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Abstract—We present a new approach to unsupervised shape
correspondence learning between pairs of point clouds. We make
the first attempt to adapt the classical locally linear embedding
algorithm (LLE)—originally designed for nonlinear dimension-
ality reduction—for shape correspondence. The key idea is to
find dense correspondences between shapes by first obtaining
high-dimensional neighborhood-preserving embeddings of low-
dimensional point clouds and subsequently aligning the source and
target embeddings using locally linear transformations. We demon-
strate that learning the embedding using a new LLE-inspired
point cloud reconstruction objective results in accurate shape
correspondences. More specifically, the approach comprises an
end-to-end learnable framework of extracting high-dimensional
neighborhood-preserving embeddings, estimating locally linear
transformations in the embedding space, and reconstructing shapes
via divergence measure-based alignment of probability density
functions built over reconstructed and target shapes. Our ap-
proach enforces embeddings of shapes in correspondence to lie in
the same universal/canonical embedding space, which eventually
helps regularize the learning process and leads to a simple nearest
neighbors approach between shape embeddings for finding reliable
correspondences. Comprehensive experiments show that the new
method makes noticeable improvements over state-of-the-art ap-
proaches on standard shape correspondence benchmark datasets
covering both human and nonhuman shapes.

Index Terms—Implicit correspondence learning, locally linear
transformations, point cloud reconstruction, probability density
functions, unsupervised shape correspondence.

I. INTRODUCTION

T
HE shape correspondence learning problem is fundamen-

tal to geometry processing and computer vision and has

been used as a key component in many downstream applications
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such as deformation modeling [1], texture mapping [2], and

medical imaging [3], to name a few.

Dense correspondences between a pair of shapes can be

established by measuring the similarities of extracted feature

descriptors. Traditional approaches have identified a set of

geometric feature descriptors, including extrinsic and intrinsic

descriptors [4], [5], [6], [7], [8], [9]. However, these handcrafted

descriptors often lead to inaccurate and time-consuming solu-

tions. More recently, we have seen the emergence of data-driven

approaches built upon modern machine learning techniques

that learn the optimal features directly from massive shape

pair datasets [10], [11], [12], [13], [14], [15]. However, the

major dissatisfaction here is a need for supervised learning,

which relies on a sufficient number of labeled training pairs

of high-quality ground truth correspondences, which are known

to be scarce and difficult to obtain. By contrast, the unsuper-

vised approaches [16], [17], [18], [19], [20] seek to remove

the dependency on ground truth correspondence by employ-

ing autoencoder-inspired architectures, where they construct

the deformation between a pair of shapes and leverage point

reconstruction to learn suitable features for measuring the simi-

larities between shapes. However, most of them suffer from the

nontrivial optimization of the deformation and reconstruction,

thus often requiring additional regularization or constraints, e.g.,

cycle consistency [21] and local smoothness [19], and usually

achieving limited generalization performance.

In this article, we present a new unsupervised learning

framework for shape correspondence between pairs of point

clouds. Inspired by the classical locally linear embedding

(LLE) algorithm [22] initially used for nonlinear dimension-

ality reduction, we make the first attempt to adapt this con-

cept for shape correspondence. LLE succeeds in exploiting

the local euclidean geometry of manifolds to approximately

preserve the local euclidean geometry within neighborhoods.

In a similar manner, because a point cloud shape is usu-

ally a sampled version of a smooth manifold, it is desirable

to learn shape embeddings capable of capturing the under-

lying structure of the manifold. Our method achieves this

by learning high-dimensional neighborhood-preserving embed-

dings of low-dimensional shapes such that nearby and cor-

responding points fall close to each other in both the high-

dimensional embedding space and in the low-dimensional input

space.
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Fig. 1. Given the source and target shapes (X and Y) as input: 1) We first project the low-dimensional point cloud coordinates into the high-dimensional
embedding space; 2) we align feature embeddings of X and Y by computing the optimal locally linear transformation that can best cross-reconstruct each feature
embedding of X using its top-K nearest neighbors (red color) in the embedding space of Y; 3) we associate the embeddings of these neighbors to their original

point cloud coordinates and further leverage the reconstruction weights of the optimal transformation to reconstruct a shape Ŷ sharing the same point indices to X
(both in blue color); and 4) the embedding network can be optimized by minimizing the divergence between Ŷ and Y .

Another point of departure is that in recent approaches like

functional maps, non-rigid deformations between shapes are

expected to become linear transformations once shapes are pro-

jected into a higher-dimensional embedding space. Essentially,

point-to-point correspondences between shapes are generalized

as a linear map between the corresponding function spaces [23].

It is worth emphasizing that our approach is fundamentally

different from the functional map-based approaches [14], [23].

These approaches interpret the basis as the embedding for each

shape and represent the mapping between a pair of shapes as

a change of basis matrix, by applying a global linear transfor-

mation to every shape point. By contrast, our approach treats

maps between shapes as locally linear transformations between

embeddings, where each shape point has its own linear transfor-

mation computed from local neighboring regions. The locally

linear transformations succeed in identifying the underlying

structure of the shape manifold by enforcing embeddings of

shapes in correspondence to lie in the same universal/canonical

embedding space, which eventually helps regularize the learning

process and leads to a simple nearest neighbors approach for

finding reliable correspondences.

We achieve our goals through the following steps, all

driven by the idea of marrying LLE and the construction of

high-dimensional nonlinear embeddings of point cloud shapes

(Fig. 1). Assume we have a nonlinear embedding structure taking

a low-dimensional point cloud and returning a high-dimensional

embedding, whose weights we seek to learn. Given two shapes

whose correspondence we seek, in the first step, we attempt to

cross-reconstruct each source point (in the embedding space)

from its nearest neighbors in the target point cloud embedding.

This step mirrors the first stage of LLE. Next, we take the

obtained reconstruction weights and cross-reconstruct a point

cloud shape (in the original low-dimensional space) from the

same set of nearest neighbors in the target point cloud (again

in the original low-dimensional space). We thereby obtain a

reconstructed point cloud in one-to-one correspondence with

the source point cloud but based on the nearest neighbors in

the target point cloud. We then minimize a suitable divergence

measure between the cross-reconstructed and target point clouds

with respect to the unknown weights of the nonlinear embed-

ding. Minimization of the cross-reconstruction error minimizes

the distance between the original and reconstructed point clouds,

and minimization of the divergence measure brings the cross-

reconstruction and target point clouds into register. In this way,

we build an unsupervised shape correspondence engine capable

of end-to-end learning of nonlinear universal embeddings of

shape point clouds.

