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We present a novel mechanism for thermal dark matter production, characterized by a “bounce”: the dark
matter equilibrium distribution transitions from the canonical exponentially falling abundance to an
exponentially rising one, resulting in an enhancement of the freeze-out abundance by many orders of
magnitude. We discuss several realizations of bouncing dark matter. The bounce allows the present-day
dark matter annihilation cross section to be significantly larger than the canonical thermal target, improving

the prospects for indirect detection signals.
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I. INTRODUCTION

Discovering the underlying nature of dark matter (DM)
is one of the main goals of contemporary research in
particle physics. Efforts in this direction primarily focus on
two key questions: how DM achieved its observed relic
abundance and how its microscopic interactions can be
detected with experiments today. DM in thermal equilib-
rium with the Standard Model (SM) bath in the early
Universe follows an abundance distribution that falls
exponentially as the Universe cools, until the rates of
interactions that keep it in equilibrium become slower than
the cosmic expansion rate (see, e.g., Ref. [1]). This thermal
freeze-out paradigm represents a strongly motivated and
widely studied framework for DM. The simplest realiza-
tion, known as the weakly interacting massive particle,
makes a generic prediction for the DM annihilation cross
section expected today, (60).umonical &2 X 10720 cm? 571,
providing a compelling target for a variety of current and
planned experimental searches for DM.

Several variations to this canonical thermal freeze-out
picture are possible: DM freeze-out can be driven by
different processes [2—17], can involve interactions with
particles whose abundances differ from their equilibrium
abundances [18-21], or feature DM at a temperature differ-
ent from the temperature of the thermal bath [22,23].
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However, all of these scenarios are still characterized by
an exponentially decreasing DM abundance until freeze-out.
Furthermore, in many thermal DM scenarios, the present-
day annihilation cross section is generally equal to or smaller
than (o) nonica» S the existence of stronger interactions
would suppress the DM freeze-out abundance below its
observed value (a few notable exceptions exist; for instance,
Sommerfeld enhancement effects [24] and dark sectors
evolving with a separate temperature and a cannibalistic
phase [25]).

The aim of this paper is to highlight the existence of a
novel mechanism for producing thermal DM that deviates
from this general pattern. Specifically, we explore scenarios
where the DM abundance transitions away from the
standard exponentially suppressed distribution to a rising
equilibrium curve in the final stages of freeze-out, resulting
in an enhancement of the final DM abundance by several
orders of magnitude.' We term this transition a bounce and
term DM exhibiting such behavior bouncing dark matter. A
late increase in the DM abundance is possible in various
scenarios, e.g., Refs. [30-32], but out of equilibrium;
bouncing dark matter is, to our knowledge, the first
realization of this behavior in a thermal context.

We first provide a technical description of the general
conditions necessary for bouncing dark matter (Sec. II),
followed by a detailed discussion of the physics behind the
bounce within a simplified framework (Sec. III). The most
salient phenomenological feature of bouncing DM is that

'This feature has been observed in Ref. [26] for metastable
dark sector particles (see also Ref. [27]), then in Refs. [28,29] for
DM, but without detailed discussion of the mechanism.
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the present-day DM annihilation cross section can be
significantly larger than (6v) ynonical: While such large cross
sections would lead to a too-small relic abundance of DM
in standard freeze-out scenarios, here the subsequent
bouncing phase raises the DM abundance to the correct
value. Such enhanced present-day annihilation cross sec-
tions greatly improve the prospects of discovering DM
signals with various indirect detection experiments
(Sec. III B). We also present other illustrative examples
of bouncing DM (Sec. 1V).

II. CHEMISTRY OF THE BOUNCE

The evolution of number densities of various species can
be tracked via the corresponding chemical potentials y;,
defined as n; ~ n{'e#/T, where n;? is the number density of
a species in kinetic equilibrium with the photon bath and
with vanishing chemical potential. In the 7 < m; limit,
nt =g (%)3 2e=milT | \where g; is the number of degrees
of freedom of the particle. If an interaction A; 4 --- +
A, < B +---+ B, is rapid compared to the expansion
rate of the Universe, i.e., the Hubble parameter, the
chemical potentials of the species involved are related as
Ha, + -+ Ha, = pp + -+ pup,. The behavior of the
chemical potential determines whether a particle undergoes
a bounce.

