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Learning Canonical Embeddings for Unsupervised
Shape Correspondence With Locally
Linear Transformations
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Abstract—We present a new approach to unsupervised shape
correspondence learning between pairs of point clouds. We make
the first attempt to adapt the classical locally linear embedding
algorithm (LLE)—originally designed for nonlinear dimension-
ality reduction—for shape correspondence. The key idea is to
find dense correspondences between shapes by first obtaining
high-dimensional neighborhood-preserving embeddings of low-
dimensional point clouds and subsequently aligning the source and
target embeddings using locally linear transformations. We demon-
strate that learning the embedding using a new LLE-inspired
point cloud reconstruction objective results in accurate shape
correspondences. More specifically, the approach comprises an
end-to-end learnable framework of extracting high-dimensional
neighborhood-preserving embeddings, estimating locally linear
transformations in the embedding space, and reconstructing shapes
via divergence measure-based alignment of probability density
functions built over reconstructed and target shapes. Our ap-
proach enforces embeddings of shapes in correspondence to lie in
the same universal/canonical embedding space, which eventually
helps regularize the learning process and leads to a simple nearest
neighbors approach between shape embeddings for finding reliable
correspondences. Comprehensive experiments show that the new
method makes noticeable improvements over state-of-the-art ap-
proaches on standard shape correspondence benchmark datasets
covering both human and nonhuman shapes.

Index Terms—Implicit correspondence learning, locally linear
transformations, point cloud reconstruction, probability density
functions, unsupervised shape correspondence.

I. INTRODUCTION

HE shape correspondence learning problem is fundamen-
tal to geometry processing and computer vision and has
been used as a key component in many downstream applications
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such as deformation modeling [1], texture mapping [2], and
medical imaging [3], to name a few.

Dense correspondences between a pair of shapes can be
established by measuring the similarities of extracted feature
descriptors. Traditional approaches have identified a set of
geometric feature descriptors, including extrinsic and intrinsic
descriptors [4], [5], [6], [7], [8], [9]. However, these handcrafted
descriptors often lead to inaccurate and time-consuming solu-
tions. More recently, we have seen the emergence of data-driven
approaches built upon modern machine learning techniques
that learn the optimal features directly from massive shape
pair datasets [10], [11], [12], [13], [14], [15]. However, the
major dissatisfaction here is a need for supervised learning,
which relies on a sufficient number of labeled training pairs
of high-quality ground truth correspondences, which are known
to be scarce and difficult to obtain. By contrast, the unsuper-
vised approaches [16], [17], [18], [19], [20] seek to remove
the dependency on ground truth correspondence by employ-
ing autoencoder-inspired architectures, where they construct
the deformation between a pair of shapes and leverage point
reconstruction to learn suitable features for measuring the simi-
larities between shapes. However, most of them suffer from the
nontrivial optimization of the deformation and reconstruction,
thus often requiring additional regularization or constraints, e.g.,
cycle consistency [21] and local smoothness [19], and usually
achieving limited generalization performance.

In this article, we present a new unsupervised learning
framework for shape correspondence between pairs of point
clouds. Inspired by the classical locally linear embedding
(LLE) algorithm [22] initially used for nonlinear dimension-
ality reduction, we make the first attempt to adapt this con-
cept for shape correspondence. LLE succeeds in exploiting
the local euclidean geometry of manifolds to approximately
preserve the local euclidean geometry within neighborhoods.
In a similar manner, because a point cloud shape is usu-
ally a sampled version of a smooth manifold, it is desirable
to learn shape embeddings capable of capturing the under-
lying structure of the manifold. Our method achieves this
by learning high-dimensional neighborhood-preserving embed-
dings of low-dimensional shapes such that nearby and cor-
responding points fall close to each other in both the high-
dimensional embedding space and in the low-dimensional input
space.
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Fig. 1. Given the source and target shapes (X and )) as input: 1) We first project the low-dimensional point cloud coordinates into the high-dimensional

embedding space; 2) we align feature embeddings of X and )’ by computing the optimal locally linear transformation that can best cross-reconstruct each feature
embedding of X" using its top-K nearest neighbors (red color) in the embedding space of ); 3) we associate the embeddings of these neighbors to their original

point cloud coordinates and further leverage the reconstruction weights of the optimal transformation to reconstruct a shape hY sharing the same point indices to X
(both in blue color); and 4) the embedding network can be optimized by minimizing the divergence between ) and ).

Another point of departure is that in recent approaches like
functional maps, non-rigid deformations between shapes are
expected to become linear transformations once shapes are pro-
jected into a higher-dimensional embedding space. Essentially,
point-to-point correspondences between shapes are generalized
as a linear map between the corresponding function spaces [23].
It is worth emphasizing that our approach is fundamentally
different from the functional map-based approaches [14], [23].
These approaches interpret the basis as the embedding for each
shape and represent the mapping between a pair of shapes as
a change of basis matrix, by applying a global linear transfor-
mation to every shape point. By contrast, our approach treats
maps between shapes as locally linear transformations between
embeddings, where each shape point has its own linear transfor-
mation computed from local neighboring regions. The locally
linear transformations succeed in identifying the underlying
structure of the shape manifold by enforcing embeddings of
shapes in correspondence to lie in the same universal/canonical
embedding space, which eventually helps regularize the learning
process and leads to a simple nearest neighbors approach for
finding reliable correspondences.

We achieve our goals through the following steps, all
driven by the idea of marrying LLE and the construction of
high-dimensional nonlinear embeddings of point cloud shapes
(Fig. 1). Assume we have anonlinear embedding structure taking
alow-dimensional point cloud and returning a high-dimensional
embedding, whose weights we seek to learn. Given two shapes
whose correspondence we seek, in the first step, we attempt to
cross-reconstruct each source point (in the embedding space)
from its nearest neighbors in the target point cloud embedding.
This step mirrors the first stage of LLE. Next, we take the
obtained reconstruction weights and cross-reconstruct a point
cloud shape (in the original low-dimensional space) from the
same set of nearest neighbors in the target point cloud (again

in the original low-dimensional space). We thereby obtain a
reconstructed point cloud in one-to-one correspondence with
the source point cloud but based on the nearest neighbors in
the target point cloud. We then minimize a suitable divergence
measure between the cross-reconstructed and target point clouds
with respect to the unknown weights of the nonlinear embed-
ding. Minimization of the cross-reconstruction error minimizes
the distance between the original and reconstructed point clouds,
and minimization of the divergence measure brings the cross-
reconstruction and target point clouds into register. In this way,
we build an unsupervised shape correspondence engine capable
of end-to-end learning of nonlinear universal embeddings of
shape point clouds.

