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Surface electromyography (sEMG) plays a significant role in the everyday practice of clinic hand function
rehabilitation. The materials and design of current typical clinic SEMG electrodes are rigid Ag/AgCl or flexible
polyimide (PI) film, which cannot provide a stable interface between electrodes and skin for adequate long-term
high-quality data. Thus, conformal, soft, breathable, wireless epidermal SEMG sensor systems have broad po-
tential relevance to clinic rehabilitation settings. Herein, we demonstrate a stretchable epidermal SEMG sensor
array system with optimized materials and structure strategies for hand gesture recognition and hand function
rehabilitation. The optimized serpentine structures with marvelous stretchability and improved fill ratio, provide
lower impedance and high-quality SEMG signals. Moreover, the easy-to-use airhole method further ensures stable
and long-term contact with the skin for recording. In addition, integrated with a customized flexible wireless data
acquisition system, the capability for real-time 8-channel sEMG monitoring is developed, and taking together
with the CNN-based algorithm, the system can automatically and reliably realize the 7 kinds of hand gestures
with an accuracy of 81.02%. Moreover, the low-cost yet high-performance epidermal sEMG sensor system
demonstrated its conceptual feasibility in quantitatively evaluation of stroke patient’s hand and facilitating
human-robot collaboration in hand rehabilitation by proof-of-the-concept clinical testing.

1. Introduction sEMG monitoring systems (i.e., fPCB-based sensors [12,13] or Ag/AgCl

electrodes) still face the potential risks of iatrogenic skin injuries,

Stroke, as a major public health issue, has become the second leading
cause of death and the primary cause of long-term disability [1], and the
majority of stroke patients (~75 %) suffer functional movement disorder
in their hands [2]. On account of the capacity for direct measurement of
the hand function neuromuscular activity compared with the traditional
single force evaluation through strain or force sensors, surface electro-
myography (sEMG) is a fundamental and comprehensive tool in the
everyday practice of clinic hand function rehabilitation [3-9] (quanti-
tative evaluation of patient [10], human-machine collaboration of
rehabilitation equipment [11]). However, excessive pressure and med-
ical tape to ensure stable skin-sensor interface contact of existing clinic

meanwhile the poor skin-sensor interface also leads to higher impedance
and lower signal-to-noise (SNR) ratio, which can’t be ignored for clinic
SEMG monitoring [14,15].

To date, recent advances in materials and biomedical engineering
serve as the basis for SEMG sensors that have epidermal properties
(mechanically bendable, stretchable, adhesive, and dynamically
conform to human skin), allowing the collection of sEMG signals with
high SNR [16-20]. There are two strategies to construct the epidermal
sensors, one development of stretchable or reconfigurable sensors ex-
plores intrinsically stretchable conductive composites [17,21-23] or
hydrogels [24], however, there are still challenges in integrating the
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functional fPCB through a conventional soldering process to achieve
extended signal processing and wireless capabilities for mass-production
and commercialization. Alternatively, the stretchable metal structures
(e.g., Au/Cr serpentine) with organic elastomer substrates (e.g., PDMS,
Ecoflex) allow the conventional rigid metal to conform to contact with
skin and is easy to use for building a comprehensive stretchable, wireless
SEMG system [25-27]. Currently, further improvements and optimiza-
tion of the widely used serpentine structure [28-31] are needed because
of the lower fill factor (the area of the metal traces divided by the area of
the electrode), resulting in lower skin-sensor contact impedance and a
higher SNR. Additionally, the current fabrication of metal-film-based
epidermal electrodes is the photolithography or “cut and paste” [32]
method. Nevertheless, the complex process flow and extra chemical
reagents pollution, as well as the limitation of large-scale pattern, make
the photolithography challenging in actual application, and the “cut and
paste” method struggles to meet the demand of sophisticated sensor
pattern due to the employment of the mechanical cutter plotter.
Meanwhile, some problems must be solved in clinic long-term applica-
tions such as breathability, and biocompatibility [33].

