

1 **Basaltic Pulses and Lithospheric Thinning – Plio-Pleistocene**
2 **Magmatism and Rifting in the Turkana Depression (East African**
3 **Rift System)**

4
5 Sahira M. Cancel Vazquez¹, Tyrone O. Rooney^{1*}, Eric L. Brown², Andrew Bollinger¹, Ian D. Bastow³, R.
6 Alex Steiner¹, John Kappelman⁴.

7
8
9 *¹Department of Earth and Environmental Science, Michigan State University, East Lansing, MI 48824,
10 USA.*

11 *²Department. of Geoscience, Aarhus University, Denmark*

12 *³Department of Earth Science and Engineering, Imperial College London, London, UK*

13 *⁴Departments of Anthropology and Geological Sciences, University of Texas at Austin, Austin, TX, USA*

14
15 *corresponding author

16
17 Abstract

18
19 The East African Rift System provides an opportunity to constrain the relationship between magmatism
20 and plate thinning. During continental rifting, magmatism is often considered a derivative of strain
21 accommodation – as the continental plate thins, decompression melting of the upper mantle occurs. The
22 Turkana Depression preserves among the most extensive Cenozoic magmatic record in the rift. This
23 magmatic record, which comprises distinct basaltic pulses followed by periods of relative magmatic
24 quiescence, is perplexing given the lack of evidence for temporal heterogeneity in the thermo-chemical
25 state of the upper mantle, the nonexistence of lithospheric delamination related fast-wave speed anomalies
26 in the upper mantle, and the absence of evidence for sudden, accelerated divergence of Nubia and Somalia.

27 We focus on the Pliocene Gombe Stratoid Series and show how lithospheric thinning may result in pulsed
28 magma generation from a plume-influenced mantle. By solving the 1D advection-diffusion equation using
29 rates of plate thinning broadly equivalent to those measured geodetically today we show that despite
30 elevated mantle potential temperature, melt generation may not occur and thereby result in extended
31 intervals of quiescence. By contrast, an increase in the rate of plate thinning can generate magma volumes
32 that are on the order of that estimated for the parental magma of the Gombe Stratoid Series. The coincidence
33 of large-volume stratiform basalt events within the East African Rift shortly before the development of

34 axial zones of tectonic-magmatic activity suggests that the plate thinning needed to form these stratiform
35 basalts may herald the onset of the localization of strain.

36 Plain Language Summary

37 The magmatic record in the Turkana Depression - part of the East African rift system - is characterized by
38 pulses of basaltic activity that are followed by long periods of relative magmatic quiescence. This is a
39 puzzling observation assuming that these magmas are generated by decompression melting of the upper
40 mantle; there is no obvious changes in the rate of plate motion between Nubia and Somalia. This study
41 presents new geochemical data on the final pulse of basaltic volcanism (during the Pliocene) and interprets
42 these data in the context of a mantle melting model. We find that pulses of basaltic volcanism and
43 intervening periods of quiescence could be simulated using different rates of thinning of the plate. We
44 examine the consequences of a period of enhanced plate thinning in context of melt generation both below
45 and within the plate.

46 **1. Introduction**

47 In a volcanic continental rift, magmatism is often considered a derivative of strain accommodation (e.g.,
48 Corti et al., 2003). Increased strain may facilitate the enhanced coupling of the brittle and ductile portions
49 of the continental crust, thereby facilitating the transit of magmas and causing episodes of basaltic
50 volcanism (e.g., Lahitte et al., 2003; Mazzarini et al., 2004). While such models do not directly consider
51 the magma generation mechanisms, existing models of rift evolution outline a process whereby crustal
52 transformation initially occurs by mechanical extension (e.g., Hayward and Ebinger, 1996), with
53 magmatism typically acknowledged as a result of decompression melting of the upper mantle following
54 lithospheric thinning (e.g., McKenzie and Bickle, 1988). However, observations from volcanic continental
55 rifts highlight the typically pulsed nature of magmatism – large volumes of basalts may erupt in a discrete
56 time window, followed by periods of either magmatic quiescence or lower volume silicic activity (e.g.,
57 Wilson et al., 2004; Rooney, 2020a; Guan et al., 2021). While the arrival or pulsing of a mantle plume into
58 the sub-rift mantle is often invoked as a mechanism to explain some of these basaltic events (e.g., Ernst and

59 Buchan, 2003; Kitagawa et al., 2008; Rooney, 2017), evidence for discrete changes in the thermo-chemical
60 conditions of the upper mantle associated with all such basaltic pulses is lacking (Rooney et al., 2012c).
61 Thus, the conceptual relationship between pulses of basaltic magmatism and episodes of lithospheric
62 thinning during rifting remains ambiguous (e.g., Karson and Curtis, 1989; Ebinger, 2005; Keir et al., 2013;
63 Rooney, 2020a).

64 The East African Rift System (EARS) is the archetypal example of a volcanically active continental
65 rift (e.g., Mohr, 1983; Hayward and Ebinger, 1996; Ebinger, 2005; Corti, 2009). Following Eocene-
66 Oligocene flood basalt activity that is broadly linked to a mantle plume (e.g., George et al., 1998; Pik et
67 al., 1999; George and Rogers, 2002; Krans et al., 2018; Steiner et al., 2021), distinct pulses of widely
68 distributed basaltic magmatism in the EAR during the Early Miocene, Mid Miocene, and Pliocene have
69 alternately been linked with episodes of lithospheric extension (Rooney, 2020a). The Turkana Depression
70 has been recognized as an important locus of strain throughout the development of the EARS (Bonini et
71 al., 2005; Morley, 2010; Macgregor, 2015; Purcell, 2018; Boone et al., 2019; Knappe et al., 2020; Morley,
72 2020; Rooney, 2020a). This region, which has been previously impacted by a failed episode of Mesozoic
73 rifting (e.g., Bosworth and Morley, 1994; Vetel and Le Gall, 2006; Macgregor, 2015), forms a broad low-
74 lying region located between the uplifted plateaus of Kenya and Ethiopia (Figure 1). Throughout the
75 Cenozoic, episodes of magmatism and basin formation occurred within the Turkana Depression (Morley et
76 al., 1999c; Wescott et al., 1999; Vetel and Le Gall, 2006; Furman et al., 2006; Boone et al., 2019; Cai et
77 al., 2023), providing a window into the link between pulses of basaltic magmatism and episodes of
78 lithospheric thinning during rifting.

79 This study focuses on a basaltic pulse that occurred in the Turkana Depression during the Pliocene.
80 This magmatic event, which followed a ca. 5 Ma magmatic hiatus, is characterized by initial widespread
81 fissural basalts (the Gombe Stratoid Series) and is followed by shield volcanism (Figure 1). Using major
82 and trace element geochemistry and petrographic constraints, we investigate the petrogenesis of the Gombe
83 Stratoid Series and Pliocene shield volcanism. We find that the Gombe Stratoid Series parental melts were

84 generated by decompression melting of a plume-influenced upper mantle during a pulse of lithospheric
85 thinning. During the shield volcanism phase, we find that magmatism becomes contaminated with enriched
86 metasomatic components derived from the lithospheric mantle. We present a geodynamically-constrained
87 1D advection diffusion mantle melting model demonstrating that slow extension rates in the Turkana
88 Depression following the Mid Miocene Resurgence would result in the conductive cooling of the upwelling
89 mantle, preventing significant melt generation, and resulting in the observed magmatic hiatus in the
90 Turkana Depression during this interval. We suggest that the termination of the magmatic hiatus by the
91 eruption of the Gombe Stratoid Series results from a pulse of increased lithospheric thinning that permitted
92 the underlying mantle to cross the critical melt generation threshold. We discuss the consequence of a
93 pulsed thinning of the continental lithosphere in the context of how a modified geotherm may impact the
94 stability of enriched, easily-fusible domains in the lithospheric mantle, and as a possible pre-cursor event
95 prior to the modern-day focusing of strain and volcanism to discrete axial belts within the rift (Casey et al.,
96 2006; Ebinger et al., 2017).

97
98 **2. Background**

99 *2.1. Geologic History of the Turkana Depression*

100 The Turkana Depression is located in the northern portion of the eastern branch of the EARS (Figure 1),
101 encompassing approximately 131,000 km² of northern Kenya and southern Ethiopia (Furman et al., 2006;
102 Feibel, 2011). The basin has been an important locality for the investigation of fossil-bearing sedimentary
103 strata, with stratigraphic and geochronological studies (e.g., Boschetto et al., 1992; McDougall and Feibel,
104 1999; Gathogo et al., 2008; McDougall and Brown, 2008, 2009; Brown and McDougall, 2011) providing
105 a well-developed chronostratigraphic framework of the region.

106 The metamorphic basement of the Turkana Depression mainly comprises deformed schists and gneisses
107 that formed during the Pan-African orogeny (Brown and McDougall, 2011). These rocks are the main
108 sediment source of the clastic sequences that were deposited in Late Mesozoic and Cenozoic extensional
109 basins (Brown and McDougall, 2011; Feibel, 2011). Turkana has an extensive history of basin and rift

110 development, creating its highly faulted morphology and thin continental crust (e.g., Hendrie et al., 1994;
111 Ebinger and Ibrahim, 1994; Ebinger et al., 2000). The earliest evidence of rifting in the Turkana Depression
112 is associated with the northwest-southeast trending Mesozoic Central African Rift System (CARS) (e.g.,
113 Bosworth, 1992; Feibel, 2011). During this period, the ~500 km long Anza Graben developed East of
114 present-day Lake Turkana, with the oldest section of this rift being identified within the Chalbi Desert
115 (Morley et al., 1999a). Gravity and seismic data have been used to study this rift system, as none of its
116 structure is found at the surface due to coverage of Cretaceous-Paleogene sediments and Pliocene-
117 Quaternary volcanics (Reeves et al., 1987; Simiyu and Keller, 1997; Morley et al., 1999a). Subsequent
118 Cenozoic rifting (i.e., EARS) has resulted in the thinned crust that currently characterizes some parts of
119 Turkana (e.g., 20 km in the Lake Turkana Basin; Mechie et al., 1997; Prodehl et al., 1997).

120 Cenozoic rifting in the Turkana Depression is characterized by an overall eastward migration of strain
121 and magmatism (e.g., Morley et al., 1992; Ebinger et al., 2000; Vetel and Le Gall, 2006; Macgregor, 2015;
122 Schofield et al., 2021), commencing west of Lake Turkana with the development of north-south trending
123 Paleogene rift structures (Macgregor, 2015; Purcell, 2018). To the northwest of Lake Turkana, Oligocene
124 volcanism marked the beginning of this new rift phase in the Turkana Depression (Morley et al., 1992).
125 The oldest EAR rift basin in Turkana is the Paleogene-Miocene South Lokichar basin (also referred to as
126 Lokichar basin in literature: Morley et al., 1999b). From this basin, rifting migrated eastwards to the North
127 Lokichar, Kerio, and Lake Turkana basins (Morley et al., 1992, 1999b; Hendrie et al., 1994; Macgregor,
128 2015; Purcell, 2018). The modern locus of strain in the Turkana Depression is considered to be within and
129 to the west of the Lake Turkana basin (Muirhead et al., 2022; Rooney et al., 2022; Musila et al., 2023).

130 Volcanism in the Turkana Depression initiated during the Eocene and has extended to Recent times
131 (e.g., Ebinger et al., 1993, 2000; George et al., 1998; Furman et al., 2006; Brown and McDougall, 2011).
132 Eocene to Oligocene volcanism was dominantly basaltic, though other volcanic products such as rhyolites
133 and ignimbrites are also present (Furman et al., 2006; Brown and McDougall, 2011; Rooney, 2017). The
134 best-characterized section of this period is located within the Lokitaung Gorge near to Lake Turkana
135 (Steiner et al., 2021, 2024), but other sections are recorded from contemporary events in southern Ethiopia

136 (Davidson and Rex, 1980; Davidson, 1983; George et al., 1998; George and Rogers, 2002; Steiner et al.,
137 2021). Subsequent magmatic activity in the Turkana Depression manifested as a series of basaltic pulses
138 that are followed by relative magmatic quiescence or isolated silicic volcanism (Rooney, 2020a). The first
139 basaltic pulse – the Early Miocene Resurgence Phase (ca. 24 - 17 Ma: Boschetto et al., 1992; Morley et al.,
140 1992; McDougall and Watkins, 2006; Rooney, 2017, 2020a) – is considered the first instance of magmatism
141 that extended into the growing Kenya Rift (Samburu Basalts), suggesting southwards migration of
142 magmatism from Turkana towards this region (Rooney, 2020a). The second pulse of basaltic magmatism
143 – the Mid Miocene Resurgence Phase (ca. 12 Ma - 9 Ma) – is characterized by widespread stratiform basalts
144 (e.g., Lothidok, Nabwal Arangan Beds at Lothagam Hill, and south of Marsabit shield volcano: Brotzu et
145 al., 1984; Bellieni et al., 1986; Key and Watkins, 1988; McDougall and Watkins, 1988; McDougall and
146 Feibel, 1999; Rooney, 2020a). The final basaltic pulse, which is the focus on this study, commenced during
147 the Pliocene at ca. 4 Ma.

148 *2.2. Stratoid Phase – Gombe Group and Pliocene shield volcanism*

149 After a ca. 5 Myr hiatus, a new pulse of magmatic activity began in the Turkana Depression, Southern
150 Ethiopia, and in the Kenya Rift (Rooney, 2020a). This period also marks the recommencement of tectonic
151 activity in the Turkana Depression, with studies (e.g., Macgregor, 2015; Purcell, 2018) suggesting the
152 reactivation is linked with deepening of the rift. The Stratoid Phase (ca. 4 Ma – 0.5 Ma) initiated with the
153 Gombe Stratoid Series – an aerially extensive basaltic event that is dated between 4.22 Ma – 3.97 Ma
154 (Gathogo et al., 2008). These lavas flooded out into the basins, flowing unconformably over tilted and
155 eroded Miocene volcanic and sedimentary units (e.g., Davidson, 1983). These evolved and compositionally
156 homogenous lavas are dominantly aphyric and are remarkably flat-lying, being comprised of thick,
157 continuous flows (~10 m) that are separated by thin sedimentary horizons (e.g., Watkins, 1986; Key and
158 Watkins, 1988). These lavas are mainly exposed on the Suregei and Gombe Plateaus in the Turkana
159 Depression (Figure 1) as well as in the Omo Valley (Mursi basalts) and small plateaus (Harr) in Ethiopia
160 (Haileab et al., 2004). Other exposures east of Lake Turkana include those found in the Kokoi Highland
161 where basaltic dikes intruded the Lonyumun Member of the Koobi Fora Formation (Haileab et al., 2004),

162 and in the Ririba rift region (Franceschini et al., 2020). To the west of Lake Turkana, basalts such as those
163 at Lothagam Hill have also been included as part of the Gombe Group by Haileab et al. (2004).

164 The areally extensive Gombe Series in the Turkana Depression was followed by spatially-limited
165 basaltic activity in the form of shield volcanoes emplaced on top of the Gombe lava flows, with the main
166 volcanic edifices located on the eastern shore of Lake Turkana: Longipi (3.5 - 1.5 Ma) (Furman et al., 2006),
167 Kulal (3.01 - 1.71 Ma) (Ochieng et al., 1988; Gathogo et al., 2008), Asie (2.7 - 2.07 Ma) (Key et al., 1987),
168 Marsabit shield (1.70 - 0.76 Ma) (Key et al., 1987), and the Pliocene-Quaternary Huri Hills (Class et al.,
169 1994). The volcanic edifices that followed the Gombe Group (Longipi, Kulal, Asie) located along the
170 eastern side of Lake Turkana follow an en echelon arrangement (Figure 1). Younger monogenetic cones,
171 maars and flows are located on top of the shields, whereas monogenetic fields of similar age occur between
172 them (Key and Watkins, 1988; Class et al., 1994). These younger features extend to Ethiopia (Rooney,
173 2020a; Franceschini et al., 2020). Compositonally, the shields are made up of olivine-plagioclase phryic
174 or clinopyroxene-olivine phryic basaltic flows. The Namarunu shield volcano in the Kenya Rift is
175 associated with the Lorikipi Basalts (4.0 Ma – 2.33 Ma); these basalts are also considered linked to this
176 shield building phase (Dunkley et al., 1993; Rooney, 2020a). In the Loiyangalani region, three basaltic units
177 exist within the Koobi Fora Formation: the ca. 3.3 Ma – 3.2 Ma Kankam basalt, the Lenderit basalt (2.18
178 Ma – 2.02 Ma), and the 1.79 Ma Balo basalt (Gathogo et al., 2008). As presented by the authors, these
179 basalts are correlated with the Pliocene shield-building phase.

180

181 **3. Methods**

182 *3.1. Samples and sample preparation*

183 This project was conducted using two sample suites that include rocks from the Gombe Stratoid Series
184 lavas and the Pliocene shield volcanoes (Supplementary Information 1). The suite collected by Frank Brown
185 consists of 25 samples from the Gombe Group lavas and 21 from the Pliocene Shields. The second sample
186 suite used in this project was collected by Neil Opdyke (Opdyke et al., 2010). This suite contains 20 core
187 samples from the Loiyangalani region that correspond to the Pliocene Shield-building phase. Geochemical

188 data were collected for 15 of these samples, but all 20 samples were used to describe the petrography of the
189 group they correspond to. High resolution thin section scans of samples from both suites were produced
190 using PiAutoStage (Steiner and Rooney, 2021) to facilitate the petrographic analysis portion of this study.

191 To obtain major and trace element data, samples from the Brown suite were originally cut into billets
192 and polished to remove saw marks. To eliminate any possible contamination, the samples were then cleaned
193 in an ultrasonic bath using de-ionized water. These samples were powdered using a BICO flat plate
194 pulverizer with ceramic plates. In contrast, core samples from the Opdyke suite were initially polished to
195 remove contaminants in the surface of the cores. The samples were then crushed using the Sepor Model
196 150 Mini Jaw Crusher, and the sample chips were hand powdered using an agate mortar and pestle. For
197 each sample, a homogeneous glass disc was fused using rock powder and lithium tetraborate flux, following
198 the procedure of Rooney et al. (2012b).

199 *3.2. Analytical Work*

200 Geochemical analyses were conducted at Michigan State University using X-ray fluorescence (XRF) and
201 laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for major and trace elements,
202 respectively. The fused discs were analyzed for major elements using a Bruker S4 Pioneer XRF. The
203 instrument was calibrated using rock standards that have also been fused into glass discs using the methods
204 of Rooney et al. (2012b). The same sample discs were analyzed for trace elements using a Photon Machines
205 Analyte G2 Excimer and Thermo iCAPQ Quadrupole ICP-MS and following the methodology of Rooney
206 et al. (2014). These data were collected over a total of five sessions in which the standards were run multiple
207 times as unknowns. Samples were ablated by a 193 nm laser (spot size: 110 microns) for a total of 120
208 seconds. Each sample was run three times and the individual runs were averaged to obtain trace element
209 concentrations. In addition, each session included a sample replicate as part of the analysis, with a total of
210 5 replicates of different samples. Full analytical results and geologic standard information are available in
211 the supplementary material.