A. Contributions

In summary, our contributions are:

® A new perspective on finding dense correspondences be-
tween shapes as locally linear transformations in a high-
dimensional embedding space, as a superior way to reg-
ularize the embeddings of shapes in correspondence by
forcing them to lie in the same canonical embedding space

® An unsupervised shape correspondence learning frame-
work for extracting nonlinear shape embeddings that pre-
serve distances within local neighborhoods, estimating
locally linear transformations in the embedding space, and
reconstructing shapes via the alignment of probability den-
sity functions (PDFs) built over reconstructed and target
shapes

® A divergence measure for bringing the cross-reconstructed
and target shape PDFs into register, which shows improved
performance over popular Chamfer distance (CD) and
Earth mover’s distance (EMD) measures
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® A significant improvement compared to existing state-of-
the-art methods on standard benchmarks covering both
human and nonhuman shapes.

Comprehensive experiments show that the new method makes
substantial improvements while showing strong model gener-
alization across datasets with efficient training and inference.
More importantly, the proposed idea could be useful for match-
ing problems in other modalities such as images and meshes
and cross-modality matching problems such as images to point
clouds, and is potentially a promising approach for other tasks
requiring the application of manifold learning concepts.

II. RELATED WORK

A. Shape Correspondence and Matching

Axiomatic Methods: Early efforts at representing correspon-
dence (before the deep learning era) used the inexact weighted
graph matching formulation with a permutation matrix and
outliers for correspondence representation [24], [25], [26],
which is further followed by simultaneous pose and correspon-
dence estimation. Simpler (but not necessarily better) meth-
ods such as Iterative closest point (ICP) [27] and Chamfer
matching (CM) [28] started seeing deployment, followed by
the emergence of the Earth mover’s distance (EMD) [29] and
transportation-based distance measures. Simultaneously, soft
correspondences via softassign [30], [31], [32] for both linear
assignment and quadratic assignment alternatively estimated the
transformations and updated the explicit point-to-point corre-
spondence. Coherent Point Drift (CPD) [33] is similar to Robust
Point Matching (RPM) [32] and used Gaussian radial basis func-
tions (GRBF) instead of thin-plate splines (TPS) for non-rigid
deformations. RPM L 5 E [34], [35] leveraged the L 5 E estimator
for estimating transformations bootstrapped from shape con-
texts [36]. Later, point cloud density estimation approaches [37],
[38],[39], [40] appeared coupled with distances between density
functions optimized w.r.t. the unknown spatial transformation
without establishing explicit point correspondence. Represen-
tative approaches include KC [38], GMMReg [39], [40], and
CS [41], to name a few.

The functional map was introduced in the pioneering work
of Ovsjanikov et al. [23] for solving non-rigid shape matching
by avoiding the direct estimation of point-to-point correspon-
dence and instead deploying linear transformations between the
functional spaces of shapes, followed by subsequent extensions
such as [17], [42], [43], [44], [45], [46]. Meanwhile, we have
also witnessed progress in the unsupervised functional map
approaches [17], [21], [47] that consider structural penalties on
the inferred maps, e.g., bijectivity or orthogonality. Recently,
Diff-FMaps [14] interprets the eigendecomposition based on
the Laplace-Beltrami Operator (LBO) as higher-dimensional
embeddings of shapes. More importantly, it demonstrated that
learning a canonical embedding is a nontrivial problem, and
splitting the correspondence learning into two parts (invariant
embedding + linear transformation) is beneficial in regularizing
embedding learning in challenging settings.

Machine Learning Methods: 3D-CODED [16] and Elemen-
tary [48] matched the deformable shapes by jointly encoding
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shapes and correspondences via deforming templates. Corr-
Net3D [18] exploited DGCNN [49] to project shapes into a
high-dimensional feature space. They enforced unsupervised
feature learning by constructing a symmetric deformer for point
cloud reconstruction. More recently, LoopReg [50] presented a
novel end-to-end framework for fitting the parametric models to
3D scans of articulated humans via a self-supervised differen-
tiable loop and demonstrated improved registration accuracy.
Following [51], the authors proposed a novel optimization-
based paradigm for 3D human model fitting where vertices
are iteratively displaced towards the predicted body surface
using standard gradient descent. Deep Shells [52] improved the
popular smooth shells approach [53] by introducing an end-
to-end trainable deep network and learning optimal local fea-
tures based on entropy regularized optimal transport. Trappolini
et al. [54] proposed a transformer-based framework to estimate
the transformation between point cloud shapes efficiently. Neu-
roMorph [55] simultaneously addressed the problems of shape
correspondence and interpolation. In [56], the authors proposed
a novel framework for learning a reduced set of deformation
parameters using mesh-free approximations and incorporating
desirable first-order regularizations.

Particularly, DPC [19] demonstrated a self- and cross-
reconstruction framework to learn the latent affinity via a sim-
plified point reconstruction, which is completely different from
existing encoder-decoder frameworks [16], [18] regressing or-
dered point clouds to determine matching points. DPC nor-
malized the similarity of each feature embedding’s K-nearest
neighbors via softmax and cross-reconstructed a shape using the
corresponding input points and similarity scores. An additional
mapping loss and self-reconstruction have to be included to
impose smooth constraints, otherwise, the performance of DPC
drops significantly (and please see their ablation study on design
choices). In this paper, we focus on learning LLEs capable of
capturing the underlying structure of the shape manifold, with
the main goal to find a proper design of the embedding via
leveraging local neighborhood relations. Our method simulta-
neously learns the embedding and optimal locally linear trans-
formation using the LLE-inspired first-stage method and point
reconstruction. Consequently, the cross-reconstruction of the
source shape using target points gets an implicit regularization
via the close relationship to the reconstruction of the source’s
high-dimensional embedding counterparts. We conjecture that
this is exactly what is missing in DPC and hence explains our
superior performance using just cross-reconstruction.

B. Shape Descriptor and Feature Learning

The shape analysis community has actively investigated ex-
tracting descriptors and feature maps from shapes to capture
geometric properties around the neighborhood of points of in-
terest. A detailed discussion of classic hand-crafted descriptors
can be found in [57], [58].

Hand-crafted Descriptors: Early attempts focused on invari-
ance under a global spatial transformation, e.g., a rigid motion,
as shown in shape contexts [36], spin image [4], and mul-
tiscale local feature [59]. The community has then extended
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these methods to the nonrigid case by considering geodesic
distances and conformal factors [60], [61]. Later, diffusion ge-
ometry [62] established invariant metrics based on eigenvalues
and eigenvectors of the Laplace-Beltrami operator obtained
from shapes, showing significantly more robustness compared to
the geodesic counterparts [63], [64]. Follow-ups include global
point signature (GPS) [7], heat kernel signature (HKS) [8], wave
kernel signature (WKS) [9] and the complex wave representation
(CWR) [65].