To the best of our knowledge, low-cost and efficient fabrication of
epidermal sEMG sensor system is still lacking. Herein, we report a
conformal, stretchable, breathable, biocompatible, wireless epidermal
sEMG sensor system for hand gesture recognition and clinic hand
function rehabilitation. An optimized design of serpentine structures
was proposed to ensure sufficient stretchability and fill factor, allowing
for enhancement of the skin-sensor contact impedance and improving
the signal quality of sEMG. Additionally, the “laser cut and paste”
method was conducted to manufacture the proposed sEMG sensors,
which have the potential to be compatible with industrial “roll-to-roll”
large-scale fabrication (Fig. 1a). As a result, the epidermal sensor with
optimized structure and fabrication combines and exceeds the figure-of-
merits of hydrogels, fPCB-based electrodes, and epidermal electrodes
with traditional serpentine and self-similar structures to open wider
application opportunities (Fig. 1b). Moreover, customized flexible WiFi-
based wireless data acquisition electronics and software were integrated
to demonstrate the capability of real-time 8 channels sSEMG monitoring.
Along with the proposed trained CNN algorithm, the seven-class hand
gesture recognition related to hand function rehabilitation was achieved
with high precision (~81.02 %). Furthermore, the proof-of-the-concept
pilot study on stroke patients demonstrates the practical utility of the
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device for quantitative assessment of the patient’s hands and human-
-machine collaboration of the custom-built hand rehabilitation robot
(Fig. 1c).

2. Experimental section
2.1. Materials

A glass substrate (150 x 150 mm) was purchased from GuLuo™,
China. PDMS kit (SYLGARD™ 184 Silicone Elastomer) was purchased
from the Dow Chemical Company, USA. The Pyralux® copper/poly-
imide film (Cu/PI of 9 um/12 pum) and PET film (200 um) were pur-
chased from DuPont™, USA. The water-soluble tape ASWT-2 was
obtained from Aquasol™, Australia. Ecoflex 0030 (Part A and B) and
release agent Ease Release®200 were purchased from Smooth-On, USA.
The Silbione RT Gel4317 A/B was obtained from the Elkem™, USA. The
Anisotropic Conductive Film ANISOLM® AC-2056R was purchased from
Hitachi™, Japan. Other chemical agents are purchased from Alfa Aesar.
All electronic components are obtained from Mouser™, USA.

2.2. Fabrication

2.2.1. Fabrication of epidermal sEMG sensors (“Laser cut and paste”
method)

The low-cost fabrication of the optimized epidermal SEMG sensor
(Fig. S2) can be divided into the following three parts:

(i) Copper/polyimide film patterning (“Laser cut”).

The transparent glass substrate was cleaned by isopropanol (IPA)
first, and a mixture of base and curing agent in a weight ratio of 20:1 for
polydimethylsiloxane (PDMS) precursor was spin-coated at 500 rpm for
20 s on a glass plate and cured at 90 °C for 20 min to form the sacrificial
substrate. A layer of copper/polyimide film was laminated onto the
cured PDMS surface. The designed epidermal sEMG sensors pattern by
AutoCAD file was cut by a 355 nm UV laser at a pulse frequency of 50
kHz and a speed of 300 mm/s through a total of 9 times repeated cutting.
It should be noted that the excess part near the pattern was directly
removed by the laser to ensure that the remaining parts were connected
and could be manually removed at once (Fig. S11).

(ii) Preparing breathable elastomer substrate.

After laminating a layer of double-sided tape on the glass plate, and a
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Fig. 1. The schematic illustrating the conformal, soft, breathable, wireless epidermal SEMG sensor system and application for hand gesture recognition rehabilitation

of stroke hand function.
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polyethylene terephthalate (PET) film was adhered to the double-sided
tape. Then, a mixture of Ecoflex elastomer in a weight ratio of 1:1
(partA: partB) was spin-coated at 500 rpm for 20 s on the glass plate and
cured at room temperature for 1 h. Silbione Gel4317 was spin-coated on
the cured Ecoflex elastomer with a speed of 500 rpm for 20 s, followed
by curing at 120 °C for 20 min. Moreover, the airholes were fabricated
by the 50 W-CO,, laser with raster mode at a power of 6.4 W and a speed
of 40.89 mm/s to form the breathable elastomer substrate.

(iii) Transfer printing (“Paste”).

The pattern formed by the “laser cut” part was picked up from the
PDMS surface using water-soluble tape and transferred onto the
breathable elastomer substrate. After dissolving the water-soluble tape
with deionized (DI) water for 3 min to form the epidermal SEMG sensor.

