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Field-controlled dynamics of skyrmions and monopoles
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Magnetic monopoles, despite their ongoing experimental search as elementary
particles, have inspired the discovery of analogous excitations in condensed matter systems.
In chiral condensed matter systems, emergent monopoles are responsible for the onset of
transitions between topologically distinct states and phases, like in the case of transitions
from helical and conical phase to A-phase comprising periodic arrays of skyrmions. By
combining numerical modeling and optical characterizations, we describe how different
geometrical configurations of skyrmions terminating at monopoles can be realized in liquid
crystals and liquid crystal ferromagnets. We demonstrate how such complex structures can
be effectively manipulated by external magnetic and electric fields. Furthermore, we discuss

how our findings may hint at similar dynamics in other physical systems, and their potential
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applications.
Teaser
Skyrmions and emergent monopoles in liquid-crystal ferromagnets manipulated by external

electric and magnetic fields.
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Introduction

Magnetic monopoles, hypothetical elementary particles, which are the point sources of magnetic
fields, are the holy grail of particle physics. Despite promising restoration of duality symmetry in
the electromagnetic theory and various theoretical predictions, the experimental discovery of
magnetic monopoles has remained elusive(/, 2). Like in the case of macroscopic magnets, the
sources and sinks of magnetic field could not be found separated from each other at the level of
elementary particles. However, structures analogous to monopole-like excitations have been
recently discovered in various condensed matter systems, including spin ices(3), Bose-Einstein
condensates(4) and magnetic solids(5). Such excitations are particularly useful in understanding
emergent behavior of these condensed matter systems and physically resemble the elementary-
particle counterparts of magnetic monopoles beyond topological classification (as a matter of fact,
monopoles as topological objects are rather common). In magnets, 7, (S?) topological point
defects are monopoles not just in the magnetization field m(r), but also in the emergent magnetic
field, (Bepy); = (h/2e)eV*m - (d;m x 9, m), a fictitious field describing the interaction between
conduction electrons and the underlying spin texture, where i and e are the reduced Planck
constant and the elementary charge, respectively(6—8). This is because the emergent magnetic flux
from a 1, (S?) topological point defect is directly proportional to its topological charge as both
measure the solid angle subtended by m(r) in a confining surface. Here, 1, (S™) refers to the n™®
homotopy group of m-sphere $™, which is used to classify topological defects or solitons as maps
from the configuration space to the order-parameter space S™ — S™; the case of monopoles
corresponds to 2-spheres representing both spaces, n=m=2 (9, 10). Emergent monopoles in chiral
ferromagnets play an important role during a phase transition between topologically distinct phases,

serving as nucleation points for the inception of topological transformation(5). In liquid crystals
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(LCs) and LC ferromagnets, two- and three-dimensional topological point defects are
ubiquitous(//, 12). Topological defects in LCs also serve as a means to embed topological solitons
of lower dimensions in the topologically trivial background of a higher dimensional space(/3). A
few examples include embedding 7, (S$?) skyrmions in the three-dimensional space as torons and
1, (S?) twist walls in the two-dimensional space as one of the common cholesteric finger structures
and recently observed configurations of Mdbiusons(/3, 14).

In this article, using externally applied magnetic and electric fields, we demonstrate the
dynamical control of m,(S?) skyrmions and the accompanying m,(S?) topological defects,
monopoles in the emergent field. We show that, much like the skyrmion A-phase, periodic lattices
of skyrmions can also form in LCs when embedded within either a uniform or a helical background.
Moreover, we find that skyrmions and monopoles can be effectively controlled by external fields
while the motions of the monopoles are directly observed with an optical microscope with which
observations benefit particularly from in-plane configurations of skyrmions. Furthermore, we
demonstrate that in a chiral LC material, the vertical skyrmion terminating at monopoles (the so-
called torons) can be hosted in a helical or uniform field background with controllable inter-soliton
interaction, modulated by the applied voltage. While the analogy of our skyrmions and monopoles
to their high-energy-physics counterparts like Dirac monopoles(/5) and m3(S®) Skyrme
solitons(2), which in particle-physics models describe subatomic particles with different baryon
numbers, is distant, the observed findings closely mimic what were found in chiral magnets (3)
where even its Hamiltonian can have a form similar to that of a chiral LC, so that LCs could
potentially serve as model systems and provide useful insights. The diversity of observed
geometrically distinct but topologically equivalent torons, or monopole-terminating skyrmions,

points to possible topology-preserving switching between them, in analogy to the recently studied
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inter-transformation between geometrically distinct states of hopfions(/6). Finally, we discuss the
fundamental implications of monopole control in LC systems and their potential technological

applications.

