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Abstract
Observations in various applications are frequently represented as a time series of multidimensional arrays, 
called tensor time series, preserving the inherent multidimensional structure. In this paper, we present a 
factor model approach, in a form similar to tensor CANDECOMP/PARAFAC (CP) decomposition, to the 
analysis of high-dimensional dynamic tensor time series. As the loading vectors are uniquely defined but 
not necessarily orthogonal, it is significantly different from the existing tensor factor models based on 
Tucker-type tensor decomposition. The model structure allows for a set of uncorrelated one-dimensional 
latent dynamic factor processes, making it much more convenient to study the underlying dynamics of 
the time series. A new high-order projection estimator is proposed for such a factor model, utilizing the 
special structure and the idea of the higher order orthogonal iteration procedures commonly used 
in Tucker-type tensor factor model and general tensor CP decomposition procedures. Theoretical 
investigation provides statistical error bounds for the proposed methods, which shows the significant 
advantage of utilizing the special model structure. Simulation study is conducted to further demonstrate 
the finite sample properties of the estimators. Real data application is used to illustrate the model and 
its interpretations.
Keywords: CANDECOMP/PARAFAC (CP) decomposition, dimension reduction, orthogonal projection, tensor factor 
model, tensor time series
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1 Introduction
In recent years, information technology has made tensors or high-order arrays observations rou
tinely available in applications. For example, such data arises naturally from genomics (Alter & 
Golub, 2005; Omberg et al., 2007), neuroimaging analysis (Sun & Li, 2017; Zhou et al., 
2013), recommender systems (Bi et al., 2018), computer vision (J. Liu et al., 2012), community 
detection (Anandkumar et al., 2014a), longitudinal data analysis (Hoff, 2015), among others. 
Most of the developed tensor-based methods were designed for independent and identically dis
tributed (i.i.d.) tensor data or tensor data with i.i.d. noise.

On the other hand, in many applications, the tensors are observed over time, and hence form a 
tensor-valued time series. For example, the monthly import export volumes of multi-categories 
of products (e.g. Chemical, Food, Machinery and Electronic, and Footwear and Headwear) 
among countries naturally form a dynamic sequence of 3-way tensor-variates, each of which 
representing a weighted directional transportation network. Another example is functional 
MRI, which typically consists hundreds of thousands of voxels observed over time. A sequence 
of 2-D or 3-D images can also be modelled as matrix or tensor time series to preserve temporal 
structure. Development of statistical methods for analysing such large-scale tensor-valued time 
series is still in its infancy.
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In many settings, although the observed tensors are of high order and high dimension, there is 
often hidden low-rank structures in the tensors that can be exploited to facilitate the data analysis. 
Such a low-rank condition provides convenient decomposable structures and has been widely used 
in tensor data analysis. Two common choices of low-rank tensor structures are CANDECOMP/ 
PARAFAC (CP) structure and multilinear/Tucker structure, and each of them has their respective 
benefits; see the survey in Kolda and Bader (2009).

In dynamic data, the low-rank structures are often realized through factor models, one of the 
most effective and popular dimension reduction tools. Over the past few decades, there has been 
a large body of the literature in the statistics and econometrics communities on factor models 
for vector time series. An incomplete list of the publications includes Chamberlain and 
Rothschild (1983), Bai and Ng (2002), Stock and Watson (2002), Bai (2003), Fan et al. 
(2011, 2013, 2016), Forni et al. (2000, 2004, 2005), Pena and Box (1987), Pan and Yao 
(2008), Lam et al. (2011), and Lam and Yao (2012). Recently, the factor model approach 
has been developed for analysing high-dimensional dynamic tensor time series (Chang et al., 
2023; E. Y. Chen & Fan, 2023; E. Y. Chen et al., 2020, 2024; R. Chen et al., 2022; Y. Han 
et al., 2020, 2022; Y. Han & Zhang, 2023; D. Wang et al., 2019). These existing works utilize 
the Tucker low-rank structure in formulating the factor models. Such Tucker-type tensor factor 
model is also closely related to separable factor analysis in Fosdick and Hoff (2014) under the 
array Normal distribution of Hoff (2011).

In this paper, we investigate a tensor factor model with a CP type low-rank structure, called 
TFM-cp. Specifically, let X t be an order K tensor of dimensions d1 × d2 × . . . × dK. We assume

X t =
􏽘r

i=1

wifitai1 ⊗ ai2 ⊗ · · · ⊗ aiK + Et, t = 1, . . . , T, (1) 

where ⊗ denotes tensor product, wi > 0 represents the signal strength, aik, i = 1, . . . , r, are unit 
vectors of dimension dk, with ‖aik‖2 = 1, Et is a noise tensor of the same dimension as X t, and 
{fit, i = 1, . . . , r} is a set of uncorrelated univariate latent factor processes. That is, the signal 
part of the observed tensor at time t is a linear combination of r rank-one tensors, 
wiai1 ⊗ ai2 ⊗ · · · ⊗ aiK. These rank-one tensors are fixed and do not change over time. Here, 
{aik, 1 ≤ i ≤ r, 1 ≤ k ≤ K} are called loading vectors and the loading vectors for each mode, 
{aik, 1 ≤ i ≤ r}, are not necessarily orthogonal. The dynamics of the tensor time series are driven 
by the r univariate latent processes fit. By stacking the fibres of the tensor X t into a vector, the 
TFM-cp can be written as a vector factor model, with r factors and a d × r (where d = d1 . . . dK) 
loading matrix of a special structure induced by the TFM-cp. More detailed discussion of the mod
el is given in Section 2.

A standard approach for dynamic factor model estimation is through the analysis of the covari
ance or autocovariance of the observed process. The autocovariance of a TFM-cp process in (1) is 
also a tensor with a low-rank CP structure. Hence, potentially the estimation of (1) can be done 
with a tensor CP decomposition procedure. However, tensor CP decomposition is well known 
to be a notoriously challenging problem as it is in general NP hard to compute and the CP rank 
is not lower semi-continuous (Håstad, 1990; Hillar & Lim, 2013; Kolda & Bader, 2009). 
There are a number of works on tensor CP decomposition, which is often called tensor principal 
component analysis (PCA) in the literature, including alternating least squares (ALSs) (Comon 
et al., 2009), robust tensor power methods with orthogonal components (Anandkumar et al., 
2014b), tensor unfolding approaches (Richard & Montanari, 2014; P.-A. Wang & Lu, 2017), 
rank-one ALSs (Anandkumar et al., 2014c; Sun et al., 2017), and simultaneous matrix diagonal
ization (Kuleshov et al., 2015). See also Zhou et al. (2013), M. Wang & Song, 2017, Hao et al. 
(2020), Wang and Li (2020), Auddy and Yuan (2023b), R. Han et al. (2023), among others. 
Although these methods can be used directly to obtain the low-rank CP components of the auto
covariance tensors, they have been designed for general tensors and do not utilize the special struc
ture embedded in the TFM-cp.

In this paper, we develop a new estimation procedure, named as High-Order Projection 
Estimators (HOPE), for TFM-cp in (1). The procedure includes a warm-start initialization using 
a newly developed composite principal component analysis (cPCA), and an iterative simultaneous 
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orthogonalization (ISO) scheme to refine the estimator. The procedure is designed to take the ad
vantage of the special structure of TFM-cp whose autocovariance tensor has a specific CP structure 
with components close to being orthogonal and of a high-order coherence in a multiplicative form. 
The proposed cPCA takes advantage of this feature so the initialization is better than using random 
projection initialization often used in generic CP decomposition algorithms. The refinement step 
makes use of the multiplicative coherence again and is better than the ALSs, the iterative projection 
algorithm (Y. Han et al., 2020), and other forms of the high-order orthogonal iteration (HOOI) 
(De Lathauwer et al., 2000; Y. Liu et al., 2014; Zhang & Xia, 2018). Our theoretical analysis pro
vides details of these improvements.

In the theoretical analysis, we establish statistical upper bounds on the estimation errors of the 
factor loading vectors for the proposed algorithms. The cPCA yields useful and good initial esti
mators with less restrictive conditions, and the iterative algorithm provides faster statistical error 
rates under weaker conditions than the generic CP decomposition algorithms. For cPCA, the num
ber of factors r can increase with the dimensions of the tensor time series and is allowed to be larger 
than maxk dk. We also derive the statistical guarantees of the iterative algorithm under the settings 
where the tensor is (sufficiently) undercomplete (r ≪ mink dk). It is worth noting that the iterative 
refinement algorithm has much sharper upper bounds for the statistical error than the cPCA initial 
estimators.

The TFM-cp in (1) can also be written as a tensor factor model with a Tucker form 
(TFM-tucker) of a special structure. See (3) for the definition of TFM-tucker and Remark 3 for 
the comparison between TFM-cp and TFM-tucker from the perspectives of modelling assump
tions and interpretations. Potentially, the iterative estimation procedures designed for 
TFM-tucker can also be used here Y. Han et al. (2020), ignoring the special TFM-cp structure. 
However, HOPE has lower computational complexity per iteration, requires less restrictive con
ditions and exhibits faster convergence rate, by fully utilizing the structure of TFM-cp. See Remark 
16 for further discussion. They also share the nice properties that the increase in either the dimen
sions d1, . . . , dk, or the sample size can improve the estimation of the factor loading vectors or 
spaces.

The rest of the paper is organized as follows. After a brief introduction of the basic notations and 
preliminaries of tensor analysis in Section 1.1, we introduce a tensor factor model with CP low- 
rank structure in Section 2. The estimation procedures of the factors and the loading vectors 
are presented in Section 3. Section 4 investigates the theoretical properties of the proposed meth
ods. Section 5 develops some alternative algorithms to tensor factor models, which extend existing 
popular CP methods to the autocovariance tensors with cPCA as initialization, and provides some 
simulation studies to demonstrate the numerical performance of all the estimation procedures. 
Section 6 illustrates the model and its interpretations in real data applications. Section 7 provides 
a short concluding remark. All technical details and more simulation results are relegated to the 
online supplementary materials.

1.1 Notations and preliminaries
The following basic notations and preliminaries will be used throughout the paper. Define 
‖x‖q = (xq

1 + · · · + xq
p)1/q, q ≥ 1, for any vector x = (x1, . . . , xp)⊤. The matrix spectral norm is de

noted as

‖A‖S = max
‖x‖2=1,‖y‖2=1

‖x⊤Ay‖2.

For two sequences of real numbers {an} and {bn}, write an = O(bn) (resp. an ≍ bn) if there exists a 
constant C such that |an| ≤ C|bn| (resp. 1/C ≤ an/bn ≤ C) holds for all sufficiently large n, and 
write an = o(bn) if limn→∞an/bn = 0. Write an ≲ bn (resp. an ≳ bn) if there exists a constant C 
such that an ≤ Cbn (resp. an ≥ Cbn).

For any two tensors A ∈ Rm1×m2×···×mK , B ∈ Rr1×r2×···×rN , denote the tensor product ⊗ as 
A ⊗ B ∈ Rm1×···×mK×r1×···×rN , such that

(A ⊗ B)i1,...,iK,j1,...,jN = (A)i1,...,iK (B) j1,...,jN .
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The k-mode product of A ∈ Rr1×r2×···×rK with a matrix U ∈ Rmk×rk is an order K-tensor of size r1 × 
· · · × rk−1 × mk × rk+1 × · · · × rK and will be denoted as A ×k U, such that

(A ×k U)i1,...,ik−1,j,ik+1,...,iK =
􏽘rk

ik=1

Ai1,i2,...,iK U j,ik .