2.2.2. Integration between recording system and epidermal sEMG sensors

The recording system and sensor-system connectors (SSC) were
made by polyimide flexible printed circuit (FPC), and the electrical
components of the recording system were soldered on the FPC according
to the circuit design (Fig. S6). The SSC was designed and fabricated
(EasyEDA, China) for connecting epidermal SEMG sensors. The SSC, ACF
tape, and epidermal SEMG sensors were hot-pressed with a force of 40 N
and temperature of 150 °C for 30 s by a hot-press machine (GZC-MS200,
Hailunda, China). With a customized back-end connector, every channel
of the epidermal sEMG sensor can be independently connected to the
EMG recording system.

2.3. Characterization and algorithm model construction

2.3.1. FEA of mechanical properties

The commercial software ABAQUS (ABAQUS Analysis User Manual
2010, version 6.10) was employed for the determination of strain dis-
tribution (¢) in the stretchable copper foil structure of the sensor under
tensile and bending deformations. Both the elastomer substrate layer
and conductive electrodes layer of the sensor were modeled using hex-
ahedral elements (C3D8R). The model consisted of approximately 3 x
10° elements and the mesh refinement was carried out to ensure
convergence. The material properties of the electrodes were specified as
Cu, with an elastic modulus (E) and Poisson’s ratio (v) of Eg, = 119 GPa
and vcy = 0.34, respectively. The flexible base layer was modeled using
Ecoflex, employing an isotropic Mooney-Rivlin material model with
parameters (C10 = 0.008054, CO1 = 0.002013, D1 = 2).

2.3.2. Characterizations of the water—vapor transmission and peel force of
the elastomer substrate

Based on ASTM E96 standards, water-vapor transmission rates were
calculated by measuring the weight loss of water every 12 h by attaching
the sample to seal the opening of a bottle with pure water.

Based on ASTM D3330 standards, 90° peeling tests were used to
evaluate the peel force of the elastomer substrate by using a customized
universal testing machine (M230pro, YiGao) (Fig. S12). The elastomer
was attached to the volunteer’s forearm skin, and with a stretching
speed of 500 mm/min, the peel force was recorded by the force sensor.

2.3.3. Characterizations of the electronic property of the electrode

The skin-contact impedance of these electrodes (serpentine elec-
trodes, optimized serpentine electrodes, traditional Ag/AgCl electrodes)
was measured based dual-electrode method by using an electrochemical
workstation (CHI660E, ChenHua) over a frequency range from 1 to 10°
Hz at a voltage of 100 mV. Two electrodes were placed on the forearm
with a separation of 50 mm. The EMG signals measured by these elec-
trodes were recorded by the commercial data acquisition hardware
(PowerLab, AD instruments) with a sample rate of 1000 Hz, and the SNR
values were calculated with a 2 s window size using the following
equation:
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Asi nal
SNR(dB) = 20 log,, x A—g‘

noise

where the Agingal and Aypise mean the mean absolute value (MAV) of the
signal and noise.

Furthermore, the signal-to-motion artifact ratio (SMR) is mainly used
to quantitatively assess motion artifacts and is calculated as follows
[34]:

SMR — Psignal
Po-20 1z

The signal-to-high-frequency noise ratio (SHR) is mainly used to quan-
tify high-frequency noise and is calculated by the formula [34]:

SHR = Psignal
Pupperzo%

where Pgigng denotes the activation signal power, Po.oo 1, denotes the
sum of the power densities of the activation signals below 20 Hz, and
Pypper20% denotes the sum of the power densities of the activation signals
at the higher 20 % of the frequencies.

2.3.4. Invitro evaluation of cell biocompatibility

A549 cells were cultured in serum-free medium (RPMI-1640, USA)
supplemented with sterile-filtered L-glutamine, 100 units/mL penicillin,
100 pg/mL streptomycin (Penicillin Streptomycin, USA), and 0.1 g of
the elastomer. The cultivation was carried out at 37 °C in an environ-
ment with 5 % CO, humidity. Subsequently, cell viability was observed
under a microscope at 0, 18, and 24 h.

2.3.5. Machine learning and CNN classification model building

We utilized the epidermal sensor to acquire a 7-class gesture recog-
nition dataset. The data collection took place in an indoor environment
with 5 healthy adults as the participants. The experiment involved
capturing 7 gesture actions, including thumb extension, index finger
extension, middle finger extension, ring finger extension, little finger
extension, five-finger open, and gripping. A total of 4050 gesture ex-
amples were collected, each consisting of an 11 s time series sampled at
500 Hz (window size: 11 x 500 = 5500 samples).