Results

,(S?) point defects are monopoles in emergent field that embed m,(S?) skyrmions in
topologically trivial backgrounds

Ubiquitously observed in the order-parameter field n(r) of condensed matter systems, a hedgehog
point defect and a hyperbolic point defect are both topological point defects classified by the
1, (S?) homotopy group and have a topological charge of unity (Fig. 1, A and B). In the emergent
magnetic field, despite the distinct difference in their geometrical field configurations, both
hedgehog and hyperbolic defects are monopoles — radial sources of emergent magnetic fields (Fig.
1, A-C). In LCs, LC ferromagnets, and solid-state magnets, torons are 7,(S?) skyrmions
terminating at hyperbolic point defects of the same 1, (S?) field topology, often observed in a
uniform field background with a perpendicular boundary condition (Fig. 1D)(/2, 17—-19). Note
that since all n(r) structures discussed in this work can be consistently vectorized even when the
order parameter of the system has nonpolar head-tail symmetry, namely n(r) = — n(r) and the
corresponding order-parameter space and homotopy group are S%/Z, and m,(S?/Z,) ,
respectively, we focus on vectorized n(r) exclusively for simplicity(20). The two chiral
hyperbolic point defects — deformable from the hyperbolic defect in Fig. 1B (or its oppositely-
charged counterpart by reversing n(r) direction) and thus topologically equivalent — act as a
topological switch that transitions between regions of trivial (Ngx = 0) and non-trivial topology

(INsk| = 1) and are required to embed skyrmions in the trivial uniform background (Fig. 1, D and
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E). Here Ngy is the skyrmion number of the 2D n(r) field with the definition, Ny, = ﬁ [d*rn-

(0xn x d,,n). The emergent field By, derived from n(r) of a toron shows the corresponding two
defects in B, are a pair of a monopole and an anti-monopole, acting as the source and sink of the
emergent field (Fig. 1F). The By, flux streaming from the monopole to the anti-monopole is
reminiscent of the Dirac string in Dirac monopole(/5). In Dirac monopoles, the Dirac string is an
infinitesimally thin solenoid attached to the monopole with quantized magnetic flux. Here, the
distribution of By, flux is determined by n(r) configurations, though the total flux is also
quantized due to topology. Therefore, the emergence of a skyrmion with non-trivial m, (S$?) field
topology in a trivial field background is mediated by the m,(S?) defects, which are a pair of

monopoles in B,.

In-plane skyrmions and monopoles can be stabilized in a uniform or helical background

In chiral materials such as chiral LCs and chiral magnets, skyrmions are often recognized as axi-
symmetric whirling configurations that smoothly transition into a uniform far-field n,. Such
uniform-far-field skyrmions can be approximated analytically by the ansatz n(r) =
(sinf(r)cos(6 + y),sinf (r)sin(0 + y), cosf (r)), where f(r) is a monotonic function with
f(0) =mand f(0) = 0, 0 is the polar angle of the 2D spatial coordinate r, and y = /2 for
right-handed chiral material. The corresponding B, (or equivalently, skyrmion number density)
derived from the ansatz also possesses the axial symmetry (Fig. 2, A and C). Such skyrmions in a
uniform background are often found in the horizontal mid-plane perpendicular to n in chiral LCs
and chiral LC ferromagnets between substrates with a perpendicular (homeotropic) boundary
condition, where torons emerge as a result of geometrical frustration between the material’s

chirality and the substrate’s surface alignment (Fig. 1, D-F)(/3). A somewhat less commonly
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familiar configuration of skyrmions is that with a helical field background; in this case, the
corresponding n(r) can be thought of as splitting and splicing the uniform-background skyrmion
while extending the region of helical configuration into a uniformly helical background with
constant helical axis o, which defines the axis that n(r) twists around in the far field (Fig. 2, B
and D)(/0). Helical skyrmions constructed as such show distinct symmetry in the distribution of
skyrmion number density where it is localized at two lobes around the so-called A disclination
lines (often also referred to as fractional skyrmions and merons), the singular line defects in the
helical-axis field that remain nonsingular in n(r) (27). Note in the case of helical skyrmion
configurations, which in LC literature are sometimes referred to as Lehman clusters, the helical
background is also topologically trivial and allows for compactification of the configuration space
R? to $* and thus the classification of the observed configuration within 7, (S?) topology.

The richness in geometrical configurations of skyrmions expands the confinement and
alignment conditions that can host the solitons and associated monopoles. In particular, torons and
skyrmions can also emerge in cells with planar alignment, where their stability could be established
by frustration induced by cholesteric compression/dilation or by coupling to externally applied
electric and magnetic fields. Computer simulations based on Frank-Oseen free-energy
minimization show skyrmions stabilized both in a uniform-field background and in a helical-field
background, respectively (Fig. 2, E and H). The m, (S?) topological defects in n(r) mediate the
embedding of skyrmions into the field backgrounds (Fig. 2, F and I), and are sources and sinks of
B, where the streamlines of B, run along the in-plane direction parallel to the substrates,
representing monopoles of opposite charges (Fig. 2, G and J). Despite the dissimilar n(r)
configurations around the defects, interestingly, they are classified by the m, ($?) homotopy group

and correspond to consistent charges of monopoles in B,,,. Compared to the more commonly
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realized skyrmions in perpendicular-alignment cells, in-plane skyrmions and monopoles allow the
same topology to be realized in a geometry where they could reconfigure in the direction parallel
to the confining substrates; this allows better accessibility for optical characterization and freedom

of dynamics for monopoles.