Suppose that DM shares the same chemical potential as
some lighter species, A, whose abundance n, does not rise.
If u, = pga, then n, = (ny"/n")n,, which implies that n,
falls exponentially, since n,!/n}! is a falling exponential.
Therefore, a departure of the DM chemical potential from
the chemical potentials of all lighter states in the thermal
bath is a necessary condition for a bounce.

Requiring that the DM comoving number density, or
yield, Y, =n,/s (where s=2x%g,T?/45 is the total
entropy density, and g, is the effective number of degrees
of freedom in the bath) rises as the temperature drops
imposes a stringent condition on g, . Since the yield scales
as Y, ~e™/Tet/T, the second exponential must grow
faster than the first one drops. More precisely, requiring Y,
to rise as the temperature drops, dY,/dx >0, where
x=m,/T, gives

iy (x) +xdﬂ§ix) > m)((l _23_x> (1)

in the limits x > 1 and constant g,. Even if u, < m,, this
condition can be satisfied with a sufficiently large du,, /dx.

We define a state to undergo a bounce if it is in
equilibrium and if its chemical potential satisfies Eq. (1)
at some moment in the early Universe. As discussed above,
this requires that the DM chemical potential deviates from
those of all other lighter species in the bath.

ITII. BOUNCING DARK MATTER IN A
THREE-PARTICLE FRAMEWORK

We now illustrate the physics behind the bounce within a
simplified framework. Consider a dark sector containing
three scalar particles—the DM candidate y and two addi-
tional states ¢; and ¢,—with the following interactions:

—L D A1 1° % + Ao’ b5 + Apdids + Apaxdy. (2)

The first three terms are couplings between two dark sector
species, while the final term represents an interaction
involving all three states, which will facilitate the bounce.
We present an explicit model that naturally realizes these
interactions in Sec. III C. We assume that the dimensionless
couplings (4;’s) are comparable in size, g; = 1 for all three
species for simplicity, and that the particle masses satisfy

m,>my >my ., 2my >m,+mgy . (3)
Furthermore, we assume that all three particles are stable on
the timescale over which DM freeze-out occurs. This setup
contains all the ingredients needed to discuss the general
aspects of the bounce mechanism.

A. Physics of the bounce

A schematic of the decoupling of the processes leading
to freeze-out of dark sector particles is shown in Fig. 1. The
cosmological history can be divided into three distinct
phases.

In the first (equilibrium) phase, we assume that portal
interactions between the dark and SM sectors keep all dark
sector particles in thermal equilibrium with the SM bath to
temperatures below their masses. Hence, all particles
follow the standard equilibrium distributions, and

My =y, =Hg, =0  (dark <> SM active). (4)

We assume that chemical equilibrium between the dark and
SM sectors is maintained down to x = x.. Depending on
Equilibrium phase
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FIG. 1. A schematic of the three phases in the evolution of dark

sector particle abundances, determined by the decoupling of the
illustrated processes (processes decouple from left to right). We
also show the relations between the chemical potentials of dark
sector particles during each phase, which determine their equi-
librium abundances.
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the details of the portal interactions, kinetic equilibrium
between the two sectors can last until much later; the
implications of this are discussed below.

In the second (chemical) phase, after the dark and SM
sectors chemically decouple, the dark species develop
nonzero chemical potentials, and the total comoving
number density of dark sector particles is conserved.”
The evolution of the number densities is now governed
by 2 < 2 interactions that can efficiently interconvert the
three dark species, AA <> BB, where A, B = y, ¢, ¢p,. The
chemical potentials thus follow the relations

Wy, =y, =My, #0  (dark < dark active). (5)
As n; ~ njdet/T | the equilibrium abundances of the heavier
states continue to get exponentially suppressed compared
to those of the lighter states, with equilibrium distributions
uniformly shifted by the common nonzero chemical
potential.

Finally, at x = x,,, the system enters the third stage, the
bouncing phase, driven by the process y¢; <> ¢,¢,. This
occurs when the AA <> BB processes discussed above, as
well as the process y¢, < ¢1¢,, which force the DM to
share the same chemical potential as the other dark states,
decouple. This imposes a modified relation between the
chemical potentials

Wy + g, = 2uy, (only ygp; <> ¢, active). (6)
When y¢, < ¢,¢, also decouples, the DM abundance
finally freezes out to a constant value.