Several data preprocessing steps were undertaken to prepare the
gesture recognition data. Initially, we applied a 50 Hz notch filter and a
10 Hz high-pass filter to the raw data. Subsequently, we standardized
the time series data by scaling the amplitudes to a range between 0 and
1, with 80 % allocated to the training set and 20 % to the testing set.
Labels indicated the gesture category corresponding to each sample,
with a total of 7 gesture categories. Finally, we employed a CNN for
gesture recognition.

The CNN architecture comprised multiple convolutional layers,
specifically 9 convolutional layers, each consisting of a convolution
operation and a ReLU activation function, followed by two fully con-
nected layers. Dropout layers (p = 0.5) were added between the fully
connected layers to mitigate overfitting risks. The parameters of the
convolutional and fully connected layers were initialized using the
Xavier initialization method, contributing to the stability and conver-
gence of model training. The training process of the network involved
the Adam optimizer and cross-entropy loss function for supervised
learning. The learning rate was set to 0.001, with a batch size of 64 and
the inclusion of L2 regularization. These hyperparameter values were
chosen to enhance the model’s convergence speed and generalization
performance. The model’s performance, including the confusion matrix
and ROC curve, was evaluated on the test set to determine its classifi-
cation accuracy across different gesture categories.
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2.4. Clinical experiment

2.4.1. Experiment involving human participants

The human subject study was approved by the Medical Ethics
Committee of The People’s Hospital of Suzhou New District (Approval
No. 2023-141). All human subjects gave written and informed consent
before participation in the studies.

3. Results and discussion

3.1. Overadll design, material, and fabrication strategies for epidermal
SEMG sensors

There are three key functional layers of the 8 channels epidermal
sEMG sensor as shown in Fig. 2a, the conductive metal trace layer (Cu/
PI, 9 pm/10 pm) is in direct contact with skin, which consists of 10
optimized serpentine electrodes (Fig. 2a-ii) (8 working electrodes, a
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ground electrode, and a reference electrode) connected by filamentary
serpentine wires (Fig. 2a-iii) (400 pm width), and the 10-pin flexible
cables (Fig. 2a-iv) endow the sensors capacity of integrating external
data acquisition and wireless transmission electronics. It’s important to
note that the coating of polyimide (PI) under the Cu-based wires pro-
vides mechanical strain isolation while enhancing the bonding force
with silicone elastomer to avoid excessive out-of-plane strain. Addi-
tionally, an adhesive layer (Silbione RT Gel 4317, Elkem, 166.28 +
15.65 pm) and an ultra-thin support layer (Ecoflex-0030, 159.625 +
2.40 pm) compose the elastomer substrate. The adhesive layer provides
weaker but robust bonding strength (peel adhesion of 0.89 N per 2.5 cm)
with skin for long-term wear compared with traditional acrylic-based
medical adhesives. Meanwhile, a removable PET sheet is always uti-
lized to facilitate the manual manipulation of human skin (Fig. S1).
The “laser cut and paste” fabrication of epidermal sEMG sensors
starts with the patterning of the conductive metal trace layer with a UV
laser (LM-UV-3, DeLong) (Fig. 2b and Fig. S2). The pattern was followed
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Fig. 2. Overview of the conformable, soft, breathable 8 channels epidermal sEMG sensor. (a) (i) Schematic illustration showing the three functional layers of the
epidermal sEMG sensors. Diagrams of the (ii) optimized stretchable serpentine structure for EMG electrode (Scale bar, 3 mm), (iii) stretchable connect wires (Scale
bar, 2.5 mm), and (iv) cables (Scale bar, 2.5 mm). (b) Fabrication process of the “laser cut and paste” for epidermal SEMG sensors. (c) Schematic illustration of the
epidermal electrode with optimized serpentine design. (d) Photo of an epidermal sEMG sensor showing the conformable and soft property for direct lamination with
the skin without other adhesives, and optical images of the epidermal SEMG sensor contact with skin during various mechanical deformations upon stretching and
buckling. (e) Photography of Ecoflex0030/Gel4317 elastomer substrate with airholes attached to human skin. (f) Water vapor transmission range of the elastomer
substrate with and w/o airholes, and open bottle. (g) Determination of conformal contact: The dotted curve represents the critical contact points of 300 um thick
elastomers. (h) Optical microscopy images of the human lung fibroblast cells cultured with Ecoflex0030/4317 for 18 h, and 24 h.
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by water-soluble transfer processing from the PDMS sacrificial layer to
bonding with the new elastomer substrate (Ecoflex/4317). As shown in
Fig. S3, the energy release rate (G) is crucial for the transfer processing,
the pattern can successfully pick up from PDMS due to the G at the
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interface of water-soluble tape (WST) and pattern (Gwst/cu) is greater
than the interface of PDMS and pattern (Gppwms,cy), and then the pattern
with WST was laminated on the received elastomer substrate, and the
Gwst/cu can suddenly disappear with the dissolution of WST, allowing
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for achieving the “paste” stage and finish the fabrication of the
epidermal sEMG sensors.