A. Contributions

In summary, our contributions are:
� A new perspective on finding dense correspondences be-

tween shapes as locally linear transformations in a high-

dimensional embedding space, as a superior way to reg-

ularize the embeddings of shapes in correspondence by

forcing them to lie in the same canonical embedding space
� An unsupervised shape correspondence learning frame-

work for extracting nonlinear shape embeddings that pre-

serve distances within local neighborhoods, estimating

locally linear transformations in the embedding space, and

reconstructing shapes via the alignment of probability den-

sity functions (PDFs) built over reconstructed and target

shapes
� A divergence measure for bringing the cross-reconstructed

and target shape PDFs into register, which shows improved

performance over popular Chamfer distance (CD) and

Earth mover’s distance (EMD) measures
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� A significant improvement compared to existing state-of-

the-art methods on standard benchmarks covering both

human and nonhuman shapes.

Comprehensive experiments show that the new method makes

substantial improvements while showing strong model gener-

alization across datasets with efficient training and inference.

More importantly, the proposed idea could be useful for match-

ing problems in other modalities such as images and meshes

and cross-modality matching problems such as images to point

clouds, and is potentially a promising approach for other tasks

requiring the application of manifold learning concepts.

II. RELATED WORK

A. Shape Correspondence and Matching

Axiomatic Methods: Early efforts at representing correspon-

dence (before the deep learning era) used the inexact weighted

graph matching formulation with a permutation matrix and

outliers for correspondence representation [24], [25], [26],

which is further followed by simultaneous pose and correspon-

dence estimation. Simpler (but not necessarily better) meth-

ods such as Iterative closest point (ICP) [27] and Chamfer

matching (CM) [28] started seeing deployment, followed by

the emergence of the Earth mover’s distance (EMD) [29] and

transportation-based distance measures. Simultaneously, soft

correspondences via softassign [30], [31], [32] for both linear

assignment and quadratic assignment alternatively estimated the

transformations and updated the explicit point-to-point corre-

spondence. Coherent Point Drift (CPD) [33] is similar to Robust

Point Matching (RPM) [32] and used Gaussian radial basis func-

tions (GRBF) instead of thin-plate splines (TPS) for non-rigid

deformations. RPM L 2 E [34], [35] leveraged the L 2 E estimator

for estimating transformations bootstrapped from shape con-

texts [36]. Later, point cloud density estimation approaches [37],

[38], [39], [40] appeared coupled with distances between density

functions optimized w.r.t. the unknown spatial transformation

without establishing explicit point correspondence. Represen-

tative approaches include KC [38], GMMReg [39], [40], and

CS [41], to name a few.

The functional map was introduced in the pioneering work

of Ovsjanikov et al. [23] for solving non-rigid shape matching

by avoiding the direct estimation of point-to-point correspon-

dence and instead deploying linear transformations between the

functional spaces of shapes, followed by subsequent extensions

such as [17], [42], [43], [44], [45], [46]. Meanwhile, we have

also witnessed progress in the unsupervised functional map

approaches [17], [21], [47] that consider structural penalties on

the inferred maps, e.g., bijectivity or orthogonality. Recently,

Diff-FMaps [14] interprets the eigendecomposition based on

the Laplace-Beltrami Operator (LBO) as higher-dimensional

embeddings of shapes. More importantly, it demonstrated that

learning a canonical embedding is a nontrivial problem, and

splitting the correspondence learning into two parts (invariant

embedding + linear transformation) is beneficial in regularizing

embedding learning in challenging settings.

Machine Learning Methods: 3D-CODED [16] and Elemen-

tary [48] matched the deformable shapes by jointly encoding

shapes and correspondences via deforming templates. Corr-

Net3D [18] exploited DGCNN [49] to project shapes into a

high-dimensional feature space. They enforced unsupervised

feature learning by constructing a symmetric deformer for point

cloud reconstruction. More recently, LoopReg [50] presented a

novel end-to-end framework for fitting the parametric models to

3D scans of articulated humans via a self-supervised differen-

tiable loop and demonstrated improved registration accuracy.

Following [51], the authors proposed a novel optimization-

based paradigm for 3D human model fitting where vertices

are iteratively displaced towards the predicted body surface

using standard gradient descent. Deep Shells [52] improved the

popular smooth shells approach [53] by introducing an end-

to-end trainable deep network and learning optimal local fea-

tures based on entropy regularized optimal transport. Trappolini

et al. [54] proposed a transformer-based framework to estimate

the transformation between point cloud shapes efficiently. Neu-

roMorph [55] simultaneously addressed the problems of shape

correspondence and interpolation. In [56], the authors proposed

a novel framework for learning a reduced set of deformation

parameters using mesh-free approximations and incorporating

desirable first-order regularizations.

Particularly, DPC [19] demonstrated a self- and cross-

reconstruction framework to learn the latent affinity via a sim-

plified point reconstruction, which is completely different from

existing encoder-decoder frameworks [16], [18] regressing or-

dered point clouds to determine matching points. DPC nor-

malized the similarity of each feature embedding’s K-nearest

neighbors via softmax and cross-reconstructed a shape using the

corresponding input points and similarity scores. An additional

mapping loss and self-reconstruction have to be included to

impose smooth constraints, otherwise, the performance of DPC

drops significantly (and please see their ablation study on design

choices). In this paper, we focus on learning LLEs capable of

capturing the underlying structure of the shape manifold, with

the main goal to find a proper design of the embedding via

leveraging local neighborhood relations. Our method simulta-

neously learns the embedding and optimal locally linear trans-

formation using the LLE-inspired first-stage method and point

reconstruction. Consequently, the cross-reconstruction of the

source shape using target points gets an implicit regularization

via the close relationship to the reconstruction of the source’s

high-dimensional embedding counterparts. We conjecture that

this is exactly what is missing in DPC and hence explains our

superior performance using just cross-reconstruction.

B. Shape Descriptor and Feature Learning

The shape analysis community has actively investigated ex-

tracting descriptors and feature maps from shapes to capture

geometric properties around the neighborhood of points of in-

terest. A detailed discussion of classic hand-crafted descriptors

can be found in [57], [58].

Hand-crafted Descriptors: Early attempts focused on invari-

ance under a global spatial transformation, e.g., a rigid motion,

as shown in shape contexts [36], spin image [4], and mul-

tiscale local feature [59]. The community has then extended
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these methods to the nonrigid case by considering geodesic

distances and conformal factors [60], [61]. Later, diffusion ge-

ometry [62] established invariant metrics based on eigenvalues

and eigenvectors of the Laplace-Beltrami operator obtained

from shapes, showing significantly more robustness compared to

the geodesic counterparts [63], [64]. Follow-ups include global

point signature (GPS) [7], heat kernel signature (HKS) [8], wave

kernel signature (WKS) [9] and the complex wave representation

(CWR) [65].