Figure 2 shows the evolution of the yields Y, for the three
dark sector states, obtained by numerically solving the
Boltzmann equations for the system (see the Appendix for
details) for illustrative benchmark parameters. The solid
curves assume kinetic equilibrium throughout, i.e., all bath
particles share a common temperature 7. The transition
between the second and third phases, marked by the
“bounce” from an exponentially falling to an exponentially
rising curve for DM, is clearly visible. We show the
corresponding evolution of the chemical potentials in
Fig. 3; in particular, note that the bounce corresponds to
the instance when the DM chemical potential deviates away
from those of the other states.

We also show (dotted curves) the effect of kinetic
decoupling between the dark and SM sectors at x = x,,
which results in the dark sector cooling faster than the SM
bath, with temperature T; = m,x, /x?. This shifts the
curves to lower x but otherwise maintains the main

*This requires 4 <> 2 number changing interactions within the
dark sector to have decoupled by this point; we have checked that
this occurs for our parameters. Note that there are no dark sector
3 < 2 processes, since all the interactions in Eq. (2) involve an
even number of states.
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FIG. 2. Numerical solutions for the yields of dark sector particles
for m,=500GeV, my, =410GeV, and m,; =300GeV, with
cross sections 106,,4,4, =3004,4,4,4, = 100y, 4, = Cprprrpy =
2.2x 107 cm3s™!, and chemical decoupling at x, = 10. The
solid curves assume kinetic equilibrium throughout, whereas the
dotted curves show the effects of kinetic decoupling of the two
sectors at x,.. The dashed vertical lines denote the points of (from
left to right) chemical decoupling of the dark sector, the bounce,
and dark matter freeze-out, which separate the various phases
discussed in the text, for the kinetically coupled case.
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FIG. 3. Numerical solutions for the chemical potentials corre-

sponding to the kinetically coupled case in Fig. 2 (solid curves).
The dashed black curve corresponds to constant Y, after the
bounce.

qualitative features of the bounce, and the final DM
freeze-out abundance is only modified by an O(1)
number. Depending on the exact nature of the portal
interactions, kinetic decoupling generally occurs at some
x > x,; hence, the two sets of curves represent the two
extremes of late (solid) and early (dashed) kinetic
decoupling, and explicit models are expected to fall in
between (see also Fig. 4).

The physics behind the bounce in this setup is very
intuitive: since 2my, > m, + my , the ¢, — y¢; process
is kinematically allowed, whereas the inverse one requires
thermal support (note that this is the reverse of standard
freeze-out dynamics, where processes that deplete DM are
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FIG. 4. Predicted present-day yy — ¢¢; annihilation cross
section as a function of m,, with my, = m, /2 and Am =
my, — (m, +my )/2 =10, 20 GeV (green and black curves,
respectively). We take x. =20, with the cross sections
400,,4,4, = 200044, = O, = 40, po14,» NOTMalized over-
all to obtain the correct DM relic density for y. The black dashed
and dotted curves correspond, respectively, to the effects of
kinetic decoupling of the dark sector at x = x., or via a Higgs
portal (see the text for details). The blue shaded region and the
solid blue curve denote current bounds from Fermi and projected
reach with CTA, respectively, assuming ¢; — WW. We also
show the canonical thermal target (6v).nonica (t€d line) for
reference.

kinematically open). Therefore, as the temperature drops,
the lighter combination y¢, is preferentially populated
over ¢,¢,. Since ¢, is far more abundant than y, this
results in an exponential increase in the comoving number
density of y as ¢, particles rapidly get converted into y
and ¢,.

We now present an analytic discussion of the bounce.
The conservation of comoving number density in the dark
sector after chemical decoupling can be expressed as

Y+ Yy +Yy, =VYs. (7)

where Y denotes the sum of the yields of dark sector
particles at the time of chemical decoupling. Next, the
relation between chemical potentials after the bounce,
Eq. (6), can be rewritten as

Y3, =RY, Y, R(T)=(ng)?/(nin).  (8)

2 [

Furthermore, when y¢, < ¢,¢, is the only rapid inter-
action, Y, —Y, is also conserved; hence,

Yy =Y, =Y, =Y, =Yp, (9)

where the superscript b denotes the yields calculated at the
bounce. The three equations, (7), (8), and (9) can be solved

analytically for the three unknowns Y,,Y, , and Y,

4Y5— (4 - R)Yp — \/4RY3 — (4 — R)RY},

x 2(4—R) ’
y _As+ (4= R)Y, — \/4RY% — (4 — R)RY?,
h 2(4-R) ’
4RY% — (4 — R)RY? — RY
¢ = \/ > 4—R 2 > : (10)