Given A ∈ Rm1×···×mK and m =
􏽑K

j=1 mj, let vec(A) ∈ Rm be vectorization of the matrix/tensor A, 

matk(A) ∈ Rmk×(m/mk) the mode-k matrix unfolding of A, and matk(vec(A)) = matk(A).

2 A tensor factor model with a CP low-rank structure
Again, we specifically consider the following tensor factor model with CP low-rank structure 
(TFM-cp) for observations X t ∈ Rd1×···×dK , 1 ≤ t ≤ T,

X t =
􏽘r

i=1

wifitai1 ⊗ ai2 ⊗ · · · ⊗ aiK + Et, 

where fit is the unobserved latent factor process and aik are the fixed unknown factor loading vec
tors. We assume without loss of generality, Ef 2

it = 1, ‖aik‖2 = 1, for all 1 ≤ i ≤ r and 1 ≤ k ≤ K. 
Then, all the signal strengths are contained in wi. A key assumption of TFM-cp is that the factor 
process fit is assumed to be uncorrelated across different factor processes, e.g. Efit−hf jt = 0 for i ≠ j 
and h ≥ 1. In addition, we assume that the noise tensor Et are uncorrelated (white) across time, but 
with an arbitrary contemporary covariance structure, following Lam and Yao (2012) and R. Chen 
et al. (2022). In this paper, we consider the case that the order of the tensor K is fixed but the di
mensions d1, . . . , dK → ∞ and rank r can be fixed or diverging.

Remark 1 By incorporating time, we may stack X t into an order-(K + 1) tensor 
Y ∈ Rd1×···×dK×T , with time t as the (K + 1)th mode, referred to as the time- 
mode. Subsequently, model (1) can be reformulated as

Y =
􏽘r

i=1

wiai1 ⊗ ai2 ⊗ · · · ⊗ aiK ⊗ f i + E, (2) 

where f i = (fi1, . . . , fiT)⊤. While it is enticing to directly estimate the signal 
part in (2) with standard tensor CP decomposition approaches based on the 
assumed CP structure, the dynamics and dependencies in the time direction 
(auto-dependency) are pivotal and warrant a distinct treatment. In our model, 
the component in the time direction is deemed latent and random. 
Consequently, it is crucial to examine the unique role of the time-mode and 
the (auto)-covariance structure in the time direction. The assumptions and in
terpretations inherent in our model, along with the corresponding estimation 
procedures and theoretical properties, markedly diverge from those of using 
the standard CP decompositions.

Remark 2 Ignoring the random noise E, the CP decomposition in (2) is unique up to scal
ing and permutation indeterminacy if 

􏽐K
k=1 R(Ak) + R(f ) ≥ 2r + K, where 

Ak = (a1k, . . . , ark), f = (f 1, . . . , f r) and R(A) = max{s : any s columns of the 
matrix A are linearly independent}. Such a requirement provides a sufficient 
condition for uniqueness as per Kolda and Bader (2009). In the subsequent es
timation procedure, we delve into the estimation of the autocovariance tensor 
Σh in (5). The sufficient identifiability condition for the CP decomposition of 
the autocovariance tensor becomes 2

􏽐K
k=1 R(Ak) ≥ 2r + 2K − 1. This 
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condition is significantly milder compared with the condition necessary to en
sure statistical convergence.

Remark 3 (Comparison of TFM-cp with a Tucker low-rank structure). E. Y. Chen and 
Fan (2023), R. Chen et al. (2022), Y. Han et al. (2020, 2022) studied the fol
lowing tensor factor models with a Tucker low-rank structure (TFM-tucker):

X t = F t ×1 A1 × · · · × AK + Et, (3) 

where the core tensor F t ∈ Rr1×···×rK is the latent factor process in a tensor 
form, and Ai’s are di × ri loading matrices. For example, when K = 2 (matrix 
time series), the TFM-cp can be rewritten as a TFM-tucker,

Xt = A1f tA
⊤
2 + Et, (4) 

where Ft = diag(f1t, . . . , frt), and A1 = (a11, . . . , ar1) and A2 = (a12, . . . , ar2) 
are matrices with the column vectors being aik’s. There are four major differ
ences between TFM-tucker and TFM-cp. First, TFM-tucker suffers from a se
vere identification problem, as the model remains equivalent if F t is replaced 
by F t ×k R and Ak replaced by AkR−1 for any invertible rk × rk matrix R. For 
the K = 2 case, Xt = (A1R−1

1 )(R1f tR
⊤
2 )(A2R−1

2 )⊤ + Et are all equivalent under 
TFM-tucker. Such ambiguity makes it difficult to find an ‘optimal’ representa
tion of the model, which often leads to ad hoc and convenient representations 
that are difficult to interpret (Bai & Wang, 2014, 2015; Bekker, 1986; 
Neudecker, 1990). On the other hand, TFM-cp is uniquely defined up to 
sign changes, under an ordering of the signal strengths w1 ≥ w2 ≥ . . . ≥ wr. 
As a result, the interpretation of the model becomes much easier. Second, al
though TFM-cp can be rewritten in the form of (3) with a diagonal core latent 
tensor consisting of the individual fit’s, it is not under a typical Tucker form 
since TFM-tucker typically adopts the representation that the loading matrices 
Ak’s are orthonormal, due to its identification problem. In TFM-cp, the loading 
vectors {aik, 1 ≤ i ≤ r} are not necessarily orthogonal vectors. In the K = 2 ex
ample in (4), if we find rotation matrices R1 and R2 so that A1R−1

1 and A2R−1
2 

are orthonormal, then the corresponding core factor process in (4) becomes 
R1f tR

⊤
2 , no longer diagonal and with r2 heavily correlated components, rather 

than r uncorrelated components. Third, TFM-cp separates the factor processes 
into a set of univariate time series, which enjoys great advantages over the 
tensor-valued factor processes in TFM-tucker. Modelling univariate time ser
ies are much easier and more flexible due to the vast repository of linear and 
nonlinear options. Lastly, TFM-cp is often much more parsimonious due to 
its restrictions, while enjoying great flexibility. Note that TFM-tucker is also 
a special case of TFM-cp, as it can be written as a sum of r = r1 . . . rK rank-one 
tensors, albeit with many repeated loading vectors. With its condensed formu
lation, in practical applications, the number of factors r needed under TFM-cp 
is typically much smaller than the total number r1 . . . rK of factors needed in 
TFM-tucker.

Remark 4 There are two different types of factor model assumptions in the literature. One 
type of factor models assumes that the common factors must have impact on 
‘most’ (defined asymptotically) of the time series, but allows the idiosyncratic 
noise (Et) to have weak cross-correlations and weak autocorrelations; see, e.g. 
Forni et al. (2000), Bai and Ng (2002), Stock and Watson (2002), Fan et al. 
(2011, 2013), and E. Y. Chen and Fan (2023). PCA of the sample covariance 
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matrix is typically used to estimate the factor loading space, with various exten
sions. The other type of factor models assumes that the factors accommodate 
all dynamics, making the idiosyncratic noise ‘white’ with no autocorrelation, 
but allows substantial contemporary cross-correlation among the error pro
cess; see, e.g. Pena and Box (1987), Pan and Yao (2008), Lam et al. (2011), 
Lam and Yao (2012), and D. Wang et al. (2019). Under such assumptions, 
PCA is applied to the nonzero lagged autocovariance matrices. In this paper, 
we adopt the latter type of assumptions in our model development.

3 Estimation procedures
In this section, we focus on the estimation of the factors and loading vectors of model (1). The pro
posed procedure includes two steps: an initialization step using a new composite PCA (cPCA) pro
cedure, presented in Algorithm 1, and an iterative refinement step using a new ISO procedure, 
presented in Algorithm 2. We call this two-step procedure HOPE (High-Order Projection 
Estimators) as it repeatedly perform high order projections on high order moments of the tensor 
observations. It utilizes the special structure of the model and leads to higher statistical and com
putational efficiency, which will be demonstrated later.

For X t following (1), the lagged cross-product operator, denoted by Σh, is the (2K)-tensor sat
isfying

Σh = E
􏽘T

t=h+1

X t−h ⊗ X t

T − h

􏼢 􏼣

=
􏽘r

i=1

λi,h(ai1 ⊗ ai2 ⊗ · · · ⊗ aiK)⊗2 ∈ Rd1×···×dK×d1×···×dK ,

(5) 

for a given h ≥ 1, where λi,h = w2
i Efi,t−hfi,t. Note that the tensor Σh is expressed in a 

CP-decomposition form with each aik used twice. Let 􏽢Σh be the sample version of Σh,

􏽢Σh =
􏽘T

t=h+1

X t−h ⊗ X t

T − h
. (6) 

When X t is weakly stationary and Et is white noise, a natural approach to estimating the loading 
vectors is via minimizing the empirical squared loss

(ai1, ai2, . . . , aiK, 1 ≤ i ≤ r) = arg min

‖ai1‖2=...=‖aiK‖2=1
ai1,ai2,...,aiK ,1≤i≤r,

􏽢Σh −
􏽘r

i=1

λi,h(ai1 ⊗ ai2 ⊗ · · · ⊗ aiK)⊗2

􏼍
􏼍
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍
􏼍
􏼍

2

HS

, (7) 

Algorithm 1 Initialization based on composite PCA (cPCA)

Input: The observations X t ∈ Rd1×···×dK , t = 1, ..., T, the number of factors r, and the time lag h.

1: Evaluate 􏽢Σh in (6), and unfold it to d × d matrix 􏽢Σ∗
h.

2: Obtain 􏽢ui, 1 ≤ i ≤ r, the top r eigenvectors of (􏽢Σ∗
h + 􏽢Σ∗⊤

h )/2.

3: Compute 􏽢acpca
ik as the top left singular vector of matk(􏽢ui) ∈ Rdk×(d/dk), for all 1 ≤ k ≤ K.

Output: 􏽢acpca
ik , i = 1, ..., r, k = 1, ..., K.
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where the Hilbert Schmidt norm for a tensor A is defined as ‖A‖HS = ‖vec(A)‖2. In other words, 
ai1 ⊗ ai2 ⊗ · · · ⊗ aiK can be estimated by the leading principal component of the sample autoco
variance tensor 􏽢Σh. However, due to the nonconvexity of (7) or its variants, a straightforward im
plementation of many local search algorithms, such as gradient descent and alternating 
minimization, may easily get trapped into local optima and result in suboptimal statistical per
formance. As shown by Auffinger et al. (2013), there could be an exponential number of local op
tima and the great majority of these local optima are far from the best low-rank approximation. 
However, if we start from an appropriate initialization not too far from the global optimum, then 

Algorithm 2 Iterative Simultaneous Orthogonalization (ISO)

Input: The observations X t ∈ Rd1×···×dK , t = 1, . . . , T, the number of factors r, the warm-start initial estimates 􏽢a(0)
ik , 

1 ≤ i ≤ r and 1 ≤ k ≤ K, the time lag h, the tolerance parameter ϵ > 0, and the maximum number of iterations 
M.