Data-driven Descriptors: The data-driven feature descriptors
have shown their advantages over the hand-crafted features in
robustness and efficiency. The bag-of-features (BoF) descriptor
extracted the frequency histograms of geometric words from
shapes [66]. In [67], a robust and invariant point signature is
learned from the contextual 3D neighborhood information of
salient points for shape matching. Recently, the community has
started to extract deep features from shapes in a data-driven
fashion. For example, GCNN captured invariant shape features
from triangular meshes [68]. PointNet [69] showed that the
learned features could be used to compute shape correspon-
dences. FMNet [44] leveraged a Siamese residual network [70]
for descriptor learning. SplineCNN [71] introduced a novel
convolution operator based on B-splines to filter the geometric
input efficiently. DeepGFM [72] used KPConv [73], a classic
point cloud convolutional filter, to extract robust shape features.

Our approach belongs to the class of data-driven approaches.
To the best of our knowledge, our approach is the first attempt
to adapt the classic LLE algorithm for unsupervised shape cor-
respondence learning into an end-to-end learnable framework.
Correspondence is determined via nearest neighbor searches
once we learn such discriminative feature representations.

III. LOCALLY LINEAR EMBEDDING

Before describing the proposed approach, we provide a back-
ground on the classic LLE framework [22]. Given input point
features, LLE has three steps: first, it identifies K nearest neigh-
bors for each point; second, it uses least-squares to compute the
weights for reconstructing each point from its nearest neighbors;
and third, it reuses the same set of weights and computes the
embedding of each point in a low-dimensional space. Specifi-
cally, let P = {p, € RP|i = 1,..., N} denote the input point
set. LLE builds a K-nearest neighbors (KNN) graph over P by
measuring the pairwise euclidean distance and removing self-
loops from the graph. Denoting p,,, € R as the k-th nearest
neighbor of point p,, we obtain the LLE reconstruction weights
by solving

N K
2
mln‘lj‘r/mze EW)= ; ’ P, — ;wikpik ‘2
K
subjectto Y wi, = 1,Vi € {1,..., N}, (1)
k=1

where RV*E 5 W .= [wy,...,wx|T denotes the recon-
struction weights, and R¥ > w; := [w;1, ..., wix]? denotes
the weights associated to the KNN neighbors {p;, }r_; for
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reconstructing point p;. The sum-to-one weight constraint
Zszl w; = 1 leads to the specific properties—each point p;
is invariant to rotations, translations, and rescalings of itself
and its nearest neighbors [22]. The optimal W can be found
by solving a constrained least squares problem as detailed in
Appendix A, available online. Given the optimal W, LLE
further finds the lower-dimensional embeddings of input points
denoted as Q = {q; € RP2|i =1,..., N}, Dy < D, by solv-
ing a sparse eigenvalue problem [22].

IV. LTENET

Having briefly summarized LLE, we introduce our novel
approach to unsupervised shape correspondence learning called
LTENet—Locally Linear Transformation based Embedding
Networks. To the best of our knowledge, this is the first at-
tempt at introducing an LLE-inspired algorithm that represents
maps between pairs of shapes as locally linear transformations
while simultaneously deploying an LLE shape reconstruction
objective to optimize nonlinear embeddings towards the same
universal/canonical space. In this section, we first define the
shape correspondence problem. We then introduce the dovetail-
ing of locally linear transformations with novel LLE point cloud
reconstructions for learning both the optimal transformation
and embedding. Finally, we describe the divergence measure
between the cross-reconstructed and target point clouds. The
pipeline of LTENet is summarized in Fig. 2.

A. Problem Definition and Objectives

Let point clouds RV*3 5 X := [z1,...,zy]T and RV 5
Y :=[y,...,yy]T denote the source and target shapes, re-
spectively, where x;,y,; € R? and N is the number of points.
Our goal is to find a point-to-point correspondence or map
defined as Tlyy : X — ) such that every point «; in X has its
corresponding point y ;. := Txy(x;) in Y, where 1 <4, j* <
N. Inspired by LLE [22], the proposed LTENet leads to suit-
able embeddings for shape correspondence that preserve the
local configurations of nearest neighbors. From a high-level
perspective, it shares a similar spirit with the LBO operator
which relies on preserving distances between nearby points.
While the LBO operator is usually constructed over point cloud
coordinates, LTENet operates on nonlinear feature embeddings
obtained from deep neural networks, which are more robust and
efficient to compute. It is worth mentioning that the proposed
approach directly takes raw point cloud coordinates as the input
without requiring any point connectivity information.

B. Optimal Locally Linear Transformations

Given X’ and ), we extract their nonlinear feature embeddings
FX FY € RV*P | respectively, via a neural network F. This
allows us to transition from the point cloud coordinates (RV*3)
to a higher dimensional embedding space (R™V*?) where finding
shape correspondence is more likely to be successful as demon-
strated by the functional map paradigm [23].

To align F ¥ and FY, we must find a transformation be-
tween them while also jointly optimizing F to obtain suitable
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Pipeline overview of LTENet: 1) Extract nonlinear shape embeddings F* and 77, given X and ); 2) select top-K neighbors for each feature embedding

ff based on the cosine similarity between F* A and FY; 3) estimate the locally linear transformations following (2) and (3) to best reconstruct - i using F* Y and

denoted as F y ; 4) reconstruct a shape y following (6); 5) learn the embedding network F via minimizing the divergence Do g (P (5/), P(Y)); and 6) determine

the correspondence using nearest neighbors between embeddings.

embeddings for estimating shape correspondence. Recall that
(1) in LLE is able to approximate the original input points
using the LLE reconstruction weights and nearest neighbors.
Denote 7Y € RV*P as the feature embeddings obtained by
applying the transformation to 7~ to achieve the alignment, i.e.,
F¥ ~ FY.Givenall f{ € F¥and f) € F¥, weimplement the
transformation by first considering

2
s =S 5 s
mlgmlze w Z f Z , wi; f; )
LeNy(f)
subjectto Y wiY =1Vie{l,... N}, )

LeNy(f)

where Ny (f#) are all K indices of f’s nearest neigh-
bors in F~ based on the cosine similarity. RN*% 5 WY .=

[wY, ..., wx”]T denotes the reconstruction weights, and
?‘/y € R¥ stacks all the reconstruction weights wf(*y asso-

ciated to ¥ and Ny (f¥). We then express each transformed
fzy € FY as

X X
wlyfly%fi.