Data-driven Descriptors: The data-driven feature descriptors

have shown their advantages over the hand-crafted features in

robustness and efficiency. The bag-of-features (BoF) descriptor

extracted the frequency histograms of geometric words from

shapes [66]. In [67], a robust and invariant point signature is

learned from the contextual 3D neighborhood information of

salient points for shape matching. Recently, the community has

started to extract deep features from shapes in a data-driven

fashion. For example, GCNN captured invariant shape features

from triangular meshes [68]. PointNet [69] showed that the

learned features could be used to compute shape correspon-

dences. FMNet [44] leveraged a Siamese residual network [70]

for descriptor learning. SplineCNN [71] introduced a novel

convolution operator based on B-splines to filter the geometric

input efficiently. DeepGFM [72] used KPConv [73], a classic

point cloud convolutional filter, to extract robust shape features.

Our approach belongs to the class of data-driven approaches.

To the best of our knowledge, our approach is the first attempt

to adapt the classic LLE algorithm for unsupervised shape cor-

respondence learning into an end-to-end learnable framework.

Correspondence is determined via nearest neighbor searches

once we learn such discriminative feature representations.

III. LOCALLY LINEAR EMBEDDING

Before describing the proposed approach, we provide a back-

ground on the classic LLE framework [22]. Given input point

features, LLE has three steps: first, it identifies K nearest neigh-

bors for each point; second, it uses least-squares to compute the

weights for reconstructing each point from its nearest neighbors;

and third, it reuses the same set of weights and computes the

embedding of each point in a low-dimensional space. Specifi-

cally, let P = {pi ∈ R
D|i = 1, . . . , N} denote the input point

set. LLE builds a K-nearest neighbors (KNN) graph over P by

measuring the pairwise euclidean distance and removing self-

loops from the graph. Denoting pik ∈ R
D as the k-th nearest

neighbor of point pi, we obtain the LLE reconstruction weights

by solving

minimize
W

E(W ) =

N
∑

i=1

∥

∥

∥pi −
K
∑

l=1

wikpik

∥

∥

∥

2

2

subject to

K
∑

k=1

wik = 1, ∀i ∈ {1, . . . , N}, (1)

where R
N×K � W := [w1, . . . ,wN ]T denotes the recon-

struction weights, and R
K � wi := [wi1, . . . , wiK ]T denotes

the weights associated to the KNN neighbors {pik}Kk=1 for

reconstructing point pi. The sum-to-one weight constraint
∑K

k=1 wik = 1 leads to the specific properties—each point pi

is invariant to rotations, translations, and rescalings of itself

and its nearest neighbors [22]. The optimal W can be found

by solving a constrained least squares problem as detailed in

Appendix A, available online. Given the optimal W , LLE

further finds the lower-dimensional embeddings of input points

denoted as Q = {qi ∈ R
D2 |i = 1, . . . , N}, D2 � D, by solv-

ing a sparse eigenvalue problem [22].

IV. LTENET

Having briefly summarized LLE, we introduce our novel

approach to unsupervised shape correspondence learning called

LTENet—Locally Linear Transformation based Embedding

Networks. To the best of our knowledge, this is the first at-

tempt at introducing an LLE-inspired algorithm that represents

maps between pairs of shapes as locally linear transformations

while simultaneously deploying an LLE shape reconstruction

objective to optimize nonlinear embeddings towards the same

universal/canonical space. In this section, we first define the

shape correspondence problem. We then introduce the dovetail-

ing of locally linear transformations with novel LLE point cloud

reconstructions for learning both the optimal transformation

and embedding. Finally, we describe the divergence measure

between the cross-reconstructed and target point clouds. The

pipeline of LTENet is summarized in Fig. 2.

A. Problem Definition and Objectives

Let point clouds R
N×3 � X := [x1, . . . ,xN ]T and R

N×3 �
Y := [y1, . . . ,yN ]T denote the source and target shapes, re-

spectively, where xi,yj ∈ R
3 and N is the number of points.

Our goal is to find a point-to-point correspondence or map

defined as TXY : X → Y such that every point xi in X has its

corresponding point yj∗ := TXY(xi) in Y , where 1 ≤ i, j∗ ≤
N . Inspired by LLE [22], the proposed LTENet leads to suit-

able embeddings for shape correspondence that preserve the

local configurations of nearest neighbors. From a high-level

perspective, it shares a similar spirit with the LBO operator

which relies on preserving distances between nearby points.

While the LBO operator is usually constructed over point cloud

coordinates, LTENet operates on nonlinear feature embeddings

obtained from deep neural networks, which are more robust and

efficient to compute. It is worth mentioning that the proposed

approach directly takes raw point cloud coordinates as the input

without requiring any point connectivity information.

B. Optimal Locally Linear Transformations

GivenX andY , we extract their nonlinear feature embeddings

FX ,FY ∈ R
N×D, respectively, via a neural network F . This

allows us to transition from the point cloud coordinates (RN×3)

to a higher dimensional embedding space (RN×D)where finding

shape correspondence is more likely to be successful as demon-

strated by the functional map paradigm [23].

To align FX and FY , we must find a transformation be-

tween them while also jointly optimizing F to obtain suitable
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Fig. 2. Pipeline overview of LTENet: 1) Extract nonlinear shape embeddings FX and FY , given X and Y; 2) select top-K neighbors for each feature embedding
fX
i

based on the cosine similarity between FX and FY ; 3) estimate the locally linear transformations following (2) and (3) to best reconstruct FX using FY and

denoted as F Ŷ ; 4) reconstruct a shape Ŷ following (6); 5) learn the embedding network F via minimizing the divergence DCS(P (Ŷ), P (Y)); and 6) determine
the correspondence using nearest neighbors between embeddings.

embeddings for estimating shape correspondence. Recall that

(1) in LLE is able to approximate the original input points

using the LLE reconstruction weights and nearest neighbors.