Note that these no longer satisfy u, = uy = py,. These
expressions describe the abundances of the dark sector
species in the bouncing phase and are completely deter-
mined by the three quantities Y, Y, and R. Since Y and
Yp are constant, the temperature dependence of the
solutions is entirely encoded by

m2 N\ 32 T, — _
R — ( [ > exp <_ My, — My, m)()_ (11)
mg, n, T

From this, we see that 2my, < m, + mgy and2m,, > m, +
my, lead to drastically different behaviors. In the former case,
R rises exponentially as T' drops, and Y, drops exponentially
as a consequence, as is characteristic of standard freeze-out
processes. However, in the latter case, we see the opposite
behavior: R falls exponentially with decreasing temperature;
hence, Y, increases after the bounce.

In the 7 — 0 limit, R — 0, and the DM yield approaches
a constant value,

v, - %(ys _Y,) = %Y;;Q Ly (12)
In this limit, all of the ¢, particles present at the bounce are
converted to y¢, at later times, thus contributing the first
term, which gets added to the Yﬁ already present in the bath
at the bounce. The enhancement in the dark matter relic
abundance relative to the canonical freeze-out abundance in
this case is

b

Y UYE L (mg R g

5 ¥ 5 7h & exp T . (13)
X X n, b

This ratio is maximized by maximizing the m, —my,
splitting, which occurs for my — 0 and m, — 2my,.
Noting that obtaining the correct relic density for weak
scale masses in this limit requires T, ~my, /25, we
estimate that ¥, /Y? can be as large as ~10'°.

In practice, the asymptotic limit in Eq. (12) is not reached
for two reasons. First, y¢; <> ¢,¢p, freezes out in some
finite time. Second, when Y, ~ Y, , the processes y¢, —
¢1¢, and/or yy — ¢,¢, become comparable in strength,
causing a departure from the above conditions.
Consequently, y and ¢, tend to freeze out with comparable
abundances.
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x and ¢, can form two-component DM, or ¢, can decay
before big bang nucleosynthesis (BBN), leaving only y in
the late Universe. The very large freeze-out abundance of
¢, however, implies that it must decay before BBN. If it
gives rise to an early matter-dominated era before decaying,
the subsequent injection of entropy into the thermal bath
will dilute the DM abundance. Decays of dark states are
discussed within a concrete model in Sec. III C.

B. Indirect detection

In the above setup, the present-day DM annihilation
cross section yy — ¢;¢;, which is s wave, has approx-
imately the same size as in the early Universe. If ¢; decays
to SM states, such annihilations can produce observable
signals at current and future experiments (see, e.g.,
Refs. [33-38] for studies of indirect detection signatures
from cascade processes in dark sectors). The most inter-
esting phenomenological aspect of bouncing DM is that
these cross sections can be significantly larger than
(60) canonica- 1N standard freeze-out scenarios driven by
DM self-annihilation, increasing (6v),,, 4.4 > (60)canonical
would lead to DM tracking its exponentially falling
equilibrium curve for longer, freezing out with a relic
abundance too small to match observations. For bouncing
DM, however, this suppression can be overcome by the
exponential enhancement after the bounce, and hence
larger (ov),,_ 4 4 remains compatible with the observed
relic abundance.

This is illustrated in Fig. 4, in which we plot the predicted
present-day yy — ¢,¢; annihilation cross section for some
representative parameters consistent with the observed DM
relic density (we assume g, = 100 for simplicity; this affects
the cross section results by <15%). The nature of the visible
signals depends on model-specific details, in particular the
dominant decay modes of ¢p; and ¢, (if the latter is unstable).
Here, we assume that ¢, decays away before BBN, so y
makes up all of DM, and that the yy — ¢, ¢, cross section is
sufficiently suppressed to be negligible. For concreteness,
we also assume the decay mode ¢; - WW and choose
my =m,/2, which enables us to adapt results from
Ref. [37] to plot bounds from Fermi observations of dwarf
galaxies [39] and the projected sensitivity from 500 h of
observation of the Galactic Center with the Cherenkov
Telescope Array (CTA) [40].° We show a baseline case
assuming kinetic equilibrium throughout (solid black
curve), as well as the modified cross sections to maintain
the correct relic density assuming kinetic decoupling at x,.
(black dashed), or with the specific choice of a Higgs portal
between ¢, and the SM Higgs doublet H, 1,¢?3|H|* (black
dotted), for which the size of 4, controls both chemical and
kinetic decoupling (for details on kinetic decoupling