212

213 **4. Results**

214 Our sample suite has been subdivided based on stratigraphy, petrology and geochemistry. The most
215 prominent division is between the Gombe Stratoid Series and the subsequent Shield Volcanism. Given the
216 somewhat limited geochemical variability of the Gombe Stratoid Series, an analysis of a wide range of
217 samples from the group that is collected in the same analytical lab provides an opportunity to examine
218 magmatic heterogeneity that may not otherwise be evident. Within the Gombe Stratoid Series we have
219 created three subdivisons: (i) **Hoi Basalts** (Hoi) – first recognized by Bruhn et al. (2011), these basalts were
220 a locally widespread event (60 x 120 km centered at 3°N, 37°E) that is older than the Gombe Basalts. While
221 no radiogenic dates have been reported from this unit, we interpret it within the context of the broader
222 Gombe Stratoid Series, which incorporates all magmatic units after the magmatic hiatus that followed the
223 Mid Miocene Resurgence (Rooney, 2020a). (ii) **Gombe Basalts A** (Gombe A) – Lavas from this group
224 typically have $MgO > 4$ wt % MgO . (iii) **Gombe Basalts B** - Lavas from this group typically have $MgO \leq$
225 4 wt % MgO . Within the Shield Volcanism group, we discuss geochemical and petrographic variability
226 based on individual volcanoes (Figure 1): Longipi, Kulal, Kankam, Lenderit, Balo, Asie, and Huri Hills.
227 Three samples had a total sum of major elements that were below 95 % and exhibited signs of alteration
228 (TOR0001DH; 1DF; 1DE) – these samples have been excluded from the plots and discussion.

229 *4.1. Petrography*

230 Lavas from the Gombe Stratoid Series (Hoi, Gombe A, Gombe B) are plagioclase and clinopyroxene-
231 phric, with oxides also present. Olivine was only identified in the Hoi basalt, where it is a minor phase.
232 Despite these groups having the same mineralogical composition, two main textures have been identified:
233 cotectic crystallization and glomerophytic texture (see Supplementary Material). Cotectic crystallization
234 occurs as “bow-tie” plagioclase intergrowth with clinopyroxene (e.g., Bryan, 1979; Thy, 1983). This texture
235 has been identified in the Hoi basalt, and it is also the main texture of Gombe A. The glomerophytic texture
236 is found in Gombe B, where glomerocrysts are made up of clinopyroxene and plagioclase, but oxides are
237 also common. Monomineralic (i.e., clinopyroxene or plagioclase) glomerocrysts are also seen in this group,
238 but these are less abundant than the former. Some samples of the Gombe A group (6 out of 14; see

239 Supplementary Material) are also glomerophytic; these are made up of plagioclase and clinopyroxene, and
240 unlike Gombe B, oxides are rare.

241 Lavas from the shield volcanism phase, in contrast to the preceding Gombe Stratoid series, are olivine-
242 phytic, with plagioclase and/or clinopyroxene also being major phases in some groups (see Supplementary
243 Material). Several textures have been identified among the shield volcanoes: microcrystalline (Longipi,
244 Kulal, Kankam, Lenderit, Balo), porphyritic-coarse grained (Longipi), intergranular (all except Balo),
245 ophitic (Kankam), and vesicular (Lenderit, Longipi, Balo, Asie, Kulal (1 sample)). Additionally, olivine
246 occurs as glomerocrysts in samples from the Kankam basalt, Asie, and Huri Hills. Despite olivine being a
247 major phase in the shield volcanoes, the Lenderit basalts are the only group from the shield volcanism phase
248 in which plagioclase is the main phase and olivine and clinopyroxene are minor phases.

249 *4.2. Geochemistry*

250 All geochemical data and standard information have been uploaded to Earthchem (Cancel-Vazquez et al.,
251 2024).

252 *4.2.1. Gombe Stratoid Series*

253 Major and trace element data of the Gombe A and B groups exhibit moderately evolved compositions, with
254 3.5-5.0 wt.% MgO. These lavas are also characterized by high TiO₂ (~3.2-3.8 wt. %), which is uncommon
255 for other lavas in the region (see Rooney 2020a; Figure 2) and is noted as a diagnostic characteristic of
256 these lavas (Halieab et al., 2004). An interesting feature of lavas from this region is the lack of a distinct
257 break towards lower V concentrations at ~5-5.5 wt. % MgO (Figure 3) – a common feature further north in
258 the Main Ethiopian Rift that is interpreted to be caused by crystallization of Fe-Ti oxides. Despite their
259 overall “clustering”, these two groups can be distinguished on the basis of their MgO content, as described
260 below. Basalts from the Hoi group, in contrast, have slightly more primitive compositions than Gombe A
261 and B (see below).

262 *Hoi*: Major and trace element data from the Hoi basalts show that they are slightly more primitive than
263 Gombe A and B lavas, with 5.7-5.9 wt. % MgO (Figure 2). Hoi is also relatively high in TiO₂ (~3.0-3.5 wt.

264 %) in comparison to other regional basalts, however, they are lower in TiO_2 than the exceptionally high
265 concentrations observed in Gombe A and B. When compared to Gombe A and B, the Hoi lavas plot along
266 the same linear trend in incompatible trace element enrichment (Figure. 4).

267 Gombe A vs Gombe B: Lavas from Gombe A all have $\text{MgO} > 4$ wt. %, whereas Gombe B lavas have MgO
268 ≤ 4 wt. %. Given the extremely limited range in MgO , other major elements are characterized by small
269 variability and tight clustering. Gombe A lavas extend to slightly lower concentrations of Al_2O_3 and P_2O_5
270 and higher concentrations of Fe_2O_3 in comparison to Gombe B lavas. Compatible elements (Figure 3) show
271 no distinct variations between the units. Incompatible trace elements show an increase in REE and other
272 incompatible trace element concentrations – except Sr – with decreasing MgO (wt. %) (Figure 4), resulting
273 in a slightly higher concentration of these elements in Gombe B.

274 Primitive mantle normalized diagrams (Figure 5) show peaks in Ba, Nb-Ta and negative anomalies in
275 Th-U, K, Sr for Gombe A, B and Hoi basalts. Gombe A and B have similar levels of incompatible trace
276 element enrichment, while the less differentiated Hoi basalts plot at lower values. The pattern for the Gombe
277 A, Gombe B, and the Hoi basalts broadly represents a magma Type III pattern in the 6-fold division
278 proposed by Rooney (2020b), and which is characterized by its peaks in Ba and Nb-Ta, and a trough in Th-
279 U. As the lavas evolve (i.e., from Hoi to Gombe A to Gombe B), the trough in Th-U and peak in Nb-Ta
280 flatten out to a straight line (Figure 5).

281 *4.2.1.1. Characterization of textures in the Gombe Groups and their effect on geochemistry*

282 As noted above, Gombe A dominantly exhibits cotectic texture while Gombe B is dominated by a
283 glomerophyric texture (6 out of 7 samples). Despite this, glomerocrysts are still present in some samples
284 that are part of the Gombe A group (6 out of 14 samples). To determine the abundance of glomerocrysts in
285 Gombe A and Gombe B, a similar approach to that described by Humphreys et al. (2013) was used.
286 Glomerocrysts were identified using ImageJ software (Schneider et al., 2012), where each glomerocryst
287 was outlined by drawing a polygon around it to obtain its area. The area of each glomerocryst was given in
288 pixels and was then converted to m^2 based on the amount of pixels per meter of the high resolution thin
289 section scans (507,000 pixels/meter). In addition to quantifying the amount of glomerocrysts per thin

290 section, this method allowed us to calculate the total area occupied by glomerocrysts per thin section (see
291 Supplementary Information 2 for details). To do this, the individual areas of each glomerocrysts per sample
292 were summed to obtain the total area of glomerocrysts in a given thin section. This value was then divided
293 by the area of the thin section scan (0.0015 m^2) to obtain the area (%) occupied by the glomerocrysts in the
294 thin section (see Supplementary Information 2).

295 A total of 137 glomerocrysts were identified in Gombe A group, whereas a total of 212 glomerocrysts
296 were identified in the Gombe B group. Based on the area calculations, the total percentage of glomerocrysts
297 in the Gombe A group is about 0.18%. In contrast, the total percentage of glomerocrysts in the Gombe B
298 group is about 0.64% (Supplementary Information 2). These calculations show that despite glomerocrysts
299 being present in both groups, they are significantly more abundant in Gombe B. It is important to note,
300 however, that these values are minimum estimates rather than a full representation of each group, given that
301 the thin sections available for this study are representative of a small portion of the sample/lava flow.

302 The differences in abundance of glomerocrysts between the two groups ultimately influence the whole
303 rock geochemistry of these lavas. Accumulation of plagioclase and pyroxene will have an effect on the
304 concentrations of Al and Ca, as these are major constituents of their chemical compositions. The higher
305 abundance of phenocrysts made up of plagioclase and clinopyroxene, as well as monomineralic
306 glomerocrysts of the same minerals, has resulted in an overprinting of the CaO and Al_2O_3 concentrations
307 in Gombe B, making this group more enriched in these elements than Gombe A. Other minerals that may
308 have an effect in the whole rock geochemistry are oxides. Transition metals, such as V, are favored in these
309 minerals. When comparing the glomerocryst composition of both groups, we found oxides to be a common
310 phase in glomerocrysts from Gombe B group, but rarely seen in glomerocrysts from Gombe A. The
311 accumulation of oxides in Gombe B could thus explain the behavior of V (ppm), where there is a drop in
312 the concentration of this trace element, but then begins to gradually increase as more evolved compositions
313 are reached (Figure 3).

314 4.2.2. *Shield volcanoes*

315 Longipi shield: The Longipi shield exhibits primitive compositions with ~10 wt. % MgO for all samples

316 except for one (~6 wt. % MgO; Figure 2). Apart from the lower MgO (wt. %) sample, which plots along
317 samples from the Kankam basalts (see below), Longipi samples appear to cluster in their major and trace
318 element concentrations, except for CaO (wt. %) and Sr (ppm), where concentrations are more scattered
319 (Figures 2, 4). Longipi shield basalts also have relatively unusual compatible element concentrations
320 compared with other many other lavas from the region – notable high Cr, low Sc and V (Fig. 3). Primitive
321 mantle normalized plots (Figure 5) show Ba and Nb-Ta peaks, as well as negative peak in U, K and Ti.
322 However, there are certain samples that exhibit some deviations from the overall signatures previously
323 described: two samples lack the Ba and negative U peaks, three show a peak in Sr, and one sample displays
324 a peak in Nd. Despite these deviations, most samples from Longipi broadly follow a Type III magma
325 pattern, but the lack of a Ba peak and negative U peak is more representative of a magma Type IV pattern
326 (see: Rooney, 2020b).

327 Kulal Shield: Kulal shield shows more compositional variability than Longipi. These samples range
328 between ~5-12 MgO (wt. %) (Figure 2) and show an overall decrease in compatible trace elements and an
329 increase in most incompatible trace elements with decreasing MgO (wt. %) except Sr (ppm) (Figure 4).
330 Compatible elements are characterized by low Sc and V (Fig. 3). Trace element patterns in primitive mantle
331 normalized plots (Figure 5) for Kulal are characterized by Ba and Nb-Ta peaks, Th-U trough, as well as a
332 negative K peak. The overall signatures exhibited by Kulal lavas are similar to a Type III pattern (Rooney,
333 2020b).

334 Asie Shield: The single sample from Asie has a primitive composition, with about 12 wt. % MgO (Figure
335 2). The primitive mantle normalized diagram for Asie is characterized by a Th-U trough and Nb-Ta peak
336 (Figure 5). There is also a small peak in Ba, a slope break between K-La, peaks in Sr and Nd, and a negative
337 anomaly in P. Although the Th-U trough and Nb-Ta peak are present, the lack of a distinct Ba peak suggests
338 that Asie deviates from the Type III magma pattern, resembling more of a Type IV pattern (Rooney, 2020b).

339 Huri Hills: This sample exhibits a primitive composition (about ~10 wt. % MgO; Figure 2). The primitive
340 mantle normalized pattern for Huri Hills is characterized by large peaks in Ba and Sr, as well as a Nb-Ta
341 peak and Th-U trough (Figure 5). Other characteristics of this pattern include small peaks in La and Nd,

342 and negative anomalies in K, P and Ti. Except for the distinct Sr peak, Huri Hills exhibits a pattern that
343 broadly represents Type III magmas.

344 Kankam Basalt: The Kankam basalts (located to the east and north of Loiyangalani in Figure 1) show the
345 most compositional variability of any unit in this study (Figure 2). Notably, the Kankam samples with high
346 (>8 wt. %) MgO are those that contain olivine cumulates, thus, the accumulation of this phase has likely
347 resulted in such high MgO concentrations. Kankam basalts show an increase in major elements with
348 decreasing MgO, except for CaO (wt. %) and Al₂O₃ (wt. %), where concentrations of the latter begin to
349 decrease at ~6 wt. % MgO. Overall, Kankam shows an increase in incompatible elements and a decrease
350 in compatible elements with decreasing MgO (wt. %) (Figures 3 and 4).

351 A distinct clustering of samples at ~6 wt. % MgO in major and trace element concentrations has been
352 identified in the Kankam basalts (Figure 2). The Longipi shield sample with low MgO (wt. %) also plots
353 within this Kankam cluster. The lack of clustering behavior in Kankam samples with higher MgO (>8 wt.
354 %) could be attributed to olivine accumulation, but because of the overall compositional variability within
355 Kankam, it is also possible that the clustered samples are representative of the same lava flow.

356 Kankam exhibits Ba and Nb-Ta peaks as well as the U-Th trough in primitive mantle normalized
357 diagrams (Figure 5), the latter being steeper in magmas with >8 wt. % MgO. These lavas also exhibit a K
358 negative anomaly and a pronounced peak in Nd. Samples with ~6 wt. % MgO exhibit a negative anomaly
359 in Ti, which is not identified in the more primitive samples of this group. In contrast, samples with >8 wt.
360 % MgO have a pronounced Sr peak that is not found in lavas with ~6 wt. % MgO. Some samples also
361 exhibit a slight Zr-Hf anomaly, which deviates from the magma Type III pattern. Despite these minor
362 deviations, which could indicate contributions from other sources, this group broadly follows a magma
363 Type III pattern (Rooney, 2020b).

364 Lenderit Basalts: Lenderit lavas (located to the north of Loiyangalani in Figure 1 – See Gathogo et al., 2008
365 for finer scale location information) exhibit the most evolved compositions of the shield building phase
366 (Figure 2). These flows range between ~2-7.6 wt. % MgO and have the highest TiO₂ (3-3.5 wt. %) content
367 out of all the groups of the shield volcanism phase. The data for Lenderit are scattered, making it difficult

368 to establish trends in major and trace elements. However, they exhibit a decrease in Al_2O_3 (wt. %) and CaO
369 (wt. %), Sr (ppm) and compatible trace elements as samples become more evolved, but an increase in REE
370 and other incompatible trace element concentrations (Figure 4). Trace element patterns in primitive mantle
371 normalized plots (Figure 5) show Ba and Nb-Ta peaks, negative K and Ti anomalies and, with the exception
372 of one sample where the pattern is flatter, a Th-U trough. There is also a Nd peak exhibited by all the
373 samples, but there is variability in some of the signatures for Sr , P where some samples exhibit a negative
374 anomaly and others do not. There are also some samples that exhibit an anomaly in Zr-Hf similar to
375 Kankam. Despite these slight variations, Lenderit broadly follows a Type III magma pattern (Rooney,
376 2020b).

377 Balo Basalt: The Balo basalts are located northwest of Loiyangalani in Figure 1 – See Gathogo et al., 2008
378 for finer scale location information. Our single sample has a primitive composition (~7 wt. % MgO) and
379 plots between the low (~6 wt. %) and high (> 8 wt. %) MgO samples of Kankam (Figures 3, 4, 5). The Balo
380 basalt's primitive mantle normalized pattern (Figure 5) shows a peak in Ba and Nb-Ta , K negative peak,
381 and a Th-U trough. This sample follows a Type III magma pattern (Rooney, 2020b), however, similar to
382 Kankam and Lenderit, there is a distinct Zr-Hf trough that is not characteristic of Type III.

383 The observed Zr-Hf , P , and Ti negative anomalies in several Pliocene shields may indicate their source
384 is influenced by melts of lithospheric mantle metasomes containing amphibole and accessory phases that
385 retain these trace elements (i.e. zircon, apatite, and oxides respectively). Other Pliocene-Quaternary lavas
386 from the Turkana Depression, although limited, exhibit these characteristic depletions, but their origin has
387 not yet been fully explored (Furman et al., 2006; Cai et al., 2023). Most notably, the lavas that do exhibit
388 these negative anomalies are also Type IV lavas, implying a linkage in their origin.

389
390 **5. Discussion**

391 *5.1. Revised spatial distribution of the Gombe Stratoid Series*

392 Pliocene stratiform basalts have long been recognized as widely distributed in the Turkana Depression
393 and southern Ethiopia (e.g., Fitch and Miller, 1976). Early work noted the possible correlations between
394 these Pliocene basalts (e.g., Davidson, 1983), however, it was Haileab et al. (2004) who first combined
395 the various Pliocene volcanics (based on both age and chemical composition) to define the *Gombe Group*
396 *basalts*. Rooney (2020a) further expanded the geographic range of the Gombe Group basalts, adding other
397 Pliocene plateau basalts to the south and east of the Gombe Plateau into a new *Gombe Stratoid Series*.
398 Here we expand upon the rationale for the creation of the Gombe Stratoid Series and adjust the extent and
399 definition of the unit. Like the Gombe Group basalts of Haileab et al. (2004), the Gombe Stratoid Series
400 comprises contemporaneous lavas in the Turkana Depression and southern Ethiopia that share a common
401 geochemical signature (high TiO₂ and relatively low MgO). These criteria result in revised classification
402 of samples assigned to the Gombe Stratoid Series (see Text S1 for detailed rationales and units).

403 *5.1.1 Geochemical Variability of the Gombe Stratoid Series*

404 For the groups where data are available, there is little variation in the composition of the lavas – lavas from
405 the previously defined Gombe Group fully overlap lavas of Harr, Mursi, and Usno (Figure 6; Text S1). A
406 notable difference is the Bulal basalts, which exhibit a greater compositional range than the Gombe Group,
407 Harr, Mursi or Usno lavas, extending almost to the same MgO content as the Hoi Basalts (Figure 6). The
408 Bulal basalts, however, fall along the same vectors as the Gombe Group, and overlap them; this suggests a
409 continuity in magmatic processes. We thus amalgamate the Bulal basalts into the Gombe Stratoid Series
410 despite the compositional heterogeneity noted above.