Denote F Ŷ ∈ R
N×D as the feature embeddings obtained by

applying the transformation toFY to achieve the alignment, i.e.,

FX ≈ F Ŷ . Given all fX
i ∈ FX and fY

j ∈ FY , we implement the

transformation by first considering

minimize
W XY

E(W XY) =
N
∑

i=1

∥

∥

∥fX
i −

∑

l∈NY(fX
i )

wXY
i,l f

Y
l

∥

∥

∥

2

2

subject to
∑

l∈NY(fX
i )

wXY
i,l = 1, ∀i ∈ {1, . . . , N}, (2)

where NY(fX
i ) are all K indices of fX

i ’s nearest neigh-

bors in FY based on the cosine similarity. R
N×K � W XY :=

[wXY
1 , . . . ,wXY

N ]T denotes the reconstruction weights, and

wXY
i ∈ R

K stacks all the reconstruction weights wXY
i,∗ asso-

ciated to fX
i and NY(fX

i ). We then express each transformed

f Ŷ
i ∈ F Ŷ as

f Ŷ
i =

∑

l∈NY(fX
i )

wXY
i,l f

Y
l ≈ fX

i . (3)

As observed from (2) and (3), we make two unique modifications

compared to (1) of the original LLE paper: 1) We directly operate

on high-dimensional nonlinear feature embeddings rather than

raw input data, and 2) unlike LLE which reconstructs the input

data by picking nearest neighbors from itself, we conduct a

cross-reconstruction such that the feature embeddingsFX of the

source shape will select nearest neighbors from FY in the target

shape, which enforces embeddings of shapes in correspondence

to lie in the same universal/canonical embedding space.

Intuitively, (2) represents the spatial transformation between

shapes, e.g., a non-rigid transformation, in the input point space

as an equivalent locally linear transformation between FX and

FY . An optimal W XY implies that FX has been properly

reconstructed by F Ŷ using FY . Following LLE [22], [74], the

optimal W XY can be found by solving a constrained least

squares problem:

wXY
i =

(GXY
i + γI)−1

1

1
T (GXY

i + γI)−11
, (4)

where I is the identity matrix and 1 ∈ R
K×1 is the matrix filling

all elements with one. GXY
i denotes the Gram matrix defined as

R
K×K � GXY

i := (fX
i 1

T − ηY
i )

T (fX
i 1

T − ηY
i ), (5)

whereηY
i ∈ R

D×K stack all feature embeddings of theK neigh-

bors of fX
i found in FY . Adding γI to (4) leads to numerically

stable solutions by avoiding the possible singularity of GXY
i

[74], [75]. This also links our work to Robust LLE with an �2
norm-based regularization (see Appendix A, available online for

details).

C. Learning Canonical Embeddings

The cross-reconstruction weights W XY allow us to represent

FX in terms of FY . However, this does not necessarily imply

W XY will lead to a better embedding network F suitable

for shape correspondence. To show that, we observe that the

closed-form expression of W XY only depends on the Gram

matrix GXY , where each GXY
i is constructed based on the

feature difference between fX
i and ηY

i . Therefore, the optimal

W XY essentially relies on FX and FY . W XY is optimal in

terms of the reconstruction of FX using FY but is not optimal

for shape correspondence if no additional optimization step is

applied.

To properly train the embedding network, we asso-

ciate the high-dimensional embeddings to the original low-

dimensional point cloud coordinates. Specifically, observing

f Ŷ
i =

∑

l∈NY(fX
i ) w

XY
i,l f

Y
l ≈ fX

i , we can interpret each feature

embedding fX
i or f Ŷ

i as a linear combination of a few basis

elements {fY
l |l ∈ NY(fX

i )} with the associated coefficients
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Fig. 3. Visualization of reconstructed point clouds of the proposed LTENet. We obtain the reconstructed shapes in cross-reconstruction (X̂ and Ŷ) and self-

reconstruction (X̃ and Ỹ) from models at different training epochs. Starting from random initialization on the embedding network, it is clear that the reconstructed
shapes are getting closer to the source and target shapes X and Y as the training progresses.

{wXY
i,l |l ∈ NY(fX

i )}. Using the same coefficients, we could

reconstruct the low-dimensional point ŷi ∈ R
3 for each f Ŷ

i ,

which gives

ŷi =
∑

l∈NY(fX
i )

wXY
i,l yl (6)

where yl ∈ Y is the point associated to fY
l . We then obtain

R
N×3 � Ŷ := [ŷ1, . . . , ŷn]

T , interpreted as the linearly recon-

structed shape for F Ŷ in the basis elements (point coordinates)

of Y . The indices of Ŷ are in exact one-to-one correspondence

with the indices of X . Also, ŷi can be understood as a soft

correspondence of xi because the indices of {yl|l ∈ NY(fX
i )}

are the same indices of the top-K nearest neighbors of fX
i .

Because these neighbors are selected from FY with the highest

similarity to fX
i , the point yl associated to each neighbor could

be a candidate matching point of xi. If each point xi finds its

approximate matching point ŷi, we would expect Ŷ to be similar

to Y as the training progresses (Fig. 3). To this end, we can train

F by solving

minimize
F

E(F) = D(Ŷ,Y) (7)

where D(·, ·) defines a dissimilarity measure. Because Ŷ and X
share the same point indices while being different from those

of Y , we do not have an obvious one-to-one correspondence

between Ŷ and Y , e.g., ŷ1 probably does not correspond to y1,

and so on.

LLE Versus LTENet: LLE finds the embedded vector for

each input point by solving an expensive eigenvalue problem

(a projection from the high-dimensional input space to the

low-dimensional embedding space). In contrast, our approach

approximates source points via shape reconstruction using linear

combinations of nearest neighbor target point coordinates Y
and the (closed-form) weights W XY obtained from first stage

LLE. Unlike LLE, which is focused on identifying suitable

low-dimensional embeddings for high-dimensional input data,

LTENet establishes dense correspondences between shapes by

forcing a pair of shapes to lie on the same manifold. This is

achieved by our fully differentiable LTENet framework, which

pushes their embeddings towards a locally linearly invariant

space via maximizing the similarity between a shape and its

reconstructed counterpart. LTENet demonstrates a principled

approach by adopting the central concept of classic LLE for

shape correspondence. Next, we introduce a suitable distance

measure D(·, ·) for end-to-end training.

D. Implicit Correspondence Learning Via the Alignment of

PDFs

Most unsupervised approaches [19] adopt popular CD and

EMD measures to reconstruct point clouds, which are sensitive

to outliers or are computationally intensive. Point clouds are

quite often nothing but discrete samples of the underlying contin-

uous shapes and surfaces. Therefore, we instead represent point

clouds as probability density functions and seek to minimize a

divergence between reconstructed and original shapes. Formally,

given the shape X = [x1, . . . ,xN ]T , we represent an arbitrary

point x by its kernel (Parzen) density estimation (KDE) of the

PDF using an arbitrary kernel function K(·):

pX (x) =
1

N

N
∑

i=1

K

(

x− xi

σ

)

, (8)
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where σ is the bandwidth parameter. We choose the Gaussian

kernelGσ(x,y) =
1

(2πσ2)3/2
exp (− ‖x−y‖2

2

2σ2 ) in 3D as the kernel

function due to its nice properties: it is symmetric, positive

definite, and its value approaches zero when the point x moves

away from the center y while being controlled by a decay factor

determined by σ.