Previous studies suggest that the fill factor of the electrode is a
noticeable dent in the electrical impedance of the electrode-skin inter-
face, which is the basic requirement for the ability of the electrode to
record the EMG signal [35]. As Fig. 2c shows, the traditional serpentine
network design with 200 pm linewidth trades off a higher fill factor (fill
factor is ~10 %) for better stretchability. However, further increasing
the width of the serpentine only can slightly improve the fill factor, and
the fractal designs (Peano curve, Hilbert curve, et. al) are too complex to
design and fabricate. Thus, an easy-to-use optimized design was pro-
posed by appending a solid circle (radius = 1 mm) at the intersection of
the horizontal and vertical serpentine wires (~400 pm), allowing for
increasing the fill factor to ~34 %.

The stretchable design and multi-layer material strategies of such
sensor allow for being directly applied to the skin for real-time surface
sEMG signal monitoring without additional adhesives (Fig. 2d), and
withstanding skin mechanical deformations (e.g., stretching, and
buckling) (Fig. 2d). Moreover, several mini-airholes (~100 pm diam-
eter) were constructed (Fig. 2e and Fig. S4) at the elastomer substrate by
a CO,, laser machine with raster mode (VLS 3.50, Universal) to ensure
the great breathability of the sensors. It should be noted that though
these mini-airholes are visible, the substrate still maintains good trans-
parency when it interfaces with the skin conformally. As Fig. 2f depic-
ted, its water vapor transmission rate (WVTR, ~2.717 mg cm'zh’l) is
over 6 times higher than that (~0.416 mg cm'zh’l) of the substrate
without mini-airholes, and is similar to that of an open bottle (~3.287
mg ecm2h~1). Conformal contact at the sensor-skin interface is a key
factor that has significantly influenced the signal quality [36]. Thus, a
model based on the energy-variational method (Supplementary Mate-
rials Note 1) was established to understand the relationship between
different material strategies with conformal contact [31,36]. The dotted
boundary curve shown in Fig. 2g represents the critical points and in-
dicates our proposed epidermal SEMG sensor’s properties required for
conformal contact. The results verify that the Ecoflex-0030 with Gel
4317 has formed conformal contact with the skin due to the extremely
low modulus (~32.23 kPa) and high tackiness (~3.56 N/m). Further-
more, the cytocompatibility test by culturing human lung adenocarci-
noma cell line A549 with Ecoflex 0030 and Gel 4317 for 24 h
demonstrates healthy growth of the cells and biocompatibility of the
elastomer materials (Fig. 2h). There is no sign of skin irritation or
allergic reactions as well after using the device on the skin for 12 h
(Fig. S5) compared with the traditional Ag/AgCl electrode. With the
drastically reduced cost in manufacturing, the low-cost (Table S1) yet
high-performance epidermal sEMG sensors promise wide adoption for
large-scale application of patients with hand functional movement
disorder.