In-plane skyrmion emergence under applied electric field and their 1D lattices
To observe in-plane skyrmions experimentally, we confined chiral LCs between substrates with
planar anchoring in LC cells with a thickness-to-pitch ratio of d/p = 1. Under such conditions,
the uniformly helical (cholesteric) state with far-field helical axis y, perpendicular to the
substrates is the global ground state and no stable skyrmions or monopoles are observed. Upon
heating and quenching from the isotropic state to the cholesteric state, dark fragments of stripe-
like patterns seen under a polarizing optical microscope (POM) between crossed polarizers can be
stabilized when a voltage across the substrates of U = 1.4V is applied to the LC with positive
dielectric anisotropy (Fig. 3A). To reveal unambiguously the n(r) of these fragments, we
employed a nonlinear fluorescence polarizing imaging (3PEF-PM, Methods) where the generated
patterns can be compared with those from n(r) simulations. The results obtained using different
polarizations of excitation are consistent with n(r) of in-plane skyrmions terminating at
monopoles in a helical background (Fig. 3B). The in-plane helical skyrmions are stabilized by an
electric field E because of the skyrmion’s energetically favored vertical n(r) along E, which is
not present in the uniformly helical background (Fig. 2H).

Besides spontaneous emergence after quenching, in-plane skyrmions can also nucleate
from sample edges or be controllably generated by local melting and reorienting of LCs using laser

tweezers when an electric field is applied (Methods). As skyrmions increase in number and fill the
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sample, they form a 1D lattice in the direction perpendicular to the direction of planar alignment
(Fig. 3, C and D). Defects of the skyrmion lattice as quasi-dislocations can be observed readily in
a large lattice, where skyrmions terminating at monopoles locally disrupt the periodic arrangement
(Fig. 3E). 3PEF-PM images show changes in Ny in the vertical cross-sections mediated by
monopoles, where the presence of a monopole is associated with a change in Ng, by unity.
Specifically, Fig. 3G shows the effect of topological switching mediated by monopoles: N
increases from -3 to -2 by a monopole, and decreases from -2 to -3 by an anti-monopole (Fig. 3,
E-G). The 1D skyrmion lattice in chiral LCs is analogous to the 2D skyrmion A-phase in chiral
magnets, where both form as a result of energy competition between material’s free energy
minimization and coupling to externally applied fields. Notably, the unwinding of the chiral
magnetic A-phase into ferromagnetic phase is also mediated by monopoles(5) . The energetics of
the emergence of skyrmions/torons mediated by monopole-antimonopole nucleations in this
geometry competes with that of the formation of undulations of chiral LC’s quasilayers, where
they, for certain material parameters in a similar experimental geometry, can emerge as a
transformation that preserves the trivial topology of the helical background (22).

In-plane skyrmions can also be realized in a uniform-field background (Figs. 2E and 3H,1).
For a confined chiral LC with planar anchoring and d/p = 1, an in-plane electric field ~1 V/um
unwinds the helical n(r) configuration and makes the uniform state n, || E the ground state.
Uniform-background in-plane skyrmions and monopoles can thus be created spontaneously
through quenching or controllably by laser tweezers. Compared to the case of helical-background
skyrmions, the stabilization of uniform-background skyrmions with an electric field requires high
voltages (at least ~ 1000 V) because of the large lateral dimensions compared to the thickness in

our LC samples. However, more sophisticated sample geometry such as those with patterned
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electrodes that reduce the gap size should alleviate the need for high voltages.

External fields control dynamics of skyrmions and monopoles in LCs and LC ferromagnets
Stabilization of in-plane skyrmions by an electric field E is enabled by the balance between elastic
energy and dielectric coupling energy, where dielectric coupling energetically favors n(r) || E in
a material with positive dielectric anisotropy. In the case of helical-background skyrmions, E || 2
promotes vertical n(r) orientations and the expansion of skyrmions, which counters the shrinking
tendency due to mismatch between twist deformation in the skyrmion and molecular pitch p.
Beyond simply stabilizing n(r) configurations, modulation of E can also be used to control the
dynamics of monopoles on which the skyrmions terminate. Here we focus on in-plane helical-
background skyrmions because of their ease of manipulation and observation, though the same
field-controlled dynamics can be straightforwardly applied to other geometrical configurations.
For a pair of a monopole and an anti-monopole at the ends of a skyrmion fragment, we
define the separation velocity as the rate in the change of their distance of separation. Away from
the equilibrium voltage at U < 1.4 V, the dielectric coupling is not strong enough to compensate
for the cost in elastic energy in the skyrmion, and the skyrmion shrinks (Fig. 4A and movie S1).
Whereas at U > 1.4 V, it becomes favorable in the overall free energy for the skyrmion to grow
and acquire larger regions of vertical orientations in the system (Fig. 4B and movie S1). Thus, the
separation velocity becomes positive and the width of the skyrmion, as determined in POM by the
region deviating away from the helical background, is also visibly larger. The dependence of
separation velocity on U is plotted in Fig. 4C. The magnitude of this separation velocity = —60
um/s is largest when the skyrmion shrinks at U = 0 V, while at U = 1.6 V, the monopole pair

separate at 20 um/s. In the range U < 1.6 V, the skyrmions connecting monopole pairs remain
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approximately linear in shape. Above U = 1.6 V, distortion in the helical background takes place
in the form of undulations(22), resulting in deformation of the linear shape of the skyrmion and
obstruction in the separation of monopoles. We note that when U < 1.4 V, the skyrmion shrinks
and the monopole pair come together and annihilate, indicating the absence of an energy barrier
between the monopole pairs. This contrasts with topological solitons, where n(r) is continuous
and topologically nontrivial; erasing them requires generation and annihilation of singular defects,
leading to an energy barrier and the so-called topological protection(27).