*We use the results from Fig. 7 of Ref. [37] for yy - H'H',
where H' is a dark Higgs that decays dominantly to WW.

calculations, see, e.g., Ref. [6]). We thus see that the details
of kinetic decoupling can modify the cross section by an
O(1) number. We also show the effects of a smaller mass
splitting (solid green), which leads to an enhancement of n,;,
before the bounce, hence requiring a slightly larger overall
cross section to trigger the bounce later and achieve the
correct DM relic density. The plot illustrates that the
annihilation cross sections for bouncing DM can be larger
than the thermal target by more than an order of magnitude
(in other parts of parameter space, these cross sections can be
much larger or smaller). Note that CTA is unable to reach the
thermal target for the chosen decay modes but can probe
bouncing DM for all shown cases over almost the entire
mass range, highlighting the improved indirect detection
prospects.

C. Model and constraints

We now present a concrete realization of the three-
particle simplified framework. Consider scalar multiplets
transforming as y ~3q, ¢, ~2,, ¢ ~1, under a dark
global SU(2) x U(1) x Z, symmetry, with all fields odd
under the Z,. This allows the following dark sector
interactions at the renormalizable level,

—L 2 A Tr(r?)dt + A, Tr(r?) o] + Ao
bbb, x =0 (14)

where ¢ are the Pauli matrices. All other number-changing
quartics are automatically forbidden: in particular, y3¢,
vanishes since e y%yby¢ = 0, whereas y¢?3, which would
efficiently suppress the bounce, is also not allowed.*

In addition, we assume ¢, couples to the SM as
L ==2,p7H"H + (9p,/N) W,‘qu“/‘”.S The first coupling
keeps the dark and visible sectors in equilibrium at early
times, while the second coupling (which is just one of many
possible choices) explicitly breaks the Z, and ensures that
¢, decays to SM particles. As we find below, § must be
tiny, parametrically smaller than all other couplings in the
model. Since all the interactions we consider preserve the
dark SU(2) x U(1), both ¢, and y are stable and can
contribute to DM; y stability is guaranteed by Eq. (3),
which implies m, < 2m,. The presence of two DM
components is an interesting feature of this minimal model.

The ¢, decay width receives two contributions. At
tree level, the decays to transverse WW,ZZ give
[~ 3g°m} /(4nA?). At one loop, a tadpole term ~gA’ ¢, /

(47)? is generated in the scalar potential, leading to a

“The above symmetry structure arises naturally in a three-
flavor (dark) QCD model with m,; = mg, as considered in
Ref. [26].

An interesting alternative [26] would be to gauge the dark
U(1) and introduce a kinetic mixing of its vector boson with SM
hypercharge, thus realizing a vector portal.
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vacuum expectation value (VEV) (¢,) ~ gA>/[(47)*my, ].
As a consequence, ¢; also decays via the Higgs portal to hh
and longitudinal WW, ZZ with I" ~ 2;5*A®/ [2z(4x)* mj, ].
We require the ¢, lifetime to be 1076 < 74, /8 S 1,i.e., long
enough to enable the bounce, but short enough to not affect
BBN. Depending on the model parameters, a tighter upper
bound on 74 can arise if one wishes to avoid an early
matter-dominated era.

We also require that the trilinear couplings generated by
the ¢; VEV not impact the bounce. These give rise to
effective quartics, hence 2 — 2 processes, that are much
smaller than those already present in the Lagrangian
provided Ag'/3 <5 TeV(m/TeV)/A)/®, where m is the
approximate mass scale of the particles and 4; the
generic size of the quartics in Eq. (14). The trilinears also
give rise to 3 — 2 processes such as ¢ ¢ ¢, = Prpo;
imposing that these decouple before x, gives Ag'/? <
2 TeV(m/TeV)"/%(x,./10)3(104/Y ;)3 /27 (using
benchmark values from Fig. 2). Finally, requiring that
¢1¢py > WW also decouples before x, leads to
Ag 5 0.03 TeV(m/TeV)¥4(x./10)/4(1074 /v, )/* /2172
notice that for very small g this condition is weaker than the
previous ones. All the above constraints are satisfied
together with those on the ¢, lifetime in a broad swath
of parameter space, spanning g < 10~ and A > 10 TeV.