411 *5.1.2 Volume of erupted lavas associated with the Gombe Stratoid Series*

412 Previous studies have estimated a ~5000 km³ volume for the Gombe Group Basalts (Haileab et al., 2004).
413 However, new constraints on the thickness of the basalts in the Turkana Basin that are based on borehole
414 data (Schofield et al., 2021), and our expanded definition of what now constitutes the Gombe Stratoid
415 Series, requires a revision of this earlier estimate. The inferred geographic extent of the Gombe Stratoid
416 Series is drawn based on: A) The outcrop, seismic and borehole evidence for the continuity of the Gombe

417 Stratoid Series from the South Turkana Basin and across Lake Turkana (Dunkelman et al., 1988; Morley
418 et al., 1999b; Schofield et al., 2021); B) The references to the continuity of these units under fill within
419 basins or plains (e.g., Davidson, 1983) or as erosional remnants of larger plateaus (Key et al., 1987). In
420 these cases, we have extended the boundary of the Gombe Stratoid Series to the rift basin boundaries
421 (Purcell, 2018) or the limits of the Quaternary fill on the existing geological maps. The southern boundary
422 of the Gombe Stratoid Series is unclear given the ambiguity of the age of the undifferentiated Plateau
423 basalts. We have therefore estimated the boundary as approximately half-way between the recognized
424 Gombe Stratoid Series exposures and the next outcrop south of Marsabit, extending into Lake Turkana.
425 Sub-polygons were created on the basis of mapped thickness information for the flows in each region and
426 the boundaries are estimated (Supplemental Material). These data were used to generate estimates of the
427 volume of the Gombe Stratoid Series within each polygon (Supplemental Material). Using these refined
428 estimates, the total volume of lava erupted during magmatism of the Gombe Stratoid Series can be
429 estimated to be \sim 5600 km³.

430 Given the relatively evolved composition of the Gombe Stratoid Series lavas, a significant mass of
431 material must have been removed and retained in the crust during differentiation. To assess the original
432 magma volume and determine the approximate mass lost during crystallization of the Gombe Stratoid
433 Series, we performed a generalized equilibrium crystallization model using sample TOR0001D8 as a
434 starting point (Supplemental Information). Though this lava is from a shield volcano, it is among the most
435 primitive liquid compositions reported in the region. We used Rhyolite MELTS (Gualda et al., 2012) at a
436 constrained oxidation state of QFM and QFM +1 with an initial water content of 0.5 wt. % at different
437 crustal pressures (0.2, 0.5, and 0.8 GPa). We report the proportion of solid and liquid in the system once
438 the remaining liquid has reached an MgO content matching the Gombe Stratoid Series (\sim 4 wt. %)
439 (Supplemental Information). Given the range of possible conditions, the initial magma volume needed to
440 produce the erupted lava volumes of the Gombe Stratoid Series of the order 15,500 – 18,500 km³. The
441 addition of \sim 170-200 m of mafic material (Table S3) to the crust would be expected to have negligible

442 impact on bulk crustal V_p/V_s ratios, consistent with the ~ 1.74 average observed by the receiver function
443 study of Ogden et al. (2023)

444

445 *5.2. Mantle Source of the Gombe Stratoid Series*

446 A critical aspect of melt production during the Gombe Stratoid Series is the thermo-chemical state of the
447 mantle in this region. Incompatible trace element patterns of mafic lavas occurring throughout East Africa
448 exhibit distinctive characteristics that help constrain the origin of the progenitor magmas (Rooney, 2020b).
449 Six broad ‘types’ have been identified outlining a variety of lithospheric and sub-lithospheric reservoirs
450 that contribute to magmatism in the EARS (Rooney, 2020b). Trace element patterns of the Gombe Stratoid
451 Series are dominated by a Type III magma pattern; such magmas are derived from the asthenosphere and
452 are considered to be a mixture between detached African lithosphere, plume material, and depleted mantle
453 (Rooney et al., 2012a; Rooney, 2017, 2020b).

454 To determine the conditions of melt generation in the mantle (i.e. pressure, temperature, and
455 composition), we used a trace element model (Kimura and Kawabata, 2014) that uses a Monte Carlo-based
456 approach to forward modeling, where input parameters were changed within specified limits. Further
457 constraints on magma generation and migration processes derive from major element models (Lee et al.,
458 2009; Kimura and Kawabata, 2014), which constrain the P-T conditions where the melt was last in
459 equilibration with the mantle. In continental rifts, these equilibration depths can be equivalent to the
460 lithosphere-asthenosphere boundary (Chiasera et al., 2021). Due to the absence of primitive (>6 wt. %
461 MgO) compositions in the Gombe Stratoid Series, we constrain these parameters using primitive
462 compositions from the Pliocene shield volcanism that followed the Gombe Stratoid Series that also exhibit
463 a Type III signature.

464 *5.2.1. Conditions of Last Equilibration between Melt and Mantle*

465 To determine the conditions at which the melt was equilibrated in the asthenosphere prior to extraction to
466 conduits in the continental lithospheric mantle, we used the Si-Mg thermobarometer of Lee et al. (2009).
467 This model uses the Si and Mg content of the magmas to estimate the pressure and temperature at which
468 the magma was last in equilibrium with the mantle. Samples from the Pliocene shield volcanoes were
469 chosen based on composition (e.g., $\text{MgO} > 6$ wt. %) and mineralogy; lavas that exhibited olivine
470 accumulation or clinopyroxene and/or plagioclase fractionation were not modeled. Samples that only
471 exhibited olivine fractionation were back corrected to primary compositions using the built-in olivine
472 correction from Lee et al. (2009). Model constraints were chosen following the parameters detailed in
473 Appendix B of Brown et al. (2022) and in Lee et al. (2009): $\text{Fo} = 90$, $K_D^{\text{ol-liquid}} = 0.3$ and variable values of
474 $\text{Fe}^{3+}/\text{Fe}_{\text{total}}$ of 0.05 and 0.15.

475 The resulting median melt equilibrium pressure condition from the Lee et al. (2009)
476 thermobarometry model, given $\text{Fe}^{3+}/\text{Fe}_{\text{total}} = 0.05$, is 3.0 GPa, with a median temperature of 1503°C.
477 Presuming an average lithosphere density (ρ) of 2900 kg/m³ and acceleration due to gravity (g) of 9.81
478 m/s², we convert pressure (P) to depth (h) using the equation $P = \rho gh$, resulting in a depth of melt
479 equilibration of 105.5 km. Increasing $\text{Fe}^{3+}/\text{Fe}_{\text{total}}$ to 0.15 yields lower median pressure and temperature
480 estimates of melt equilibration of 2.5 GPa and 1453°C (see Table 1). This pressure corresponds to a depth
481 of 87.9 km. Temperature results from Lee et al. (2009) were converted into mantle potential temperatures
482 (T_p) using the equations of Putirka (2016) (Equations 12a-c and 14a-c). These equations provide three
483 different alternatives for mantle potential temperature conversion, each using a different value for degree
484 of melting (F). Therefore, the average T_p and F resulting from these equations were used. The resulting
485 median mantle potential temperatures from the major element modeling are 1470 °C for $\text{Fe}^{3+}/\text{Fe}_{\text{total}} = 0.05$
486 and 1421 °C for $\text{Fe}^{3+}/\text{Fe}_{\text{total}} = 0.15$ (Table 1).

487 5.2.2. *Conditions of Melt Generation*

488 To determine the conditions at which the melt was generated in the mantle, the HAMMS trace element
489 model (Kimura and Kawabata, 2014) was used. The sensitivity of incompatible trace elements to mantle
490 melting aids in constraining the source composition and estimating the melting parameters (Kimura and
491 Kawabata, 2014 and references therein). HAMMS is a forward model that can estimate the parameters
492 involved in melt generation of a given primary magma composition: mantle potential temperature (T_p),
493 water content, pressure (P), source depletion ($CsDep$), and source contamination (F_{cont}) (Kimura and
494 Kawabata, 2014). $CsDep$ represents the degree of mantle depletion given by the wt. % of basaltic melt
495 extracted from the source, whereas F_{cont} represents the wt. % fraction of contamination present in the source.
496 Given that we have identified Type III magmas in our samples, several lithologies (i.e., depleted mantle,
497 African lithosphere, plume material: Rooney, 2020b) are involved in generating these magmas. For this
498 reason, we have followed the procedure detailed in Chiasera et al. (2021) to establish the source melt and
499 contaminant lithologies to use in HAMMS (see Supplementary Text S2).

500 The conditions of melt generation that produce primary magmas that best match our samples are the
501 following: $T_p = 1390-1450$ °C, $P = 2.9-3.5$ GPa, $CsDep = 0.1-0.8$ and $F_{cont} = 1.0-4.0$. Using the pressure
502 results, the depth at which these melts were generated range from about 102 – 123 km (Table 1). The results
503 of trace element source models indicate that initial mantle melting occurred at a depth of ~102-123 km with
504 $T_p = 1390-1450$ °C. These melts migrate to and equilibrate at shallower depths ranging from ~74-133 km
505 (Table 1) at similarly elevated mantle potential temperatures. This depth is consistent with a thinned
506 tectonic plate in the region (Kounoudis et al., 2021).

507 Our results that show elevated mantle potential temperatures are consistent with previous estimates
508 of mantle potential temperature in the Turkana Depression (Rooney et al., 2012c). These elevated
509 temperatures have been attributed to the widespread pollution of the East African upper mantle by material
510 derived from the African Superplume (Rooney et al., 2012c; Rooney, 2020b). The influence of the African
511 Superplume on the upper mantle is evident in the earliest lavas erupted in this region. These Eocene lavas
512 display Type III trace element lava patterns, which are characteristic of melts of a plume-influenced

513 asthenosphere source (Rooney, 2020b). The isotopic characteristics of these lavas resemble that of the
514 plume with high ϵ_{Nd} (4-6) and moderate $^{206}\text{Pb}/^{204}\text{Pb}$ ratios (19-19.5) (Furman et al., 2006; Cai et al., 2023),
515 further supporting the contribution of a mantle plume to early Turkana magmatism. Since the Eocene, Type
516 III lavas in the Turkana Depression have continued to display isotopic signatures consistent with a plume-
517 influenced upper mantle, indicating that a mantle plume has been a prevalent feature of the Turkana
518 Depression upper mantle throughout the Cenozoic. When this consistently hot asthenosphere is considered
519 within the context of the pulsed nature (and even quiescence) of magmatic activity in the Turkana
520 Depression, it raises questions about the mechanisms of melt generation during these magmatic intervals.

521

522 *5.3. The Relationship between Rifting and Magmatism in the Turkana Depression during Miocene to*
523 *Pliocene times.*

524 *5.3.1 Rifting, basin development and magmatism*

525 From the Mid Miocene Resurgence at ca. 10 Ma (Rooney, 2020a) until the eruption at ca. 4.2 Ma of the
526 Gombe Stratoid Series, basaltic magmatism in the Turkana Depression is lacking (e.g., Brown and
527 McDougall, 2011). This extended interval of magmatic quiescence is perplexing given that rifting continued
528 during this period. Field constraints demonstrate that Miocene strata are tilted and eroded prior to the
529 eruption of the Gombe Stratoid Series (Davidson, 1983). Significant Upper Miocene sediment
530 accumulation is reported from seismic and borehole constraints in the North Lokichar Basin (>1 km), South
531 Turkana Basin, and North Kerio Basin (~600m), with a pronounced thickening of 10 – 6 Ma sediments into
532 the Lokichar Fault (Schofield et al., 2021). These data provide clear evidence that extension was underway
533 in Turkana during the Mid-Late Miocene magmatic hiatus, centered east of Lake Turkana. Presuming such
534 extension manifested as plate thinning during this interval, magma generation by upwelling and
535 decompression melting might be expected given that: (1) the mantle beneath most of East Africa is
536 influenced by the African Superplume (Rooney, 2020b; Boyce et al., 2023), resulting in persistently
537 elevated mantle potential temperatures (Rooney et al., 2012c); and (2) the lithosphere of the Turkana

538 Depression was already thinner than most regions of the EARS due to a prior episode of Mesozoic rifting
539 (Dunkelman et al., 1988; Kounoudis et al., 2021, 2023).

540 The sudden reemergence of basaltic volcanism during the Pliocene in the Depression has been
541 previously suggested to have resulted from an increase in tectonic activity (Watkins, 1986; Haileab et al.,
542 2004) that thinned the continental lithosphere (e.g., Morley et al., 1992; Hendrie et al., 1994). This
543 hypothesis is supported by evidence of a notable increase in tectonic activity during the Pliocene in the
544 Depression, which was likely caused by changes in lithospheric stress conditions (Purcell, 2018). During
545 the Pliocene, the extension direction is thought to have rotated north-east from its former east-west
546 configuration (Vetel and Le Gall, 2006). The change in lithospheric stress conditions during Pliocene also
547 impacted the location of basin development in the Turkana Depression. While prior episodes of basin
548 formation centered on the regions located to the west of Lake Turkana (e.g., Lokichar Basin: Morley et al.,
549 1999b), the Pliocene brought a new phase of basin development associated with the northward migration
550 of strain from the Kenya Rift; this manifested in the Turkana Depression as the Turkana Basin (Vetel and
551 Le Gall, 2006; Muirhead et al., 2022) (Figure 1). Similarly, the eastward migration of strain from the Omo
552 basin during the Pliocene manifested as the Segen basin and Ririba Rift (e.g., Ebinger et al., 2000; Corti et
553 al., 2019). While the footprint of the Gombe Stratoid Series overlaps these newly active Pliocene basins
554 (Figure 1), the eruption of the Gombe Stratoid Series clearly preceded basin development: Gombe Stratoid
555 Series lavas erupted onto flat surfaces, are cut by rift bounding faults (Corti et al., 2019), and are not
556 observed to thicken into the basin bounding faults (Schofield et al., 2021). These observations suggest
557 broad lithospheric thinning during the Pliocene manifested as a widespread pulse of basaltic volcanism
558 followed by basin development.

559

560 *5.3.2 A thermo-mechanical model for magmatism in the Turkana Depression*

561 Given the geophysical evidence that extension in the Turkana Depression (prior to the modern axial phase:
562 e.g., Morley, 1994; Muirhead et al., 2022; Morley, 2020; Boone et al., 2019) is dominantly accommodated

563 through mechanical processes and not magma intrusion, we assume a direct relationship between extension
564 and plate thinning. The rate at which the plate thins may play an important role in magma generation.
565 Specifically, we hypothesize that while extension and plate thinning was ongoing during the Mid to Late
566 Miocene, the rate plate thinning was sufficiently slow so as to permit conductive cooling of the upwelling
567 asthenosphere, thereby suppressing mantle melting. We further hypothesize that an increase in the rate of
568 plate thinning during the Pliocene (e.g., Macgregor, 2015; Purcell, 2018) may produce a pulse of basaltic
569 magmatism.

570 To explore and test these hypotheses, we have constructed a 1D thermo-mechanical model that
571 simulates mantle melting caused by decompression of the asthenosphere (Supplemental Text S3). The
572 mechanical aspects of the model depend on asthenospheric decompression, which results from changes in
573 the position of the lithosphere-asthenosphere boundary in response to plate thinning. The thermal aspects
574 of the model depend on asthenospheric temperature, and how this changes as a consequence of mantle
575 upwelling, conductive cooling to the lithosphere, and melt generation. We solve the 1D advection-diffusion
576 equation assuming constant horizontal velocity and accounting for the latent heat effects of melting
577 (Pedersen and Ro, 1992; Pedersen and van der Beek, 1994).

578 We have explored a range of mantle potential temperatures (T_p) for the upper mantle beneath the
579 Turkana Depression (1400-1450°C), consistent with our modeling results and independent studies (Rooney
580 et al., 2012c), and plate thinning resulting from a background half extension rate of 2 mm yr⁻¹, broadly
581 consistent with current geodetically constrained plate motion measurements (Knappe et al., 2020; Musila
582 et al., 2023). We assume that the initial width of the extending region is 100 km – the approximate width
583 of the N. Lokichar and Keiro basins where extension commenced during the Oligo-Miocene (Schofield et
584 al., 2021). To ensure no melting occurred at the onset of the model, the initial lithosphere thickness was
585 taken to be 1 km deeper than the intersection of the mantle adiabat (specified by a given mantle potential
586 temperature) and the peridotite solidus (Katz et al., 2003). Using this constraint, the initial lithosphere-
587 asthenosphere boundary in the model ranged from ~100 to 120 km. We commenced the simulation when

588 the steady state conditions become perturbed – i.e., at the onset of Cenozoic rifting in the region ca. 30 Ma,
589 and monitor the cumulative thickness of basaltic melt produced and lithospheric thickness as a function of
590 time.

591 We first tested the null hypothesis whereby plate thinning was achieved in our model by
592 imposing a constant rate of extension (2 mm y^{-1}). The outcome of these initial models was a paucity of
593 melt generation, despite substantial lithospheric thinning ($\beta \sim 1.6$ – not dissimilar to the 1.51-1.79 range
594 constrained by crustal receiver function analysis: Ogden et al., 2023) and elevated values of T_p . In these
595 models, melt is only recorded at the hottest values of T_p , and only in small amounts (maximum
596 cumulative melt thickness ~ 20 km) after ca. 10 Ma. These results are inconsistent with observations of
597 substantial accumulations of basaltic melt in the Turkana Depression throughout the Cenozoic (Fig. 7 a-
598 c).

599 We then implemented a pulsed plate thinning scenario by imposing a background extension rate
600 (2 mm yr^{-1}) that was increased to a maximum value (6 mm yr^{-1}) and returned to the background rate using
601 a gaussian function (Fig. 7d-f). In practice, this assumed extension rate exceeds expected long-term
602 Nubia-Somalia separation rates. However, the accelerated thinning rates could be equivalently achieved
603 by diachronous stretching of the lithosphere or a narrowing of the extending zone in our model, or both.
604 We implemented three periods of pulsed plate thinning in order to generate the temporal extent of the
605 recognized basaltic pulses in the region (Brotzu et al., 1984; Rooney, 2020a). The outcome of this
606 approach is a modestly higher degree of lithospheric thinning ($\beta \sim 1.9$) when compared to the steady state
607 approach, but a substantial increase in both the magnitude and temporal extent of magma generation (Fig.
608 7 d-f). Importantly, the model demonstrates that melt generation occurred during the three pulses of plate
609 thinning but was insignificant during periods governed by the background plate thinning (Fig 7f).
610 Cumulative basaltic melt thicknesses for the pulse associated with Gombe magmatism (4.3 to 3.8 Ma)
611 vary from ~ 1.5 m ($T_p = 1400$ $^{\circ}\text{C}$) to ~ 30 m ($T_p = 1450$ $^{\circ}\text{C}$). These melt thicknesses are too low when
612 compared to the inferred thicknesses based upon corrected stratigraphic observations (~ 170 m - Table

613 S3). Modification of T_p to values higher than 1450°C could produce additional melt thickness, but the
614 model results are inconsistent with the observed hiatuses in basaltic volcanism; at higher T_p , melt
615 production becomes continuous.

616 We explored model parameters to establish a solution that matches the estimated melt thicknesses
617 (based on stratigraphic constraints: Table S3). Even when the rate of plate thinning accelerated to \sim 3.5
618 km/Myr, these models yielded melt thickness only 33% of the estimated values (Figure 8c). Retaining this
619 higher rate of plate thinning for the Gombe event, we then varied the pulse duration, finding that we can
620 match the inferred melt thicknesses if the Gombe event lasted from \sim 5.8-3.6 Ma (Figure 8d-f). A longer
621 duration episode for the Gombe event is consistent with the expanded definition of the Gombe Stratoid
622 Series we have presented. The inclusion of the Bulal and Plateau basalts in addition to the older (but as
623 yet, undated) Hoi basalts points to a potentially more significant temporal extent of magmatism defining
624 the Gombe event. Given the range of potential solutions possible in our model by simultaneously
625 adjusting the duration and magnitude of the extension, additional geochronological constraints and
626 estimates of magma crustal residence time will be necessary to fully constrain the Gombe event.
627 Nevertheless, our modeling demonstrates clearly that it is possible to generate pulsed basaltic magmatism
628 during the Mid to Late Miocene; plate thinning between magmatic pulses was sufficiently slow to
629 suppress mantle melting. We further show that within the parameter space we have explored, pulsed
630 magmatism requires intervals of increased rates of plate thinning.