1: Compute 􏽢B(0)
k = 􏽢A(0)

k (􏽢A(0)⊤
k

􏽢A(0)
k )−1 = (􏽢b(0)

1k , . . . , 􏽢b(0)
rk ) with 􏽢A(0)

k = (􏽢a(0)
1k , . . . , 􏽢a(0)

rk ) ∈ Rdk×r for k = 1, . . . , K. Set 
m = 0.

2: repeat

3:   Let m = m + 1.

4:   for k = 1 to K.

5:    for i = 1 to r.

6:     Given previous estimates 􏽢a(m−1)
ik , calculate

Z
(m)
t,ik = X t ×1

􏽢b(m)⊤
i1 ×2 · · · ×k−1

􏽢b(m)⊤
i,k−1 ×k+1

􏽢b(m−1)⊤
i,k+1 ×k+2 · · · ×K

􏽢b(m−1)⊤
iK ,

for t = 1, . . . , T. Let 

􏽢Σh Z
(m)
1 : T,ik

􏼐 􏼑
=

1
T − h

􏽘T

t=h+1

Z
(m)
t−h,ik ⊗ Z

(m)
t,ik .

Compute 􏽢a(m)
ik as the top eigenvector of 􏽢Σh(Z(m)

1 : T,ik)/2 + 􏽢Σh(Z(m)
1 : T,ik)⊤/2.

7:    end for

8:    Compute 􏽢B(m)
k = 􏽢A(m)

k (􏽢A(m)⊤
k

􏽢A(m)
k )−1 = (􏽢b(m)

1k , . . . , 􏽢b(m)
rk ) with 􏽢A(m)

k = (􏽢a(m)
1k , . . . , 􏽢a(m)

rk ).

9:   end for

10: until m = M or

max
1≤i≤r

max
1≤k≤K

‖􏽢a(m)
ik 􏽢a(m)⊤

ik −􏽢a(m−1)
ik 􏽢a(m−1)⊤

ik ‖S ≤ ϵ, 

Output: Estimates

􏽢aiso
ik =􏽢a(m)

ik , i = 1, . . . , r, k = 1, . . . , K,

􏽢wiso
i = T−1

􏽘T

t=1

X t ×K
k=1

􏽢b(m)⊤
ik

􏼐 􏼑2
􏼠 􏼡1/2

, i = 1, . . . , r,

􏽢f iso
it = 􏽢wiso

i

 􏼁−1
·X t ×K

k=1
􏽢b(m)⊤

ik , i = 1, . . . , r, t = 1, . . . , T,

􏽢X iso
t =

􏽘r

i=1

X t ×K
k=1

􏽢b(m)⊤
ik ×K

k=1 􏽢a(m)
ik , t = 1, . . . , T.
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a local optimum reached may be as good an estimator as the global optimum. A critical task in 
estimating the factor loading vectors is thus to obtain good initialization.

We develop a warm initialization procedure, the composite PCA (cPCA) procedure. Note that, 
if we unfold Σh into a d × d matrix Σ∗

h, where d = d1 . . . dK, then (5) implies that

Σ∗
h =

􏽘r

i=1

λi,haia⊤
i , (8) 

a sum of r rank-one matrices, each of the form aia⊤
i , where ai = vec( ⊗K

k=1 aik). This is very close to 
the principal component decomposition of Σ∗

h, except that ai’s are not necessarily orthogonal in 
this case. However, the following intuition provides a solid justification of using PCA to obtain 
an estimate of ai. We call this estimator the cPCA estimator.

The accuracy of using the principal components of Σ∗
h as the estimate of ai heavily depends on 

the coherence of the components, defined as ϑ = max1≤i<j≤r |a⊤
i a j|, the maximum pairwise correl

ation among the ai’s. When the components are orthogonal (ϑ = 0), there is no error in using PCA. 
The main idea of cPCA is to take advantage of the special structure of TFM-cp, which leads to a 
multiplicative high-order coherence of the CP components. In the following, we provide an ana
lysis of ϑ under TFM-cp.

Let Ak = (a1k, . . . , ark) ∈ Rdk×r be the matrix with aik as its columns, and A⊤
k Ak = (σij,k)r×r. As 

σii,k = ‖aik‖2
2 = 1, the correlation among columns of Ak can be measured by

ϑk = max
1≤i<j≤r

|σij,k|, δk = ‖A⊤
k Ak − Ir‖S, η jk =

􏽘

i∈[r]\{j}

σ2
ij,k

􏼠 􏼡1/2

. (9) 

Similarly, we use

ϑ = max
1≤i<j≤r

|a⊤
i a j|, δ = ‖A⊤A − Ir‖S, (10) 

to measure the correlation of the matrix A = (a1, . . . , ar) ∈ Rd×r with ai = vec( ⊗K
k=1 aik) and 

d =
􏽑K

k=1 dk. It can be seen that the coherence ϑ has the bound ϑ ≤
􏽑K

k=1 ϑk ≤ ϑK
max, due to 

a⊤
i a j =

􏽑K
k=1 a⊤

ika jk =
􏽑K

k=1 σij,k. The spectrum norm δ is also bounded by the multiplicative of cor
relation measures in (9). More specifically, we have the following proposition.

Proposition 1 Define μ∗ = maxj mink1,k2
maxi≠j

􏽑
k≠k1,k≠k2,k∈[K]

��
r

√
|σij,k|/η jk ∈ [1, rK/2−1] 

as the (leave-two-out) mutual coherence of A1, . . . , AK. Then, δ ≤ 
min1≤k≤K δk and

δ ≤ (r − 1)ϑ, and ϑ ≤
􏽙K

k=1

ϑk ≤ ϑK
max, (11) 

δ ≤ μ∗r1−K/2 max
j≤r

􏽙K

k=1

η jk ≤ μ∗r1−K/2
􏽙K

k=1

δk. (12) 

When (most of) the quantities in (9) are small, the products in (11) would be very small so that 
the ai’s are nearly orthogonal. For example, if (a11, a21) and (a12, a22) both have i.i.d. bi-variate 
random rows with correlation coefficients ρ1 and ρ2, and independent, then the population correl
ation coefficient of vec(a11 ⊗ a12) and vec(a21 ⊗ a22) is ρ1ρ2, though the variation of the sample 
correlation coefficient depends on the length of the aik’s.
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Remark 5 Let polylog denote the polynomial of the logarithm. The incoherence condition 
such as ϑmax ≲ ploylog(dmin)/

�����
dmin

􏽰
is commonly imposed in the literature for 

generic CP decomposition; see e.g. Anandkumar et al. (2014b, 2014c), Sun 
et al. (2017), and Hao et al. (2020). Proposition 1 establishes a connection be
tween δ, δk and the ϑk in the same framework of incoherence considerations. 
The parameters δk and δ quantify the nonorthogonality of the factor loading 
vectors, and play a key role in our theoretical analysis, as the performance 
bound of cPCA estimators involves δ. Differently from the existing literature 
depending on ϑmax, the cPCA exploits δ or the much smaller ϑ (comparing to 
ϑmax), thus has better properties when K ≥ 2. Note that the idea of using tensor 
unfolding to enhance incoherence can be traced back to Huang et al. (2015), 
Jain and Oh (2014), and Allman et al. (2009), though their incoherence meas
ure is slightly different from ours. The most notable advances from these stud
ies is that we establish a nonasymptotic bound for the estimated loading vectors 
in the presence of noise (c.f. Theorem 1).

The pseudo-code of cPCA is provided in Algorithm 1. Though Σ∗
h is symmetric, its sample ver

sion 􏽢Σ∗
h in general is not. We use (􏽢Σ∗

h + 􏽢Σ∗⊤
h )/2 to ensure symmetry and reduce the noise. The cPCA 

produces definitive initialization vectors up to the sign change.
After obtaining a warm start via cPCA (Algorithm 1), we engage an ISO algorithm (Algorithm 

2) to refine the solution of aik and obtain estimations of the factor process fit and the signal strength 
wi. Algorithm 2 can be viewed as an extension of HOOI (De Lathauwer et al., 2000; Zhang & Xia, 
2018) and the iterative projection algorithm in Y. Han et al. (2020) to undercomplete (r < dmin) 
and nonorthogonal CP decompositions. It is motivated by the following observation. Define Ak = 
(a1k, . . . , ark) and Bk = Ak(A⊤

k Ak)−1 = (b1k, . . . , brk) ∈ Rdk×r. Let

Zt,ik = X t ×1 b⊤
i1 ×2 · · · ×k−1 b⊤

i,k−1 ×k+1 b⊤
i,k+1 ×k+2 · · · ×K b⊤

iK, (13) 

E∗
t,ik = Et ×1 b⊤

i1 ×2 · · · ×k−1 b⊤
i,k−1 ×k+1 b⊤

i,k+1 ×k+2 · · · ×K b⊤
iK. (14) 

Since a⊤
jkbik = I{i=j}, model (1) implies that

Zt,ik = wifitaik + E∗
t,ik. (15) 

Here Zt,ik is a vector, and (15) is in a factor model form with a univariate factor. The estimation of 
aik can be done easily and much more accurately than dealing with the much larger X t. The oper
ation in (13) achieves two objectives. First, by multiplying a vector on every mode except the kth 
mode to X t, it reduces the tensor to a vector. It also serves as an averaging operation to reduce the 
noise variation. Second, as bik is orthogonal to all a jk except aik, it is an orthogonal projection op
eration that eliminates all ⊗K

k=1a jk terms in (1) except the ith term, resulting in (15). If the matrix 
A⊤

k Ak is not ill-conditioned, i.e. {aik, 1 ≤ i ≤ r} are not highly correlated, then Bk and all individual 
b jk are well defined and this procedure shall work well. Under proper conditions on the combined 
noise tensor E∗

t,ik, estimation of the loading vectors aik based on Zt,ik can be made significantly 
more accurate, as the statistical error rate now depends on dk rather than d1d2 . . . dk. 
Intuitively, bik can also be viewed as a form of (normalized) residuals of aik projected onto the 
space spanned by {a jk, j ≠ i, 1 ≤ j ≤ r}.

In practice, we do not know bil, for 1 ≤ i ≤ r, 1 ≤ l ≤ K and l ≠ k. Similar to back-fitting algo
rithms, we iteratively estimate the loading vector aik at iteration number m based on

Z
(m)
t,ik = X t ×1

􏽢b(m)⊤
i1 ×2 · · · ×k−1

􏽢b(m)⊤
i,k−1 ×k+1

􏽢b(m−1)⊤
i,k+1 ×k+2 · · · ×K

􏽢b(m−1)⊤
iK , 
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using the estimate 􏽢b(m−1)
il , k < l ≤ K, obtained in the previous iteration and the estimate 

􏽢b(m)
il , 1 ≤ l < k, obtained in the current iteration. As we shall show in the next section, such an it

erative procedure leads to a much improved statistical rate in the high-dimensional tensor factor 
model scenarios, as if all bil, 1 ≤ i ≤ r, 1 ≤ l ≤ K, l ≠ k, are known and we indeed observe Zt,ik that 
follows model (15). Note that the projection error is

Z
(m)
t,ik − Zt,ik =

􏽘r

j=1

wjf j,tξ(m)
ij a jk + E

∗(m)
t,ik − E∗

t,ik 

where

ξ(m)
ij =

􏽙k−1

ℓ=1

[a⊤
jℓ
􏽢b(m)

iℓ ]
􏽙K

ℓ=k+1

[a⊤
jℓ
􏽢b(m−1)

iℓ ] − I{i=j}, (16) 

and E∗(m)
t,ik is that in (14) with bik replaced with 􏽢b(m−1)

ik or 􏽢b(m)
ik . The multiplicative measure of pro

jection error |ξ(m)
ij | decays rapidly since, for j ≠ i, a⊤

jℓ
􏽢b(m)

iℓ goes to zero quickly as the iteration m in

creases, and ξ(m)
ij is a product of K − 1 such terms. In fact, the higher the tensor order K is, the faster 

the error goes to zero.