Inspired by [38], [39], [41], [76], we adopt the Cauchy-

Schwarz (CS) divergence [77], denoted as DCS(q, p), to mea-

sure the similarity between two density functions, which is

defined as

DCS(q, p) = − log

⎛

⎝

∫

q(x)p(x)dx
√

∫

q2(x)dx
∫

p2(x)dx

⎞

⎠

= − log

∫

q(x)p(x)dx+ 0.5 log

∫

q2(x)dx

+ 0.5 log

∫

p2(x)dx, (9)

which is symmetric for any two PDFs q and p such that 0 ≤
DCS < ∞ where the minimum is obtained iff q(x) = p(x). We

substitute Gaussian kernel PDF estimators for Y and Ŷ into

q(x), p(x), and make straightforward manipulations based on

the convolution theorem for Gaussian functions (see the detailed

derivation in Appendix B, available online), which gives

DCS(pŶ , pY) = − log

N
∑

j=1

N
∑

i=1

G√
2σ(ŷj ,yi)

+ 0.5 log
N
∑

j′=1

N
∑

j=1

G√
2σ(ŷj′ , ŷj)

+ 0.5 log

N
∑

i′=1

N
∑

i=1

G√
2σ(yi′ ,yi). (10)

Later, we will show that CS leads to better performance com-

pared to CD and EMD objectives by handling outliers using the

Gaussian kernels [78]. Specifically, the Gaussian kernelG is able

to mitigate the oversensitivity to outliers by suppressing large

distances between reference and reconstructed shape points. In

CD and EMD, these large distances due to outliers negatively

impact model training, leading to degraded performance. It is

worth mentioning that CS is closely related to graph cuts and

Mercer kernel theory [78].

Implementation of the CS loss: The CS divergence loss can

be implemented in PyTorch with a few lines of code. To handle

numerical issues, we leverage the Log-Sum-Exp trick as shown

in Algorithm 1.

E. The Training Objective

Similar to (2) and (6) using W XY to reconstruct FY and

Ŷ , we compute the reconstruction weights W YX to approx-

imate the original input shape X , which results in the re-

constructed shape R
N×3 � X̂ := [x̂1, . . . , x̂N ]T . In addition,

we approximate the original Y using W YY and Y , which is

a self-construction process to obtain the approximate shape

Algorithm 1: The CS Divergence Implemented in PyTorch.

# reconstructed target and target point

coordinates <- - B X N x 3 and B X N x 3

# bandwidth, the kernel bandwith <- - scalar

def gmm(rec_target, target, bandwidth):

# B X N x N x 3 <– B X N X 1 x C - B X 1 X N X C

diff_ij = (rec_target.unsqueeze(2) - target.

unsqueeze(1))

# B X N x N

factor = 2*bandwidth*bandwidth

# B X N x N

diff_ij = (diff_ij**2).sum(-1).div(factor).

mul(-0.5) - 0.5*math.log(2*math.pi) -

math.log(math.sqrt(2)*bandwidth)

dist = torch.logsumexp((diff_ij).reshape

(diff_ij.shape[0], -1),dim=1).mean()

return dist

def cs_divergence(rec_target, target, bandwidth):

r_t_dist = -1 * gmm(rec_target, target,

bandwidth)

r_r_dist = 0.5 * gmm(rec_target, rec_target,

bandwidth)

t_t_dist = 0.5 * gmm(target, target, bandwidth)

return r_t_dist + r_r_dist + t_t_dist

R
N×3 � Ỹ := [ỹ1, . . . , ỹN ]T . The approximation of X is sim-

ilarly expressed as R
N×3 � X̃ := [x̃1, . . . , x̃N ]T . The final

training objective is defined as

minimize
F

λcross(D(X̂ ,X ) +D(Ŷ,Y))

+ λself(D(X̃ ,X ) +D(Ỹ,Y))

+ λreg(Er(X , Ŷ) + Er(Y, X̂ )) (11)

where λcross, λself, and λreg are the hyperparameters to balance

different losses and D(·, ·) is the CS objective in (10). Er(·, ·) is

the optional smoothness term defined as the mapping loss [19],

which encourages points in Ŷ (or X̂ ) to remain close if their

one-to-one corresponding points in X (or Y) are close to each

other. Er(X , Ŷ) is defined as

Er(X , Ŷ) =
1

NK

N
∑

i=1

∑

l∈NX (xi)

vXŶ
i,l ‖ŷi − ŷl‖22 (12)

where NX (xi) is the euclidean neighborhood of xi in X of

size K, vXŶ
i,l = exp

−‖xi−xl‖22
α

where α is a hyperparameter

configured by following [19]. Er(Y, X̂ ) is similarly defined.

F. Test Phase

In the test phase, we obtain the correspondence for each

source point xi by selecting a point from the target shape whose

embedding is the nearest neighbor of xi’s embedding based on

the cosine similarity. This gives

TXY(xi) = yj∗ , j∗ = argmax
j∈{1,...,N}

(fX
i ) · (fY

j )
T

‖fX
i ‖2‖fY

j ‖2
. (13)
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Summary: We have presented the LTENet framework for unsu-

pervised shape correspondence learning, which unifies nonlin-

ear embeddings, LLE transformations in the embedding space,

point cloud reconstruction, and implicit correspondence learning

with the CS divergence. We consider the following analogy for

LTENet: CS divergences and top LLE transformations are to

shape correspondence as Kullback–Leibler (KL) divergences

and top linear classifiers are to classification. By doing so, we

are able to learn universal feature embeddings where corre-

spondences are directly obtained using nearest neighbors. This

is also analogous to the open-set classification problems where

we handle samples of unseen classes by comparing feature

distances between these samples and nearest neighbor trained

examples of seen classes.

V. EXPERIMENTS

In this section, we compare LTENet against recent state-of-

the-art approaches on several well-established datasets for shape

correspondence, and we conduct ablation studies.