631

632 *5.4 Implications of a Pliocene pulse of lithospheric thinning*

633 Our models demonstrate that the Miocene hiatus in magmatism in the Turkana Depression likely results
634 from relatively low rates of plate thinning. Advective cooling of the upwelling mantle suppresses magma
635 generation. The eruption of the Pliocene Gombe Stratoid Series requires an increase in the rate of plate
636 thinning and associated magma generation over a broad zone. This thinning subsequently impacted the
637 position of the geotherm within the continental lithospheric mantle, causing the thermo-baric destabilization

638 of enriched domains within it. Corroborating this model prediction, the post-Gombe Stratoid Series shield
639 shows clear evidence for metasome destabilization.

640 This sequence of a lithospheric thinning event yielding a pulse of basaltic volcanism and
641 subsequent melts of the continental lithospheric mantle is repeated elsewhere in the EAR. An episode of
642 plate thinning in Afar during the Late Miocene (Wolfenden et al., 2005; Stab et al., 2016) resulted in an
643 episode of basaltic volcanism followed that was accompanied by the thermal re-equilibration of the
644 lithospheric mantle. The shallowing of the geotherm following this thinning event resulted in the
645 destabilization of enriched, easily fusible domains hosted within the continental lithospheric mantle,
646 resulting in magmatism with the clear signature of melts derived from the continental lithospheric mantle
647 (Rooney et al., 2023).

648 The commonality in magmatic processes in the Afar and Turkana Depressions extends beyond that
649 of pulsed lithospheric thinning events. Within the eastern branch of the EAR, the period beginning in the
650 Pliocene and lasting until modern times is characterized by a shift from more widely distributed magmatism
651 towards zones of focused intrusion located on the floor of the rift. In parts of the rift, such as the MER and
652 Afar, this shift is accompanied by a change in strain distribution such that zones of focused tectonic and
653 magmatic activity are accommodating most of the extensional stresses that manifest in these regions (e.g.,
654 Hayward and Ebinger, 1996; Ebinger and Casey, 2001; Casey et al., 2006). In the Turkana Depression, this
655 transition is also underway – the modern axis of extension is now located largely in the Lake Turkana Basin
656 (Knappe et al., 2020; Muirhead et al., 2022; Rooney et al., 2022). Consistent with the requirement in our
657 models for a reduction in the rate of plate thinning at the end of the Gombe Stratoid Series, axial extension
658 commences along and to the west of the Lake Turkana Basin. Modern extension is therefore not being
659 achieved by plate thinning but instead by magma-assisted rifting. Given the commonality in the both the
660 mechanism and sequence of magmatism in Afar and Turkana, we suggest that the thinning of the plate
661 necessary to generate these basaltic pulses may also represent a critical precursor event that signals the
662 beginning of strain localization in axial regions on the rift floor.

663

664 **6. Conclusions**

665 Magmatism during the Miocene and Pliocene in the Turkana Depression is characterized by distinct
666 basaltic pulses followed by periods of magmatic quiescence. The Gombe Stratoid Series, which form a
667 laterally extensive group of lavas that are characterized by limited compositional heterogeneity, marked
668 the recommencement of volcanic activity in the Turkana Depression after a long period of Miocene
669 magmatic quiescence. The existence of these basaltic flows is perplexing given: (1) The lack of evidence
670 for significant temporal heterogeneity in mantle thermo-chemical conditions; (2) The absence of fast
671 wave-speed upper mantle anomalies that could be attributed to recent lithospheric dripping/delamination
672 (Kounoudis et al., 2021); (3) a lack of evidence for abrupt accelerated Nubia-Somalia divergence. The
673 Gombe Stratoid Series lavas provide a window as to how lithospheric thinning may result in pulsed
674 magma generation processes in the Depression during this period. By solving the 1D advection-diffusion
675 equation using rates of plate thinning broadly equivalent to those measured geodetically today, we show
676 that despite elevated mantle potential temperature melt generation may not occur, leading to extended
677 intervals of magmatic quiescence.

678 We show that the Gombe Stratoid Series parental magmas were derived by decompression melting
679 of the plume influenced upper mantle, subsequently undergoing magmatic differentiation within the
680 overlying plate. By modifying the 1D advection-diffusion mantle melting model that we initially
681 implemented to simulate the Miocene period of magmatic quiescence, we can simulate a pulse of magma
682 generation. Within our modified model, an increase in the rate of plate thinning can generate magma
683 volumes that are on the order of that estimated for the parental magma of the Gombe Stratoid Series. The
684 thinning of the plate in the Turkana Depression during the Miocene is expected to have steepened the
685 geotherm within the continental lithospheric mantle. Where this process has occurred elsewhere within
686 the East African Rift System (e.g., Afar), melting of enriched domains of the lithospheric mantle has
687 followed (Rooney et al., 2023). Our observation of a continental lithospheric mantle signature in

688 magmatic activity subsequent to the Gombe Stratoid Series event (i.e., the shield volcanism overlying the
689 Gombe Stratoid Series and modern axial activity in the Lake Turkana Basin) supports our model of
690 lithospheric thinning associated with the generation of the Gombe Stratoid Series.

691 The eruption of the Gombe Stratoid Series and equivalent magmatism in Afar (Afar Stratoid Series)
692 and the Main Ethiopian Rift (Bofa Stratoid Series) occurs shortly before the development of axial zones
693 of tectonic-magmatic activity along the rift floor. This shift in the mechanism of strain accommodation is
694 consistent with the termination of large-scale basaltic volcanism – the thinning of the plate necessary to
695 achieve the volume melts has largely terminated and is replaced with magma-assisted rifting. We suggest
696 that the thinning of the plate necessary to permit the eruption of these stratoid lavas may, in fact, therefore
697 herald the onset of the localization of strain to narrow, axial zones of magma-dominated extension on the
698 rift floor.

699

700

701 **Acknowledgements**

702 This project would not have been possible without access to the samples provided by very generous
703 colleagues. We are deeply indebted to the kindness of the late Neil Opdyke and late Frank Brown who
704 both provided samples to us. We thank David Foster and Dennis Kent for helping us with the transfer of
705 these samples. This project was supported by an award from the United States National Science
706 Foundation (1850606). We thank Francesco Mazzarini and an anonymous reviewer for formal peer
707 review that helped improve the quality of this work. We thank Mark Dekkers for careful editorial
708 handling.

709 **Open Research**

710 Geochemical data used in this paper can be found in the Earthchem repository (Cancel-Vazquez et al.,
711 2024).

712 **List of Figures**

713 **Figure 1**

714 Stratoid and shield volcanism in the Turkana Depression, a low-lying zone between the Kenya Rift and
715 Main Ethiopian Rifts. The behavior of magmatism in this time period is characterized by a dislocation
716 between events, where modern axial activity is not co-located with the Pliocene Stratoid Phase. The
717 Gombe Stratoid Series distribution is derived from: A) the Gombe Group basalt map of Haileab et al.
718 (2004), B) The GIS shapefiles of Guth (2013), C) The sketch map of Corti et al. (2019), D) The
719 Geological Map of the Konso – Yabello area (JICA, 2012). The shapefiles of Guth (2013) have been
720 redesigned based on the Geological maps of the Turkana region and the rationales outlined within the
721 main text for assignation of units to the Gombe Stratoid Series. For the Bulal Basalts, we have extended
722 the extent of the unit northward into Southern Ethiopia based on the work of Corti et al. (2019) and using
723 the map of Konso-Yabello. Where the boundary with another mapped unit is unclear (e.g., 4.5°N,
724 37.25°E), we have placed the boundary roughly equidistant. It is possible that the Bulal Basalts extend
725 further north than shown here, however the existing mapping and geochemical data do not permit a
726 confident assignment of other units. The inferred extent of the Gombe Stratoid Series is drawn based on:
727 A) The outcrop, seismic and borehole evidence for the continuity of the Gombe Stratoid Series from the
728 South Turkana Basin and across Lake Turkana (Dunkelman et al., 1989; Morley et al., 1999b; Schofield
729 et al., 2021), B) The references to the continuity of these units under fill within basins or plains
730 (Davidson, 1983) or as erosional remnants of larger plateaus (Key et al., 1987). In these cases, we have
731 extended the boundary of the Gombe Stratoid series to the rift basin boundaries (Purcell, 2018) or the
732 limits of the Quaternary fill on the map. The southern boundary is unclear given the ambiguity of the age
733 of the Undifferentiated Plateau basalts. Note that the Undifferentiated Plateau basalts are basalts that may
734 be assigned to either the Pliocene Stratoid Phase or the prior Mid Miocene Resurgence event. They are
735 amalgamated into a single unit here as we have insufficient information on the age or composition of
736 these basalts to subdivide them further. We have therefore estimated the boundary as about half way
737 between the recognized Gombe Stratoid Series exposures and the next outcrop south of Marsabit,
738 extending into Lake Turkana. Volcano locations based on the Smithsonian catalog. Faults are those
739 presented by Macgreggor (2015). KSFB = Kino Sogo Fault Belt. Numbers refer to sample localities (see
740 supplemental information).

741 **Figure 2**

742 Selected major element geochemistry for Gombe Stratoid Series and Shield Volcanism phase. Note the
743 overall compositional homogeneity of the Gombe Stratoid Series and the variable compositions of the
744 Pliocene shields. FeO is not total iron but is calculated based on an assumption that 15% of the total Fe is
745 in the form of Fe³⁺ and 85% in Fe²⁺. Data are derived from this publication.

746 **Figure 3**

747 Selected compatible trace element geochemistry for the Gombe Stratoid Series and Shield volcanism phase.
748 Data are derived from this publication.

749 **Figure 4**

750 Selected incompatible trace element geochemistry for the Gombe Stratoid Series and Shield volcanism
751 phase. Data are derived from this publication.

752 **Figure 5**

753 Primitive mantle normalized diagrams (Sun and McDonough, 1989) of the Gombe Stratoid Series groups
754 and the Pliocene Shields.

755 **Figure 6**

756 Combined data for the Gombe Stratoid series. These data include rocks from this study in addition to
757 published datasets (Asfaw et al., 1991; Stewart and Rogers, 1996; Haileab et al., 2004; Bruhn et al., 2011;
758 Shinjo et al., 2011; Corti et al., 2019). Note that the lava names were assigned based on the location of
759 eruption.

760 **Figure 7**

761 Results of our modelling of mantle melting due to thinning of the continental lithosphere. Full model
762 parameters are presented in Text S3. A) Rate of plate thinning in a steady state model assuming a modern
763 day geodetically observed extension rate (Knappe et al., 2020). B) Impact on lithospheric thickness through
764 time given a rate of plate thinning governed by the modern rate of extension. Note that the hypothetical
765 lithospheric thicknesses differ depending on mantle T_p as the initial lithosphere thickness ($z_{lithosphere}^0$) was
766 taken to be 1 km deeper than the intersection of the mantle adiabat in order to prevent melt generation at
767 the onset of the model. See text S3. C) Melt thickness produced over time depending on the mantle T_p . D)
768 Our hypothesized pulsed lithospheric thinning model showing increases to the rate of plate thinning for
769 intervals as shown. The plate thinning rate returns to the modern day background rate in between pulses.
770 E) Impact of the variable lithospheric thinning rate on the change in lithospheric thickness through
771 time. F) Melt thickness produced over time depending on the variable thinning of the lithosphere and
772 mantle T_p .

773 **Figure 8**

774 Results of our modelling of mantle melting due to extension and thinning of the continental lithosphere.
775 Full model parameters are presented in Text S3. A) This figure shows a pulsed lithospheric thinning model,
776 however rate of lithospheric thinning during the Gombe event has been increased ~3.5 km/Myr. B) Impact
777 of the variable lithospheric thinning rate on the change in lithospheric thickness through time. C) Melt
778 thickness produced by variable lithospheric thinning rate over time for a mantle T_p of 1450°C. D) The
779 interval of increased lithospheric thinning correlating to the Gombe event has been expanded to 5.8 Ma.
780 The initiation of Gombe-related magmatism is not well constrained (see main text). E) Impact of the
781 variable lithospheric thinning rate on the change in lithospheric thickness through time. F) Melt thickness
782 produced by variable lithospheric thinning rate (and a longer Gombe event interval) over time for a mantle
783 T_p of 1450°C.

784 **Table 1**

785 Thermobarometry results using the major element model of Lee et al. (2009) and Hydrous Adiabatic Mantle
786 Melting Simulator (HAMMS) of Kimura & Kawabata (2014). See supplementary information for full
787 modeling methods. Both pressure and temperature in this table has been calculated in three different ways
788 – firstly using the major element model of Lee et al. (2009), then using the major element model of HAMMS
789 and then the trace element model of HAMMS. Pressure is converted to depth with an approximation of 1
790 GPa = 30 km. T_p = Mantle potential temperature. For the HAMMS modelling the methods of Chiasera et
791 al. (2021) were followed. Each of the six sample compositions (corrected to primary values – see
792 supplementary information) were compared to synthetic model results derived from inputs reflecting
793 varying mantle compositions using the pyroxenite AG7 as a contaminant (0-2% Fcont/%), variable
794 pressures of final melting (2.5-3.5 GPa Pmt/GPa), varying mantle potential temperature of final melting
795 (1400°C – 1450°C T_p /C), variable water content (0-1% H2O(i)/%) and variable source depletion (0-1%

796 CsDep/%ext). The initial conditions that most closely match the sample compositions are shown in the
797 table.

REFERENCES

799 Asfaw, B., Beyene, Y., Semaw, S., Suwa, G., White, T., and WoldeGabriel, G., 1991, Fejej: a new
 800 paleoanthropological research area in Ethiopia: *Journal of Human Evolution*, v. 21, p. 137–143.

801 Bellieni, G., Brotzu, P., Morbidelli, L., Piccirillo, E.M., and Traversa, G., 1986, Petrology and
 802 Mineralogy of Miocene Fissural Volcanism of the East Kenya Plateau: *Neues Jahrbuch Fur
 803 Mineralogie-Abhandlungen*, v. 154, p. 153–178.

804 Bonini, M., Corti, G., Innocenti, F., Manetti, P., Mazzarini, F., Abebe, T., and Pecskay, Z., 2005,
 805 Evolution of the Main Ethiopian Rift in the frame of Afar and Kenya rifts propagation: *Tectonics*,
 806 v. 24, p. TC1007, doi: 10.1029/2004TC00168.

807 Boone, S.C., Kohn, B.P., Gleadow, A.J., Morley, C.K., Seiler, C., and Foster, D.A., 2019, Birth of the
 808 East African Rift System: Nucleation of magmatism and strain in the Turkana Depression:
 809 *Geology*, v. 47, p. 886–890.

810 Boschetto, H.B., Brown, F.H., and McDougall, I., 1992, Stratigraphy of the Lothidok Range, northern
 811 Kenya, and K/Ar ages of its Miocene primates: *Journal of Human Evolution*, v. 22, p. 47–71.

812 Bosworth, W., 1992, Mesozoic and Early Tertiary Rift Tectonics in East-Africa: *Tectonophysics*, v. 209,
 813 p. 115–137.

814 Bosworth, W., and Morley, C.K., 1994, Structural and stratigraphic evolution of the Anza rift, Kenya:
 815 *Tectonophysics*, v. 236, p. 93–115.

816 Boyce, A., Kounoudis, R., Bastow, I.D., Cottaar, S., Ebinger, C.J., and Ogden, C.S., 2023, Mantle
 817 wavespeed and discontinuity structure below East Africa: Implications for Cenozoic hotspot
 818 tectonism and the development of the Turkana Depression: *Geochemistry, Geophysics,
 819 Geosystems*, v. 24, p. e2022GC010775.

820 Brotzu, P., Morbidelli, L., Nicoletti, M., Piccirillo, E.M., and Traversa, G., 1984, Miocene to Quaternary
 821 volcanism in eastern Kenya: sequence and geochronology: *Tectonophysics*, v. 101, p. 75–86.

822 Brown, F.H., and McDougall, I., 2011, Geochronology of the Turkana depression of northern Kenya and
 823 southern Ethiopia: *Evolutionary Anthropology: Issues, News, and Reviews*, v. 20, p. 217–227.

824 Bruhn, R.L., Brown, F.H., Gathogo, P.N., and Haileab, B., 2011, Pliocene volcano-tectonics and
 825 paleogeography of the Turkana Basin, Kenya and Ethiopia: *Journal of African Earth Sciences*, v.
 826 59, p. 295–312.

827 Bryan, W., 1979, Regional variation and petrogenesis of basalt glasses from the FAMOUS area, Mid-
 828 Atlantic Ridge: *Journal of Petrology*, v. 20, p. 293–325.

829 Cai, Y., Mana, S., Cox, S.E., Beck, C.C., Feibel, C., Hanley, J., Liu, T., Bolge, L., Hemming, S., and
 830 Goldstein, S.L., 2023, Geodynamic Evolution of the East African Superplume: Insights from
 831 volcanism in the western Turkana Basin (Merry): *Journal of Geophysical Research: Solid Earth*,
 832 p. e2023JB026755.

833 Cancel-Vazquez, S.M., Rooney, T.O., Bollinger, A.R., and Steiner, R.A., 2024, Gombe Series and
834 Pliocene Shield Basalts from the Turkana Depression, Kenya, East African Rift [dataset]:,
835 doi:10.26022/IEDA/113041.

836 Casey, M., Ebinger, C., Keir, D., Gloaguen, R., and Mohamed, F., 2006, Strain accomodation in
837 transitional rifts: Extension by magma intrusion and faulting in Ethiopian rift magmatic segments,
838 *in* Yirgu, G., Ebinger, C., and Maguire, P. eds., The Afar Volcanic Province within the East
839 African Rift System, London, Geological Society, London, v. 259, p. 143–164.

840 Chiasera, B., Rooney, T.O., Bastow, I.D., Yirgu, G., Grosfils, E.B., Ayalew, D., Mohr, P., Zimbelman, J.,
841 and Ramsey, M., 2021, Magmatic rifting in the Main Ethiopian Rift began in thick continental
842 lithosphere; the case of the Galemna Range: *Lithos*, v. 406, p. 106494.

843 Class, C., Altherr, R., Volker, F., Eberz, G., and Mcculloch, M.T., 1994, Geochemistry of Pliocene to
844 Quaternary alkali basalts from the Huri Hills, Northern Kenya: *Chemical Geology*, v. 113, p. 1–
845 22.

846 Corti, G. et al., 2019, Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift:
847 *Nature Communications*, v. 10, p. 1309, doi:10.1038/s41467-019-09335-2.

848 Corti, G., 2009, Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian
849 Rift, East Africa: *Earth-Science Reviews*, v. 96, p. 1–53, doi:DOI
850 10.1016/j.earscirev.2009.06.005.