Remark 6 (Comparison with alternating least square). The updates in Algorithm 2 can 
be viewed as a variant of the standard alternating least-squares procedure. 
For example, suppose that 􏽢b(m−1)

ik , 1 ≤ i ≤ r, 2 ≤ k ≤ K, are fixed. Then the op
timization problem to update a(m)

i1 for each 1 ≤ i ≤ r can be rewritten as

arg min
ai1∈Rd1

􏽢Σh ×K
k=2

􏽢b(m−1)
ik ×2K

k=K+2
􏽢b(m−1)

i,k−K − wiai1a⊤
i1

􏼍
􏼍
􏼍

􏼍
􏼍
􏼍

F
.

This is a least-squares problem. However, the algorithm cannot be viewed as 
an alternating least-square procedure since we do not have an over-arching 
(least-square) objective function such that every iteration is done to minimize 
the objective function given other components. This is due to the construction 
and involvement of bik in the algorithm. As a matter of fact, if one uses stand
ard ALS to minimize the objective function in (7), to update mode k, it would 
involve the inverse of the Hadamard product of A⊤

k′ Ak′ for k′ ≠ k. In contrast, 
due to the nice property of Zt,ik (defined based on Bk′ for k′ ≠ k), we only need 
to compute the inverse of A⊤

k′ Ak′ for each k′ ≠ k, not their Hadamard product.

Remark 7 (The role of h). In Algorithm 1, we use a fixed h ≥ 1. Let 􏽢λ1,h ≥􏽢λ2,h ≥ · · · ≥􏽢λd,h 

be the eigenvalues of 􏽥Σ∗
h := (􏽢Σ∗

h + 􏽢Σ∗⊤
h )/2. In practice, we may select h to maxi

mize the fraction of the explained variance 
􏽐r

i=1
􏽢λ2

i,h/
􏽐d

i=1
􏽢λ2

i,h under different 
lag values 1 ≤ h ≤ h0, given some pre-specified maximum allowed lag h0. 
Step 2 in Algorithm 1 can be improved by accumulating information from dif
ferent time lags. For example, let 􏽢U(0) ∈ Rd×r be a matrix with its columns 􏽢ui’s 

being the top r eigenvectors of 􏽥Σ∗
h. With such 􏽢U(0) as the initialization, we may 

iteratively refine 􏽢U(m) to be the top r eigenvectors of 
􏽐h0

h=1
􏽥Σ∗

h
􏽢U(m−1)􏽢U(m−1)⊤􏽥Σ∗

h.

Remark 8 (Condition number of 􏽢A(m)⊤
k

􏽢A(m)
k ). Our theoretical analysis assumes that the 

condition number of the matrix A⊤
k Ak is bounded. However, in practice, the 

condition number of 􏽢A(m)⊤
k

􏽢A(m)
k in Algorithm 2 may be very large, especially 
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when m = 0. We suggest a simple regularized strategy. Define the eigen decom
position 􏽢A(m)⊤

k
􏽢A(m)

k = V (m)
k Λ(m)

k V (m)⊤
k . For all eigenvalues in Λ(m)

k that are smaller 
than a numeric constant c (e.g. c = 0.1), we set them to c. Denote the resulting 
matrix as 􏽥Λ(m)

k and get the corresponding 􏽢B(m)
k by 􏽢A(m)⊤

k (V (m)
k

􏽥Λ(m)
k V (m)⊤

k )−1. 
Many alternative empirical methods can also be applied to bound the condi
tion number.

Remark 9 Algorithm 1 requires that δ < 1 in order to obtain reasonable estimates. And it 
can accommodate the case that r ≥ dmax. In contrast, Algorithm 2 needs stron
ger conditions that δk < 1 and r ≤ dmin to rule out the possibility of colinearity, 
as A⊤

k Ak needs to be invertible. It may not hold under certain situations. For 
example, a1k = a2k would lead to an ill-conditioned A⊤

k Ak. In such cases, the 
incoherence condition commonly required in the literature, e.g. ϑmax ≪ 1, is 
also violated. It is possible to extend our approach to a more sophisticated pro
jection scheme so the conditions can be weakened. As it requires more sophis
ticated analysis both on the methodology and on the theory, we do not purse 
this direction in this paper.

Remark 10 As mentioned before, ai1 ⊗ ai2 ⊗ · · · ⊗ aiK can be regarded as the principal 
component of the autocovariance tensor Σh. Hence, our HOPE estimators 
(Algorithms 1 and 2 together) can also be characterized as a procedure of 
principal component analysis for order 2K autocovariance tensor, albeit 
with a special structure in (5).

Remark 11 (The number of factors). Here the estimators are constructed with given rank 
r, though in the theoretical analysis it is allowed to diverge. Determining the 
number of factors in a data-driven way has been an important research topic 
in the factor model literature. Bai and Ng (2002, 2007), and Hallin and Liška 
(2007) proposed consistent estimators in the vector factor models based on 
the information criteria approach. Lam and Yao (2012) and Ahn and 
Horenstein (2013) developed an alternative approach to study the ratio of 
each pair of adjacent eigenvalues. Recently, Y. Han et al. (2022) established 
a class of rank determination approaches for the factor models with Tucker 
low-rank structure, based on both the information criterion and the eigen- 
ratio criterion. Those procedures can be extended to TFM-cp.

4 Theoretical properties
In this section, we shall investigate the statistical properties of the proposed algorithms described 
in the last section. Our theories provide theoretical guarantees for consistency and present statis
tical error rates in the estimation of the factor loading vectors aik, 1 ≤ i ≤ r, 1 ≤ k ≤ K, under 
proper regularity conditions. As the loading vector aik is identifiable only up to the sign change, 
we use

‖􏽢aik􏽢a
⊤
ik − aika⊤

ik‖S =
��������������

1 − (􏽢a⊤
ikaik)2

􏽱

= sup
z⊥aik

|z⊤􏽢aik|

to measure the distance between 􏽢aik and aik. Recall Σh = E􏽢Σh =
􏽐r

i=1 λi,h(ai1 ⊗ ai2 ⊗ · · · ⊗ aiK)⊗2, 
as in (5) and λi,h = w2

i Efi,t−hfi,t. We will also continue to use the notations 

Ak = (a1k, . . . , ark) ∈ Rdk×r, and Bk = Ak(A⊤
k Ak)−1 = (b1k, . . . , brk) ∈ Rdk×r. Let d =

􏽑K
k=1 dk, 

dmin = min {d1, . . . , dK}, dmax = max {d1, . . . , dK} and d−k =
􏽑

j≠k dj.
To present theoretical properties of the proposed procedures, we impose the following 

assumptions.
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Assumption 1 The error process Et are independent Gaussian tensors, conditioning on the 
factor process {fit, 1 ≤ i ≤ r, t ∈ Z}. In addition, there exists some constant 
σ > 0, such that

E(u⊤vec(Et))
2 ≤ σ2‖u‖2

2, u ∈ Rd.

Assumption 2 Assume the factor process fit, 1 ≤ i ≤ r is stationary and strong α-mixing in 
t, with Ef2

it = 1, Efit−hfit ≠ 0, Efit−hf jt = 0 for all i ≠ j and h ≥ 1. Let 
Ft = (f1t, . . . , frt)

⊤. For any v ∈ Rr with ‖v‖2 = 1,

max
t

P v⊤Ft
􏼌
􏼌

􏼌
􏼌 ≥ x

 􏼁
≤ c1exp −c2xγ2( ), (17) 

where c1, c2 are some positive constants and 0 < γ2 ≤ 2. In addition, the 
mixing coefficient satisfies

α(m) ≤ exp −c0mγ1( ) (18) 

for some constant c0 > 0 and 0 < γ1 ≤ 1, where

α(m) = sup
t

􏽮􏼌
􏼌
􏼌P(A ∩ B) − P(A)P(B)

􏼌
􏼌
􏼌 : A ∈ σ(fis, 1 ≤ i ≤ r, s ≤ t), B

∈ σ(fis, 1 ≤ i ≤ r, s ≥ t + m)
􏽯

.

Assumption 3 Assume h ≤ T/4 is fixed, and λ1,h, . . . , λr,h are all distinct. Without loss of 
generality, let λ1,h > λ2,h > · · · > λr,h > 0. Here, we emphasize that λi,h de
pends on h, though in other places when h is fixed we will omit h in the 
notation.

Assumption 1 is similar to those on the noise imposed in Lam et al. (2011), Lam and Yao (2012), 
and Y. Han et al. (2020). It accommodates general patterns of dependence among individual time 
series fibres, but also allows a presentation of the main results with manageable analytical com
plexity. The normality assumption, which ensures fast statistical error rates in our analysis, is im
posed for technical convenience. In theory, it can be supplanted by a sub-Gaussian condition, or 
replaced with more general distributions with heavier tails. However, adopting such weaker con
ditions would significantly complicate the formulae, statistical outcomes, and requisite conditions 
within our time series framework. This added complexity would likely detract from the paper’s 
readability, without providing additional statistical insights. Our primary goal is to maintain 
the readers’ focus on the core content of the paper, and thus, we have chosen to assume additive 
Gaussian errors. This choice simplifies the exposition without compromising the fundamental ten
ets and the findings of our study.

Assumption 2 is standard. It allows a very general class of time series models, including causal 
ARMA processes with continuously distributed innovations; see also Tong (1990), Bradley 
(2005), Tsay (2005), Fan and Yao (2003), Rosenblatt (2012), and Tsay and Chen (2018), among 
others. The restriction γ1 ≤ 1 is introduced only for presentation convenience. Assumption 2 re
quires that the tail probability of fit decays exponentially fast. In particular, when γ2 = 2, fit is 
sub-Gaussian.

Assumption 3 is sufficient to guarantee that all the factor loading vectors aik can be uniquely 
identified up to the sign change. The parameters λi can be viewed as an analogue of eigenvalues 
in the order-2K tensor Σh. Similar to the eigen decomposition of a matrix, if some λi are equal, es
timation of the loading vectors aik may suffer from label shift across i. When h is fixed and 
Efi,tfi,t−h ≍ 1, λi ≍ w2

i . The signal strength of each factor is measured by λi.
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Let us first study the behaviour of the cPCA estimators in Algorithm 1. Theorem 1 presents the 
performance bounds, which depends on the coherence (the degree of nonorthogonality) of the fac
tor loading vectors.

Let

λ∗ = min
1≤i≤r+1

{λi−1 − λi} (19) 

with λ0 = ∞, λr+1 = 0, be the minimum gap between the signal strengths of the factors.

Theorem 1 Suppose Assumptions 1, 2, 3 hold. Let 1/γ = 1/γ1 + 2/γ2, h ≤ T/4, and δ < 1 
with δ defined in (10). In an event with probability at least 1 − (Tr)−C1 − e−d, 
the following error bound holds for the estimation of the loading vectors aik 
using Algorithm 1 (cPCA).