Scattering of y with nuclei occurs via one-loop proc-
esses, with cross section o3y ~ 107 cm?27, 43 (TeV/m,,)*
(analogous expressions hold for ¢,). For 41,41, ~ O(1)
and 4, < 1, as is typical in our parameter space, these cross
sections are below the neutrino floor.

Although not required, ¢, decay can be induced through
a ¢,-SM-SM interaction, parametrized by an effective
coupling g, that explicitly breaks the dark global symmetry,
leading to I'y, ~ gimy, /(47). ¢, decays before BBN
provided g, > 10713, This also makes y unstable, and
we need to ensure that it is sufficiently long lived to satisfy
experimental bounds. If m, > my, +my,, the DM under-
goes four-body decays with amplitude suppressed by only
one insertion of g,, leading to an excessively short lifetime.
However, if m, <mg +mg, DM decays to five-body
final states (or three-body final states via one-loop proc-
esses) with I',, ~ 22g3 max (g7, g3)m, / (4x)", where g, is the
effective ¢p;-SM-SM coupling that controls ¢, decay (in the
minimal model, g; ~ gmy, /A if tree-level decays domi-
nate). The resulting y lifetime satisfies current bounds yet
is potentially interesting for future indirect detection
probes [40,41] of decaying DM: for instance, with
g1 ~ga~10712, 1~ 1,and m, ~ TeV, we find 7, ~ 10% s.

IV. OTHER BOUNCE SCENARIOS

In Sec. III, we discussed the bounce in the framework of
a three-particle system with the mass relations in Eq. (3).

However, bouncing DM can be more broadly realized in other
qualitatively different scenarios; it only requires a transition to
anew equilibrium curve [such as Eq. (6)] that allows the DM
chemical potential to depart from those of other species in the
bath and increase sufficiently rapidly to counteract the
standard e~/ suppression. Here, we discuss some other
scenarios that realize these conditions. We consider scalar
DM for simplicity; however, the bounce can be realized for
DM of any spin. For definiteness, kinetic equilibrium is
assumed at all temperatures in the examples in this section.

A. Coannihilation with a decaying partner

In Sec. III, the bounce was realized through kinematics;
here, we consider a qualitatively different setup that utilizes
the decay of a particle to trigger the bounce.

Consider the same setup as in Sec. III, but with the
following modifications:

(1) The reversed condition 2my, < m, + my,.

(2) ¢ decays around the time when y freezes out,

ie, Iy ~H(x~xp).
Because of the modified relation between the masses,
¢rpp = y¢p1 is now kinematically closed and cannot
enforce the bounce. Instead, the key ingredient that enables
the bounce is the decay of ¢;. To understand this, note that
the relation between chemical potentials p, + py = 2uy,
still holds due to y¢; <> ¢, being rapid in the final stage
of freeze-out. The decays of ¢, cause p, to drop; to
maintain the above relation, this must be accompanied by a
decrease in p,, and an increase in g, i.e., the forward
process ¢, — y¢; is preferred despite being kinemati-
cally disfavored. Since the relations between the yields in
Egs. (7) and (9) no longer hold due to ¢; decaying, analytic
solutions are difficult to derive. However, the existence of
the bounce can be verified numerically, as shown in Fig. 5.
The corresponding chemical potentials are shown in Fig. 6.

6

B. Freeze-out driven by a 3 < 2 process

In contrast to the frameworks considered so far (Secs. I1I
and IVA), we now turn to an example where DM pair
interacts, and the bounce is driven by a 3 <> 2 process.
Consider a dark sector with two states, y (DM) and ¢, with
the mass relations

m, > my, 2m, < 3my. (15)
Let us assume that y?¢? is the only important interaction (in

particular, we assume that y’¢?> is suppressed and negli-
gible).” This gives rise to several 3 <> 2 number changing

%In this case, note that a sufficiently light ¢; can lead to a rapid
decay channel y — ¢,¢,¢, even if ¢, is stable.

At two loops, the y’>¢® interaction can induce yy — ¢¢p
scattering, which could wash out the bounce [28,42]. However,
the relation between the ¢¢p¢p — yy and yy — ¢¢ rates is
strongly model dependent.
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FIG. 5. Numerical solutions for the yields of dark sector
particles in the decaying partner scenario (Sec. IVA) for
my = 400 GeV, my, = 449 GeV, m, = 500 GeV, and decaying
¢1, with x, = 12.5. The solid, dashed curves correspond to decay
widths T'y, = 2H (x = 120),2H(x = 38), respectively; note that
the latter lifetime is shorter by a factor 10. The cross sections are
chosen to give the correct abundance of y DM: 106,,4,4, =
1064, 4.4.0, = 1064 4 = Cppogyp, = 5.5 x 107 (solid), 2.1 x
10726 (dashed) cm?®s~'.