3.2. Mechanical and electrical performance of the fully integrated sSEMG
system

The stretchability and impedance of these three designs with
different fill factors (10 %, 34 %, and 100 %) have been investigated
(Fig. 3a). Specifically, the maximum strain in the copper foil in the
traditional serpentinite structure is 0.08 % under uniaxial stretching of
up to 10 % (with the uniaxial strain of the skin in the target forearm area
less than 10 %), which is much lower than the fracture strain of Cu (0.3
%), but the impendence at ~1000 Hz is almost double than the solid
electrode. The results of the simulation and experiment found clear
support that there is still enough stretchability design margin to sacrifice
for the lower impedance. Fortunately, finite element analysis (FEA) il-
lustrates the max strain of the Cu in the optimized serpentinite structure
is 0.15 % at the elastic stretchability of 10 %, which is sufficient for
strains encountered during natural motions of the skin. Moreover, the
impedance of the optimized electrode with a fill factor of 34 % is only
slightly higher than that of the conductive Ag/AgCl electrode from 1 Hz
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to 100 kHz (which is most relevant to EMG signals), and significantly
lower than the electrode of traditional serpentine design. Moreover, the
simulation result indicates that the single optimized design electrode is
employed for the 8-channel epidermal sEMG array inheriting their
excellent stretchability (Fig. 3b). Owing to their lower impedance,
optimized epidermal electrodes provide high-quality sSEMG signals with
proven higher SNR (~29.15 dB) compared to traditional serpentine
electrodes (~18.89 dB) and standard Ag/AgCl electrodes (~26.43 dB)
(Fig. 3c-i), and the amplitude of noise baseline is almost as low as the
standard Ag/AgCl electrode (Fig. 3c-ii), which provides evidence of the
outstanding conformable and low-impedance property of optimized
electrodes. The sEMG signal spectrogram of the traditional design, the
optimized design, and the Ag/AgCl standard electrode have been eval-
uated (Fig. 3c-iii), which revealed that the optimized design electrodes
were able to acquire higher energy signals in the critical frequency band
of sEMG. Furthermore, the signal-to-motion artifact ratio (SMR) is
mainly used to quantitatively assess motion artifacts and is calculated as
follows [34]:

SMR — Psignal
Po-20 1z

The signal-to-high-frequency noise ratio (SHR) is mainly used to quan-
tify high-frequency noise and is calculated by the formula [34]:

SHR = Psignal
Pupperzo%

where Pg;gnq denotes the activation signal power, Po.oo 1, denotes the
sum of the power densities of the activation signals below 20 Hz, and
Pypper20% denotes the sum of the power densities of the activation signals
at the higher 20 % of the frequencies. The evaluation of the SMR
(Fig. 3c-iv) and SHR (Fig. 3c-v) of these three electrodes reveals that the
motion artifacts and high-frequency noise of the electrode with opti-
mized structure design are the lowest, further proving the noise-restrain
ability of the electrode with optimized design.

The disposable epidermal array is connected to a reusable flexible
printed circuit board (fPCB) (Fig. 3d), and the simulation results indicate
that it can ensure bending conformity with the human skin without
mechanical failure. In addition, the 8-channel SEMG hardware design
comprises MCU, battery, signal analog signal front end (AFE), and Wi-Fi
modules (the schematic and PCB diagram are shown in Fig. S6). The
system-level block diagram and the circuit diagram (Fig. 3e) illustrate
the flow of electrical signals in the SEMG monitoring. A shared top
ground electrode and reference electrode facilitate the improvement of
the common mode rejection ratio (CMRR) and get high-quality bipolar
sEMG signals, the resulting weak biological potential response is
amplified and filtered by the signal AFE chip (ADS1299-8, TI). It’s worth
noting that the ADS1299 outputs 24 bits of data per channel in binary
twos complement format with a 24 x amplification factor. After being
converted to voltage by a built-in analog-to-digital converter (ADC) with
the 500 Hz sampling rate, the acquired data are processed by the MCU
chip (STM32F103) and wirelessly transmitted to the user device over
Wi-Fi (ESP8266) for further analysis. A self-made graphics user interface
(GUI) (Movie S1) is proposed to display and record real-time sEMG
waveform and data, and an adjustable bandpass filter is also integrated
for further removing noise, the dynamic SEMG maps calculated by root
mean square (RMS) provided the spatial and temporal properties of the
electrical muscle activity. The overall conformal, soft, breathable,
wireless epidermal sEMG sensor system provides a facilitated and pre-
cise tool with the clinic application of rehabilitation of hand function.