‖􏽢acpca
ik 􏽢acpca⊤

ik − aika⊤
ik‖S ≤ 1 +

2λ1

λ∗

􏼒 􏼓

δ +
C2R(0)

λ∗

, (20) 

for all 1 ≤ i ≤ r, 1 ≤ k ≤ K, where C1, C2 are some positive constants, and

R(0) = max
1≤i≤r

w2
i

����������
r + log T

T

􏽲

+
(r + log T)1/γ

T

􏼠 􏼡

+ σ2

��
d
T

􏽲

+ σ max
1≤i≤r

wi

��
d
T

􏽲

. (21) 

Remark 12 We note that the eigengap λ∗ in Algorithm 1 (cPCA) is not a requisite for the 
iterative Algorithm 2 (ISO). Algorithm 1 (cPCA) necessitates a significant sep
aration among the different singular values λi’s. This condition can be relaxed 
through the use of random slicing (Anandkumar et al., 2014c; Auddy & 
Yuan, 2023a), a widely recognized method for initialization in tensor CP de
composition. In our framework, the core step of random slicing is the con
struction of a projected autocovariance tensor Σh ×k gk ×K+k g̃k, where gk 
and g̃k are independently generated Gaussian random vectors. Due to the 
randomness of gk and g̃k, even if all λi’s are equal, the singular values of 
Σh ×k gk ×K+k g̃k will inherently differ. Furthermore, we can generate a suffi
ciently large eigengap between the top two singular values of the projected au
tocovariance tensor through multiple rounds of random slicing, so that the 
leading component of the projected autocovariance tensor is identifiable. 
Since Σh ×k gk ×K+k g̃k is an order 2K − 2 tensor, we can still employ cPCA 
and utilize the benefits of higher-order coherence in Proposition 1 when 
K > 2. The existing results in Theorem 1 can be extended to such settings, 
although it would require more sophisticated theoretical analysis.

The first term in the upper bound (20) is induced by the nonorthogonality of the loading vectors 
aik, which can be viewed as bias. The second term in (20) comes from a concentration bound for 
the random noise, and thus can be interpreted as stochastic error. By Proposition 1, it implies that a 
larger K (e.g. higher order tensors) leads to smaller bias and higher statistical accuracy of cPCA. If 
δ ≳ R(0)/λ1, then the error bound (20) is dominated by the bias related to δ, otherwise it is domi
nated by the stochastic error. Equation (21) shows that R(0) in the stochastic error comes from the 
fluctuation of the factor process fit (the first two terms) and the noise Et in (1) (the other two terms). 
When 

􏽐r
i=1 λi ≍ rλ1 ≍ rw2

1 and R(0)/λ1 + T/d ≲ 1, the terms related to the noise becomes �����
r/T

􏽰
/

������
SNR

√
, where the signal-to-noise ratio (SNR) is

SNR := E
􏽘r

i=1

wifit ⊗K
k=1 aik

􏼍
􏼍
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍
􏼍
􏼍

2

HS

/E‖Et‖
2
HS =

􏽘r

i=1

w2
i /(σ2d) ≍ rλ1/(σ2d). (22) 

J R Stat Soc Series B: Statistical Methodology                                                                                         13
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkae036/7675340 by Library H
ealth Sci (C

I) user on 29 August 2024



Roughly speaking though not completely correct, the term λi − λi+1 can be viewed as the gap of ith 
and (i + 1)th largest eigenvalues of Σ∗

h with Σ∗
h given in (8). In particular, if λ1 ≍ · · · ≍ λr ≍ w2

1, then 
λ∗ ≍ w2

1/r. In this case, the bound (20) can be simplified to

‖􏽢acpca
ik

􏽢acpca⊤
ik − aika⊤

ik‖S

≤ C3rδ + C4r

����������
r + log T

T

􏽲

+
(r + log T)1/γ

T

􏼠 􏼡

+
C4σ2r

��
d

√

w2
1

��
T

√ +
C4σr

��
d

√

w1
��
T

√ .
(23) 

Then, by (23) and Proposition 1, the consistency of the cPCA estimators only requires the incoher
ence parameter to be at most ϑmax ≲ r−2/K.

Next, let us consider the statistical performance of the iterative algorithm (Algorithm 2) after 
cPCA initialization, i.e. HOPE estimators. As discussed earlier, the operation in (13) achieves 
dimension reduction by projecting X t into a vector and retains only one of the r factor terms, 
hence eliminates the interaction effects between different factors. As we update the estimation 
of each individual loading vector aik separately in the algorithm, ideally this would remove 
the bias part in (20) which is due to the nonorthogonality of the loading vectors, and replace 
the eigengap λ∗ in (20) by λi, as (15) only involves one eigenvector. It also leads to the elimination 
of the first two terms of R(0). As mentioned in Section 3, when updating 􏽢a(m)

ik , we take advantages 
of the multiplicative nature of the project error ξ(m)

ij in (16), and the rapid growth of such benefits 
as the iteration number m grows. Thus we expect that the rate of HOPE estimators would 
become

max
1≤i≤r

max
1≤k≤K

‖􏽢aik􏽢a
⊤
ik − aika⊤

ik‖S ≤ C0,KR(ideal), (24) 

where

R(ideal)
k,i =

σ2

λi

���
dk

T

􏽲

+

������

σ2dk

λiT

􏽳

, and R(ideal) = max
1≤i≤r

max
1≤k≤K

R(ideal)
k,i . (25) 

Note that R(ideal)
k,i replaces all d = d1 . . . dK in the noise component of the stochastic error in (20) 

by dk due to dimension reduction. The following theorem provides conditions under which this 
ideal rate is indeed achieved.

Let the statistical error bound of the initialization used in Algorithm 2 be ψ0. For cPCA,

ψ0 =
λ1δ + R(0)

λ∗

, (26) 

where λ∗ is the eigengap defined in (19) and R(0) is defined in (21).

Theorem 2 Suppose Assumptions 1, 2, 3 hold. Assume that δmax = maxk≤K δk < 1 with δk 
defined in (9), and r = O(T). Let 1/γ = 1/γ1 + 2/γ2, h ≤ T/4, and 
d = d1 · · · dK. Suppose that for a proper numeric constant C1,K depending 
on K only, we have

����������
1 − δmax

􏽰
− (r1/2 + 1)ψ0/

������������
1 − 1/(4r)

􏽰
> 0, (27) 

C1,K
λ1

λr

􏼒 􏼓

ψ2K−3
0 + C1,K

���

λ1

λr

􏽳 ����������
r + log T

T

􏽲

+
(r + log T)1/γ

T

􏼠 􏼡

ψK−2
0 ≤ ρ < 1 (28) 
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Then, after at most M = O( log log (ψ0/R(ideal))) iterations of Algorithm 2, in an 
event with probability at least 1 − (Tr)−C −

􏽐
k e−dk , the HOPE estimator satisfies

‖􏽢aiso
ik 􏽢aiso⊤

ik − aika⊤
ik‖S ≤ C0,KR(ideal), (29) 

for all 1 ≤ i ≤ r, 1 ≤ k ≤ K, where C0,K is a constant depending on K only and C is 
a positive numeric constant.

The detailed proof of the theorem is in online supplementary material, Appendix 1. The key idea 
of the analysis of HOPE is to show that the iterative estimator has an error contraction effect in 
each iteration. Theorem 2 implies that HOPE will achieve a faster statistical error rate than the 
typical OP(T−1/2) whenever λr ≫ σ2 maxk dk. As vec(X t) has d elements, the strong factors setting 
in the literature (R. Chen et al., 2022; Y. Han et al., 2020; Lam et al., 2011) typically 
assumes SNR ≍ 1. In our case it is similar to assuming the signal strength 
E‖

􏽐r
i=1 wifit ⊗K

k=1 aik‖2
HS ≍ σ2d. When r is fixed and λ1 ≍ · · · ≍ λr, the statistical error rate will 

be reduced to OP(T−1/2d−1/2
−k ), where d−k =

􏽑
j≠k dj.

Remark 13 (Iteration complexity). Theorem 2 implies that Algorithm 2 achieves the de
sired estimation error R(ideal) after at most M = O( log log (ψ0/R(ideal))) 
number of iterations. In this sense, after at most double-logarithmic number 
of iterations, the iterative estimator in Algorithm 2 converges to a neighbour
hood of the true parameter aik, up to a statistical error with a rate O(R(ideal)). 
We observe that Algorithm 2 typically converges within very few steps in 
practical implementations.

Remark 14 Condition (27) requires r1/2ψ0 to be small. It is a relatively strong condition 
due to the extra multiplier r1/2 on the error of the initial estimators. This is a 
technical issue due to the need to invert the estimated A⊤

k Ak in our analysis to 
construct the mode-k projection in Algorithm 2. In fact the r1/2 term may be 
eliminated by applying a shrinkage procedure on the singular values of 􏽢Ak 
after obtaining the updates of 􏽢aik, 1 ≤ i ≤ r, similar to the procedure proposed 
by Anandkumar et al. (2014c).

Furthermore, the condition given by (28) originates from the multiplicative 
nature of the projection error ξ(m)

ij , as seen in (16) for i ≠ j. If ψ0 signifies the 
error bound for cPCA estimators, then condition (28) is satisfied when 
(λ1/λr)ψ2K−3

0 ≲ 1. In comparison, the iterative algorithm of Anandkumar et 
al. (2014c) requires that the initialization fulfills ψ0 ≲ λr/λ1 + 1/

�����
dmin

􏽰
, a con

dition that is more stringent than (28). The ratio λ1/λr in (28) is unavoidable. 
When updating the estimates of aik in Algorithm 2, we need to remove the ef
fect of other factors (j ≠ i) on the ith factor, which introduces the ratio of fac
tor strengths λ1/λr in the analysis.

In particular, if λ1 ≍ · · · ≍ λr, the shrinkage procedure can reduce condi
tions (27) and (28) to

C1,Kψ0 < 1, (30) 

where ψ0 is the cPCA error bound in (26). It ensures that, with high probabil
ity, ‖􏽢a(0)

ik
􏽢a(0)⊤

ik − aika⊤
ik‖S are sufficiently small, so that the cPCA initialization is 

sufficiently close to the ground truth as in (30).

Remark 15 (Comparison with general tensor CP-decomposition methods). To estimate 
aik in (5), one can use the standard tensor CP-decomposition algorithms, 
such as those in Anandkumar et al. (2014c), Hao et al. (2020), and Sun 
et al. (2017), without utilizing the special features of TFM-cp. The random
ized initialization estimators in these algorithms typically require the 
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incoherence condition ϑmax ≲ poly log (dmin)/
�����
dmin

􏽰
. In contrast, the condi

tion for ISO needs ϑmax ≲ r−5/(2K), which is weaker when r = o(dK/5
min ). 

Similarly, we prove that the cPCA yields useful estimates when r2ϑK
max is 

small, or ϑmax ≲ r−2/K. In other words, as long as r is not exceedingly large 
(e.g. r = o(dK/5

min )), both cPCA and ISO permit a more lenient incoherence con
dition among the CP basis. Furthermore, the high-order coherence in TFM-cp 
leads to an impressive computational super-linear convergence rate of 
Algorithm 2, which is faster than the computational linear convergence 
rate of the iterative projection algorithm in Y. Han et al. (2020) or other var
iants of alternating least-squares approaches in the literature, that are at most 
linear with the required number of iterations M = O( log (ψ0/R(ideal))).