=3

leNyY(fY)

3)

Asobserved from (2) and (3), we make two unique modifications
compared to (1) of the original LLE paper: 1) We directly operate
on high-dimensional nonlinear feature embeddings rather than
raw input data, and 2) unlike LLE which reconstructs the input
data by picking nearest neighbors from itself, we conduct a
cross-reconstruction such that the feature embeddings F* of the
source shape will select nearest neighbors from F? in the target
shape, which enforces embeddings of shapes in correspondence
to lie in the same universal/canonical embedding space.
Intuitively, (2) represents the spatial transformation between
shapes, e.g., a non-rigid transformation, in the input point space
as an equivalent locally linear transformation between Fy and
Fy. An optimal WY implies that F¥ has been properly

reconstructed by F- Y using F* v, Following LLE [22], [74], the
optimal W™ can be found by solving a constrained least
squares problem:

vy _ (G D)
NG D)

“

where I is the identity matrix and 1 € R¥*1 is the matrix filling
all elements with one. G’ denotes the Gram matrix defined as

RN s @ = (fF17 —a))T (ST = m)), )

where n? € RP*K stack all feature embeddings of the & neigh-
bors of f:* found in V. Adding I to (4) leads to numerically
stable solutions by avoiding the possible singularity of ny
[74], [75]. This also links our work to Robust LLE with an /5
norm-based regularization (see Appendix A, available online for
details).

C. Learning Canonical Embeddings

The cross-reconstruction weights W allow us to represent
Fr in terms of Fy. However, this does not necessarily imply
WY will lead to a better embedding network F suitable
for shape correspondence. To show that, we observe that the
closed-form expression of WY only depends on the Gram
matrix G, where each G is constructed based on the
feature difference between f* and 772} . Therefore, the optimal
WY essentially relies on F¥ and Y. W*Y is optimal in
terms of the reconstruction of % using ¥ but is not optimal
for shape correspondence if no additional optimization step is
applied.

To properly train the embedding network, we asso-
ciate the high-dimensional embeddings to the original low-
dimensional point cloud coordinates. Specifically, observing

= Yieny(sr) Wii i & f{¥, we can interpret each feature

embedding f;¥ or fly as a linear combination of a few basis
elements {fY|l € Ny(f¥)} with the associated coefficients
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Fig. 3.

Epoch 20
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e X

Visualization of reconstructed point clouds of the proposed LTENet. We obtain the reconstructed shapes in cross-reconstruction (X and V) and self-

reconstruction (X and ) from models at different training epochs. Starting from random initialization on the embedding network, it is clear that the reconstructed
shapes are getting closer to the source and target shapes X and ) as the training progresses.

{w|l € Ny(f{¥)}. Using the same coefficients, we could

reconstruct the low-dimensional point 4, € R3 for each fiy ,
which gives

9= > wPy 6)
1eNy(f)

where y; € ) is the point associated to fly . We then obtain
RNXS > y = [@17 e 7@n]T

structed shape for 77 in the basis elements (point coordinates)
of V. The indices of )> are in exact one-to-one correspondence
with the indices of X'. Also, ¢, can be understood as a soft
correspondence of x; because the indices of {y;|l € Ny(f{¥)}
are the same indices of the top-K nearest neighbors of fi'.
Because these neighbors are selected from FY with the highest
similarity to f;¥, the point y, associated to each neighbor could
be a candidate matching point of x;. If each point x; finds its
approximate matching point ¢,, we would expect Y to be similar
to ) as the training progresses (Fig. 3). To this end, we can train
F by solving

, interpreted as the linearly recon-

minimize E(F) = D(Y,Y) @)

where D(-, ) defines a dissimilarity measure. Because Yand X
share the same point indices while being different from those
of ), we do not have an obvious one-to-one correspondence
between ) and ), e.g., Y, probably does not correspond to v,
and so on.

LLE Versus LTENet: LLE finds the embedded vector for
each input point by solving an expensive eigenvalue problem
(a projection from the high-dimensional input space to the
low-dimensional embedding space). In contrast, our approach

approximates source points via shape reconstruction using linear
combinations of nearest neighbor target point coordinates )
and the (closed-form) weights WY obtained from first stage
LLE. Unlike LLE, which is focused on identifying suitable
low-dimensional embeddings for high-dimensional input data,
LTENet establishes dense correspondences between shapes by
forcing a pair of shapes to lie on the same manifold. This is
achieved by our fully differentiable LTENet framework, which
pushes their embeddings towards a locally linearly invariant
space via maximizing the similarity between a shape and its
reconstructed counterpart. LTENet demonstrates a principled
approach by adopting the central concept of classic LLE for
shape correspondence. Next, we introduce a suitable distance
measure D(-, -) for end-to-end training.

D. Implicit Correspondence Learning Via the Alignment of
PDFs

Most unsupervised approaches [19] adopt popular CD and
EMD measures to reconstruct point clouds, which are sensitive
to outliers or are computationally intensive. Point clouds are
quite often nothing but discrete samples of the underlying contin-
uous shapes and surfaces. Therefore, we instead represent point
clouds as probability density functions and seek to minimize a
divergence between reconstructed and original shapes. Formally,
given the shape X = [z, ...,z x|, we represent an arbitrary
point x by its kernel (Parzen) density estimation (KDE) of the
PDF using an arbitrary kernel function K(-):

1Y T —x;
) = 3K (557, ®
1=1
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where o is the bandwidth parameter. We choose the Gaussian
kernel G, (x,y) = (27”712)3/2 exp (— e 5o yHZ ) in 3D as the kernel
function due to its nice properties: it iS symmetric, positive
definite, and its value approaches zero when the point  moves
away from the center y while being controlled by a decay factor
determined by o.

Inspired by [38], [39], [41], [76], we adopt the Cauchy-
Schwarz (CS) divergence [77], denoted as Des(q, p), to mea-
sure the similarity between two density functions, which is
defined as

[ az)p(z)dz
VI @)z [ p2(w)da

= —log/q(x)p(x)da:+O.5log/q2(a:)dx

— log

Dcs(q,p)

+0.510g/p2($)dx, )

which is symmetric for any two PDFs ¢ and p such that 0 <
Des < oo where the minimum is obtained iff ¢(x) = p(x). We
substitute Gaussian kernel PDF estimators for ) and )7 into
q(x), p(x), and make straightforward manipulations based on
the convolution theorem for Gaussian functions (see the detailed
derivation in Appendix B, available online), which gives

logZZG\fU ygayz)

Jj=11i=1

Dcs(py:py)

N N

+0.51og Z Z G 3,(YjY;)

j'=1j=1

N N

+0.5l0g) Y G, (Yo yi)-

i'=11i=1

(10)

Later, we will show that CS leads to better performance com-
pared to CD and EMD objectives by handling outliers using the
Gaussian kernels [78]. Specifically, the Gaussian kernel G is able
to mitigate the oversensitivity to outliers by suppressing large
distances between reference and reconstructed shape points. In
CD and EMD, these large distances due to outliers negatively
impact model training, leading to degraded performance. It is
worth mentioning that CS is closely related to graph cuts and
Mercer kernel theory [78].