851 Corti, G., Bonini, M., Conticelli, S., Innocenti, F., Manetti, P., and Sokoutis, D., 2003, Analogue
852 modelling of continental extension: a review focused on the relations between the patterns of
853 deformation and the presence of magma: *Earth-Science Reviews*, v. 63, p. 169–247.

854 Davidson, A., 1983, The Omo River Project: Reconnaissance geology and geochemistry of parts of
855 Illubabor, Kefa, Gemu Gofa, and Sidamo: *Ethiopian Institute Geological Surveys Bulletin*, v. 2,
856 p. 1–89.

857 Davidson, A., and Rex, D.C., 1980, Age of Volcanism and Rifting in Southwestern Ethiopia: *Nature*, v.
858 283, p. 657–658.

859 Dunkelman, T.J., Karson, J.A., and Rosendahl, B.R., 1988, Structural style of the Turkana rift, Kenya:
860 *Geology*, v. 16, p. 258–261.

861 Dunkelman, T.J., Rosendahl, B.R., and Karson, J.A., 1989, Structure and stratigraphy of the Turkana rift
862 from seismic reflection data: *Journal of African Earth Sciences (and the Middle East)*, v. 8, p.
863 489–510.

864 Dunkley, P.N., Smith, M., Allen, D.J., and Darling, W.G., 1993, The geothermal activity and geology of
865 the northern sector of the Kenya Rift Valley:

866 Ebinger, C., 2005, Continental break-up: The East African perspective: *Astronomy & Geophysics*, v. 46,
867 p. 16–21.

868 Ebinger, C.J., and Casey, M., 2001, Continental breakup in magmatic provinces: An Ethiopian example:
869 *Geology*, v. 29, p. 527–530.

870 Ebinger, C.J., and Ibrahim, A., 1994, Multiple Episodes of Rifting in Central and East-Africa - a
871 Reevaluation of Gravity-Data: *Geologische Rundschau*, v. 83, p. 689–702.

872 Ebinger, C.J., Keir, D., Bastow, I.D., Whaler, K., Hammond, J.O., Ayele, A., Miller, M.S., Tiberi, C., and
873 Hautot, S., 2017, Crustal structure of active deformation zones in Africa: Implications for global
874 crustal processes: *Tectonics*, v. 36, p. 3298–3332.

875 Ebinger, C.J., Yemane, T., Harding, D.J., Tesfaye, S., Kelley, S., and Rex, D.C., 2000, Rift deflection,
876 migration, and propagation: Linkage of the Ethiopian and Eastern rifts, Africa: *Geological
877 Society of America Bulletin*, v. 112, p. 163–176.

878 Ebinger, C.J., Yemane, T., WoldeGabriel, G., Aronson, J.L., and Walter, R.C., 1993, Late Eocene-Recent
879 volcanism and faulting in the southern main Ethiopian Rift: *Journal of the Geological Society of
880 London*, v. 150, p. 99–108.

881 Ernst, R.E., and Buchan, K.L., 2003, Recognizing mantle plumes in the geological record: *Annual
882 Review of Earth and Planetary Sciences*, v. 31, p. 469–523.

883 Feibel, C.S., 2011, A geological history of the Turkana Basin: *Evolutionary Anthropology: Issues, News,
884 and Reviews*, v. 20, p. 206–216.

885 Fitch, F.J., and Miller, J.A., 1976, Conventional potassium-argon and argon-40/argon-39 dating of
886 volcanic rocks from East Rudolf: University of Chicago Press Chicago, p. 123–147.

887 Franceschini, Z., Cioni, R., Scaillet, S., Corti, G., Sani, F., Isola, I., Mazzarini, F., Duval, F., Erbello, A.,
888 and Muluneh, A., 2020, Recent volcano-tectonic activity of the Ririba rift and the evolution of
889 rifting in South Ethiopia: *Journal of Volcanology and Geothermal Research*, v. 403, p. 106989.

890 Furman, T., Kaleta, K.M., Bryce, J.G., and Hanan, B.B., 2006, Tertiary mafic lavas of Turkana, Kenya:
891 Constraints on East African plume structure and the occurrence of high- μ volcanism in Africa:
892 *Journal of Petrology*, v. 47, p. 1221–1244.

893 Gathogo, P.N., Brown, F.H., and McDougall, I., 2008, Stratigraphy of the Koobi Fora Formation
894 (Pliocene and Pleistocene) in the Loiyangalani region of northern Kenya: *Journal of African
895 Earth Sciences*, v. 51, p. 277–297.

896 George, R.M., and Rogers, N.W., 2002, Plume dynamics beneath the African Plate inferred from the
897 geochemistry of the Tertiary basalts of southern Ethiopia: *Contributions to Mineralogy and
898 Petrology*, v. 144, p. 286–304.

899 George, R., Rogers, N., and Kelley, S., 1998, Earliest magmatism in Ethiopia: Evidence for two mantle
900 plumes in one flood basalt province: *Geology*, v. 26, p. 923–926.

901 Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., and Carley, T.L., 2012, Rhyolite-MELTS: A modified
902 calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems.: *Journal of
903 Petrology*, p. doi:10.1093/petrology/egr080.

904 Guan, H., Geoffroy, L., and Xu, M., 2021, Magma-assisted fragmentation of Pangea: continental breakup
905 initiation and propagation: *Gondwana Research*, v. 96, p. 56–75.

906 Guth, A.L., 2013, Spatial and Temporal Evolution of the Volcanics and Sediments of the Kenya Rift:
907 Michigan Technological University.

908 Haileab, B., Brown, F.H., McDougall, I., and Gathogo, P.N., 2004, Gombe Group basalts and
909 initiation of Pliocene deposition in the Turkana depression, northern Kenya and southern
910 Ethiopia: *Geological Magazine*, v. 141, p. 41–53.

911 Hayward, N.J., and Ebinger, C.J., 1996, Variations in the along-axis segmentation of the Afar Rift
912 system: *Tectonics*, v. 15, p. 244–257.

913 Hendrie, D.B., Kusznir, N.J., Morley, C.K., and Ebinger, C.J., 1994, Cenozoic extension in Northern
914 Kenya - A quantitative model of rift basin development in the Turkana region: *Tectonophysics*, v.
915 236, p. 409–438.

916 Humphreys, M.C.S., Edmonds, M., Plail, M., Barclay, J., Parkes, D., and Christopher, T., 2013, A new
917 method to quantify the real supply of mafic components to a hybrid andesite: *Contributions to
918 Mineralogy and Petrology*, v. 165, p. 191–215.

919 JICA, 2012, Geological Map of Konso - Yabelo Area: Japan International Cooperation Agency (JICA)
920 The Study on Groundwater Resources Assessment in the Rift Valley Lakes Basin.

921 Karson, J.A., and Curtis, P.C., 1989, Tectonic and magmatic processes in the Eastern Branch of the East
922 African Rift and implications for magmatically active continental rifts: *Journal of African Earth
923 Sciences (and the Middle East)*, v. 8, p. 431–453, doi:[http://dx.doi.org/10.1016/S0899-5362\(89\)80037-5](http://dx.doi.org/10.1016/S0899-5362(89)80037-5).

925 Katz, R.F., Spiegelman, M., and Langmuir, C.H., 2003, A new parameterization of hydrous mantle
926 melting: *Geochemistry, Geophysics, Geosystems*, v. 4.

927 Keir, D., Bastow, I.D., Pagli, C., and Chambers, E.L., 2013, The development of extension and
928 magmatism in the Red Sea rift of Afar: *Tectonophysics*, v. 607, p. 98–114,
929 doi:<http://dx.doi.org/10.1016/j.tecto.2012.10.015>.

930 Key, R.M., Rop, B.P., and Rundle, C.C., 1987, The development of the late Cenozoic alkali basaltic
931 Marsabit Shield-Volcano, Northern Kenya: *Journal of African Earth Sciences*, v. 6, p. 475–491.

932 Key, R.M., and Watkins, R.T., 1988, Geology of the Sabarei area: Republic of Kenya Ministry of
933 Environment and Natural Resources, Mines and Geological Department Report, v. 111.

934 Kimura, J.-I., and Kawabata, H., 2014, Trace element mass balance in hydrous adiabatic mantle melting:
935 The Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1): *Geochemistry,
936 Geophysics, Geosystems*, v. 15, p. 2467–2493.

937 Kitagawa, H., Kobayashi, K., Makishima, A., and Nakamura, E., 2008, Multiple pulses of the mantle
938 plume: evidence from Tertiary Icelandic lavas: *Journal of Petrology*, v. 49, p. 1365–1396.

939 Knappe, E., Bendick, R., Ebinger, C., Birhanu, Y., Lewi, E., Floyd, M., King, R., Kianji, G., Mariita, N.,
940 and Temtime, T., 2020, Accommodation of East African Rifting across the Turkana Depression:
941 *Journal of Geophysical Research: Solid Earth*, v. 125, p. e2019JB018469.

942 Kounoudis, R., Bastow, I.D., Ebinger, C.J., Darbyshire, F., Ogden, C.S., Musila, M., Ugo, F., Ayele, A.,
943 Sullivan, G., and Bendick, R., 2023, The development of rifting and magmatism in the multiply
944 rifted Turkana Depression, East Africa: Evidence from surface-wave analysis of crustal and
945 uppermost mantle structure: *Earth and Planetary Science Letters*, v. 621, p. 118386.

946 Kounoudis, R., Bastow, I.D., Ebinger, C.J., Ogden, C.S., Ayele, A., Bendick, R., Mariita, N., Kianji, G.,
947 Wigham, G., and Musila, M., 2021, Body-Wave Tomographic Imaging of the Turkana
948 Depression: Implications for Rift Development and Plume-Lithosphere Interactions:
949 *Geochemistry, Geophysics, Geosystems*, v. 22, p. e2021GC009782.

950 Krans, S.R., Rooney, T.O., Kappelman, J., Yirgu, G., and Ayalew, D., 2018, From initiation to
951 termination: a petrostratigraphic tour of the Ethiopian Low-Ti Flood Basalt Province:
952 *Contributions to Mineralogy and Petrology*, v. 173, p. 37, doi:10.1007/s00410-018-1460-7.

953 Lahitte, P., Gillot, P.-Y., Kidane, T., Courtillot, V., and Bekale, A., 2003, New age constraints on the
954 timing of volcanism in central Afar, in the presence of propagating rifts: *Journal of Geophysical*
955 *Research: Solid Earth*, v. 108, p. 2123, doi:10.1029/2001jb001689.

956 Lee, C.-T.A., Luffi, P., Plank, T., Dalton, H., and Leeman, W.P., 2009, Constraints on the depths and
957 temperatures of basaltic magma generation on Earth and other terrestrial planets using new
958 thermobarometers for mafic magmas: *Earth and Planetary Science Letters*, v. 279, p. 20–33.

959 Macgregor, D., 2015, History of the development of the East African Rift System: A series of interpreted
960 maps through time: *Journal of African Earth Sciences*, v. 101, p. 232–252.

961 Mazzarini, F., Corti, G., Manetti, P., and Innocenti, F., 2004, Strain rate and bimodal volcanism in the
962 continental rift: Debre Zeyt volcanic field, northern MER, Ethiopia: *Journal of African Earth*
963 *Sciences*, v. 39, p. 415–420, doi:DOI 10.1016/j.jafrearsci.2004.07.025.

964 McDougall, I.A.N., and Brown, F.H., 2008, Geochronology of the pre-KBS tuff sequence, Omo Group,
965 Turkana Basin: *Journal of the Geological Society*, v. 165, p. 549–562.

966 McDougall, I., and Brown, F.H., 2009, Timing of volcanism and evolution of the northern Kenya Rift:
967 *Geological Magazine*, v. 146, p. 34–47.

968 McDougall, I., and Feibel, C.S., 1999, Numerical age control for the Miocene-Pliocene succession at
969 Lothagam, a hominoid-bearing sequence in the northern Kenya Rift: *Journal of the Geological*
970 *Society*, v. 156, p. 731–745, doi:10.1144/gsjgs.156.4.0731.

971 McDougall, I., and Watkins, R.T., 2006, Geochronology of the Nabwal Hills: a record of earliest
972 magmatism in the northern Kenyan Rift Valley: *Geological Magazine*, v. 143, p. 25–39.

973 McDougall, I., and Watkins, R.T., 1988, Potassium–argon ages of volcanic rocks from northeast of Lake
974 Turkana, northern Kenya: *Geological Magazine*, v. 125, p. 15–23.

975 McKenzie, D., and Bickle, M.J., 1988, The volume and composition of melt generated by extension of the
976 lithosphere: *Journal of Petrology*, v. 29, p. 625–679.

977 Mechie, J., Keller, G.R., Prodehl, C., Khan, M.A., and Gaciri, S.J., 1997, A model for the structure,
978 composition and evolution of the Kenya rift: *Tectonophysics*, v. 278, p. 95–119.

979 Mohr, P., 1983, Ethiopian flood basalt province: *Nature*, v. 303, p. 577–584.

980 Morley, C.K., 2020, Early syn-rift igneous dike patterns, northern Kenya Rift (Turkana, Kenya):
981 Implications for local and regional stresses, tectonics, and magma-structure interactions:
982 *Geosphere*, v. 16, p. 890–918.

983 Morley, C.K., 1994, Interaction of deep and shallow processes in the evolution of the Kenya rift:
984 *Tectonophysics*, v. 236, p. 81–91.

985 Morley, C.K., 2010, Stress re-orientation along zones of weak fabrics in rifts: An explanation for pure
986 extension in ‘oblique’ rift segments? *Earth and Planetary Science Letters*, v. 297, p. 667–673.

987 Morley, C.K., Bosworth, W., Day, R.A., Lauck, R., Bosher, R., Stone, D.M., Wigger, S.T., Wescott,
988 W.A., Haun, D., and Bassett, N., 1999a, AAPG Studies in Geology# 44, Chapter 4: Geology and
989 Geophysics of the Anza Graben:

990 Morley, C.K., Karanja, F.M., Wescott, W.A., Stone, D.M., Harper, R.M., Wigger, S.T., and Day, R.A.,
991 1999b, Chapter 2: Geology and Geophysics of the Western Turkana Basins, Kenya, *in*
992 Geoscience of Rift Systems—Evolution of East African. C.K. Morely (ed), AAPG, AAPG
993 Studies in Geology, v. 44, p. 19–54.

994 Morley, C.K., Ngenoh, D.K., and Ego, J.K., 1999c, Chapter 1: Introduction to the East African Rift
995 System, *in* Geoscience of Rift Systems—Evolution of East Africa, C.K. Morely (ed), AAPG,
996 AAPG Studies in Geology, v. 44, p. 1–18.

997 Morley, C.K., Wescott, W.A., Stone, D.M., Harper, R.M., Wigger, S.T., and Karanja, F.M., 1992,
998 Tectonic evolution of the Northern Kenyan rift: *Journal of the Geological Society*, v. 149, p. 333–
999 348.

1000 Muirhead, J.D., Scholz, C.A., and O. Rooney, T., 2022, Transition to magma-driven rifting in the South
1001 Turkana Basin, Kenya: Part 1: *Journal of the Geological Society*, v. 179, p. jgs2021-159.

1002 Musila, M., Ebinger, C.J., Bastow, I.D., Sullivan, G., Oliva, S.J., Knappe, E., Perry, M., Kounoudis, R.,
1003 Ogden, C.S., and Bendick, R., 2023, Active Deformation Constraints on the Nubia-Somalia Plate
1004 Boundary Through Heterogenous Lithosphere of the Turkana Depression: *Geochemistry,*
1005 *Geophysics, Geosystems*, v. 24, p. e2023GC010982.

1006 Ochieng, J.O., Wilkinson, A.F., Kenya. Ministry of Environment, and Natural Resources, 1988, *Geology*
1007 of the Loiyangalani Area: Degree: Ministry of Environment and Natural Resources.

1008 Ogden, C.S., Bastow, I.D., Ebinger, C., Ayele, A., Kounoudis, R., Musila, M., Bendick, R., Mariita, N.,
1009 Kianji, G., and Rooney, T.O., 2023, The development of multiple phases of superposed rifting in
1010 the Turkana Depression, East Africa: Evidence from receiver functions: *Earth and Planetary*
1011 *Science Letters*, v. 609, p. 118088.

1012 Opdyke, N.D., Kent, D.V., Huang, K., Foster, D.A., and Patel, J.P., 2010, Equatorial paleomagnetic time-
1013 averaged field results from 0–5 Ma lavas from Kenya and the latitudinal variation of angular
1014 dispersion: *Geochemistry, Geophysics, Geosystems*, v. 11.

1015 Pedersen, T., and van der Beek, P., 1994, Extension and magmatism in the Oslo Rift, southeast Norway:
1016 no sign of a mantle plume: *Earth and Planetary Science Letters*, v. 123, p. 317–329.

1017 Pedersen, T., and Ro, H.E., 1992, Finite duration extension and decompression melting: Earth and
1018 planetary science letters, v. 113, p. 15–22.

1019 Pik, R., Deniel, C., Coulon, C., Yirgu, G., and Marty, B., 1999, Isotopic and trace element signatures of
1020 Ethiopian flood basalts; evidence for plume-lithosphere interactions: *Geochimica Et
1021 Cosmochimica Acta*, v. 63, p. 2263–2279.

1022 Pilet, S., Baker, M.B., and Stolper, E.M., 2008, Metasomatized Lithosphere and the Origin of Alkaline
1023 Lavas: *Science*, v. 320, p. 916–919, doi:10.1126/science.1156563.

1024 Prodehl, C., Ritter, J.R.R., Mechlie, J., Keller, G.R., Khan, M.A., Jacob, B., Fuchs, K., Nyambok, I.O.,
1025 Obel, J.D., and Riaroh, D., 1997, The KRISP 94 lithospheric investigation of southern Kenya—
1026 the experiments and their main results: *Tectonophysics*, v. 278, p. 121–147.

1027 Purcell, P.G., 2018, Re-imagining and re-imaging the development of the East African Rift: *Petroleum
1028 Geoscience*, v. 24, p. 21–40.

1029 Reeves, C.V., Karanja, F.M., and MacLeod, I.N., 1987, Geophysical evidence for a failed Jurassic rift and
1030 triple junction in Kenya: *Earth and Planetary Science Letters*, v. 81, p. 299–311.

1031 Rooney, T.O., 2020a, The Cenozoic magmatism of East Africa: Part II—Rifting of the mobile belt: *Lithos*,
1032 v. 360, p. 105291, doi:10.1016/j.lithos.2019.105291.

1033 Rooney, T.O., 2020b, The Cenozoic magmatism of East Africa: part V—magma sources and processes in
1034 the East African Rift: *Lithos*, v. 360, p. 105296, doi:doi: 10.1016/j.lithos.2019.105296.

1035 Rooney, T.O., 2017, The Cenozoic magmatism of East-Africa: Part I—flood basalts and pulsed
1036 magmatism: *Lithos*, v. 286, p. 264–301.

1037 Rooney, T.O., Bastow, I.D., Keir, D., Mazzarini, F., Movsesian, E., Grosfils, E.B., Zimbelman, J.R.,
1038 Ramsey, M.S., Ayalew, D., and Yirgu, G., 2014, The protracted development of focused
1039 magmatic intrusion during continental rifting: *Tectonics*, v. 33, p. 875–897, doi:DOI:
1040 10.1002/2013TC003514.