Remark 16 (Comparison between TFM-cp and TFM-tucker Models). As discussed in 
Remark 3, TFM-cp can be written as a TFM-tucker with a special structure. 
One can ignore the special structure and treat it a generic TFM-tucker in (3) 
and estimate the loading spaces spanned by {aik, 1 ≤ i ≤ r} using the iterative 
estimation algorithm in Y. Han et al. (2020). In fact, ISO (as detailed in 
Algorithm 2) can be viewed as an enhancement of the iterative algorithm pre
sented in Y. Han et al. (2020) to utilize the special structure of TFM-cp. This 
is achieved by permitting nonorthogonality in Ak and estimating each aik, 1 ≤ 
i ≤ r, individually.

Here we provide a brief comparison in the estimation accuracy between 
the estimators under these two settings to show the impact of the additional 
structure in TFM-cp. Note that for TFM-tucker, only the linear space 
spanned by Ak can be estimated hence the estimation accuracy is based on 
a specific space representation, different from that for the TFM-cp. For sim
plicity, we consider the case λ1 ≍ · · · ≍ λr. 

(i) The iterative refinement algorithm (Algorithm 2) for TFM-cp requires 
similar conditions on the initial estimators as the iterative projection al
gorithms for TFM-tucker. Under many situations, both methods only 
require the initialization to retain a large portion of the signal, but 
not the consistency.

(ii) The statistical error rate of HOPE in (29) is the same as the upper bound 
of the iterative projection algorithms for estimation of the fixed rank 
TFM-tucker, c.f. Corollary 3.1 and 3.2 in Y. Han et al. (2020), which 
is shown to have the minimax optimality. It follows that HOPE also 
achieves the minimax rate-optimal estimation error under fixed r.

(iii) When the rank r diverges and SNR ≍ 1 where SNR is defined in (22), 
the estimation error of the loading spaces by the iterative estimation 
procedures, iTOPUP and TIPUP-iTOPUP procedures in Y. Han et al. 
(2020) applied to the specific TFM-tucker model implied by the TFM- 
cp model, is of the order OP( maxk r3K/2−1T−1/2d−1/2

−k ), a rate that is al

ways larger than OP( maxk r1/2T−1/2d−1/2
−k ), the error rate of HOPE 

for TFM-cp model. The iTIPUP procedure for TFM-tucker model is 
OP( maxk r1/2+(K−1)ζ T−1/2d−1/2

−k ) where ζ controls the level of signal can
cellation (see Y. Han et al., 2020 for details). When there is no signal 
cancellation, ζ = 0, the rate of the two procedures are the same. Note 
that iTIPUP only estimates the loading space, while HOPE provides es
timates of the unique loading vectors. The error rate of HOPE is better 
when ζ > 0. This demonstrates that HOPE is able to utilize the specific 
structure in TFM-cp to achieve more accurate estimation than simply 
applying the estimation procedures designed for general TFM-tucker.

(iv) It can be seen that, computationally, the complexities for the initializa
tion of both TFM-cp and TFM-tucker are the same, yet, the per iteration 
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complexity of TFM-cp is lower than that of TFM-tucker by a factor of 
r2K−2 where r1 = . . . = rK = r in TFM-tucker model.

Theorem 3 Suppose Assumptions 1, 2, 3 hold. Assume that δk < 1 with δk defined in (9), 
σ2 ≲ λr and condition (27) holds. Let dmax = maxk dk. Then the HOPE estima
tor in Algorithm 2 using a specific h satisfies:

w−1
i 􏽢wiso

i
􏽢f iso

it − wifit

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 = OP

���

σ2

λr

􏽳

+

��������

σ2dmax

λrT

􏽳⎛

⎝

⎞

⎠ (31) 

and

w−1
i w−1

j
1

T − h∗

􏽘T

t=h∗+1

􏽢wiso
i 􏽢wiso

j
􏽢f iso

it−h∗

􏽢f iso
jt −

1
T − h∗

􏽘T

t=h∗+1

wiwjfit−h∗
f jt

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

= OP

��������

σ2dmax

λrT

􏽳⎛

⎝

⎞

⎠ (32) 

for 1 ≤ i, j ≤ r, 1 ≤ t ≤ T and all 1 < h∗ ≤ T/4.

Theorem 3 specifies the convergence rate for the estimated factors fit. When λr ≫ σ2dmax + T, 
w−1

i |􏽢wiso
i

􏽢f iso
it − wifit| is much smaller than the parametric rate T−1/2. If all the factors are strong 

(Lam et al., 2011) such that λ1 ≍ λr ≍ σ2d, (31) implies that w−1
i |􏽢wiso

i
􏽢f iso

it − wifit|= 
OP(d−1/2 + d1/2

maxd−1/2T−1/2). Then, as long as dk → ∞ and K ≥ 2, the estimated factors are con
sistent, even under a fixed T. In comparison, the convergence rate of the estimated factors in 
Theorem 1 of Bai (2003) for vector factor models is OP(d−1/2 + T−1). Moreover, (32) shows 
that the error rates for the sample autocross-moment of the estimated factors to the true sample 
autocross-moment is also oP(T−1/2) when λr ≫ σ2dmax. This implies that it is a valid option to 
use the estimated factor processes as the true factor processes to model the dynamics of the factors. 
When the estimation of these time series models only required autocorrelation and partial auto
correction functions, the results are expected to be the same as using the true factor process, with
out loss of efficiency. The statistical rates in Theorem 3 lay a foundation for further modelling of 
the estimated factor processes with vast repository of linear and nonlinear options.

5 Simulation studies
5.1 Alternative algorithms for estimation of TFM-cp
Here we present two alternative estimation algorithms for TFM-cp, by extending the popular rank 
one ALS algorithm of Anandkumar et al. (2014c) and orthogonalized alternating least square 
(OALS) of Sharan and Valiant (2017) designed for CP decomposition of noisy tensors, because 
􏽢Σh in (5) is indeed in a CP form, but with repeated components. In addition, we use cPCA estimates 
for initialization, instead of randomized initialization used for general CP decomposition. We will 
denote the algorithms as cALS (Algorithm 3) and cOALS (Algorithm 4), respectively. The simu
lation study below shows that, although cALS and cOALS perform better than the straightforward 
implementation of ALS and OALS with randomized initialization, they do not perform as well as 
the proposed HOPE algorithm. Hence we do not investigate their theoretical properties in this 
paper.

5.2 Simulation
In this section, we compare the empirical performance of different procedures of estimating the 
loading vectors of TFM-cp, under various simulation setups. We consider the cPCA initialization 
(Algorithm 1) alone, the iterative procedure HOPE, and the intermediate output from the iterative 
procedure when the number of iteration is 1 after initialization. The one-step procedure will be 
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denoted as 1HOPE. We also check the performance of the alternative algorithms ALS, OALS, 
cALS, and cOALS as described above. The estimation error shown is given by 
maxi,k ‖􏽢aik􏽢a⊤

ik − aika⊤
ik‖S.

We demonstrate the performance of all procedures under TFM-cp with K = 2 (matrix time ser
ies) with

X t =
􏽘r

i=1

wfitai1 ⊗ ai2 + Et. (33) 

For K = 2 with model (33), we consider the following three experimental configurations: 

(I) Set r = 2, d1 = d2 = 40, T = 400, w = 6 and vary δ in the set [0, 0.5]. The purpose of this set
ting is to verify the theoretical bounds of cPCA and HOPE in terms of the coherence par
ameter δ.

Algorithm 3 cPCA-initialized Rank One Alternating Least Square (cALS)

Input: Observations X t ∈ Rd1×···×dK for t = 1, ..., T, the number of factors r, the time lag h, the cPCA initial 
estimate (􏽢acpca

i1 , ..., 􏽢acpca
iK ), 1 ≤ i ≤ r, the tolerance parameter ϵ > 0, and the maximum number of iterations M.

1: Compute 􏽢Σh defined in (6).

2: Initialize unit vectors 􏽢a(0)
ik =􏽢acpca

ik for 1 ≤ k ≤ K, 1 ≤ i ≤ r. Set m = 0.

3: for i = 1 to r.

4:  repeat

5:   Set m = m + 1.

6:   k = 1 to K.

7:    Compute 􏽥a(m)
ik = 􏽢Σh ×k−1

ℓ=1 􏽢a(m)⊤
iℓ ×K

ℓ=k 􏽢a(m−1)⊤
iℓ ×K+k−1

ℓ=K+1 􏽢a(m)⊤
iℓ ×2K

ℓ=K+k+1 􏽢a(m−1)⊤
iℓ , where 􏽢a(m−1)

iℓ =􏽢a(m−1)
iℓ−K for 

ℓ > K.

8:    Compute 􏽢a(m)
ik =􏽥a(m)

ik /‖􏽥a(m)
ik ‖2.

9:   end for

10:  until m = M or maxk ‖􏽢a(m)
ik

􏽢a(m)⊤
ik −􏽢a(m−1)

ik
􏽢a(m−1)⊤

ik ‖S ≤ ϵ.

11:  Let 􏽢acALS
ik =􏽢a(m)

ik , 1 ≤ k ≤ K.

12: end for

Output: 􏽢acALS
ik , i = 1, ..., r, k = 1, ..., K.

Algorithm 4 cPCA-initialized Orthogonalized Alternating Least Square (cOALS)

Input: Observations X t ∈ Rd1×···×dK for t = 1, ..., T, the number of factors r, the time lag h, the cPCA initial 
estimate (􏽢acpca

i1 , ..., 􏽢acpca
iK ), 1 ≤ i ≤ r, the tolerance parameter ϵ > 0, the maximum number of iterations M.

1: Compute 􏽢Σh defined in (6).

2: Initialize unit vectors 􏽢a(0)
ik =􏽢acpca

ik for 1 ≤ k ≤ K, 1 ≤ i ≤ r. Set 􏽢A(0)
k = (􏽢a(0)

1k , ..., 􏽢a(0)
rk ) and m = 0.

3: repeat

4:  Set m = m + 1.

5:  Find QR decomposition of 􏽢A(m−1)
k , set 􏽢A(m−1)

k = Q(m−1)
k R(m−1)

k for 1 ≤ k ≤ K.

6:  for k = 1 to K.

7:   Compute 􏽢A(m)
k = matk(􏽢Σh)(∗2K

ℓ≠kQ(m−1)
ℓ ), where Q(m−1)

ℓ = Q(m−1)
ℓ−K for ℓ > K and * is the Khatri–Rao product.

8:  end for

9: until m = M or maxi maxk ‖􏽢a(m)
ik 􏽢a(m)⊤

ik −􏽢a(m−1)
ik 􏽢a(m−1)⊤

ik ‖S ≤ ϵ.

Output: 􏽢acOALS
ik =􏽢a(m)

ik , i = 1, ..., r, k = 1, ..., K.
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(II) Set r = 2, d1 = d2 = 40, δ = 0.2. We vary the sample size T and the signal strength w to in
vestigate the impact of δ against signal strength and sample size.