Implementation of the CS loss: The CS divergence loss can
be implemented in PyTorch with a few lines of code. To handle
numerical issues, we leverage the Log-Sum-Exp trick as shown
in Algorithm 1.

E. The Training Objective

Similar to (2) and (6) using WY to reconstruct F and
Y, we compute the reconstruction weights W>% to approx-
imate the original input shape X, which results in the re-
constructed shape RV*3 5 X := [&y,...,&y]7. In addition,
we approximate the original ) using W2? and Y, which is
a self-construction process to obtain the approximate shape
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Algorithm 1: The CS Divergence Implemented in PyTorch.

# reconstructed target and target point
coordinates <- - B X N x 3 and B X N x 3
# bandwidth, the kernel bandwith <- - scalar
def gmm(rec_target, target, bandwidth) :
# BXNxXxNx3<-BXNX1xC-BX1ZXNZXZC
diff_ij = (rec_target.unsqueeze(2) - target.
unsqueeze (1))
# B XNXxXN

factor = 2*bandwidth*bandwidth
# BXNxN
diff_ij = (diff_ij**2).sum(-1).div(factor).
mul(-0.5) - 0.5*math.log(2*math.pi) -

math.log (math.sqgrt (2) *bandwidth)

dist = torch.logsumexp ((diff_ij)
(diff_ij.shape[0], -1),dim=1)

.reshape
.mean ()

return dist

def cs_divergence (rec_target, target, bandwidth) :

r_t_dist = -1 * gmm(rec_target, target,
bandwidth)
r_r_dist = 0.5 * gmm(rec_target, rec_target,

bandwidth)

t_t_dist = 0.5 * gmm(target, target, bandwidth)

return r_t_dist + r_r_dist + t_t_dist

RV35Y =gy, gyl"
ilarly expressed as RV*3 5 X :=
training objective is defined as

. The appr0x1mat10n of X is sim-
[Z1,...,2n]". The final

mini}nize )"cross(ID()e7 X) + ,D(j)? y))

+ )\self(ID()ev X) + ID(:)N)’ y))

+ heg (B (X, D)+ E,(V, X)) (1)

where Across, Aself, and Aeg are the hyperparameters to balance
different losses and D(-, -) is the CS objective in (10). E,.(-, -) is
the optional smoothness term defined as the mapping loss [19],
which encourages points in Y (or X) to remain close if their
one-to-one corresponding points in X’ (or ) are close to each
other. E,.(X,)) is defined as

. 1

=1 1eNx(z)

ullgs -3 (2

where Ny (x;) is the euclidean neighborhood of x; in X of

: xy _ s 413 ;
size K, vi; =exp——,—= where « is a hyperparameter

configured by following [19]. E,.(), X ) is similarly defined.

F. Test Phase

In the test phase, we obtain the correspondence for each
source point x; by selecting a point from the target shape whose
embedding is the nearest neighbor of x;’s embedding based on
the cosine similarity. This gives

(S5 -(N"

- J 7 13
e

Tyy(zi) =y, j° = argmax
jef{1,..
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Summary: We have presented the LTENet framework for unsu-
pervised shape correspondence learning, which unifies nonlin-
ear embeddings, LLE transformations in the embedding space,
point cloud reconstruction, and implicit correspondence learning
with the CS divergence. We consider the following analogy for
LTENet: CS divergences and top LLE transformations are to
shape correspondence as Kullback—Leibler (KL) divergences
and top linear classifiers are to classification. By doing so, we
are able to learn universal feature embeddings where corre-
spondences are directly obtained using nearest neighbors. This
is also analogous to the open-set classification problems where
we handle samples of unseen classes by comparing feature
distances between these samples and nearest neighbor trained
examples of seen classes.

V. EXPERIMENTS

In this section, we compare LTENet against recent state-of-
the-art approaches on several well-established datasets for shape
correspondence, and we conduct ablation studies.

A. Experimental Setup

Datasets: Following [18], [19], we conduct experiments
on standard datasets covering both human and nonhuman
shapes. For human shapes, we use the large-scale SURREAL
dataset [16] prepared by 3D-CODED [16], which leverages
SMPL [79] to generate a total of 230,000 samples. We select
arbitrary shapes as training pairs from SURREAL. We then
evaluate on the challenging SHREC-19 [80] containing 430
non-rigid shape pairs generated from 44 real human scans. For
non-human shapes, we adopt SMAL [81] and TOSCA [82] for
training and evaluation, respectively. SMAL provides the 3D
articulated parametric model for animals. We create a training
set of 10,000 shapes by generating 2,000 samples under each
animal category. We pair arbitrary shapes of the same category.
Similarly, we consider 41 animal figures out of the total 80
objects in TOSCA to match species in SMAL and generate 286
test shape pairs from the SMAL dataset accordingly.

Evaluation metrics: A common evaluation metric is the
geodesic distance error assuming a known point adjacency ma-
trix, which is unavailable in point clouds. Instead, we follow [19]
to calculate the correspondence error as

N
1
err = N Zz:; HTX);(:IZZ) — T/%S)(m’t)H? (14)

where Tyy(x;), T)gfg, (z;) denote the predicted and ground truth
correspondence of point «; w.r.t. Y and || - ||2 is the {2 norm of a
vector. Additionally, we use the error tolerance € = r/distyax
coupled with a tolerant radius r, where dist;,.x = max{||y; —
Y;ll2, Vi, Vj} denotes the maximal distance of all pairwise point
distances in ). The correspondence accuracy under € is defined
as

N
]. t 3
acc(e) = ¥ Z (ITxy () T)g(y(aci)Hg < €diStmax),

5)
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TABLE I
ACCURACY AND ERROR
SURREAL/ SHREC/ SMAL/

SHREC SHREC/ TOSCA
Method acc 1 err | acct errl acc 1 err |
SURFMNet [17] 4.3% 0.3 5.9% 0.2 * *
GeoFMNet [72] 8.2% 0.2 * * * *
Diff-FMaps [14] 4.0% 7.1 * * * *
3D-CODED [16] 2.1% 8.1 * * 0.5% 19.2
Elementary [48] 2.3% 7.6 * * 0.5% 13.7
CorrNet3D [18] 6.0% 6.9 0.4% 33.8 5.3% 9.8
DPC [19] 17.7% 6.1 15.3% 5.6 33.2% 58
Released DPC [19]  17.5% 6.3 14.5% 5.3 33.5% 58
LTENet (Ours) 20.7% 58 143% 60  381% 5.7

The proposed LTENet achieves state-of-the-art shape correspondence performance,
indicated by the correspondence accuracy at 1% tolerance (4cc, in percentage) and the
average correspondence error (Err, in centimeters).

where 1 is the indicator function. We set different ¢ values
between 0% to 20%.