The dynamics and stability of skyrmions and monopoles can also be controlled by magnetic
fields in chiral LC ferromagnets where magnetically monodomain nanoplates are uniformly
dispersed at high concentrations in the hosting chiral LC (23). By forming a monodomain in the
magnetization m(r) of ferromagnetic nanoplates and introducing strong homeotropic surface
anchoring of LC molecules to the nanoplates (Methods), m(r) follows n(r) and physically
vectorizes n(r) from a director field into a vector field. When an external magnetic field H is
applied, H and m(7) couple linearly and compete with free-energy contributions from elastic and
dielectric interactions. Figure 4, D and E, show the magnetic control of skyrmions and monopoles
with H applied in different directions. When H is parallel to the average m(7) within a skyrmion,
mg, which is also the magnetization at the top and bottom substrates (Fig. 2H), the linear magnetic
coupling promotes the expansion of skyrmions and separation of monopoles (Fig. 4D). The width
of the skyrmions also becomes visibly wider. When H is antiparallel to mg, skyrmions contract
and eventually monopole pairs annihilate (Fig. 4E). Compared to electric-field control of
monopoles, the coupling between H and m(r) is linear and polar, and can be applied with less

constraint pertaining to sample geometry, enabling an orthogonal dimension in controlling
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monopole dynamics.

Electric field controls interaction and assembly of vertical torons by modulating energetic
landscape around solitons

Thus far, we have focused on in-plane skyrmions and monopoles because of their accessibility for
manipulation and observation. However, vertical skyrmions along the normal of substrates and
terminating at monopoles in a cell with homeotropic boundary conditions, also known as torons,
also display manipulable interaction and assembly modulated by an electric field. In a homeotropic
cell, when the confined chiral LC has an elastic anisotropy such that K35 /K,, <1, i.e., the
energetic penalty of bend deformation is smaller than that of twist deformation, the background
n(r) can be switched between the helical state and the uniform state by an electric field. For a
material with positive dielectric anisotropy, the background is helical at no field and can be
unwound to the uniform state when an electric field is applied (/6, 24). Vertical skyrmions
stabilized in a helical background with no field display attractive pair-wise interaction and form a
close-packed hexagonal lattice when several of them are in close proximity (Fig. SA). This is in
stark contrast to the repulsive interaction between vertical skyrmions stabilized in a uniform
background(/7, 20). When an electric field across the thickness of an LC cell was applied to
unwind the helical background into a uniform background, the skyrmion-skyrmion interaction
switched from attractive to repulsive (Fig. 5B). Computer simulations based on free-energy
minimization reveal the detailed n(r) transformation when the background state changes between
the helical state and the uniform state (Fig. 5, C and D). Before and after the transformation of the
background state, the monopole pairs and skyrmion number in the horizontal cross-sections are

conserved, preserving their respective m,(S?) topology. However, the energetic landscape in the
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lateral dimensions changes. When the background is helical at no electric field, the free energy
density at the periphery of the skyrmion is higher than that of the background; when the
background is unwound by an electric field, the free energy density at the periphery of the
skyrmion becomes lower than that of the background (Fig. 5E). To minimize total free energy,
skyrmions (in a helical background) with a high-energy periphery comes closer together to share
and reduce the volume with a high energy density, leading to an attractive interaction, whereas
skyrmions (in the uniform background) with a low-energy periphery stay away from each other to
increase the space with low energy density, leading to repulsion. We note that, in
noncentrosymmetric chiral magnets, skyrmions in a uniformly polarized background are
commonly observed, and skyrmions with attractive interaction have also been demonstrated in a
conical background(25). In LCs, the switching of pair-wise interactions between skyrmions
through background modulation can be recorded in real time due to their unparalleled experimental

accessibility.

Discussion

In this work, we have presented the magnetic and electric control of the equilibrium configuration
of ,(S?) topological configurations, namely skyrmions and monopoles (with their composite
structures referred to as torons), and their dynamics in chiral LC materials. We found that 7, ($?)
point defects at the termini of skyrmions are indeed monopoles in the emergent magnetic field.
We further demonstrated that LC skyrmions can take on versatile geometrical configurations under
different boundary conditions and applied fields. Notably, in-plane skyrmions in planar-confined
cells offer exceptional accessibility for observation and manipulation by external fields. Compared

to vertical skyrmions in a homeotropically aligned cell (torons), in-plane skyrmions offer the
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opportunity of controlling the separation of monopoles in the lateral dimensions, whereas the
separation between the monopoles in vertical skyrmions is limited due to confinement by the
substrates, though their lateral spatial extent can be controlled by fields(/2, 26). To enhance the
dynamical range of the electric control of skyrmions and monopoles, dual-frequency LCs may be
used to allow the sign of LC dielectric anisotropy to be adjustable, such that positive (negative)
dielectric anisotropy that promotes expansion (contraction) can be used in the same material(27).
The linear coupling enabled by magnetic fields, distinct from the quadratic nature of dielectric
coupling to electric fields, could also potentially allow for orientational control of solitons and
monopoles.