1041 Rooney, T.O., Brown, E.L., Bastow, I.D., Arrowsmith, J.R., and Campisano, C.J., 2023, Magmatism
1042 during the continent–ocean transition: *Earth and Planetary Science Letters*, v. 614, p. 118189.

1043 Rooney, T.O., Hanan, B.B., Graham, D.W., Furman, T., Blichert-Toft, J., and Schilling, J.-G., 2012a,
1044 Upper Mantle Pollution during Afar Plume–Continental Rift Interaction: *Journal of Petrology*, v.
1045 53, p. 365–389, doi:10.1093/petrology/egr065.

1046 Rooney, T.O., Hart, W.K., Hall, C.M., Ayalew, D., Ghiorso, M.S., Hidalgo, P., and Yirgu, G., 2012b,
1047 Peralkaline magma evolution and the tephra record in the Ethiopian Rift: *Contributions to
1048 Mineralogy and Petrology*, v. 164, p. 407–426.

1049 Rooney, T.O., Herzberg, C., and Bastow, I.D., 2012c, Elevated mantle temperature beneath East Africa:
1050 *Geology*, v. 40, p. 27–30, doi:10.1130/g32382.1.

1051 Rooney, T.O., Wallace, P.J., Muirhead, J.D., Chiasera, B., Steiner, R.A., Girard, G., and Karson, J.A.,
1052 2022, Transition to magma-driven rifting in the South Turkana Basin, Kenya: Part 2: *Journal of
1053 the Geological Society*, v. 179, p. jgs2021-160.

1054 Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image
1055 analysis: *Nature methods*, v. 9, p. 671–675.

1056 Schofield, N., Newton, R., Thackrey, S., Watson, D., Jolley, D., and Morley, C., 2021, Linking surface
1057 and subsurface volcanic stratigraphy in the Turkana Depression of the East African Rift system:
1058 *Journal of the Geological Society*, v. 178, p. jgs2020-110.

1059 Shinjo, R., Chekol, T., Meshesha, D., Itaya, T., and Tatsumi, Y., 2011, Geochemistry and geochronology
1060 of the mafic lavas from the southeastern Ethiopian rift (the East African Rift System): assessment
1061 of models on magma sources, plume–lithosphere interaction and plume evolution: *Contributions
1062 to Mineralogy and Petrology*, v. 162, p. 209–230.

1063 Simiyu, S.M., and Keller, G.R., 1997, An integrated analysis of lithospheric structure across the East
1064 African plateau based on gravity anomalies and recent seismic studies: *Tectonophysics*, v. 278, p.
1065 291–313.

1066 Stab, M., Bellahsen, N., Pik, R., Quidelleur, X., Ayalew, D., and Leroy, S., 2016, Modes of rifting in
1067 magma-rich settings: Tectono-magmatic evolution of Central Afar: *Tectonics*, v. 35, p. 2–38,
1068 doi:10.1002/2015tc003893.

1069 Steiner, R.A., and Rooney, T.O., 2021, PiAutoStage: An Open-Source 3D Printed Tool for the Automatic
1070 Collection of High-Resolution Microscope Imagery: *Geochemistry, Geophysics, Geosystems*, v.
1071 22, p. e2021GC009693.

1072 Steiner, R.A., Rooney, T.O., Girard, G., Rogers, N.W., Ebinger, C., Peterson, L., and Phillips, R., 2021,
1073 Cenozoic Magmatic Activity in East Africa: New Geochemical Constraints on Magma
1074 Distribution within the Eocene Continental Flood Basalt Province, in *Large Igneous Provinces
1075 and their Plumbing Systems*, *Journal of the Geological Society Special Publications* 518, 518.

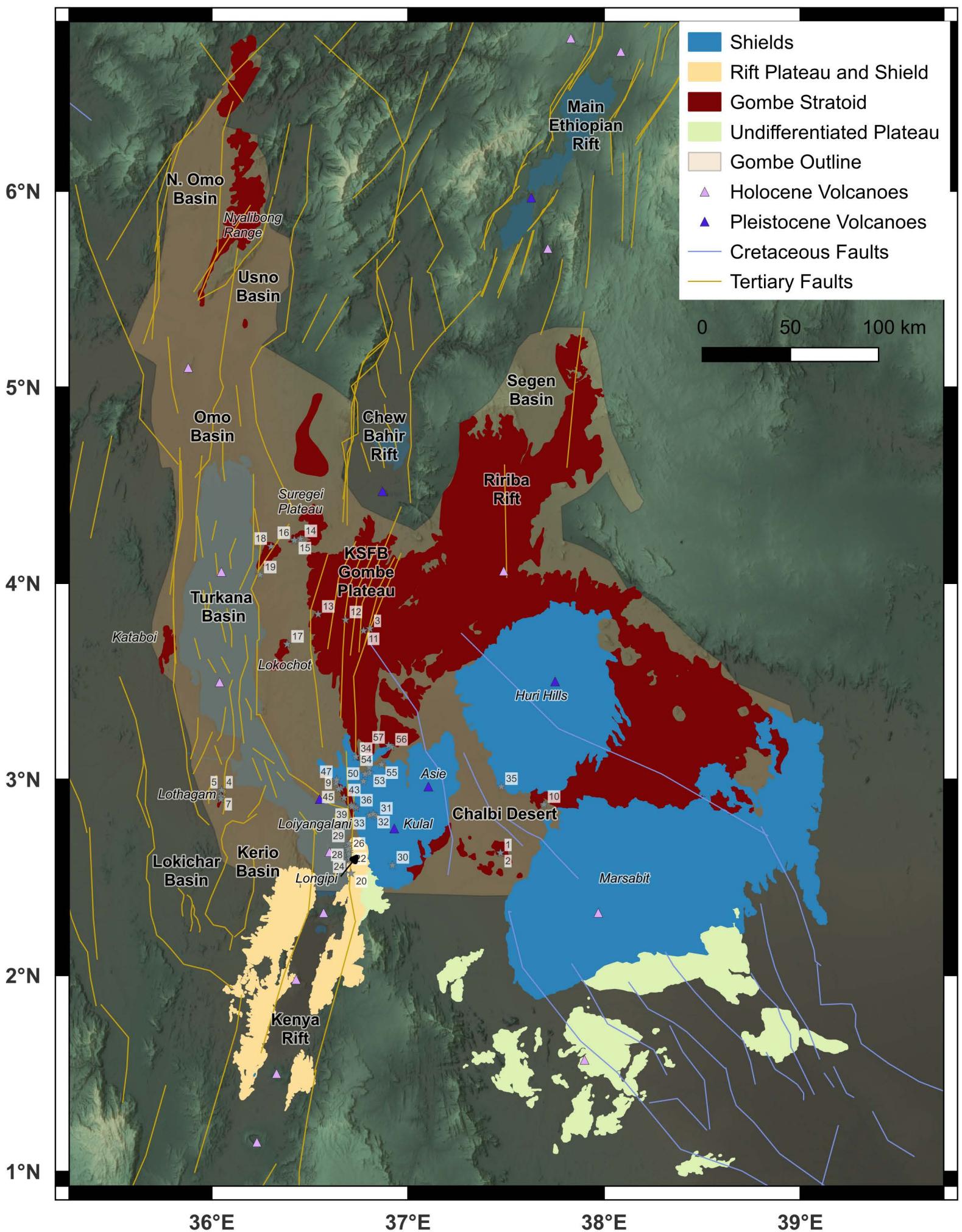
1076 Steiner, R.A., Rooney, T.O., Kappelman, J., Lydic, T., Girard, G., Mariita, N., and Phillips, R., 2024,
1077 Messengers from the Magma Chambers: Petro-Stratigraphic Analysis of Plagioclase-Rich Flood
1078 Basalt Lavas in Turkana, Kenya: *Journal of Petrology*, p. egae044.

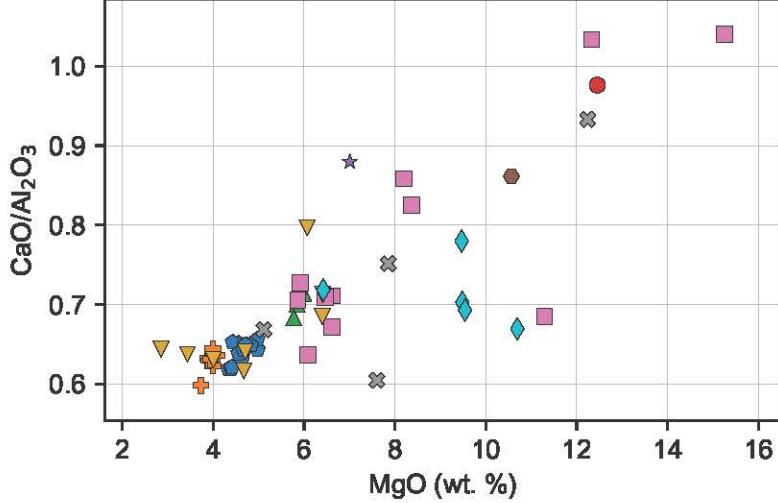
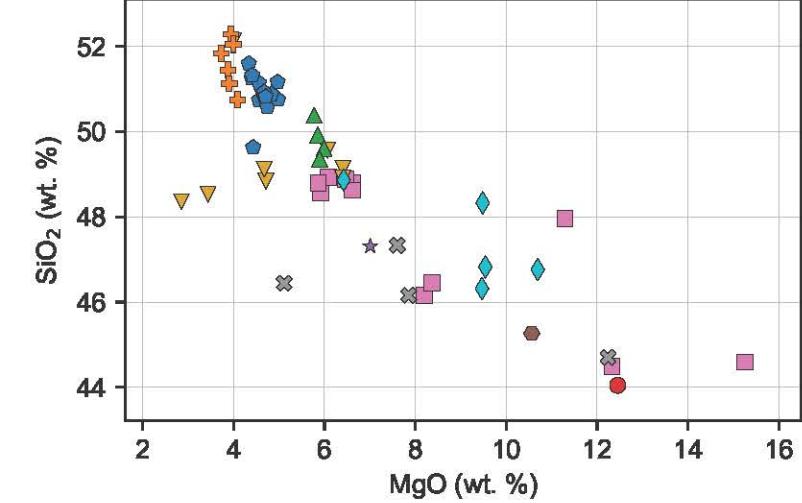
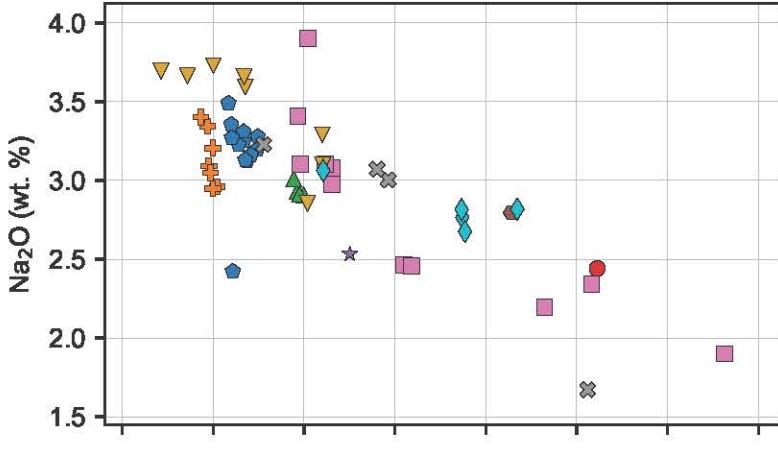
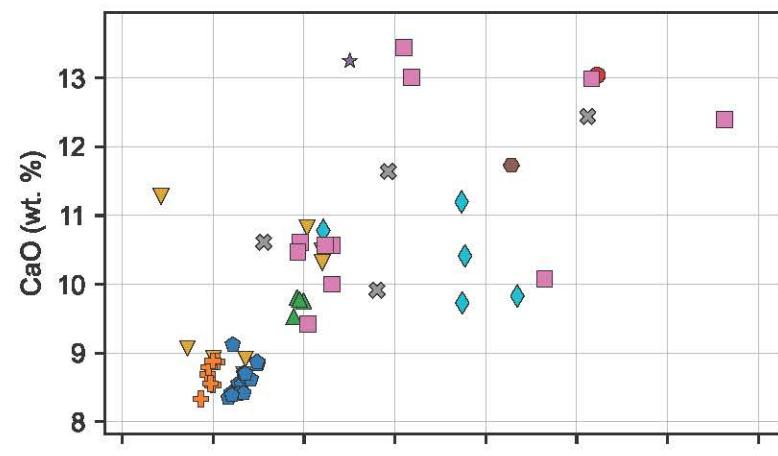
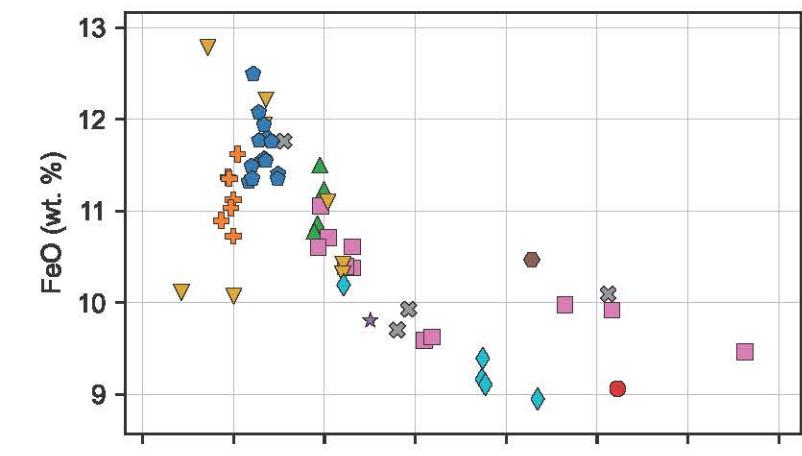
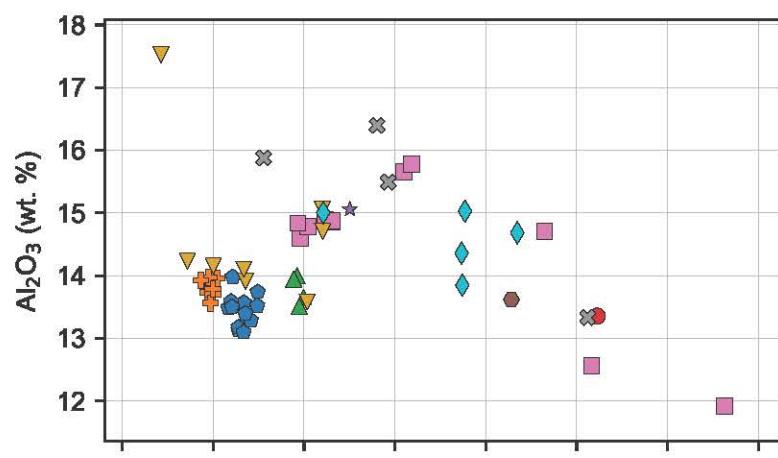
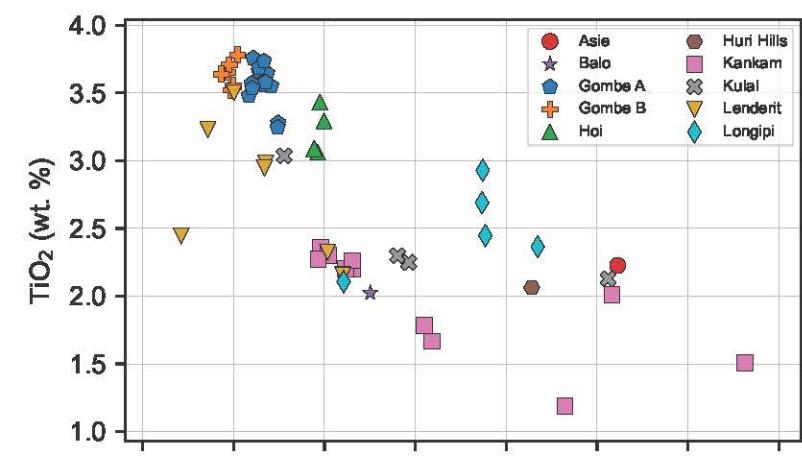
1079 Stewart, K., and Rogers, N., 1996, Mantle plume and lithosphere contributions to basalts from southern
1080 Ethiopia: *Earth and Planetary Science Letters*, v. 139, p. 195–211.

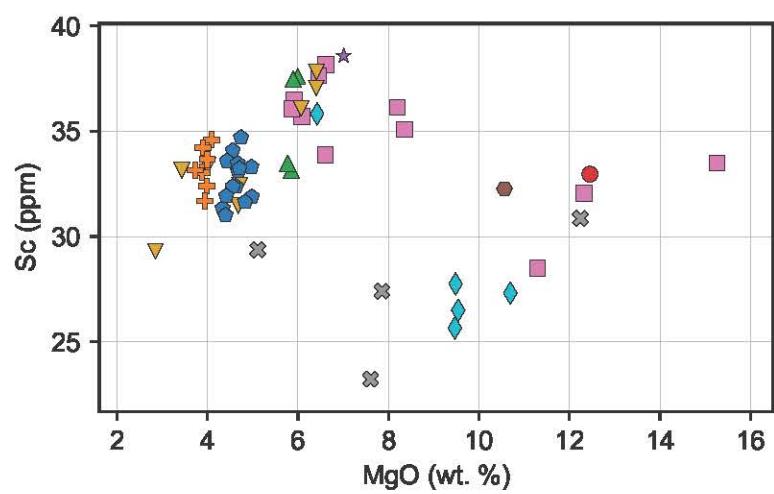
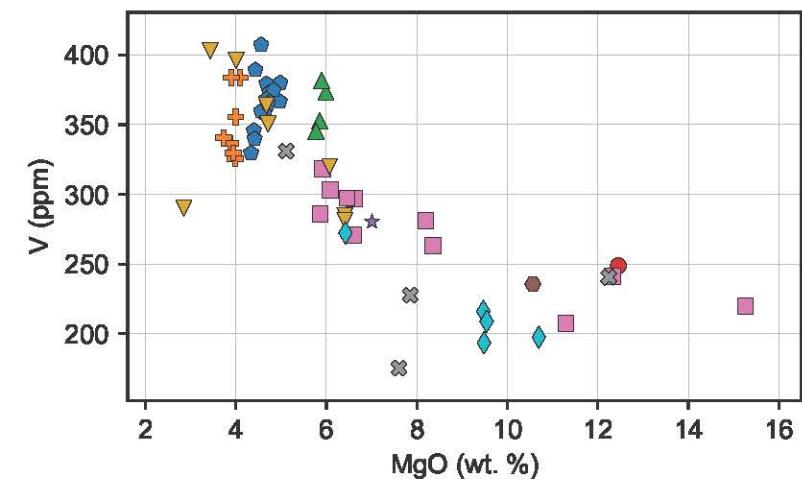
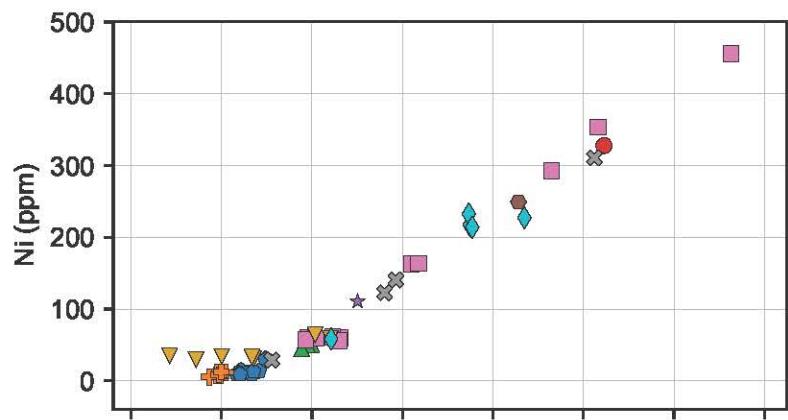
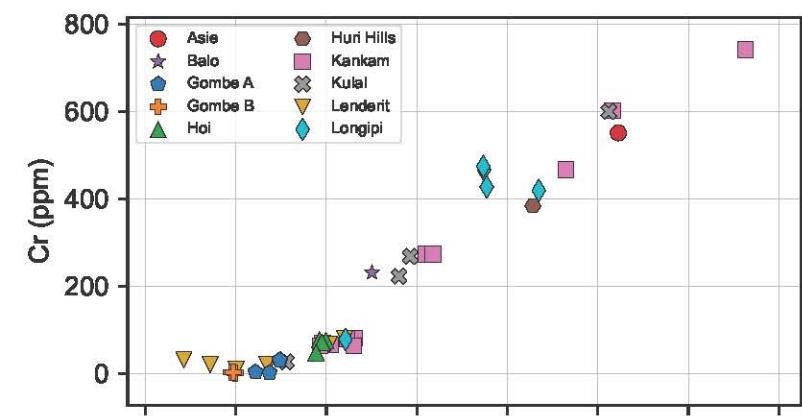
1081 Thy, P., 1983, Phase relations in transitional and alkali basaltic glasses from Iceland: *Contributions to
1082 Mineralogy and Petrology*, v. 82, p. 232–251.

