop-off factors for nonbusiness-day series.

better intuitive understanding as it aligns with the expectation that most taxi traffic activities are
likely confined within specific areas. This comparison further underscores the distinct analytical
insights offered by the TFM-cp model in capturing the spatial-temporal dynamics of urban taxi
traffic.

For the nonbusiness-day series, the estimated loading vectors (a11, ..., a41) (related to pick-up
locations), (@12, ..., a4z) (related to drop-off locations), (@13, ..., @43) (on the hour of day dimen-
sion), and the estimated factors (w1fi;, ..., wafs;) are showed in Figures 9, 10, Table 2, and
Figure 11, respectively. Understandably, the morning rush hour pattern in the business-day series
(Factor 2) disappears here but the night-time pattern (Factor 1) now lasts deep into the early hours,
comparing Tables 1 and 2. From Figure 11, it is seen that there exist two different yearly seasonal
patterns. Factors 3 and 4 are similar to that of business-day series, with small volumes in the sum-
mer and fall, again confirming that the use of taxi service is relatively low when the weather is good
for walking in the city. On the other hand, the volume of Factor 2 is typically small in the winter
time. The volumes of night-life pattern in Factor 1 remain to be volatile. It has many small-value
outliers, mostly on the day before a business day (Sundays or the end of holiday.) These can be seen
more clearly in the more detailed Figure 12, which shows the estimated factors of all the nonbusi-
ness days in Year 2011 (year 3), with vertical lines indicating the day before a business day (dashed
lines for Sundays and solid lines for Mondays of long weekend when Tuesday is the start of busi-
ness week.) This is again intuitively understandable, because people tend not to stay out too late if
they need to work the next day.

The pick-up and drop-off locations that heavily load on Factors 1, 3, 4 are similar to that for
Factors 1, 3, 4 in the business-day series. The daytime hours load on Factors 3 and 4, and the
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Table 2. Estimated four loading vectors az € R (i=1, ..., 4) for hour of day mode
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Figure 12. Estimated Factor 1 for nonbusiness-day series in Year 2011 with vertical lines indicating the day before a
business day (dashed lines for Sundays and solid lines for Mondays of a long weekend.
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night life hours from 12a.m. to 4a.m. load on Factor 1. As for the second factor, it loads heavily
on midtown area for pick-up, on the lower west side near Chelsea (with many restaurants and
bars) for drop-off, on the afternoon/evening hours between 1p.m. to 8p.m. as the dominating
periods.

We remark that this example is just for illustration and showcasing the interpretation of the pro-
posed tensor factor model. Again we note that for the TFM-tucker model, one needs to identify a
proper representation of the loading space in order to interpret the model. In R. Chen et al. (2022),
varimax rotation was used to find the most sparse loading matrix representation to model inter-
pretation. For TFM-cp, the model is unique hence interpretation can be made directly.
Interpretation is impossible for the vector factor model in such a high-dimensional case.

7 Discussion

In this paper, we propose a tensor factor model with a low-rank CP structure and develop its cor-
responding estimation procedures. The estimation procedure takes advantage of the special struc-
ture of the model, resulting in faster convergence rate and more accurate estimations comparing to
the standard procedures designed for the more general TFM-tucker, and the more general tensor
CP decomposition. Numerical study illustrates the finite sample properties of the proposed estima-
tors. The results show that HOPE uniformly outperforms the other methods, when the observa-
tions follow the specified TFM-cp.

The HOPE in this paper is based on CP decomposition of the second moment tensor
=Y M ®F, a;)®%, an order 2K tensor. The intuition that higher order tensors tend to
have smaller coherence among the CP components leads to the consideration of using higher order
cross-moments to have more orthogonal CP components. For example, let the mth cross moment
tensor with lags 0=hy <--- < b, be

E(h’r)hn = [E[®7[:1Xt—h,]-

When the factor processes f;;,i =1, ..., rare independent across different 7 in TEM-cp, a naive 4th
cross moment tensor to estimate a; is

Z«I:)hzhm _Zfl)hz ®2§72;)h4 = E[X, ® X)), ® Xipy, @ X)Ly, 1 — E[Xy, ® X)), ® X)), @ Xy, ]

;

_ (4) K ®4

=D At oo, (@t @),
-

I

with {X7}} being an independent coupled process of {X;} and when b; = (j — 1)h,
y 3
A pine = E[ [ Frmip = [Efiafiemp)® = [Efiafiran]® = [Efiafiemn] [Efiafiamsn]-
j=0

This naive 4th cross moment tensor has more orthogonal CP bases. In light tailed case, simu-
lation shows that it is much worse than the second moment tensor, due to the reduced signal

strength A:ythhM. However, for heavy tailed and skewed data, this procedure would be help-

ful. It would be an interesting and challenging problem to develop an efficient higher cross mo-
ment tensor to improve the statistical and computational performance. We leave this for future
research.

Our primary consideration was directed towards the CP factor model in a time series setting,
as the need of effectively analysing tensor time series has arisen in many applications, and CP
factor model is an efficient approach for such analysis. Without a specified (parametric) model
for the latent factor processes (an topic currently under investigation), we focus on the auto-
covariance and autocross-moment tensor for effective estimation of the proposed model.
This is the main contribution of the paper. However, the proposed cPCA and ISO can be
used directly in or be extended to many other problems involving CP decomposition of certain
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type of tensors. For example, in many problems where higher order moments can be intro-
duced to reduce incoherence, the cPCA and ISO algorithms may offer better initialization
and outperform conventional tensor power iteration methods. One specific example is the kur-
tosis tensor in independent component analysis in Auddy and Yuan (2023a). Another possible
extension is highlighted in Remark 12 where we pointed out how cPCA can be modified to deal
with situations when a few leading singular values of the autocross-moment tensor are the
same.
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