Additionally, we showed that the pair-wise interaction between vertical skyrmions can be
switched between attractive and repulsive, by altering the background configuration that embeds
them through applying electric fields. We expect that similar switching can be achieved as well in
LC ferromagnets using magnetic fields (as well as in magnetic solids), where the far-field m(r)
can be polarized by H applied to the sample. Crossover between different pair-wise interactions
of LC skyrmions has been observed between vertical and in-pane skyrmions in homeotropically
aligned cells, albeit it was done differently through changing the dimension of the confined LC or
anchoring(28). The field-controlled pair-wise interaction of LC skyrmions could potentially
further couple with their recently observed squirming motion, activated by a modulated electric
field, to facilitate versatile control and manipulation of LC topological solitons and defects(29).

It is informative to compare the emergent magnetic monopoles studied here to Dirac
monopoles(/5), as well as emergent monopoles in other condensed-matter systems such as those
in spin ice and artificial spin ice(3, 30). Dirac showed magnetic monopoles can be consistent with

quantum mechanics by considering a monopole as the end of a semi-infinitely long and intestinally
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thin solenoid. The solenoid, also called the Dirac string, has no observable quantum mechanical
Aharonov-Bohm effect when satisfying Dirac’s quantization condition. The Dirac string is thus
infinitesimally thin and undetectable. In contrast, emergent magnetic monopoles are sources or
sinks of the emergent magnetic field with finite-sized “strings” in between. In n(r), emergent
monopoles are 7, (S?) point defects connected by 1, (S?) skyrmions. Since the monopoles and
skyrmions are imbedded in a topologically trivial background, the emergent flux is also quantized
as a result of the 1, (S?) field topology. The interaction between emergent magnetic monopoles
depends on the energetics of the material field n(r). Notably, as shown above, the tension in the
skyrmion string that connects monopoles can be controlled between positive and negative values
by external electric fields or magnetic fields that couple to n(r). This is analogous to their
counterparts in solid-state chiral magnets, where the transition into and out of the skyrmion A-
phase is mediated by nucleation and annihilation of emergent magnetic monopole-anti-monopole
pairs(5). Emergent monopoles in spin ice or artificial spin ice, on the other hand, are sources of
the actual magnetic field(3, 30). When the local “ice rule” is violated in geometrically frustrated
spin ice materials, monopoles emerge with their charge determined by the dipole moment and
lattice parameters. Since skyrmion spin ice could be potentially formed in chiral molecular and
colloidal LCs(317) or even magnetic solids, future explorations of the interplay between different
types of monopoles may be possible too.

On the application side, the high degree of distortion in the alignment field around the
emergent magnetic monopoles in this study and the central isotropic core are elastic-energy-
enabled traps for micro- or nanoparticles(32, 33). Thus, potential technological applications could
arise from dynamical control of skyrmions and monopoles, such as electro/magneto-optic devices,

microfluidic devices, optical logic devices, etc. The widespread electro-optic applications of LCs
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typically rely on switching between topologically trivial states that are homeomorphic one to
another, but our findings point to the possibility of realizing controlled conditions for achieving
novel electro-optic effects either by morphing topologically nontrivial configurations or even by
changing topology, for example, through the monopole-mediated skyrmion nucleation and
reconfiguration. Lastly, the study of dynamics and control of LC skyrmions and monopoles could
shed light on the physics of topologically equivalent solitonic structures in other ordered systems,

such as in the solid-state magnetic(5), ferroelectric(34), or optical fields(35).
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Materials & Methods

Sample preparation

Chiral LC mixtures used in this work comprise 4-Cyano-4'-pentylbiphenyl (5CB, from EM
Chemicals) added with the right-handed chiral dopant CB-15 (EM Chemicals). The helical pitch
p of the mixture was measured in a wedge cell and ranged from 2.33 to 60 um(36). For the LC
mixture with reduced bend elasticity, 4',4"-(heptane-1,7-diyl)-dibiphenyl-4-carbonitrile (CB7CB;

from SYNTHON Chemicals, Germany) was additionally added to the mixture at 40 wt%(37).

LC cells were assembled from substrates of glass slides or coverslips coated with indium
tin oxide (ITO) and treated with polyimide PI12555 and SE5661 (both from Nissan Chemicals) for
planar and homeotropic boundary conditions (anchoring) for LC director, respectively. The
treatment involves spin-coating polyimide onto ITO glasses, followed by baking at 180°C for 1h.
PI12555-coated glass slides or coverslips were additionally rubbed to impose unidirectional planar
anchoring. Silica microbeads or microcylinders were used as spacers to assemble treated ITO
glasses into cells with well-defined thicknesses ranging from 7 to 60 um by UV-activated glue.
Finally, metal wires were soldered to ITO glasses as electrodes. For LC cells where an in-plane
electric field parallel to the confining substrates was applied, glasses without ITO coating were
polyimide-treated and used as confining substates of LCs, and a pair of ITO glasses with a gap of
~3 mm were assembled perpendicular to the substrates and soldered with wires. LC mixtures were

introduced into cells via capillary force.