3.3. Hand gesture recognition by integrated epidermal SEMG system

The hand gesture recognition (HGR) field is of growing interest for
hand functional rehabilitation [37-39], motivated by the thirst
requirement for both the evaluation of the execution of clinic
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Fig. 4. Hand gesture recognition of the integrated epidermal SEMG sensors system. (a) Schematic illustration of Hand gesture recognition related to forearm su-
perficial muscle groups, and the position of the epidermal sEMG electrode. (b) The architecture of a CNN that takes in sEMG raw data and outputs its probabilities of
classes. (c) The confusion matrix of subject 1 from the CNN model. (d) The accuracy of various machine learning models and a CNN model based on the dataset from
subject 1. (e) The ROC curves of each classification and the corresponding AUC based on the dataset from subject 1. (f) (i) The accuracy and (ii) ROC curves of each
classification and the corresponding AUC based on the dataset from only one channel. (g) The accuracy of HGR based on the dataset from five subjects.

prescription action and the hand motion trajectory prediction for active
rehabilitation [40-42]. Such an integrated epidermal SEMG system is
applied to monitor sEMG signals by uniform coverage across related
forearm superficial muscle groups (Fig. 4a). As Fig. 4a shows, the overall
sensor array size is 82.25 mm x 110 mm, which allows for monitoring
brachioradialis, flexor carpi radialis, extensor carpi radialis longus,
extensor carpi radialis brevis, and extensor digitorum. There are 14

basic functional movements of the hand including the flexion and
extension of five fingers, as well as the flexion, extension, abduction, and
adduction of the wrist. As Fig. S7 shows, each movement of a 24-year-
old male subject induces a different pattern of EMG signals, and 7
different motion classes (extension of thumb, index finger, middle
finger, ring finger, and little finger, as well as the clenching and opening)
related rehabilitation have been selected to validate the feasibility of the
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integrated epidermal sEMG system for HGR. However, the classification
of different hand gestures demands a machine learning model, a 2D deep
learning network based on convolutional neural networks (CNN)
(Fig. 4b) has been constructed by 8 convolutional layers and 2 fully
connected layers with rectified linear unit activation and two dropout
layers (p = 0.5) alternately. In addition, the CNN model has been
employed and starts with transforming the data format from raw 1D
data into a 2D resembling image matrices with shapes of 8 x 5500 x 1
for further processing as inputs, and the data through multiple iterations
to pass to pooling layers and activation layers to reduce dimensionality,
the final fully connected layer of the CNN model has seven neurons with
ReLU activation, which corresponds to probabilities associated with the
seven types of hand gestures.

There are a total of 1470 pieces of EMG data (class1: 172, class2: 205,
class3: 228, class4: 211, class5: 216, class6: 223, class7: 215) in the
customized dataset, which are collected by the integrated epidermal
sEMG system with a 500 Hz sample rate. Moreover, a high-pass filter
(10 Hz) and a notch filter (50 Hz) are utilized to remove the noise. Each
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training set consists of a random collection of 80 % of the labeled data,
with the remaining 20 % used for validation, and the cross-entropy is
employed as the target function for classification. Fig. 4c shows the
confusion matrix and demonstrates that the CNN-based deep learning
algorithm demonstrates higher prediction accuracy of 97.96 %
compared to other commonly used machine learning algorithms (Fig. 4d
and Fig. §8), including random forest models, support vector machines,
and others. Moreover, the high area under the ROC curve (AUC) is ~100
% for five gestures, and the AUC of the middle finger extension gesture
classification (class3) is the lowest but still exceeds ~85 %, which in-
dicates that the model achieves a good balance between sensitivity and
specificity. However, the accuracy of HGR with only single-channel data
(channel 1) drops sharply to ~65 % (Fig. 4f). Since the signal from
channel 1 contains information related to the flexor carpi radialis, the
recognition accuracy of Class 1 (~99 %) is higher than other gestures,
which proves the significance of multi-channel sEMG. Furthermore, the
data from the other 4 subjects were collected to expand the dataset, and
each person collected 350 sets for seven hand gestures. As Fig. 4g shows,
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Fig. 5. Clinic application of the integrated epidermal SEMG system in hand function rehabilitation. (a) Photograph of the stroke upper limb hemiplegia patient
during grip training. (b) (i) illustration of clinical evaluation setting and (ii) SEMG data recording by the integrated epidermal SEMG system. The comparison of (c)
number of complete counts, (d) MAV, and (e) mean frequencies between the intact and affected side hand. (f) (i) Photograph of the MT with the epidermal sSEMG
sensor for grip exercises and (ii) a session including closed and open affected hand processes.
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the accuracy based on the hybrid dataset has declined from 97.96 % to
81.02 % due to the individual differences in muscle position. It should be
noted that optimizing the electrode position based on individual muscle
size or increasing the density of the array will help further improve the
accuracy. In conclusion, the successful HGR application of our proposed
epidermal sEMG system paves the way for further hand function
rehabilitation.