50 100 500 1000
z =my/T

FIG. 6. Numerical solutions for the chemical potentials corre-
sponding to the solid curves in Fig. 5. The dashed black curve
corresponds to constant Y, after the bounce.

interactions, while 2 <> 2 processes are absent. When all
3 < 2 interactions such as ¢y <> ¢y and PP <> yy are
rapid, the system tracks the standard equilibrium distribu-
tion u, = puy = 0. As these interactions go out of equilib-
rium, the system undergoes a bounce at the point where
¢ppp <> yy remains as the only rapid interaction; this
corresponds to a transition to a new equilibrium curve
governed by

3y =2p, (ppd <> yyactive). (16)

This triggers an exponential increase of the DM abundance
as ¢¢p¢ — yy is kinematically open, while the inverse
process requires thermal support.

This result can be derived analytically by noting that if
only ¢p¢p¢p <> yy is active the following quantity is con-
served:

2, +3Y, =2v}5 + 3. (17)

Thus, we have two equations, Egs. (16) and (17), with two
unknowns, Y, and Y. Since Eq. (16) can be rewritten as
(Yy/Yy')? = (Y,/Y;")?, we need to solve a cubic equation,
and a closed analytic form of the solution, while possible, is
not very illuminating. Instead, we note that if the bounce
occurs at T << my, m, then n, < ng; hence, in the early
stages of the bouncing phase, Y, does not decrease
appreciably, remaining approximately constant. This
implies p4 ~ my — cT, where the constant ¢ > 0 is deter-
mined by Y} Using Y, ~ e "#)/T together with
Eq. (16), the y yield is

Y}{ ~ 6_30/26_(2ml_3m¢)/(2T). (18)

This makes it clear that the bounce corresponds precisely to
the mass condition 2m,, < 3m,, in Eq. (15), which leads to
an exponential increase of the DM yield. In Fig. 7, we show
the evolution of the yields for a benchmark case illustrating
the bounce in this framework [the DM abundance in the
bouncing phase can be approximated by Eq. (18)
with ¢ ~ 16].

The above scenario can arise, for instance, if y and ¢ are
complex scalars whose interactions are mediated only by a
heavy scalar S sharing the same quantum numbers as y.
Then, the operator y*S|¢|* is unsuppressed, whereas y*S¢
can naturally have a small coupling e as it violates the U(1)
symmetry associated with ¢ number. In the effective theory
obtained by integrating out S, the operator |y|?|¢|? is
proportional to €? and can naturally be much smaller than
lx|?|¢|*#, which only receives a single € suppression.

10— :
£ mg = 20MeV 7
my =26 MeV ]
10) |
10—7 L
Y
1078}
-9 L . . . | . . IR R
10 20 40 60 80 100
z =my/T
FIG. 7. Numerical solutions for the yields for m, = 26 MeV,

m¢ =20 MCV, and Opddyy = ﬂzagff/m; with Xeff = 0.4. The
bounce occurs at x ~ 20.
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V. DISCUSSION

We have introduced the concept of bouncing dark matter,
anovel framework for thermal relic dark matter. Its defining
feature is that DM inherits a large chemical potential, from
processes that are in equilibrium, leading to an exponential
rise of the DM abundance before freeze-out. This behavior
1s in stark contrast to most thermal mechanisms, where the
DM abundance prior to freeze-out is generally character-
ized by a falling exponential. The main phenomenological
consequence of the bounce is the possibility of enhanced
present-day DM annihilation cross sections over the
canonical thermal target, which can improve the prospects
of DM indirect detection with current and near-future
experiments.

In this paper, we have focused on presenting the key
physics concepts underlying the bounce within simplified
frameworks. It will be interesting to study whether the
bounce naturally occurs in existing beyond the Standard
Model constructions. In general, the bounce requires one or
more companion particles with mass comparable to that of
DM, which are stable over the timescale of DM freeze-out.
These conditions are readily realized in extended BSM
sectors with nearly degenerate, metastable particles. Such
studies can shed light on additional aspects of the bouncing
dark matter framework and therefore represent promising
directions for future work.
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APPENDIX

Here, we present the details of the Boltzmann equations
that were numerically solved to obtain the abundances of
the dark sector particles.