Electric control of LCs was achieved by connecting the electrodes of LC cells to a function
generator (DS345; Stanford Research Systems) operating at a 1 kHz carrier frequency to preclude
complex hydrodynamic effects. To achieve an ~1 V/um electric field in the in-plane direction, a

high-voltage amplifier (Model 10/10B, Trek) was used to raise the voltage to ~3000 V. Magnetic
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control of LC ferromagnets was achieved by permanent neodymium magnets (K&J Magnetics) or
a previously reported home-built electromagnet system containing solenoids with machined cast-
iron cores driven by power supplies (BOP20-5M, Kepco)(38, 39). The solenoids were arranged in
Helmholtz coils to produce uniform magnetic fields up to ~30 mT. Magnetic fields used to control

the dynamics of skyrmions and monopoles in LC ferromagnets were typically ~10 mT.

Laser generation and imaging of skyrmions and monopoles

Skyrmions and monopoles were controllably generated by laser tweezers that locally melt and
align LC directors. The tweezers setup is based on an ytterbium-doped fiber laser (YLR-10-1064,
IPG Photonics) and a phase-only spatial light modulator (P512-1064, Boulder Nonlinear Systems)
integrated with an inverted optical microscope (IX81, Olympus)(/7). Upon focusing the 1,064 nm
infrared laser into the LC sample, local heating and optical realignment created initial n(r) that
eventually relaxed into skyrmions and monopoles. In a planar-alignment cell, atd = p = 10 um
and using a 5CB-based chiral LC mixture, in-plane skyrmions in a helical background can be
reliably generated at U = 1.27 V upon laser-induced melting, while in-plane skyrmions in a
uniform background can be generated at an in-plane electric field of ~1 V/um. In a homeotropic-
alignment cell, vertical torons in a uniform background can be generated without the applied

electric field.

Bright-field microscopy and polarizing optical microscopy were performed using an
Olympus IX-81 inverted microscope and a charge-coupled device camera (Flea-COL, from
PointGrey Research)(/7). Video-microscopy was conducted at a frame rate of 15 fps. Image
analysis of monopole separation velocity was performed using the ridge detection plugin in ImageJ
(National Institute of Health). Under different applied voltages, the skyrmion and monopoles as

its end points in each POM video were identified. The separation velocity of the monopole-
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antimonopole pair at different voltages, which varied only modestly with the length of the

skyrmion, was extracted as the average velocity.

Nonlinear optical imaging via three-photon excitation fluorescence polarizing microscopy
(3PEF-PM) was performed using a previously reported setup to unambiguously characterize 3D
n(r) configurations in LCs(/7, 21). Briefly, 3PEF-PM was performed using a setup built around
the same 1X-81 microscope with a Ti:sapphire laser (Chameleon Ultra II; Coherent) operating at
900 nm wavelength, 140 fs pulse duration, and 80 MHz repetition rate. SCB and CB-15 molecules
in the LC mixture were excited by the ultrashort pulses and the fluorescence was epi-collected by
a 100X oil-immersion objective (NA = 1.44) and detected by a photomultiplier tube (H5784-20,
Hamamatsu) after a 417/60-nm bandpass filter. The polarization state of the excitation was
controlled by a pair of half-wave and quarter-wave retardation plates. In 3PEF-PM imaging, the
image intensity scales as cos® 8, where 8 is the angle between the dipole moment of the LC
molecule, orientating along n(r), and the polarization of the excitation light(40). LC mixtures
used in samples for 3PEF-PM imaging comprise additionally 15% of diacrylate nematic reactive
mesogen RM 257 (Merck) and 1% of UV-sensitive photoinitiator Irgacure 369 (Sigma-Aldrich),
making them partially polymerizable. Before imaging, samples were polymerized by UV
illumination and the unpolymerized components were replaced with immersion oil. This process
preserves the n(r) configuration of the sample, while reducing the material’s birefringence by an

order of magnitude, thus minimizing imaging artifacts(4/).
Synthesis and dispersion of magnetic nanoplates in LCs

Barium hexaferrite BaFe11CrO19 ferromagnetic nanoplates were synthesized by the hydrothermal
method described in(42). Briefly, 0.01 M of Ba(NO3)2, 0.04 M of Fe(NO3)3-9H20, and 0.01 M of

Cr(NO3)3-9H20 (all from Alfa Aesar), according to the nominal stoichiometry, were dissolved in
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deionized (DI) water and co-precipitated by 2.72 M of NaOH (Alfa Aesar) aqueous solution with
a final volume of 20 mL in a 25 mL Teflon-lined autoclave. The resulting material was
hydrothermally heated to 220°C at a rate of 3°C/min, held at 220 °C for 1 h, and then cooled down
to room temperature. The precipitated nanoplates were then washed with 10 wt% nitric acid and
acetone and redispersed in 1 mL of DI water. The thickness of the as-synthesized nanoplates was
determined to be ~10 nm and the average diameter ~105 nm using transmission electron
microscopy. The nanoplates are magnetically monodomain with an magnetic moment
approximately 1 X 1077 Am?, orthogonal to their large-area faces(/2). The magnetic nanoplates
were then surface-functionalized by 5 kDa silane-terminated polyethylene glycol (JemKem
Technology) to increase their stability in LCs and introduce strong homeotropic anchoring to LC

molecules.