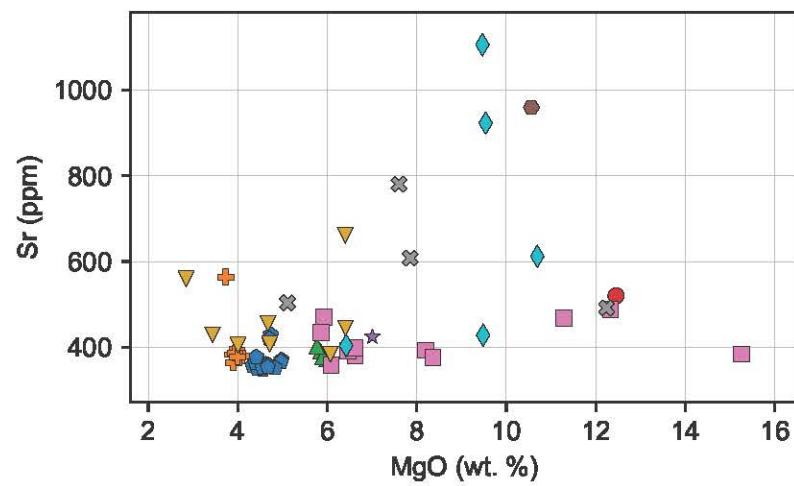
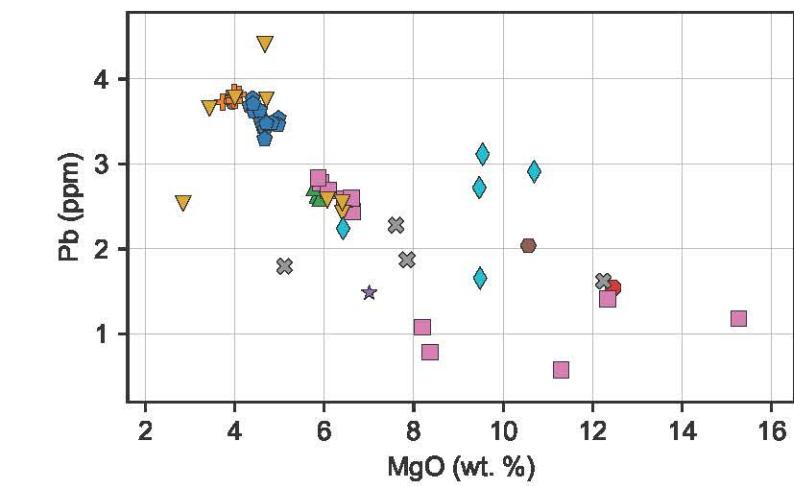
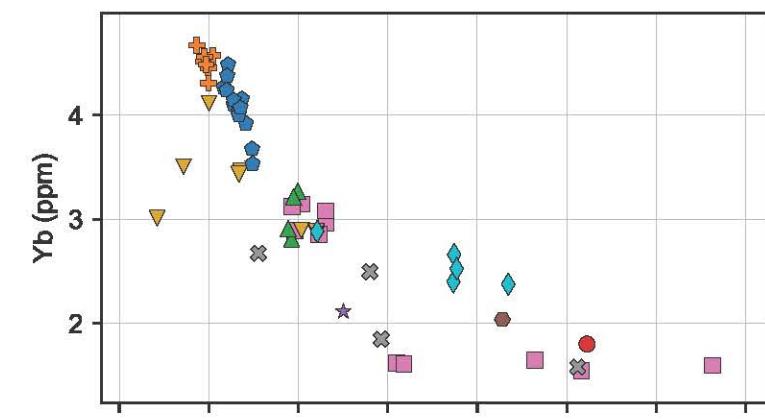
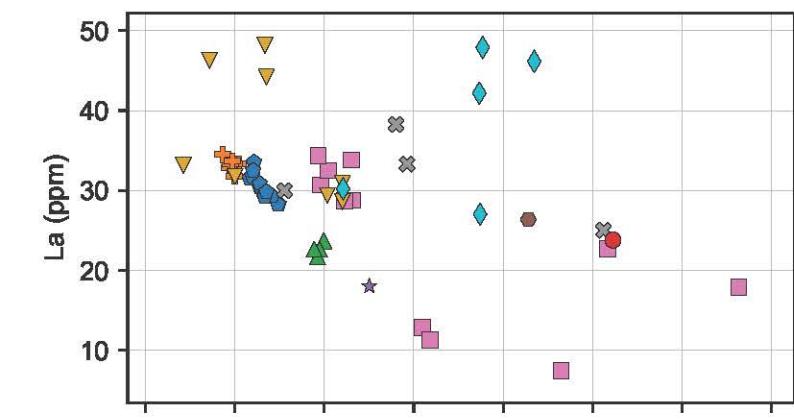
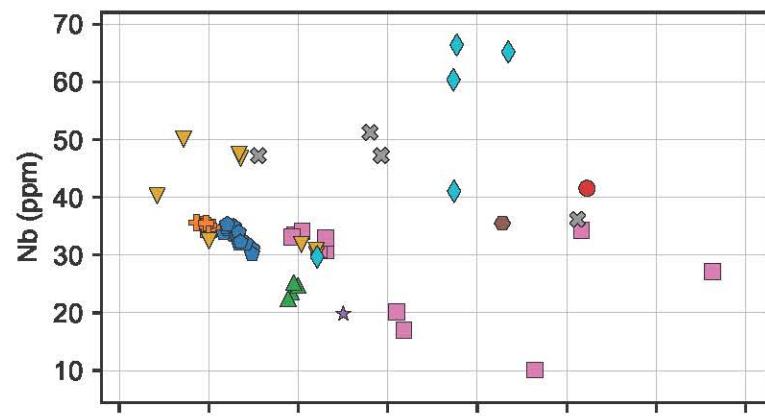
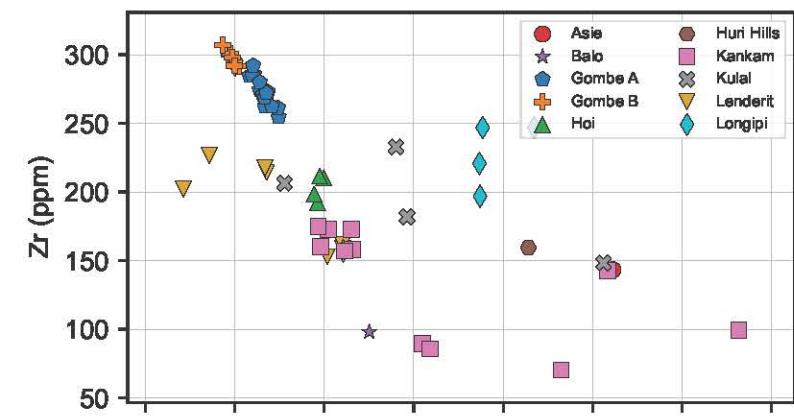
1083 Vetel, W., and Le Gall, B., 2006, Dynamics of prolonged continental extension in magmatic rifts: the
1084 Turkana Rift case study (North Kenya): *Geological Society, London, Special Publications*, v.
1085 259, p. 209–233.

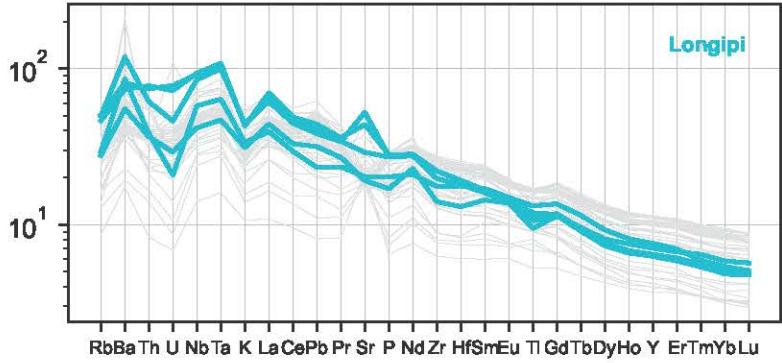
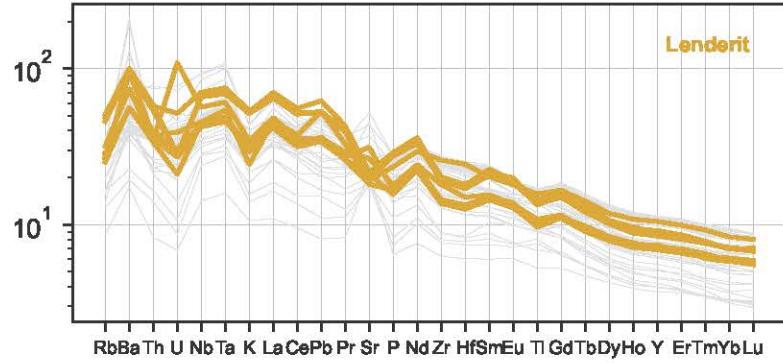
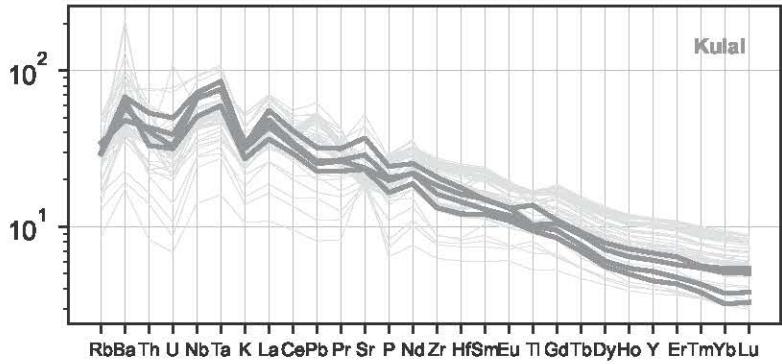
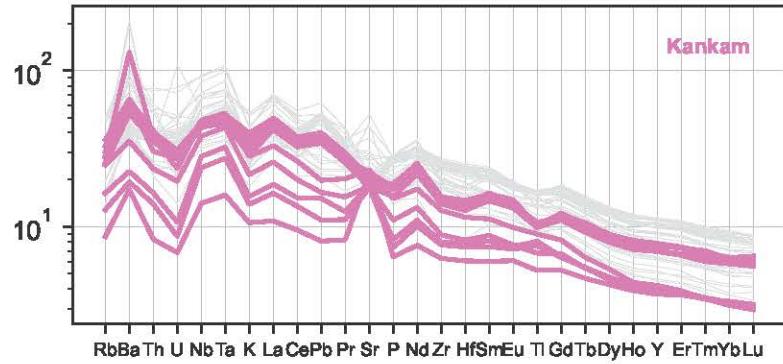
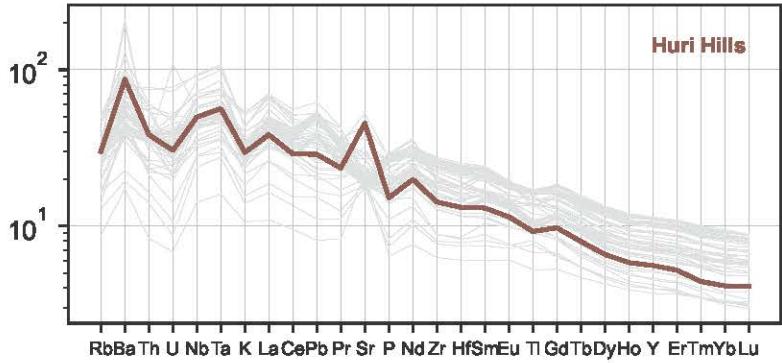
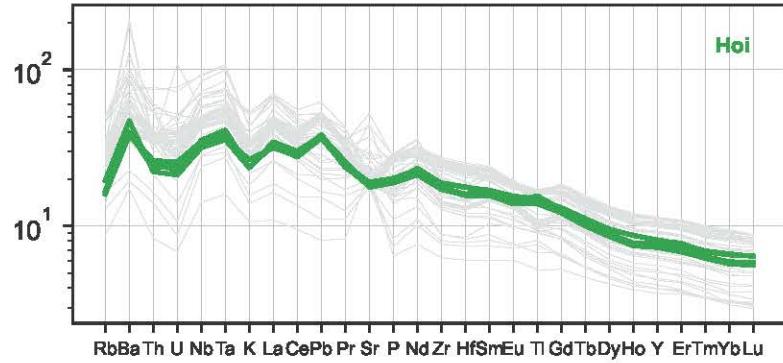
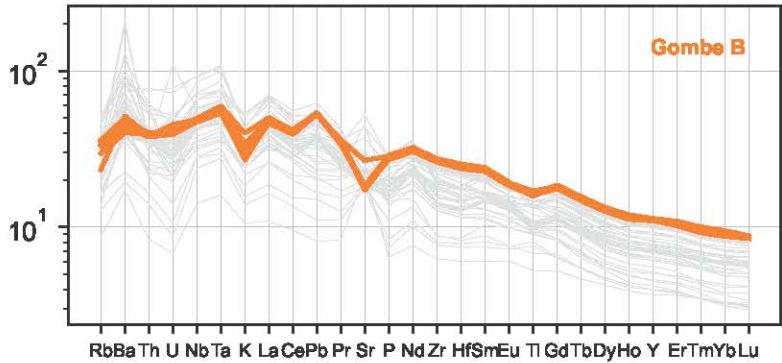
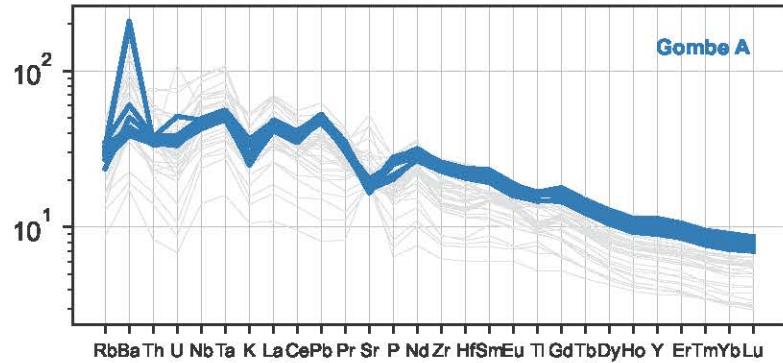
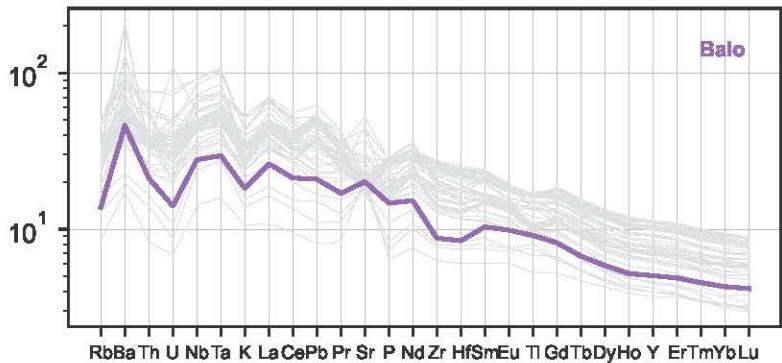
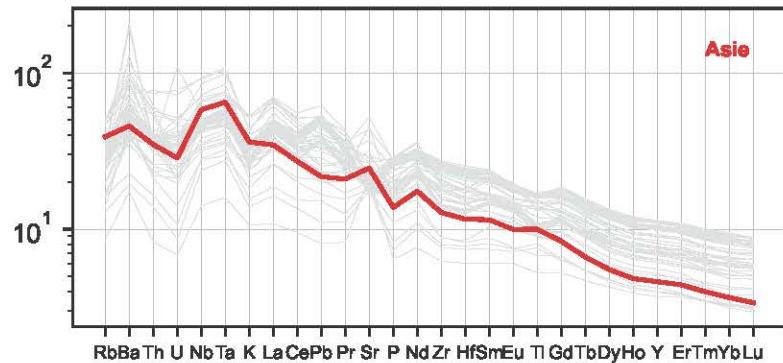
1086 Watkins, R.T., 1986, Volcano-tectonic control on sedimentation in the Koobi Fora sedimentary basin,
1087 Lake Turkana: *Geological Society, London, Special Publications*, v. 25, p. 85–95.