(III) Set r = 3, d1 = d2 = 40, T = 400, w = 8 and vary δ to check the sensitivities of δ for all the 
proposed algorithms and compare with randomized initialization.

Results from an additional simulation settings under K = 2 and K = 3 cases are given in online 
supplementary material, Appendix 2. We repeat all the experiments 100 times. For simplicity, 
we set h = 1.

The loading vectors are generated as follows. First, the elements of matrices 
􏽥Ak = (􏽥a1k, . . . , 􏽥ark) ∈ Rdk×r, 1 ≤ k ≤ K, are generated from i.i.d. N(0, 1) and then orthonormal
ized through QR decomposition. Then if δ = 0, set Ak = 􏽥Ak, otherwise, set a1k =􏽥a1k and aik = 
(􏽥a1k + θ􏽥aik)/‖􏽥a1k + θ􏽥aik‖2 for all i ≥ 2 and 1 ≤ k ≤ K, with ϑ = δ/(r − 1) and θ = (ϑ−2/K − 1)1/2. 
The commonly used incoherence measure (Anandkumar et al., 2014c; Hao et al., 2020) under 
this construction is ϑmax = (1 + θ2)−1/2 = ϑ1/K.

The noise Et in the model is white Et ⊥ Et+h, h > 0, and generated according to Et = Ψ1/2
1 ZtΨ1/2

2 
where all of the elements in the d1 × d2 matrix Zt are i.i.d. N(0, 1). Furthermore, Ψ1, Ψ2 are the 
covariance matrices along each mode with the diagonal elements being 1 and all the off-diagonal 
elements being ψ1, ψ2. Throughout this section, we set the off-diagonal entries of the covariance 
matrices of the noise as ψ1 = ψ2.

Under Configurations I and II with r = 2, the factor processes f1t and f2t are generated as two 
independent AR(1) processes, following f1t = 0.8f1t−1 + e1t, f2t = 0.6f2t−1 + e2t. Under 
Configuration III and Configurations IV and V in online supplementary material, Appendix 2, 
with r = 3, f1t, f2t, f3t are generated as independent AR(1) processes, with 
f1t = 0.8f1t−1 + e1t, f2t = 0.7f2t−1 + e2t, f3t = 0.6f3t−1 + e3t. Here, all of the innovations follow 
i.i.d. N(0, 1). The factors are not normalized.

Figure 1 shows the boxplots of the estimation errors for cPCA and HOPE under configuration I, 
for different δ. It can be seen that the performance of cPCA deteriorates as δ increases, while that of 
HOPE remains almost unchanged. The median of the cPCA estimation errors increases almost lin
early with δ, with a R2 of 0.977. This linear effect of δ on the performance bounds of cPCA is con
firmed by the theoretical results in (20).

The experiment of Configuration II is conducted to verify the theoretical bounds on different 
sample sizes T and signal strengths w. Figures 2 and 3 show the logarithm of the estimation errors 
under different (w, T) combinations. It can be seen from Figure 2 that the estimation error of cPCA 
decreases to a lower bound as w and T increases. The lower bound is associated with the bias term 
in (20) that cannot be reduced by a larger w and T. This is the baseline error due to the nonortho
gonality. In contrast, the phenomenon of HOPE is very different. Figure 3 shows that the perform
ance improves monotonically as w or T increases. Again, this is consistent with the theoretical 
bounds in (29).

Figure 4 shows the boxplots of the logarithm of the estimation errors for 7 different methods 
with choices of δ under configuration III. ALS and OALS are implemented with L = 200 random 
initiations. It can be seen that HOPE outperforms all the other methods. Again, the choice of δ does 
not affect the performance of HOPE significantly. One-step method (1HOPE) is better than the 
cPCA alone, and the iterative method HOPE is in turn better than the one-step method. When 
the coherence δ decreases, all methods perform better, but the advantage of HOPE over one-step 
method and the advantage of one-step method over the cPCA initialization become smaller. For 
the extremely small δ = 0.01, all loading vectors are almost orthogonal to each other. In this 
case, all the iterative procedures, including the one-step HOPE, perform similarly. In addition, 
ALS and cALS are always the worst under the cases δ ≥ 0.1. The hybrid methods cALS and 
cOALS improve the original randomized initialized ALS and OALS significantly, showing the ad
vantages of the cPCA initialization. It is worth noting that cOALS has comparable performance 
with 1HOPE and HOPE when δ is small.

6 Applications
In this section, we demonstrate the use of TFM-cp model using the taxi traffic data set used in 
R. Chen et al. (2022). The data set was collected by the Taxi & Limousine Commission of 
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seasonality by separating the time series into two parts: business-day series and nonbusiness-day 
series. The length of the business-day series is 2,262 days, and that of the nonbusiness-day is 1,025 
days. The daily seasonality is a more interesting and important issue. It is clear that taxi usage 
heavily depends on time of the day (morning and evening rush hours, lunch hours, etc). 
Seasonal time series models have been extensively studied for univariate time series (Box & 
Jenkins, 1976; Reinsel, 2003; Shumway & Stoffer, 2006; Tsay, 2005), but these parametric mod
els are difficult to be extended to deal with high dimensional matrix time series. Segmenting the 
24-hour day into distinct intervals, such as morning rush hours and business hours, loses the de
tailed hourly information and requires pre-determined segmentation scheme (Zhang & Wang, 
2019; Zhu et al., 2022). Here we adopt the nonparametric approach by stacking the hourly ob
servations into a (multidimensional) daily observation. This is equivalent to turning hourly obser
vations into daily 24-dimensional vector observations in the univariate time series case, a 
commonly used approach. By jointly modelling the 24-hourly observations within the day to
gether, the detailed daily pattern can be captured more accurately and more flexibly without a 
parametric model assumption. This way, the daily pattern is built into the model simultaneously, 
and the interaction among the geographic and temporal patterns will be revealed.

After some exploratory analysis, we decide to use the TFM-cp with r = 4 factors for both 
business-day series and nonbusiness-day series, and estimate the model with h = 1. For the 
nonbusiness-day series, TFM-cp explains 63.0% of the variability in the data. In comparison, 
treating the tensor time series as a 114,264 (=69 × 69 × 24) dimensional vector time series, the 
traditional vector factor model with 4 factors explains about 90.0% variability, but uses 4 × 
114, 264 parameters for the loading matrix. R. Chen et al. (2022) used TFM-tucker with 4 × 4 × 
4 core factor tensor process. Using iTIPUP estimator of Y. Han et al. (2020), TFM-tucker explains 
80.1% variability. Similarly, for the business-day series, the explained fractions of variability by 
the TFM-cp with 4 factors, vector factor model with 4 factors, and TFM-tucker with 4 × 4 × 4 
core factor tensor are 68.1%, 90.9%, 84.0%, respectively. Comparison of model complexity be
tween TFM-cp and TFM-tucker is substantially more complex compared to that of traditional ten
sor decomposition, owing to the stochastic nature of the latent factor process. Since both models 
are estimated through the sample autocovariance tensor, we may count, under each model, the 
number of parameters required in the population version of the autocovariance tensor. Both mod
els require (69 + 69 + 24) × 4 number of parameters in terms of loading matrices or vectors, 
though the degree of freedom for TFM-tucker is slightly smaller due to orthonormal requirements 
of the loading matrices. However, for the lag-1 autocovariance of the factor processes, TFM-cp 
only requires four parameters (for the four uncorrelated factor process) while TFM-tucker re
quires (4 × 4 × 4)2 parameters (minus certain savings from rotation ambiguity). More important
ly, TFM-cp harbours a much smaller dimensional factor process (f t ∈ R4) than TFM-tucker 
(F t ∈ R4×4×4), thereby simplifying subsequent modelling of the latent factor process.

The literature on Markov process models, for example Zhang and Wang (2019) and Zhu et al. 
(2022), regards each trip as a transition from the pickup location to the drop-off location, 
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Figure 4. Boxplots of the logarithm of the estimation error under experiment configuration III. Seven methods with 
seven choices of δ are considered in total.
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rendering the data as a collection of fragmented sample paths representative of a city-wide Markov 
process. When one aggregates the individual trips within a time period to form a traffic volume 
matrix, the model, with an assumed fixed (reduced rank) Markov transition matrix, essentially in
duces an order-1 autoregressive model on the volume matrix time series. Therefore, the distinction 
between the Markov process models and the CP factor models parallels that between autoregres
sive models and factor models.

Figures 5 and 6 show the heatmap of the estimated loading vectors (a11, . . . , a41) (related to 
pick-up locations) and (a12, . . . , a42) (related to drop-off locations) of the 69 zones in 
Manhattan, respectively, for the business-day series. Table 1 shows the corresponding loading vec
tors (a13, . . . , a43) on the time of day dimension. For a more meaningful interpretation, we have 
re-scaled the loading vectors aik and the factors wifit such that ‖aik‖1 = 1, for 1 ≤ i ≤ 4, 1 ≤ k ≤ 3. 
Figure 7 shows the estimated four factors (wifit) for business-day series in 1,000. (Please note the 
significant difference in scale.) For a more detailed examination, we show the four factor series in 
the third year (year 2011) in online supplementary material, Figure 3 in Appendix 3.

It is seen that the estimated loading vectors and the factors are predominantly positive, although 
there are a few small negative values which we will ignore. When the loading vectors are scaled to 
sum to 1 (hence percentages), the model has the following interesting interpretation. First, the ex
pected daily total volume (

􏽐
i,j,k Xt,ijk) is the sum of the four factors w1f1t + . . . + w4f4t. Hence the 

daily traffic volumes essentially consist of taxi rides following four different patterns, each corre
sponding to the rank-1 tensor ai1 ⊗ ai2 ⊗ ai3, i = 1, . . . , 4. One may also imagine that there are 
four types of taxi users in the city, each following one specific traffic pattern (of course an individ
ual may take multiple trips in a day and follow different patterns for each trip).
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Figure 5. Loadings on four pickup factors for business-day series.
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Figure 6. Loadings on four drop-off factors for business-day series.
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It is interesting to study the component of the rank-1 tensor ai1 ⊗ ai2 ⊗ ai3. Specifically, 
ai3 shows how the total volume of traffic pattern i (wifit) is distributed to different hours 
of the day. For example, Table 1 shows that 16% of pattern 2 volume w2f2t is allotted 
to between 7a.m. and 8a.m., while only 3% of pattern 4 volume w4f4t is allotted to that 
hour. The rank-1 matrix ai1a⊤

i2 shows the spatial pattern of traffic pattern i, where ai1 shows 
the percentage of pattern i volume (wifit) at each hour being picked up in each location, and 
ai2 shows the percentage of pattern i volume wifit being dropped-off in each location, and 
ai1kai2ℓ is the percentage of pattern i volume wifit from location k to location ℓ. This spatial 
pattern does not change through the day, but the volume in each hour is controlled by 
ai3wifit.