To obtain LC ferromagnets, 15 pL of LC mixtures were mixed with 15 pL of ethanol and
15 pL of 1 wt% magnetic nanoplates dispersed in ethanol. The mixture was kept at 90°C for 3 h
for the ethanol to fully evaporate before being cooled rapidly to nematic phase while vigorously
disturbed to reduce formation of aggregates at domain boundaries. The ensuing mixture was then
centrifuged at 2,200 rpm for 5 min to remove any residual aggregates. To achieve monodomain
LC ferromagnets, an unwinding electric field (~0.5 V/um) and a colinear magnetic field
perpendicular to the substrates (~15 mT) were applied while filling the LC cell(43). The samples
were confirmed to be magnetically monodomain by the response of n(r) to externally applied

magnetic fields(38).

Numerical modeling
Numerical modeling of configurations and energetics of skyrmions and monopoles was based on

energy minimization of Frank-Oseen free energy that describes energetic penalties of different
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elastic deformations modes in n(r), supplemented by dielectric and magnetic (for LC

ferromagnets) coupling terms(/1, 16, 21). For a chiral LC, the elastic and dielectric terms read

Fassie = [ @r{Z2 0 0@ + 2 ) - @ x n@)] + 22 x (7 x n@)P

NELLE RN n(r))} ),
_ %t 3 2
Fdielectric - 2 fd T(E ’ n(r)) (2)

Here, n(r) is the LC molecular alignment field, K; 4, K;,, and K35 are the Frank elastic constants
describing the energetic costs of splay, twist, and bend deformations, respectively, and p is the
helical pitch of the material. Surface energy and saddle-splay deformation were not included by
assuming strong boundary conditions on the surfaces, consistent with conditions in experiments.
In the dielectric coupling term, &, is vacuum permittivity, &, is the dielectric anisotropy of the LC
and E is the applied electric field. In a chiral LC ferromagnet, the magnetization unit vector field
m(r) = M(r)/|M(r)|, where M(r) is the local magnetization, is assumed to be collinear with
n(r) due to strong homeotropic surface anchoring of LC molecules to the magnetic nanoplates.
Therefore, the elastic free energy and dielectric coupling of a chiral LC ferromagnet are identical
to Egs. (1) and (2), with n(7) substituted by m(r). An additional magnetic coupling term between

m(r) and an applied magnetic field H reads

Fmagnetic = —o|M(r)| f d*r H-m(r). 3)

Here, uy is vacuum permeability and |[M(r)| = pm, is the magnetization of the material
(approximated to be uniform) as the product of the nanoplate density p (10 /um?®) and the average
magnetic moment of a nanoplate m,, (1 X 1077 Am?), both adopted from experiments (38, 39,

44).
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Minimization of free energy can be performed iteratively using standard numerical
methods of finite difference discretization in space and forward Euler method in time and has been
implemented in commercial software and custom energy-minimization routines (16, 17, 21, 45).
Previously relaxed configurations or those obtained from experimental 3PEF-PM images were
used as initial conditions for n(r) or m(r). Briefly, n(r) or m(r) was updated iteratively from
an initial configuration using Euler-Lagrange equation until the change in the spatial average of
functional derivatives converged at an energy minimum. In all simulations, the computational
volume was sampled by isotropic voxels on a cubic grid at 24 gird points per p and periodic
boundary conditions were applied at the lateral faces of the volume.

Material parameters in simulations were chosen to match those of SCB (Table S1) (27). To
model the elasticity of the bend-reduced LC mixture containing 5CB and CB7CB, material
parameters were set to be the same as those of 5CB, except that K55 was reduced to a smaller value
such that K533 /K,, < 1. In the limit where K = K;; = K,, = K33, Eq. (1) can be rewritten into the
following form,

Ferastic1—const = | & {5 (7n@)? + ZEn(r) - (7 xn@)}. @)

Equation (4), or Frank-Oseen free energy with the so-called one-constant approximation, has been
frequently adopted to simplify calculations of LC energetics, and takes an identical functional form
to the micromagnetic Hamiltonian density of solid-state chiral magnets (with the nonlocal dipole-
dipole interactions neglected)(46—48). The connection between the continuum energy functionals
of LCs and solid-state magnets suggests that similar configurations and phenomena can be
anticipated in these distinct physical systems.

The numerical calculation of B,y from m(r) configurations is based on the definition

(Ber)i = (h/2€)e*m - (djm X d,m). The numerical simulation of 3PEF-PM images is based
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474  on the cos® B dependence of the angle between n(r) and the different polarization directions of

475  the excitation light. Both numerical functions implemented in MATLAB are available on Zenodo:
476  10.5281/zenodo.10092838.
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Fig. 1. Monopoles and point defects. (A,B) A hedgehog (A) and a hyperbolic (B) point defect in
the material alignment field n(r). (C) Emergent magnetic field B, derived from the ansatzes of
the hedgehog (A) and the hyperbolic point defect (B) in n(r) both shows radial monopole-like
field configuration. (D,E) Computer-simulated n(7) configuration of a toron in a cell with a
perpendicular boundary condition shown in the vertical cross-section parallel to the uniform far-
field ny Il Z (D) and horizontal cross-sections at different positions along z indicated in (D) and
their respective skyrmion number Ngi. Point defects (monopoles) in (D) are circled in red with
their charges labeled. Here n(r) is visualized by colored arrows using the color scheme in (G).
The blue slabs indicate the substrates confining LCs. (F) B, or equivalently the 3D skyrmion
number density derived from the n(r) configuration of the toron in (D) shown by the isosurfaces
of the scalar magnitude of B, and streamlines of B, connecting the positively-charged (top)
and the negatively-charged (bottom) monopoles. (G) Order-parameter space S colored according
to the vectorized n(r) orientation.