A. Experimental Setup

Datasets: Following [18], [19], we conduct experiments

on standard datasets covering both human and nonhuman

shapes. For human shapes, we use the large-scale SURREAL

dataset [16] prepared by 3D-CODED [16], which leverages

SMPL [79] to generate a total of 230,000 samples. We select

arbitrary shapes as training pairs from SURREAL. We then

evaluate on the challenging SHREC-19 [80] containing 430

non-rigid shape pairs generated from 44 real human scans. For

non-human shapes, we adopt SMAL [81] and TOSCA [82] for

training and evaluation, respectively. SMAL provides the 3D

articulated parametric model for animals. We create a training

set of 10,000 shapes by generating 2,000 samples under each

animal category. We pair arbitrary shapes of the same category.

Similarly, we consider 41 animal figures out of the total 80

objects in TOSCA to match species in SMAL and generate 286

test shape pairs from the SMAL dataset accordingly.

Evaluation metrics: A common evaluation metric is the

geodesic distance error assuming a known point adjacency ma-

trix, which is unavailable in point clouds. Instead, we follow [19]

to calculate the correspondence error as

err =
1

N

N
∑

i=1

‖TXY(xi)− T gt
XY(xi)‖2. (14)

where TXY(xi), T
gt
XY(xi) denote the predicted and ground truth

correspondence of point xi w.r.t. Y and ‖ · ‖2 is the �2 norm of a

vector. Additionally, we use the error tolerance ε = r/distmax

coupled with a tolerant radius r, where distmax = max{‖yi −
yj‖2, ∀i, ∀j} denotes the maximal distance of all pairwise point

distances in Y . The correspondence accuracy under ε is defined

as

acc(ε) =
1

N

N
∑

i=1

1(‖TXY(xi)− T gt
XY(xi)‖2 < ε distmax),

(15)

TABLE I
ACCURACY AND ERROR

where 1 is the indicator function. We set different ε values

between 0% to 20%.

Implementation details: The proposed LTENet is not limited

to a specific model architecture for the embedding network F .

We followed DPC [19] to use the same variant of DGCNN [49] as

F , where its core component is the popular EdgeConv operator

that builds a dynamic graph over points for learning the feature

embeddings. We refer the reader to [49] for more details. Our

models were implemented in Pytorch [83]. We used the AdamW

optimizer [84] with an initial learning rate of 0.0003, momentum

0.9, and weight decay of 0.0005. We used a cosine decay learning

rate scheduler for 300 epochs and 10 epochs of linear warm-up.

We trained models with a batch size of 8 on a server equipped

with AMD EPYC ROME microprocessors and NVIDIA A100

GPUs.

Baseline methods: We consider recent state-of-the-art unsu-

pervised shape correspondence learning approaches (DPC [19]

and CorrNet3D [18]) as competitive baselines. We compare

against supervised approaches, including Diff-FMaps [14], 3D-

CODED [16], and Elementary Structures [48], and mesh-based

approaches, including the unsupervised SURFMNet [17] and

the supervised GeoFMNet [72].

B. Results on Human Datasets

We explored two training and evaluation settings. For a fair

comparison, we followed DPC [19] to train our models by

selecting the first 2000 shapes out of the total 230,000 samples

in SURREAL and evaluated on the official 430 SHREC pairs

(SURREAL/SHREC). We also trained models on random pairs

generated from SHREC and evaluated on the same test pairs

(SHREC/SHREC).

Quantitative evaluation: Table I summarizes the acc at 1%

error tolerance, indicating a near-perfect correspondence match-

ing and average correspondence error err. On SHREC/SHREC,

we achieved a competitive performance against DPC. On SUR-

REAL/SHREC, we outperformed all baseline models. Specifi-

cally, SURFMNet [17] and GeoFMNet [72] achieved impressive

performance. However, they require the expensive computation

of the LBO basis and complex test-time post-processing [27],
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Fig. 4. (Left) The correspondence accuracies under different error tolerance values in the SURREAL/SHREC setting. Our method achieves better performance
compared to the state-of-the-art DPC. (Right) Visual examples of SHREC test pairs. DPC contains outlier matches, e.g., wrongly matching hands to thighs or feet
to hands. LTENet generates more accurate and smoother predictions.

Fig. 5. (Left) The correspondence accuracies under different error tolerance values in the SMAL/TOSCA setting. Our method substantially improves the
correspondence accuracies under all tolerance values. (Right) Visual examples of TOSCA test pairs. DPC suffers from prediction errors caused by the difficulty of
distinguishing between left and right or rear and front legs. Our method generates more accurate correspondence predictions closer to the ground truth correspondence
maps.

[85]. Our method achieved approximately 5× and 2.5× ac-

curacies compared to SURFMNet and GeoFMNet, respec-

tively, while showing a comparable run-time inference speed

to DPC [19], which is about 100× faster against SURFMNet

and GeoFMNet (see the table in DPC [19] for more details).

Diff-FMaps [14] suffers from over-fitting on training samples

without exploiting shape priors, e.g., local smoothness. Corr-

Net3D [18] shows improvements over 3D-CODED [16] and

Elementary Structures [48] but requires nontrivial optimization

in the Sinkhorn-inspired DeSmooth module and the decoder,

which limits its generalization performance. DPC [19] is the

current state-of-the-art method using learning the latent affinity

via a simplified point reconstruction. Our LTENet achieved the

best acc of 20.7% and the lowest err of 5.8, which significantly

exceeds the accuracy of DPC by 17.0% and reduces the error by

4.9%. The accuracies in Fig. 4 (left) indicate that we achieved a

clear improvement, especially for almost-perfect matching with

ε < 5%.

Qualitative evaluation: We provide visual examples in Fig. 4

(right), showing the clear improvement made by LTENet (see

more results in the appendix, available online). Additional visual

examples using texture transfer can be found in Figs. 10 and 11.

C. Results on the Nonhuman Datasets

We trained models on the SMAL dataset and evaluated on the

unseen TOSCA dataset that contains animal objects with diverse

poses (SMAL/TOSCA).

Quantitative evaluation: As shown in Table I, LTENet

achieved the best performance on SMAL/TOSCA in terms of the

acc at 1% and err. The significant pose and shape differences be-

tween SMAL and TOSCA impact 3D-CODED and Elementary

Structures relying on a single standard template, e.g., a standing

cat. They struggle to handle shapes in different categories and

various poses in the TOSCA test pairs. The proposed LTENet

achieves an acc of 38.1% at 1% error, obtaining an increase

of 4.3% in absolute accuracy compared to DPC’s best acc of

33.8%. The detailed correspondence accuracy under different

error tolerance values can be found in Fig. 5 (left), which shows

that our method obtains a substantial improvement over other

methods.