Implementation details: The proposed LTENet is not limited
to a specific model architecture for the embedding network F.
We followed DPC [19] to use the same variant of DGCNN [49] as
F, where its core component is the popular EdgeConv operator
that builds a dynamic graph over points for learning the feature
embeddings. We refer the reader to [49] for more details. Our
models were implemented in Pytorch [83]. We used the AdamW
optimizer [84] with an initial learning rate of 0.0003, momentum
0.9, and weight decay of 0.0005. We used a cosine decay learning
rate scheduler for 300 epochs and 10 epochs of linear warm-up.
We trained models with a batch size of 8 on a server equipped
with AMD EPYC ROME microprocessors and NVIDIA A100
GPUs.

Baseline methods: We consider recent state-of-the-art unsu-
pervised shape correspondence learning approaches (DPC [19]
and CorrNet3D [18]) as competitive baselines. We compare
against supervised approaches, including Diff-FMaps [14], 3D-
CODED [16], and Elementary Structures [48], and mesh-based
approaches, including the unsupervised SURFMNet [17] and
the supervised GeoFMNet [72].

B. Results on Human Datasets

We explored two training and evaluation settings. For a fair
comparison, we followed DPC [19] to train our models by
selecting the first 2000 shapes out of the total 230,000 samples
in SURREAL and evaluated on the official 430 SHREC pairs
(SURREAL/SHREC). We also trained models on random pairs
generated from SHREC and evaluated on the same test pairs
(SHREC/SHREC).

Quantitative evaluation: Table I summarizes the acc at 1%
error tolerance, indicating a near-perfect correspondence match-
ing and average correspondence error err. On SHREC/SHREC,
we achieved a competitive performance against DPC. On SUR-
REAL/SHREC, we outperformed all baseline models. Specifi-
cally, SURFMNet [17] and GeoFMNet [72] achieved impressive
performance. However, they require the expensive computation
of the LBO basis and complex test-time post-processing [27],
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(Left) The correspondence accuracies under different error tolerance values in the SURREAL/SHREC setting. Our method achieves better performance

compared to the state-of-the-art DPC. (Right) Visual examples of SHREC test pairs. DPC contains outlier matches, e.g., wrongly matching hands to thighs or feet

to hands. LTENet generates more accurate and smoother predictions.
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(Left) The correspondence accuracies under different error tolerance values in the SMAL/TOSCA setting. Our method substantially improves the

correspondence accuracies under all tolerance values. (Right) Visual examples of TOSCA test pairs. DPC suffers from prediction errors caused by the difficulty of
distinguishing between left and right or rear and front legs. Our method generates more accurate correspondence predictions closer to the ground truth correspondence

maps.

[85]. Our method achieved approximately 5x and 2.5x ac-
curacies compared to SURFMNet and GeoFMNet, respec-
tively, while showing a comparable run-time inference speed
to DPC [19], which is about 100x faster against SURFMNet
and GeoFMNet (see the table in DPC [19] for more details).
Diff-FMaps [14] suffers from over-fitting on training samples
without exploiting shape priors, e.g., local smoothness. Corr-
Net3D [18] shows improvements over 3D-CODED [16] and
Elementary Structures [48] but requires nontrivial optimization
in the Sinkhorn-inspired DeSmooth module and the decoder,
which limits its generalization performance. DPC [19] is the
current state-of-the-art method using learning the latent affinity
via a simplified point reconstruction. Our LTENet achieved the
best acc of 20.7% and the lowest err of 5.8, which significantly
exceeds the accuracy of DPC by 17.0% and reduces the error by
4.9%. The accuracies in Fig. 4 (left) indicate that we achieved a
clear improvement, especially for almost-perfect matching with
e < 5%.

Qualitative evaluation: We provide visual examples in Fig. 4
(right), showing the clear improvement made by LTENet (see
more results in the appendix, available online). Additional visual
examples using texture transfer can be found in Figs. 10 and 11.

C. Results on the Nonhuman Datasets

We trained models on the SMAL dataset and evaluated on the
unseen TOSCA dataset that contains animal objects with diverse
poses (SMAL/TOSCA).

Quantitative evaluation: As shown in Table I, LTENet
achieved the best performance on SMAL/TOSCA in terms of the
accat 1% and err. The significant pose and shape differences be-
tween SMAL and TOSCA impact 3D-CODED and Elementary
Structures relying on a single standard template, e.g., a standing
cat. They struggle to handle shapes in different categories and
various poses in the TOSCA test pairs. The proposed LTENet
achieves an acc of 38.1% at 1% error, obtaining an increase
of 4.3% in absolute accuracy compared to DPC’s best acc of
33.8%. The detailed correspondence accuracy under different
error tolerance values can be found in Fig. 5 (left), which shows
that our method obtains a substantial improvement over other
methods.

Qualitative evaluation: Fig. 5 (right) provides some visual
results on the TOSCA test pairs, which verify that our method
could generate more accurate correspondence predictions. More
results can be found in the appendix, available online.
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Evaluation of correspondence prediction of TOSCA test point clouds in the SMAL/TOSCA setting with additional noise. From (a) to (c), we gradually

add stronger Gaussian noise with zero means and larger standard deviations, i.e., 0.001, 0.005, 0.01, to source shapes. Our method demonstrates its resilience

against noise.

TABLE II
ABLATION STUDY ON ROTATIONS, SYMMETRIC (LEFT-RIGHT) FLIPS AND
ROTATIONAL (FRONT-BACK) FLIPS

Rotations & Flips acc T err |
Without rotations 20.7% 5.8
rotations {+10, £10,+10}  20.2% (-0.5%) 6.0 (+0.2)
rotations {+20, +20, +20} 17.1% (-3.6%) 6.8 (+1.0)
rotations {30, £30, +30} 12.8% (-7.9%) 9.4 (+3.6)
rotational (front-back) flips ~ 9.5% (-11.2%) 6.5 (+0.7)
symmetric (left-right) flips ~ 6.3% (-14.4%)  10.0 (+4.2)

We conduct the ablation study under the SURREAL/SHREC setting.

D. Model Robustness Under Rotations, Symmetric and
Rotational Flips

We test the model robustness of our LTENet against rotations,
symmetric (left-right) flips, and rotational (front-back) flips.
We conduct the ablation study under the SURREAL/SHREC
setting. For the rotation experiment, given a pair of shapes, we
rotate the target shape by different rotation matrices along three
axes {z,y, z}, each with a fixed degree, e.g., +10, +20, or +30.
For example, rotations {410, +10,+10} in Table II indicate
that there are eight rotation matrices as each axis can be rotated
by +10 or —10. Regarding the symmetric (left-right) flips, or
rotational (front—back) flips, we apply the flip transformation
matrices that negate the coordinate in the corresponding axis for
left—right or front—back and preserve the others.