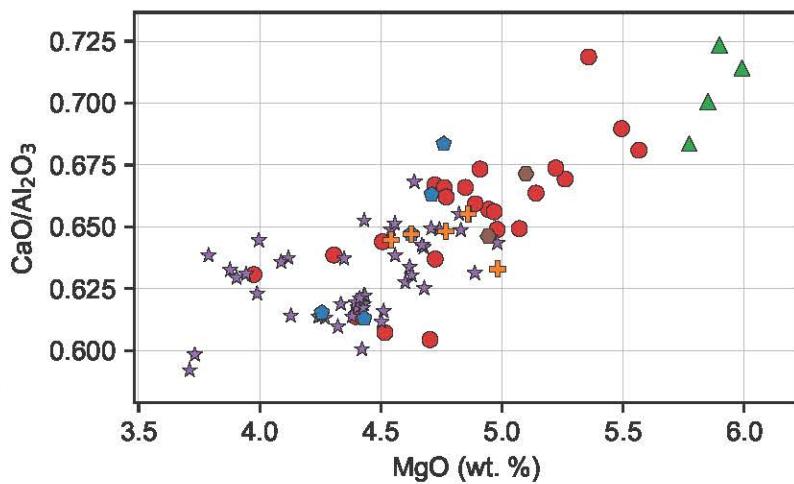
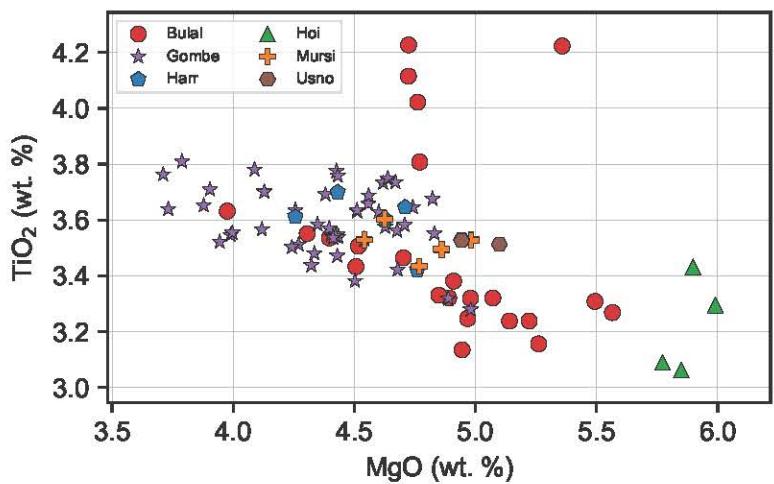

1088 Wescott, W.A., Wigger, S.T., Stone, D.M., and Morley, C.K., 1999, Geology and geophysics of the
1089 Lotikipi Plain: *Geoscience of Rift Systems-Evolution of East Africa*, *American Association of
1090 Petroleum Geologists Studies in Geology*, v. 44, p. 55–65.

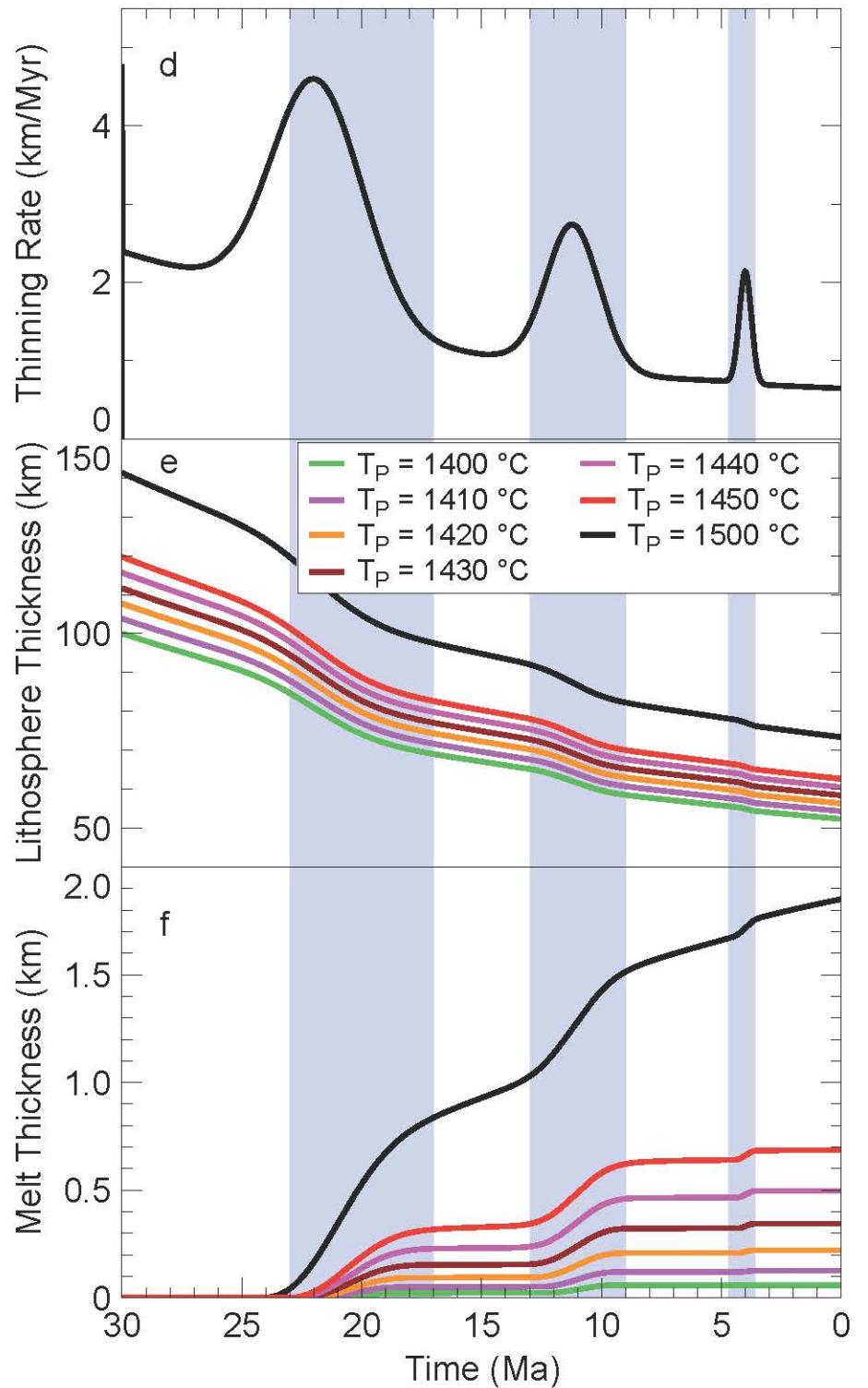
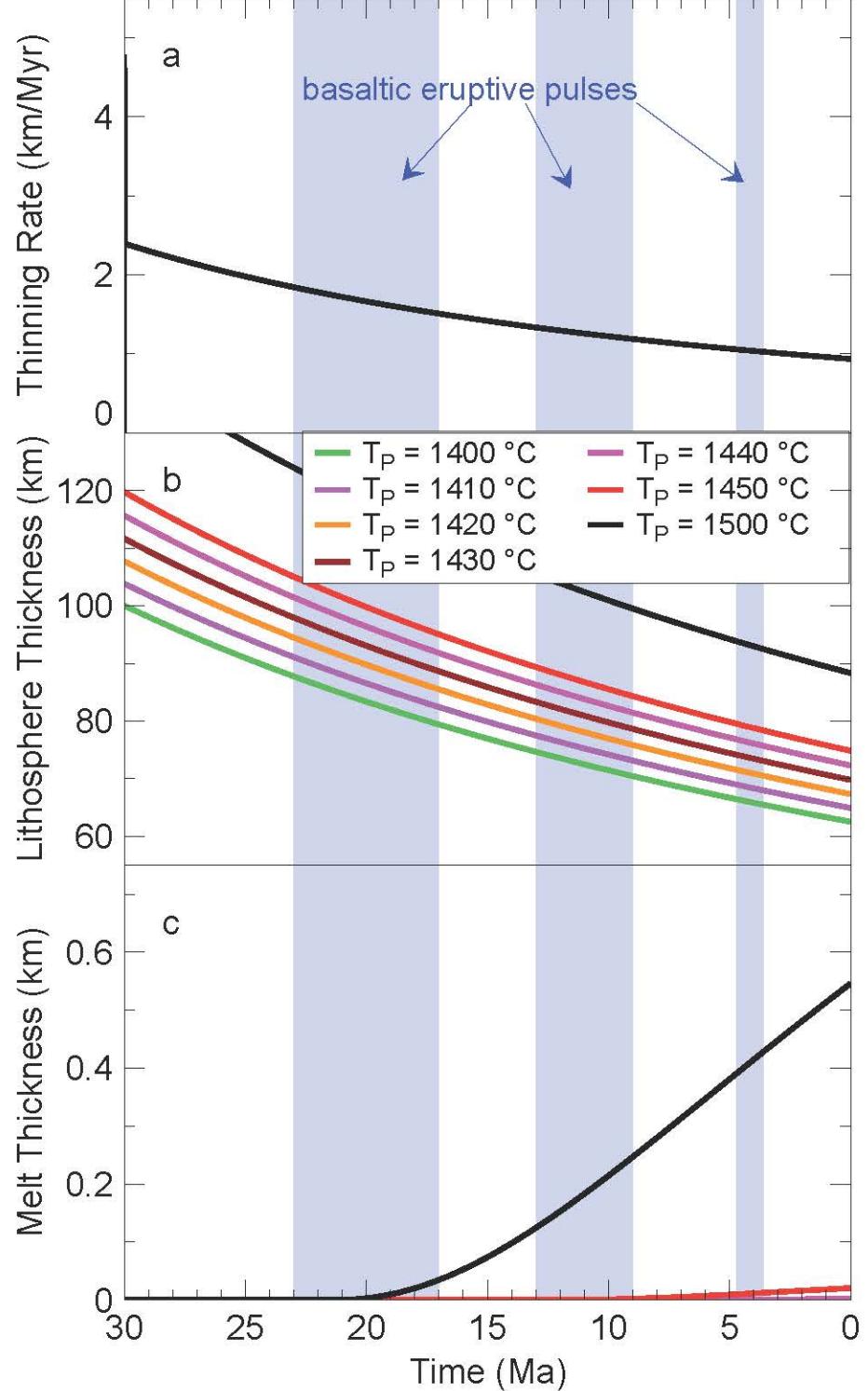







1091 Wilson, M., Neumann, E.-R., Davies, G.R., Timmerman, M.J., Heeremans, M., and Larsen, B.T., 2004,
1092 Permo-Carboniferous magmatism and rifting in Europe: introduction: Geological Society,
1093 London, Special Publications, v. 223, p. 1–10.

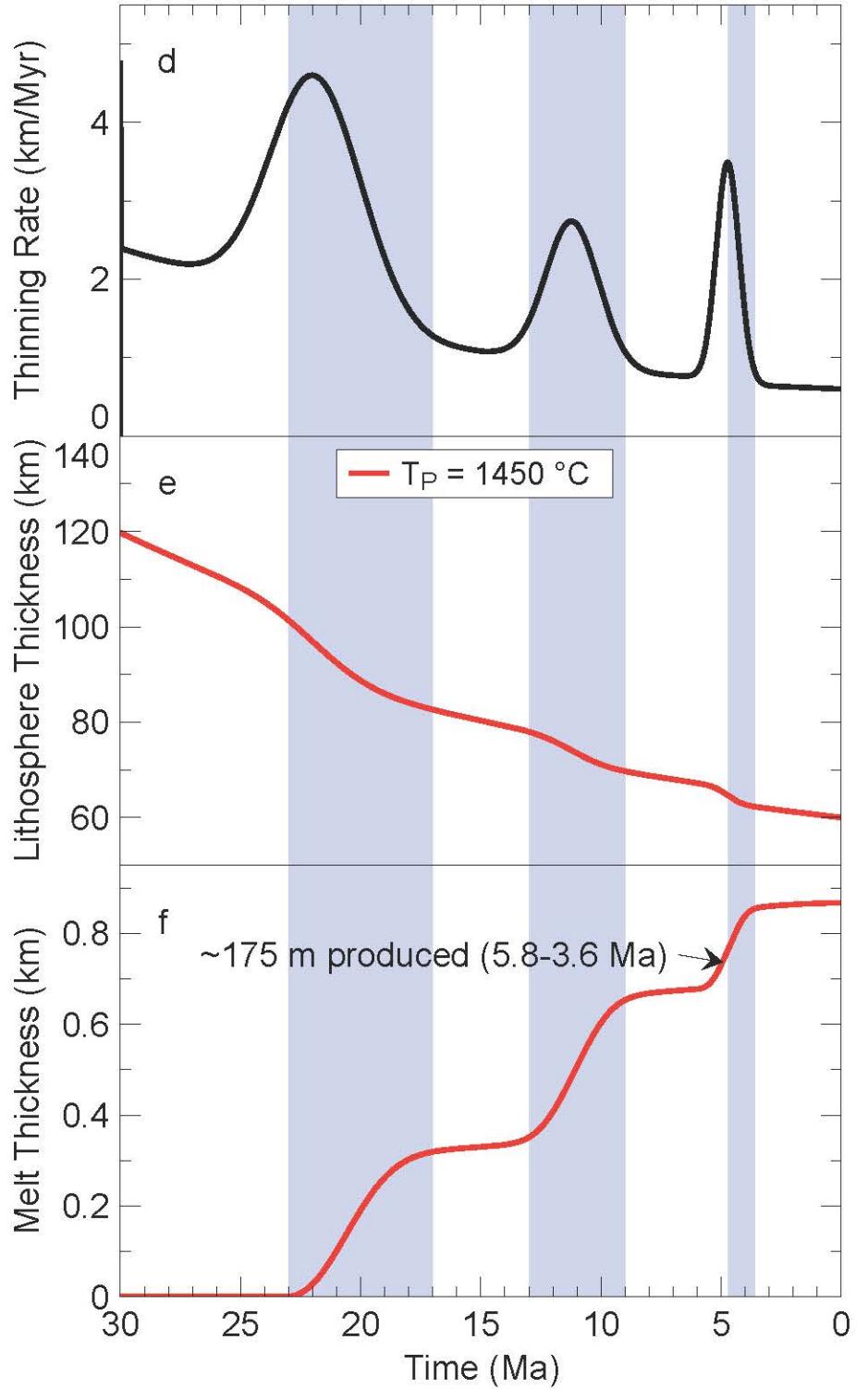
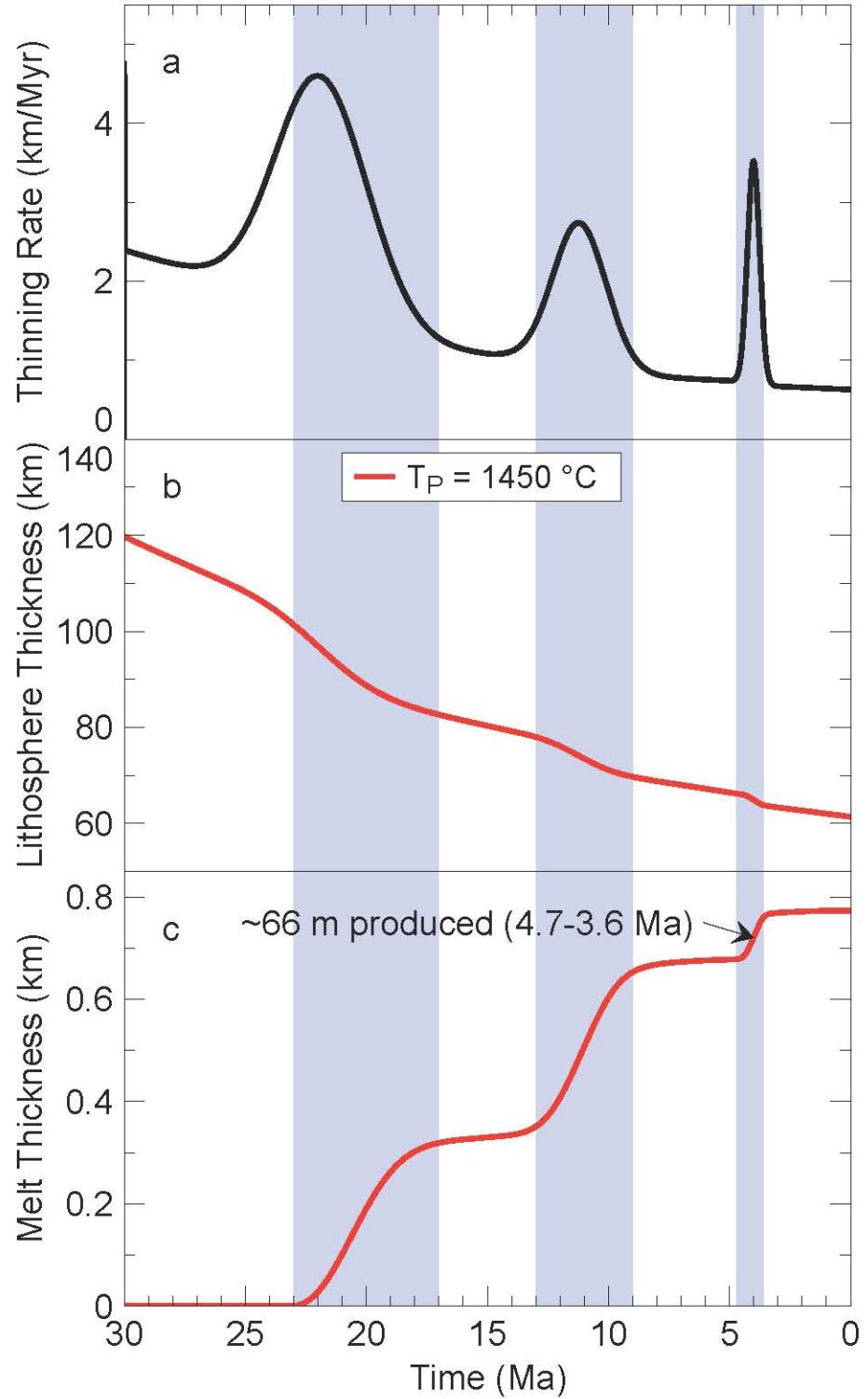




1094 Wolfenden, E., Ebinger, C., Yirgu, G., Renne, P.R., and Kelley, S.P., 2005, Evolution of a volcanic rifted
1095 margin: Southern Red Sea, Ethiopia: Geological Society of America Bulletin, v. 117, p. 846–864.







1096











1097

Sample (IGSN)	TOR0000O1	TOR0001D8	TOR0001D9	TOR0001DK	TOR0001DL
T (°C) major elements (Lee et al. 2009) ($\text{Fe}^{3+}/\text{Fe}_{\text{total}} = 0.15$)	1432	1512	1453	1441	1480
T (°C) major elements (Lee et al. 2009) ($\text{Fe}^{3+}/\text{Fe}_{\text{total}} = 0.05$)	1490	1573	1510	1496	1537
P (GPa) major elements (Lee et al. 2009) ($\text{Fe}^{3+}/\text{Fe}_{\text{total}} = 0.15$)	2.10	3.12	2.47	2.51	2.87
P (GPa) major elements (Lee et al. 2009) ($\text{Fe}^{3+}/\text{Fe}_{\text{total}} = 0.05$)	2.6	3.8	3.0	3.0	3.5
Calculated depth of melt equilibration (km) ($\text{Fe}^{3+}/\text{Fe}_{\text{total}} = 0.15$)	74	109	86.9	88.4	101.2
Calculated depth of melt equilibration (km) ($\text{Fe}^{3+}/\text{Fe}_{\text{total}} = 0.05$)	91.4	133.6	105.5	105.5	123
Calculated T_P (°C) ($\text{Fe}^{3+}/\text{Fe}_{\text{total}} = 0.15$)	1405	1471	1421	1408	1442
Calculated T_P (°C) ($\text{Fe}^{3+}/\text{Fe}_{\text{total}} = 0.05$)	1455	1522	1470	1455	1490
T_P (°C) trace elements (HAMMS)	1430	1450	1390	1430	1400
Pressure (GPa) trace elements	2.9	3.5	2.9	3.2	3.1
H_2O content (wt. %)	0	0	0.01	0	0.01
CsDep	0.8	0.1	0.2	0.5	0.2
Fcont	4	1	3	4	2
Calculated depth of melting (km)	102	123	102	112.5	109

Table 1.