B, (r) = (A/2e)(-x,-y,2)/r*
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Fig. 2. Toron in a uniform or helical background and the associated monopoles in emergent
magnetic field. (A,B) Torons are formed by monopole-associated skyrmions which can be
embedded in a uniform far-field n, (A) and a helical field background with constant helical axis
Xo (B), respectively. (C,D) Skyrmion number density derived from n(r) in (A) and (B),
respectively. (E) Computer-simulated cross-sections of n(r) of an in-plane skyrmion terminating
at two monopoles (circled in red with the sign of the charge labeled) and embedded in a uniform
far-field n,, || ¥. (F) Detailed n(r) around each monopole in (E). (G) Emergent field B, derived
from n(r) in (E) shown by streamlines of B, colored by its magnitude. (H) Computer-simulated
cross-sections of n(r) of a skyrmion terminating at two monopoles (circled in red with the sign of
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633  the charge labeled) and embedded in a helical far-field with helical axis y, Il Z. (I) Detailed n(r)
634  around each monopole in (H). (J) Emergent field B, derived from n(r) in (H) shown by
635  streamlines of B, colored by its magnitude. In simulations, d/p = 0.8 in (E-G), and d/p =1
636 and U = 1.5 V in (H-J), respectively.
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Fig. 3. Torons comprising skyrmion and monopoles in confined chiral LCs. (A) POM images
of an individual toron with a skyrmion (A) in a helical far-field background (constant helical axis
Xo) terminating at two monopoles (B) Experimental (exp.) and computer-simulated (sim.) 3PEF-
PM images in the vertical cross-section through the skyrmion. (C) 1D lattice of skyrmions in a
helical background. (D) Experimental (exp.) and computer-simulated (sim.) 3PEF-PM images in
the vertical cross-section through an 1D lattice of helical-background skyrmions. (E) POM image
of a skyrmion lattice with defects. The sample in (E) was polymerized and washed before imaging,
reducing the birefringence. (F,G) 3PEF-PM images of skyrmions and monopoles in horizontal and
vertical cross-sections indicated in (E). The skyrmion number N of each vertical cross-section in
the region defined by the gray box are shown. (H,I) POM images of an individual skyrmion in a
uniform far-field background n, terminating at two monopoles with variable length under a
smaller (H) or a larger (I) in-plane electric field. Scale bars are 10 um in A, B, D, F and 30 pm in
C, E, H. Sample thicknesses are 30 um in (C) and (E) and 10 pm otherwise. d /p = 1 in all samples.
The polarization states of the linearly polarized excitation light for 3PEF-PM in B,D,F,G are
marked in red.

32



656

657
658
659
660
661
662
663
664
665
666

667

S

]
o

[=]

s
1=}

Electric control

Monopole separation velocity (um/s)
2 5

=]

Magnetic control

Fig. 4. Field-controlled dynamics of monopoles at skyrmion ends. (A,B) Snapshots of POM
images of two monopoles connected by a skyrmion in a helical background moving close to (A)
and away from (B) each otherat U = 0 Vand U = 1.5 V, respectively. (C) Separation velocity of
the monopole-antimonopole pair vs. the applied voltage U. The error in measuring velocity is +2
pm/s. (D,E) Snapshots of POM images of two monopoles connected by a skyrmion in a helical
background moving close to (D) and away from (E) each other when an external magnetic field H
is applied parallel or antiparallel to magnetization mg, the average m(r) within the skyrmion,
respectively. Scale bars are 20 pm in (A,B) and 50 pm in (D,E). Sample thicknesses are 10 um in
(A) and (B) and 60 pm in (D) and (E). d/p = 1 in all samples.
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Fig. 5 | Controlling pair-wise interaction between vertical skyrmions. (A) POM images of a
vertical skyrmion in a helical background with perpendicular boundary conditions individually
(left) and aggregating into a close-packed crystallite (right). (B) The pair-wise interaction between
skyrmions is altered by changing the embedding far-field between helical (up) and uniform
(bottom) through modulating the applied voltage U. (C) Preimages of n(r) orientations along +"z
and 4§ colored according to order-parameter space $? shown in Fig. 1G for computer-simulated
skyrmions in a helical background (left) and a uniform background (right), respectively. (D)
Computer-simulated vertical cross-section of m(r) of a vertical skyrmion terminating at
monopoles in a helical (left) and a uniform (right) background, respectively. Monopoles are circled
in red with their charges labeled. (E) Free-energy density of the computer-simulated skyrmion
field configurations shown in (C) and (D) in a helical (left) and a uniform (right) background,
respectively. The energy density is averaged over thickness (z direction) and excludes regions
containing singular monopoles, shown in units of Kp, the product of the average elastic constant

and pitch. In experiments and simulations, d/p = 3 andd = 10 um. \/K33/K,, = 0.8 and U =
4.1 V were used in simulations. Scale bars are 5 pm.
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