Qualitative evaluation: Fig. 5 (right) provides some visual

results on the TOSCA test pairs, which verify that our method

could generate more accurate correspondence predictions. More

results can be found in the appendix, available online.
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Fig. 6. Evaluation of correspondence prediction of TOSCA test point clouds in the SMAL/TOSCA setting with additional noise. From (a) to (c), we gradually
add stronger Gaussian noise with zero means and larger standard deviations, i.e., 0.001, 0.005, 0.01, to source shapes. Our method demonstrates its resilience
against noise.

TABLE II
ABLATION STUDY ON ROTATIONS, SYMMETRIC (LEFT–RIGHT) FLIPS AND

ROTATIONAL (FRONT–BACK) FLIPS

D. Model Robustness Under Rotations, Symmetric and

Rotational Flips

We test the model robustness of our LTENet against rotations,

symmetric (left–right) flips, and rotational (front–back) flips.

We conduct the ablation study under the SURREAL/SHREC

setting. For the rotation experiment, given a pair of shapes, we

rotate the target shape by different rotation matrices along three

axes {x, y, z}, each with a fixed degree, e.g., ±10,±20, or ±30.

For example, rotations {±10,±10,±10} in Table II indicate

that there are eight rotation matrices as each axis can be rotated

by +10 or −10. Regarding the symmetric (left–right) flips, or

rotational (front–back) flips, we apply the flip transformation

matrices that negate the coordinate in the corresponding axis for

left–right or front–back and preserve the others.

As can be seen in Table II, our approach demonstrates some

robustness against certain rotations. For example, when the ro-

tations are {±10,±10,±10}, the performance of our approach

degrades by a small margin with an absolute accuracy reduction

of 0.5% and an absolute error increase of 0.2. However, our

model is not robust against symmetric (left–right) flips and rota-

tional (front–back) flips, which we initially expected because we

built our feature extractor based on a variant of DGCNN [49]

that is not rotation-invariant and symmetry-aware. We highly

encourage a future investigation on extending our approach

along this direction [86], [87].

E. Model Robustness Under Presence of Noise

We investigate the robustness of the learned embeddings by

perturbing the test dataset with Gaussian noise in the setting

of SMAL/TOSCA, which is particularly challenging due to

the presence of noise that ruins the underlying shape structure.

Specifically, we select DPC as the competitive baseline. For

the test samples from the TOSCA dataset, we add Gaussian

noise with zero means and different standard deviations, i.e.,

0.001, 0.005, 0.01 to source shapes.

As can be seen in Fig. 6, our approach outperforms the state-

of-the-art DPC in terms of correspondence accuracy and shows

comparable performance in correspondence errors. Our method

demonstrates moderate resilience against noise. Added noise

heavily drops those correspondence accuracies under small error

tolerance, e.g., less than 5%. In a similar manner, the additional

experiment in the setting of SURREAL/SHREC can be found

in the appendix, available online.

F. Comparisons Between DPC and LTENet

Our LTENet highlights a novel approach to learning locally

linearshape embeddings capable of capturing the underlying

structure of the shape manifold, which we achieve by marrying

LLE with the construction of high-dimensional neighborhood-

preserving shape embeddings. We built our architecture follow-

ing the self- and cross-reconstruction framework in DPC [19].

Though both seek to learn good embeddings, our LTENet

encourages the best locally linear alignment between shape

embeddings without ambiguity via the closed-form expression

of reconstruction weights.

Table III demonstrates its benefit by summarizing our key re-

sults and additional results from the appendix of DPC, available

online. We clarify that Er (the smoothness term) is the same

mapping loss as in DPC. Due to DPC’s lack of a mechanism to

enforce local linearity of embeddings, Er is required in DPC for

better performance. Without this term, DPC suffers a significant

drop from an acc of 17.7% to 11.4%. Our LTENet significantly

outperforms DPC by enforcing a suitable manifold learning on

shape correspondence under the same setting.
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Fig. 7. Evaluation of correspondence prediction of the FAUST test point clouds provided in Diff-FMaps [14] without or with additional noise. Cumulative curves
with mean error in the legends. Without ground truth correspondence labels during the training, our model remains competitive or even outperforms some when
compared against model variants of Diff-FMaps. It also verifies the generalization capability of our developed method.

TABLE III
BENEFIT OF PURSUING LOCAL LINEARITY FOR EMBEDDING LEARNING

G. Evaluation on the FAUST Dataset

We further validate our method and demonstrate their general-

ization capability on the popular FAUST Dataset, via following

the training and evaluation of Diff-FMaps [14]. Specifically, we

directly evaluated our model trained in the SURREAL/SHREC

setting on the two test sets of point clouds sampled from the

100 shapes from the FAUST dataset with and without Gaussian

noise. It is worth noting that our model was originally trained

with shapes each with 1,024 points while the FAUST dataset is

1,000 points per test shape.

We compare our method against model variants of the fully

supervised Diff-FMaps [14] trained with ground truth corre-

spondence, while our method is unsupervised without ground

truth correspondence. In Fig. 7, “Diff-FMaps-Uni20” denotes

the competitive baseline using the universal embeddings in

the original paper via enforcing the optimal linear transfor-

mation to be identity. “Diff-FMaps” is the complete baseline

that predicts the correspondence after applying its predicted

linear transformation to the universal embeddings via the learned

descriptor network. “Diff-FMaps+Opt” is the model that ap-

plies the ground-truth linear transformation to the universal

embeddings.

Without ground truth correspondence labels during the train-

ing, our model remains competitive or even outperforms some

when compared against model variants of Diff-FMaps. It also

verifies the generalization capability of our developed method.

H. Evaluation on Real-World Data

Inspired by [18], [19], we further examine our ap-

proach on model generalization and robustness by visualizing

TABLE IV
ABLATION STUDY ON MODEL CHOICES

correspondence predictions between point cloud pairs sampled

from the behave dataset [88] captured in natural environments.

Specifically, we use the mesh at the first frame in each mesh

sequence to create the source point cloud by randomly sampling

1,024 vertices from its entire set of vertices. Similarly, we

create ten target point clouds using meshes at the first frame’s

subsequent frames (i.e., frame 2 to frame 11).

As seen in Fig. 8, despite these shapes’ significant pose

differences, our approach shows its resilience by producing

reliable correspondence results. It also verifies that our method

is not robust against symmetric (left–right) flips and rotational

(front–back) flips, which is also demonstrated previously in

Table II. A future investigation is encouraged to handle these

issues.

I. Ablation Study

We conduct the ablation study to evaluate the comparative

effectiveness of the different components in LTENet under

controlled experiments. All ablated versions were trained and

evaluated following the SURREAL/SHREC setting.