As can be seen in Table II, our approach demonstrates some
robustness against certain rotations. For example, when the ro-
tations are {£10, 410, =10}, the performance of our approach
degrades by a small margin with an absolute accuracy reduction
of 0.5% and an absolute error increase of 0.2. However, our
model is not robust against symmetric (left-right) flips and rota-
tional (front-back) flips, which we initially expected because we
built our feature extractor based on a variant of DGCNN [49]
that is not rotation-invariant and symmetry-aware. We highly
encourage a future investigation on extending our approach
along this direction [86], [87].

E. Model Robustness Under Presence of Noise

We investigate the robustness of the learned embeddings by
perturbing the test dataset with Gaussian noise in the setting
of SMAL/TOSCA, which is particularly challenging due to
the presence of noise that ruins the underlying shape structure.
Specifically, we select DPC as the competitive baseline. For
the test samples from the TOSCA dataset, we add Gaussian
noise with zero means and different standard deviations, i.e.,
0.001, 0.005,0.01 to source shapes.

As can be seen in Fig. 6, our approach outperforms the state-
of-the-art DPC in terms of correspondence accuracy and shows
comparable performance in correspondence errors. Our method
demonstrates moderate resilience against noise. Added noise
heavily drops those correspondence accuracies under small error
tolerance, e.g., less than 5%. In a similar manner, the additional
experiment in the setting of SURREAL/SHREC can be found
in the appendix, available online.

F. Comparisons Between DPC and LTENet

Our LTENet highlights a novel approach to learning locally
linearshape embeddings capable of capturing the underlying
structure of the shape manifold, which we achieve by marrying
LLE with the construction of high-dimensional neighborhood-
preserving shape embeddings. We built our architecture follow-
ing the self- and cross-reconstruction framework in DPC [19].
Though both seek to learn good embeddings, our LTENet
encourages the best locally linear alignment between shape
embeddings without ambiguity via the closed-form expression
of reconstruction weights.

Table III demonstrates its benefit by summarizing our key re-
sults and additional results from the appendix of DPC, available
online. We clarify that E, (the smoothness term) is the same
mapping loss as in DPC. Due to DPC’s lack of a mechanism to
enforce local linearity of embeddings, E, is required in DPC for
better performance. Without this term, DPC suffers a significant
drop from an acc of 17.7% to 11.4%. Our LTENet significantly
outperforms DPC by enforcing a suitable manifold learning on
shape correspondence under the same setting.
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with mean error in the legends. Without ground truth correspondence labels during the training, our model remains competitive or even outperforms some when
compared against model variants of Diff-FMaps. It also verifies the generalization capability of our developed method.

TABLE III
BENEFIT OF PURSUING LOCAL LINEARITY FOR EMBEDDING LEARNING

Method acc 1 err
DPC (without E,) 11.4% 6.7

DPC 17.7% (+6.3%) 6.1 (-0.6)
LTENet (without E,)  20.6% (+9.2%) 5.9 (-0.8)
LTENet 20.7% (+9.3%) 5.8 (-0.9)

Our LTENet framework implicitly imposes a smooth constraint on
embeddings such that it performs competitively without a regulari-
zation, while DPC [19] suffers a significant performance drop.

We conduct the ablation study under the SURREAL/SHREC setting.

G. Evaluation on the FAUST Dataset

We further validate our method and demonstrate their general-
ization capability on the popular FAUST Dataset, via following
the training and evaluation of Diff-FMaps [14]. Specifically, we
directly evaluated our model trained in the SURREAL/SHREC
setting on the two test sets of point clouds sampled from the
100 shapes from the FAUST dataset with and without Gaussian
noise. It is worth noting that our model was originally trained
with shapes each with 1,024 points while the FAUST dataset is
1,000 points per test shape.

We compare our method against model variants of the fully
supervised Diff-FMaps [14] trained with ground truth corre-
spondence, while our method is unsupervised without ground
truth correspondence. In Fig. 7, “Diff-FMaps-Uni20” denotes
the competitive baseline using the universal embeddings in
the original paper via enforcing the optimal linear transfor-
mation to be identity. “Diff-FMaps” is the complete baseline
that predicts the correspondence after applying its predicted
linear transformation to the universal embeddings via the learned
descriptor network. “Diff-FMaps+Opt” is the model that ap-
plies the ground-truth linear transformation to the universal
embeddings.

Without ground truth correspondence labels during the train-
ing, our model remains competitive or even outperforms some
when compared against model variants of Diff-FMaps. It also
verifies the generalization capability of our developed method.

H. Evaluation on Real-World Data

Inspired by [18], [19], we further examine our ap-
proach on model generalization and robustness by visualizing

TABLE IV
ABLATION STUDY ON MODEL CHOICES

Method Aself =1 Across =1 Areg =10 acc 1 err]
Ours (Self) v 2.3% 8.9
Ours (Cross) v 20.6% 6.5
Ours (Self & Cross) v v 20.6% 5.9
Ours (CD) v v v 13.9% 6.3
Ours (EMD) v v v 19.6% 6.0
Ours v v v 20.7% 5.8

We conduct the ablation study under the SURREAL/SHREC setting.

correspondence predictions between point cloud pairs sampled
from the behave dataset [88] captured in natural environments.
Specifically, we use the mesh at the first frame in each mesh
sequence to create the source point cloud by randomly sampling
1,024 vertices from its entire set of vertices. Similarly, we
create ten target point clouds using meshes at the first frame’s
subsequent frames (i.e., frame 2 to frame 11).

As seen in Fig. 8, despite these shapes’ significant pose
differences, our approach shows its resilience by producing
reliable correspondence results. It also verifies that our method
is not robust against symmetric (left—right) flips and rotational
(front-back) flips, which is also demonstrated previously in
Table II. A future investigation is encouraged to handle these
issues.

1. Ablation Study

We conduct the ablation study to evaluate the comparative
effectiveness of the different components in LTENet under
controlled experiments. All ablated versions were trained and
evaluated following the SURREAL/SHREC setting.

Choices of the model designs: We first analyze LTENet with
different design choices to control self- and cross-reconstruction
of LTENet: 1) LTENet (Self) only uses the self-reconstruction
of LTENet by setting Agir = 1, Across = 0; 2) LTENet (Cross)
only uses the cross-reconstruction of LTENet by setting Ageif =
0, Across = 1; 3) LTENet (Self & Cross) uses both self- and
cross-reconstruction and removes the mapping loss for the
regularization; and (4) LTENet (CD) and LTENet (EMD) are
similar to the full model of LTENet in only replacing the CS
objective with popular CD and EMD. All results are summarized
in Table I'V. It is clear that cross-reconstruction contributes most
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bandwidth or number of nearest neighbors leads to better performance.

to the final performance and that CS leads to better performance
compared to CD and EMD.