From Table 1, it is seen that Factor 1 (or traffic pattern 1) roughly corresponds to the evening 
hours of 6p.m. to 12a.m., by the loading vector a13, with main activities in the SoHu and lower 
east side as both the pick-up and drop-off locations. From the estimated factor series plot in 
Figure 7, it seems that this traffic pattern (pattern 1) has the largest overall volume, but with 
a very strong yearly seasonal pattern and a large daily variation. Intuitively, people use less 
taxi service when the weather is nice, hence the volume is relatively small in summer and early 
fall, even though there are more evening activities in the summer. The large daily variation is 

Table 1. Estimated four loading vectors ai3 ∈ R24 (i = 1, . . . , 4), for hour of day mode

0 to 24 2 4 6 8 10 12 2 4 6 8 10 12

i = 1 5 3 2 1 1 1 1 2 2 3 3 3 3 4 4 4 3 5 7 8 9 9 9 8

i = 2 0 0 0 0 1 3 12 16 13 11 7 6 5 4 4 3 2 2 3 3 2 2 1 1

i = 3 1 0 0 0 0 0 2 5 7 6 6 7 7 7 7 8 6 7 7 6 4 3 2 1

i = 4 1 1 0 0 0 0 1 3 5 4 5 5 6 6 7 7 6 8 9 8 6 5 4 3

Note. Business day. Values are in percentage.
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Figure 7. Estimated four factors for business-day series.
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due to a weekly effect. Figure 8 shows the 3-month business-day period from 1 January 2011 to 
31 March 2011, in which the vertical line marks the end of working week (Friday or the day 
before holiday). It is clearly seen that, for this mainly evening-activity traffic pattern, the vol
ume in the end of working week is almost twice as large as that in the beginning of the working 
week.

Again from Table 1, it is seen that Factor 2 (or traffic pattern 2) roughly corresponds to the 
morning rush hours of 6a.m. to 12a.m., by the loading vector a23, with main activities in the mid
town area as the pick-up locations, and Times square and 5th Avenue as the drop-off locations. 
About 23.1% (defined as 

􏽐
t w2f2t/

􏽐
t

􏽐
i wifit) of the total traffic follows this pattern. From 

Figure 7, it is seen that Factor 2 is quite stable throughout the year, which is again intuitively 
understandable as the traffic pattern is mainly used by the steady population of people commuting 
to work in morning rush hours. There is a large number of (small value) outliers, most of them 
corresponding to the business days before or after major holidays. It can be seen more clearly 
from online supplementary material, Figure 3 in Appendix 3.

For Factors 3 and 4, the areas that load heavily on the factors for pick-up are quite similar to that 
for drop-off, i.e. upper east side (with affluent neighbourhoods and museums) on Factor 3, and 
upper west side (with affluent neighbourhoods and performing arts) on Factor 4. The conventional 
business hours are heavily and almost exclusively loaded on these factors. From Figure 7, it seems 
that both patterns have a yearly seasonal effect, small in the summer and early fall, which can be 
seen more clearly in online supplementary material, Figure 3 in Appendix 3. Their volumes are 
relatively small than that of Factors 1 and 2.

We note that TFM-cp representation is unique which facilitates a more ‘unique’ interpretation. 
On the other hand, TFM-tucker is subject to arbitrary rotation. Using TFM-tucker to analyse the 
same data set, R. Chen et al. (2022) used varimax rotation to obtain one specific representation of 
their estimated model and provided interesting interpretations. Their results are quite different 
from that of TFM-cp. First, since TFM-tucker representation requires orthonormal loading matri
ces, the discovered patterns in the loading matrices are forced to be different. For example, the dai
ly patterns revealed in R. Chen et al. (2022) have quite distinct periods, while Table 1 shows more 
intertwined (nonorthogonal) patterns. Second, TFM-tucker requires 4 × 4 × 4 factor processes. 
The column loading vectors in each loading matrices work on all these factors, instead of on 
only one factor as in TFM-cp. The interpretation of these loading vectors are more convoluted. 
For example, in TFM-tucker, the volume from all four heavily loaded pick-up areas identified 
by ai1, i = 1, . . . , 4 can be travelling to all four heavily loaded drop-off areas ai2, i = 1, . . . , 4. 
But in TFM-cp, the rank-1 matrix ai1a⊤

i2 shows the exact proportion of pattern i traffic from 
each of the pick-up area identified by ai1 to the drop-off area ai2. In particular, it is seen that ai1 

is very similar to ai2 for i = 1, 3, 4. This observation suggests that our TFM-cp model may offer 
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Figure 8. Estimated Factor 1 for business-day series in the 3-months business-day period from 1 January 2011 to 31 
March 2011. Vertical lines mark the end of business week.

24                                                                                                                                                       Han et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkae036/7675340 by Library H
ealth Sci (C

I) user on 29 August 2024

http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae036#supplementary-data
http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae036#supplementary-data


better intuitive understanding as it aligns with the expectation that most taxi traffic activities are 
likely confined within specific areas. This comparison further underscores the distinct analytical 
insights offered by the TFM-cp model in capturing the spatial–temporal dynamics of urban taxi 
traffic.

For the nonbusiness-day series, the estimated loading vectors (a11, . . . , a41) (related to pick-up 
locations), (a12, . . . , a42) (related to drop-off locations), (a13, . . . , a43) (on the hour of day dimen
sion), and the estimated factors (w1f1t, . . . , w4f4t) are showed in Figures 9, 10, Table 2, and 
Figure 11, respectively. Understandably, the morning rush hour pattern in the business-day series 
(Factor 2) disappears here but the night-time pattern (Factor 1) now lasts deep into the early hours, 
comparing Tables 1 and 2. From Figure 11, it is seen that there exist two different yearly seasonal 
patterns. Factors 3 and 4 are similar to that of business-day series, with small volumes in the sum
mer and fall, again confirming that the use of taxi service is relatively low when the weather is good 
for walking in the city. On the other hand, the volume of Factor 2 is typically small in the winter 
time. The volumes of night-life pattern in Factor 1 remain to be volatile. It has many small-value 
outliers, mostly on the day before a business day (Sundays or the end of holiday.) These can be seen 
more clearly in the more detailed Figure 12, which shows the estimated factors of all the nonbusi
ness days in Year 2011 (year 3), with vertical lines indicating the day before a business day (dashed 
lines for Sundays and solid lines for Mondays of long weekend when Tuesday is the start of busi
ness week.) This is again intuitively understandable, because people tend not to stay out too late if 
they need to work the next day.

The pick-up and drop-off locations that heavily load on Factors 1, 3, 4 are similar to that for 
Factors 1, 3, 4 in the business-day series. The daytime hours load on Factors 3 and 4, and the 
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Figure 9. Loadings on four pick-up factors for nonbusiness-day series.
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Figure 10. Loadings on four drop-off factors for nonbusiness-day series.
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Table 2. Estimated four loading vectors ai3 ∈ R24 (i = 1, . . . , 4) for hour of day mode

0 to 24 2 4 6 8 10 12 2 4 6 8 10 12

i = 1 10 10 9 7 3 1 1 1 1 2 2 3 3 3 3 3 3 4 5 5 5 5 5 6

i = 2 4 3 2 1 1 1 1 1 2 2 3 4 6 8 7 6 5 6 8 10 6 5 5 4

i = 3 2 1 1 1 0 0 1 2 3 6 7 8 8 8 8 8 7 6 6 5 4 3 2 2

i = 4 3 2 1 1 1 0 1 1 3 5 6 7 7 7 7 7 6 6 7 7 5 4 4 3

Note. Nonbusiness day. Values are in percentage.
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Figure 11. Estimated four factors for nonbusiness-day series.
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Figure 12. Estimated Factor 1 for nonbusiness-day series in Year 2011 with vertical lines indicating the day before a 
business day (dashed lines for Sundays and solid lines for Mondays of a long weekend.
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night life hours from 12a.m. to 4a.m. load on Factor 1. As for the second factor, it loads heavily 
on midtown area for pick-up, on the lower west side near Chelsea (with many restaurants and 
bars) for drop-off, on the afternoon/evening hours between 1p.m. to 8p.m. as the dominating 
periods.

We remark that this example is just for illustration and showcasing the interpretation of the pro
posed tensor factor model. Again we note that for the TFM-tucker model, one needs to identify a 
proper representation of the loading space in order to interpret the model. In R. Chen et al. (2022), 
varimax rotation was used to find the most sparse loading matrix representation to model inter
pretation. For TFM-cp, the model is unique hence interpretation can be made directly. 
Interpretation is impossible for the vector factor model in such a high-dimensional case.

7 Discussion
In this paper, we propose a tensor factor model with a low-rank CP structure and develop its cor
responding estimation procedures. The estimation procedure takes advantage of the special struc
ture of the model, resulting in faster convergence rate and more accurate estimations comparing to 
the standard procedures designed for the more general TFM-tucker, and the more general tensor 
CP decomposition. Numerical study illustrates the finite sample properties of the proposed estima
tors. The results show that HOPE uniformly outperforms the other methods, when the observa
tions follow the specified TFM-cp.

The HOPE in this paper is based on CP decomposition of the second moment tensor 
Σh =

􏽐r
i=1 λi( ⊗K

k=1 aik)⊗2, an order 2K tensor. The intuition that higher order tensors tend to 
have smaller coherence among the CP components leads to the consideration of using higher order 
cross-moments to have more orthogonal CP components. For example, let the mth cross moment 
tensor with lags 0 = h1 < · · · < hm be

Σ(m)
h1···hm

= E ⊗m
j=1X t−hj

􏽨 􏽩
.

When the factor processes fit, i = 1, . . . , r are independent across different i in TFM-cp, a naive 4th 
cross moment tensor to estimate aik is

Σ(4)
h1h2h3h4

− Σ(2)
h1h2

⊗ Σ(2)
h3h4

− E[X t−h1
⊗ X∗

t−h2
⊗ X t−h3

⊗ X∗
t−h4

] − E[X t−h1
⊗ X∗

t−h2
⊗ X∗

t−h3
⊗ X t−h4

]

=
􏽘r

i=1

λ(4)
i,h1h2h3h4

( ⊗K
k=1 aik)⊗4, 

with {X∗
t } being an independent coupled process of {X t} and when hj = (j − 1)h,

λ(4)
i,h1h2h3h4

= E
􏽙3

j=0

fi,t−jh − [Efi,tfi,t−h]2 − [Efi,tfi,t−2h]2 − [Efi,tfi,t−h][Efi,tfi,t−3h].

This naive 4th cross moment tensor has more orthogonal CP bases. In light tailed case, simu
lation shows that it is much worse than the second moment tensor, due to the reduced signal 
strength λ(4)

i,h1h2h3h4
. However, for heavy tailed and skewed data, this procedure would be help

ful. It would be an interesting and challenging problem to develop an efficient higher cross mo
ment tensor to improve the statistical and computational performance. We leave this for future 
research.

Our primary consideration was directed towards the CP factor model in a time series setting, 
as the need of effectively analysing tensor time series has arisen in many applications, and CP 
factor model is an efficient approach for such analysis. Without a specified (parametric) model 
for the latent factor processes (an topic currently under investigation), we focus on the auto
covariance and autocross-moment tensor for effective estimation of the proposed model. 
This is the main contribution of the paper. However, the proposed cPCA and ISO can be 
used directly in or be extended to many other problems involving CP decomposition of certain 
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type of tensors. For example, in many problems where higher order moments can be intro
duced to reduce incoherence, the cPCA and ISO algorithms may offer better initialization 
and outperform conventional tensor power iteration methods. One specific example is the kur
tosis tensor in independent component analysis in Auddy and Yuan (2023a). Another possible 
extension is highlighted in Remark 12 where we pointed out how cPCA can be modified to deal 
with situations when a few leading singular values of the autocross-moment tensor are the 
same.
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