For the three-particle framework, we track the yields of
the dark sector particles in terms of the dimensionless
variable x = m, /T, where T is the temperature of the SM
bath. The initial conditions are set at the time of chemical
decoupling of the dark sector, x = x,.. In cases where ¢,
decays are not relevant on the bounce timescale (Sec. III),

Yy, is assumed to be constant after the chemical decou-
pling. The yields of ¢, and y are obtained by solving the
following Boltzmann equations:

difz = —% [2%¢2¢2 ((Y;q;i Y5, - Yﬁ)

)
3

2
+ 264’24’2)(451 (Ydlz qu vy Y)(Y¢1):| ’
2

dy, s(x Y;q 2
®) EYZ;]))Z Ygﬁ:)

—L = - 20 (Yz—
A Drp X
dx H(x)x { e )
Yy
+ 26,4, <Y2 (ry)” Y2>

(Yy)?
(Yy,)? )
+ gt (qu ;eq Y, Yy, =Yy,

Y,
+ 19, <Y¢2Yx —Y—;1Y¢2Y¢l)]-
1

Yy
(Y
2
+ 204,4,0, <Y¢2 (e

(A1)

(A2)

Note that we have replaced the thermally averaged cross
sections (6v) 4 gcp With their T = 0 values 64 ¢p to lighten
the notation, since in this work all processes proceed
through the s wave; in general, the proper thermally
averaged values should be used. The zero temperature
cross sections are related to the quartic couplings in
Eq. (2) as

A3 (1+8¢p) (1 _2m2c+m20

(=P 12
8am3 ) '

CaacD = 4mi 16mf1
(A3)

where 4; corresponds to the relevant coupling from Eq. (2)
and 6cp is the Kronecker delta. For instance, the bench-
mark cross sections in Fig. 2 correspond to 4,; = 0.09,
Ap = 0.1, 4;, = 0.04, and 1 = 0.6.

In addition, we have defined H=H/[1+(1/3)dlog g,/
dlog T], where H = 7,/g.T%/(3V/10Mp) is the Hubble
parameter, with Mp, the reduced Planck mass, and s =
2729, T3 /45 is the total entropy density. Recall that n;? =
gi(5 T)3/ 2e=m/T in the nonrelativistic limit T < m;. In
cases where the dark and SM sectors kinetically decouple
at some temperature 7', we solve the above equations with
the modified equilibrium distributions corresponding to the
modified dark sector temperature, n;*(T) — n;*(T,) with
T, = T?/T,, which corresponds to instantaneous kinetic
decoupling of the dark sector at 7.

When ¢; decays are relevant for the bounce (Sec. IVA),
the evolution of the ¢; abundance is obtained by solving
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dy,, Yy Ty, s(x) (¥yh)?

—_hh 2T M)y _y2

dx H(x)x H(x)x i (Yf;;])2 O
1

(Vg
2 2
+ 204, 4.101 <(Ye5)z Y5, — Y¢2>

eqy,eq
A )
+0)ﬂ/’1¢24’2 (Y)(Yf/’l - (qu)zl Y¢2>
2

Y,
+ oy <Y—j§ Yy, Yy, — Ym@)} : (Ad)
1

The Boltzmann equations for ¢, and y are identical to those
shown above, except for the terms corresponding to
X2X2 <>y, where the Y4 factors need to be appropriately
shifted to the other term in the parentheses to reflect the
change in mass hierarchy between 2m,, and m, + my, .

For the two-particle framework (Sec. IV B), the relevant
Boltzmann equations are

dY(/) S(X)z (Ye/)q)3
—_——— 3 Y3 ——L2Z y2
dx H(x)x%d"b” p) (Y27
2 eq (Y;q)z 2 2
+(Y¢YZ_Y¢Y¢Y1)+ Y;q Y¢_Y¢Yx ’ (AS)

—~

s(x)? yed)3
o _I:I(x))x O pir [2 <<Y§q)2 Yi-Y,

€q\2
2 (Y){) 2
+2<Y¢Yl— e Y(/))].

(A6)

Here, oupcpe corresponds to the 7 — 0 limit of
(6v*) spcpE» Where the thermal average can be evaluated,
for example, using the methods in Appendix E of Ref. [21].
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