Choices of the model designs: We first analyze LTENet with

different design choices to control self- and cross-reconstruction

of LTENet: 1) LTENet (Self) only uses the self-reconstruction

of LTENet by setting λself = 1, λcross = 0; 2) LTENet (Cross)

only uses the cross-reconstruction of LTENet by setting λself =
0, λcross = 1; 3) LTENet (Self & Cross) uses both self- and

cross-reconstruction and removes the mapping loss for the

regularization; and (4) LTENet (CD) and LTENet (EMD) are

similar to the full model of LTENet in only replacing the CS

objective with popular CD and EMD. All results are summarized

in Table IV. It is clear that cross-reconstruction contributes most
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Fig. 8. Qualitative examples of correspondence predictions between point cloud pairs sampled from the behave dataset [88] captured in natural environments.
For each row, the left-most shape is the source shape and the remaining shapes are target shapes. We visualize the correspondence between the source shape and its
target shapes. Despite the significant differences in pose, our approach shows its resilience by producing reliable correspondence results. However, our approach
is not robust against the rotational (front–back) flips.

Fig. 9. (left) Model performance with different numbers of nearest neighbors; (right) Model performance with different kernel bandwidths. Choosing a suitable
bandwidth or number of nearest neighbors leads to better performance.

to the final performance and that CS leads to better performance

compared to CD and EMD.

Choices of the kernel bandwidth σ: As our CS objective

is closely relevant to a fixed-bandwidth KDE with Gaussian

kernels, it is important to choose a suitable bandwidth fitting the

underlying data distribution of the training dataset — either too

large or too small bandwidth values could lead to degraded per-

formance. As shown in Fig. 9 (right), we chose different band-

width values by setting σ = 0.01/9, 0.01/3, 0.01, 0.03, 0.09.

The results suggest that 0.01 is a suitable bandwidth, which

we used thereafter for LTENet. It is worth noting that we should

adjust the bandwidth accordingly when moving to a new dataset.

Number of nearest neighbors: Similarly, we can set dif-

ferent numbers of nearest neighbors for the locally linear

transformations, i.e., K = 5, 10, 20, 40. Fig. 9 (left) demon-

strates that K = 10 leads to better performance.

The impact of training sample size: We trained models by

increasing the training sample sizes from 2,000 to 230,000.

Table V summarizes the experimental results of training models

using different training samples. The experimental results show

TABLE V
ABLATION STUDY ON THE TRAINING SAMPLE SIZE

that 2,000 samples are sufficient. A subtle difference is found in

the slightly increased err when training models with 230,000

training samples, which we suspect is due to more training

samples that are symmetric and rotated being included in train-

ing, thus creating noisy training signals. Handling symmetry

of shapes remains an under-explored research area. For shape

correspondence though, there exist some attempts [86], [89],

which are promising.
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Fig. 10. Visual texture transfer examples of SHREC test pairs using checker pattern (top row) and color code (bottom row) textures. The experiment follows the
SURREAL/SHREC setting. The predicted maps from DPC [19] and our approach are used to pull a texture from the source shape to the target shapes and compare
against that using the ground truth maps. The proposed LTENet generates more accurate correspondence predictions compared to DPC.

Fig. 11. Typical failure example of SHREC test pairs using checker pattern (right) and color code (left) textures. The experiment follows the SURREAL/SHREC
setting. It indicates that both DPC and our method can not handle the rotational (front–back) flip.

The effect of embedding dimension: Given X and Y , we

extract their nonlinear feature embeddings FX ,FY ∈ R
N×D,

respectively, via a neural network F . The embedding dimension

D should be adjusted to achieve a balance between overfitting

and underfitting and efficiency. Table VI demonstrates that the

model of D = 512 gives a good generalization performance

while being efficient, which we used thereafter for LTENet.

VI. DISCUSSION

Our experimental results showed that LTENet achieves su-

perior performance compared to state-of-the-art unsupervised

shape correspondence methods. We attribute this to the learning

mechanism capable of capturing the underlying structure of

the manifold and fully exploiting the local euclidean geom-

etry of manifolds within local neighborhoods. Our approach

encourages the best locally linear alignment between shape

embeddings without ambiguity via the closed-form expression

of reconstruction weights. The local linearity used in our ap-

proach leads to implicit regularization and universal/canonical

embeddings between a pair of shapes in correspondence. We

demonstrated the performance gap of our learned embeddings,

with and without additional functional map-inspired globally

linear transformations, and showed consistent improvements

made by the additional linear transformations. We observed a

mismatch in that embeddings learned from an unsupervised
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TABLE VI
ABLATION STUDY ON THE EFFECTS OF EMBEDDING DIMENSION

shape correspondence method are not necessarily suitable to

be used as basis embeddings in the classic functional map

framework.

A. Limitations and Future Work

It has been demonstrated that shape correspondence ap-

proaches are struggling in disambiguating shape symme-

tries [19], [86], [89], [90]. In our work, we also observed the

symmetry issue—it leads to noisy training signals by wrongly

matching components between shapes, e.g., associating the left

hand in one human with the right hand in another human due to

their opposite orientations. Future work is suggested to handle

symmetry by exploiting priors on shapes to impose additional

regularization or constraints on embedding learning.

Many extensions of LLE, such as modified locally linear

embedding (MLLE) [91], LLE with geodesic distances [92], and

LLE with penalty functions [75], have been proposed to further

improve LLE. It is promising to incorporate these advanced

designs and adapt them to shape correspondence for better

performance. The discovered mismatch problem suggests that

further exploration of learning embeddings suitable for use as

bases in the functional map is a promising direction to establish

a unified shape correspondence framework, particularly in the

unsupervised learning setting.

In this work, we focus on the matching problem between point

cloud shapes. In the future, we propose to extend our method to

matching problems in other modalities, e.g., images and meshes,

and cross-modality matching problems, e.g., images to point

clouds.

VII. CONCLUSION

We have presented a novel approach to unsupervised shape

correspondence learning between pairs of point clouds. LTENet

is unique in that it introduces an LLE-inspired algorithm that

represents maps between these shapes as locally linear trans-

formations in the high-dimensional embedding spaces and

leads to the learning of universal/canonical embeddings for

shapes in correspondence. The embedding learning is driven

by minimizing a suitable divergence measure between the LLE

cross-reconstruction of source and target point clouds. Remark-

ably, LTENet achieves state-of-the-art performance on standard

benchmark datasets while showing strong model generalization

across datasets with efficient training and inference.
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