Choices of the kernel bandwidth o: As our CS objective
is closely relevant to a fixed-bandwidth KDE with Gaussian
kernels, it is important to choose a suitable bandwidth fitting the
underlying data distribution of the training dataset — either too
large or too small bandwidth values could lead to degraded per-
formance. As shown in Fig. 9 (right), we chose different band-
width values by setting o = 0.01/9,0.01/3,0.01,0.03, 0.09.
The results suggest that 0.01 is a suitable bandwidth, which
we used thereafter for LTENet. It is worth noting that we should
adjust the bandwidth accordingly when moving to a new dataset.

Number of nearest neighbors: Similarly, we can set dif-
ferent numbers of nearest neighbors for the locally linear
transformations, i.e., K = 5,10, 20,40. Fig. 9 (left) demon-
strates that K = 10 leads to better performance.

The impact of training sample size: We trained models by
increasing the training sample sizes from 2,000 to 230,000.
Table V summarizes the experimental results of training models
using different training samples. The experimental results show

acc (%

acc err

=== 0.01/9 mmw 0.01/3 =mm 0.01 mmm 0.03 === 0.09

(left) Model performance with different numbers of nearest neighbors; (right) Model performance with different kernel bandwidths. Choosing a suitable

TABLE V
ABLATION STUDY ON THE TRAINING SAMPLE SIZE

Method Aself = 1 Across = 1 Areg = 10 size acc? err|
LTENet (Self) v 2K 23% 89
LTENet (Cross) v 2K 20.6% 6.5
LTENet (Self & Cross) v v 2K 20.6% 5.9
LTENet v v v 2K 20.7% 5.8
LTENet (Self) v 230K 2.2% 89
LTENet (Cross) v 230K 19.5% 7.2
LTENet (Self & Cross) v v 230K 20.5% 6.5

LTENet v v 4 230K 20.9% 6.2
We conduct the ablation study under the SURREAL/SHREC setting.

that 2,000 samples are sufficient. A subtle difference is found in
the slightly increased err when training models with 230,000
training samples, which we suspect is due to more training
samples that are symmetric and rotated being included in train-
ing, thus creating noisy training signals. Handling symmetry
of shapes remains an under-explored research area. For shape
correspondence though, there exist some attempts [86], [89],
which are promising.
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Source shape DPC [19] LTENet (ours)

Fig. 10.

Ground-truth  Source shape

DPC [19] LTENet (ours) Ground-truth

Visual texture transfer examples of SHREC test pairs using checker pattern (top row) and color code (bottom row) textures. The experiment follows the

SURREAL/SHREC setting. The predicted maps from DPC [19] and our approach are used to pull a texture from the source shape to the target shapes and compare
against that using the ground truth maps. The proposed LTENet generates more accurate correspondence predictions compared to DPC.

DPC [19]

Source shape LTENet (ours)

Fig. 11.

Ground-truth ~ Source shape

DPC [19] LTENet (ours) Ground-truth

Typical failure example of SHREC test pairs using checker pattern (right) and color code (left) textures. The experiment follows the SURREAL/SHREC

setting. It indicates that both DPC and our method can not handle the rotational (front-back) flip.

The effect of embedding dimension: Given X and ), we
extract their nonlinear feature embeddings F*, 7Y € RNV*P,
respectively, via a neural network F. The embedding dimension
D should be adjusted to achieve a balance between overfitting
and underfitting and efficiency. Table VI demonstrates that the
model of D =512 gives a good generalization performance
while being efficient, which we used thereafter for LTENet.

VI. DISCUSSION

Our experimental results showed that LTENet achieves su-
perior performance compared to state-of-the-art unsupervised
shape correspondence methods. We attribute this to the learning

mechanism capable of capturing the underlying structure of
the manifold and fully exploiting the local euclidean geom-
etry of manifolds within local neighborhoods. Our approach
encourages the best locally linear alignment between shape
embeddings without ambiguity via the closed-form expression
of reconstruction weights. The local linearity used in our ap-
proach leads to implicit regularization and universal/canonical
embeddings between a pair of shapes in correspondence. We
demonstrated the performance gap of our learned embeddings,
with and without additional functional map-inspired globally
linear transformations, and showed consistent improvements
made by the additional linear transformations. We observed a
mismatch in that embeddings learned from an unsupervised
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TABLE VI
ABLATION STUDY ON THE EFFECTS OF EMBEDDING DIMENSION

Method  Feature dimension acc err

LTENet 32 19.1% 6.4
LTENet 64 19.4% 6.2
LTENet 128 19.7% 6.2
LTENet 256 20.1% 6.1
LTENet 512 20.7% 5.8
LTENet 1,024 20.8% 5.9

We conduct the study under the SURREAL/SHREC setting.

shape correspondence method are not necessarily suitable to
be used as basis embeddings in the classic functional map
framework.

A. Limitations and Future Work

It has been demonstrated that shape correspondence ap-
proaches are struggling in disambiguating shape symme-
tries [19], [86], [89], [90]. In our work, we also observed the
symmetry issue—it leads to noisy training signals by wrongly
matching components between shapes, e.g., associating the left
hand in one human with the right hand in another human due to
their opposite orientations. Future work is suggested to handle
symmetry by exploiting priors on shapes to impose additional
regularization or constraints on embedding learning.

Many extensions of LLE, such as modified locally linear
embedding (MLLE) [91], LLE with geodesic distances [92], and
LLE with penalty functions [75], have been proposed to further
improve LLE. It is promising to incorporate these advanced
designs and adapt them to shape correspondence for better
performance. The discovered mismatch problem suggests that
further exploration of learning embeddings suitable for use as
bases in the functional map is a promising direction to establish
a unified shape correspondence framework, particularly in the
unsupervised learning setting.

In this work, we focus on the matching problem between point
cloud shapes. In the future, we propose to extend our method to
matching problems in other modalities, e.g., images and meshes,
and cross-modality matching problems, e.g., images to point
clouds.

VII. CONCLUSION

We have presented a novel approach to unsupervised shape
correspondence learning between pairs of point clouds. LTENet
is unique in that it introduces an LLE-inspired algorithm that
represents maps between these shapes as locally linear trans-
formations in the high-dimensional embedding spaces and
leads to the learning of universal/canonical embeddings for
shapes in correspondence. The embedding learning is driven
by minimizing a suitable divergence measure between the LLE
cross-reconstruction of source and target point clouds. Remark-
ably, LTENet achieves state-of-the-art performance on standard
benchmark datasets while showing strong model generalization
across datasets with efficient training and inference.
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