3.4. Demonstration of the integrated epidermal sEMG system as a
versatile clinical evaluation and control tool

The sEMG can record multiplexed information about stroke patients’
muscle and neural recovery activities, and interpretation of the multi-
channel sEMG data by the feature of time and frequency domains has
been widely used for rehabilitation task assessment to dynamic redesign
clinical strategies [43-45]. Moreover, the decoding of the patients’ hand
movement intention can be applied to control rehabilitation robots to
achieve active rehabilitation with better treatment effectiveness
[46-48]. Compared with the current Ag/AgCl electrodes and fPCB-
based electrodes [12,13], our proposed epidermal electrodes are soft,
self-adhesive, arrayed, and breathable, which can be distinguished for
its conformable, stable, and long-term integration with the skin while
preserving the quality of physiological signals despite suffering from the
uncontrollable movement and natural sweating. To fully depict its
utility as a versatile clinical evaluation and control tool, the epidermal
sEMG sensor is applied to the forearm of a postoperative stroke patient
(Fig. 5a) who underwent one-month clinic rehabilitation training, to
collect SEMG signals from both the intact and affected side during the
task formulated by clinic doctors. In particular, the grasp motion is the
fundamental behavior according to Brunnstrom’s hand function stage
(BRS-H) scale [49], and the future daily home-set evaluations should be
low-cost and portable. Therefore, the task without other auxiliary
equipment revolves around grasp motion as defined by the clinic reha-
bilitation physician: the subject should repeat the grasp motion as soon
as possible during the task time (15 s) for both the intact and affected
side, followed by a 20 s rest interval, and considering the patient’s
physical recovery and fatigue, this task was repeated four times (Fig. 5b-
i). The sEMG data (Fig. 5b-ii) is successfully recorded with higher SNR
and describes the workload-dependent signal amplitude changes for
both hands.

The complete counts of the grasp motion during the task period have
been calculated through discriminating active segments and relax seg-
ments of SEMG based on short-time zero crossing rate autocorrelation
measurement, to evaluate the time response ability of neural innerva-
tion grasping actions [50,51]. As Fig. 5¢ shows, the number of grasps on
the intact side (~9 times) is higher than on the affected side (~5 times),
and the simultaneously tested functional near-infrared spectroscopy
(fNIRs) [52,53] of the brain also confirmed that the cerebral blood ox-
ygen activity shows a more disordered status during the stroke hand task
period (Fig. S9). Furthermore, the time-domain and frequency-domain
characteristics of the sEMG signals under this task were analyzed.
Owing to the wide use of mean absolute value (MAV) to reflect the in-
tensity of muscle activation [54], such features has been employed for
further analysis. The MAV of each channel for each task period on the
intact side was much higher than on the affected side (Fig. 5d), reflecting
the faster activation speed, the better recruitment of activated motor
units, and the synchronization on the intact side compared to the
affected side [55,56]. The integrated EMG (iEMG) can fully reflect the
overall EMG output during the concerned period, which can assist the
further studies of muscle fatigue, and power output of the stroke patients
[57]. The waveform length (WL) includes not only intensity and dura-
tion of muscle activation and fatigue status, which is useful for evalu-
ating muscle function and movement control [58]. The features of other
time domains (EMG, WL) (Fig. S9) also exhibit the same trend as the
above conclusion. Comparing the changes in mean power frequency
(MPF) between the patient’s intact and affected sides, no significant
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differences were observed and indicate that the fatigue degree of the
normal hand and stroke hand is the same during the task setting (Fig. 5e)
[59,60]. If further information on fatigue level is needed, additional
clinic task settings need to be complemented. However, these proof-of-
concept clinic experiments have confirmed that the integrated
epidermal SEMG system can facilitate the more universal, convenient,
and effective assessment of hand function rehabilitation.

Since severe stroke patients can hardly generate strong SEMG signals,
mirror therapy (MT) based on the theory of brain function remodeling
[61] is a widely used clinical strategy that controls the affected side hand
rehabilitation robots by collecting the intention of intact side, creating
visual and imagination artifacts of normal hand movement function on
the affected side to active the motor cortex of the brain and reduce the
degree of the learned non-use. Our integrated epidermal sEMG system
has been induced in collaboration with the clinic hand rehabilitation
glove for the MT application. Subsequently, the host computer suc-
cessfully processes the grasping signals to control the commercial
rehabilitation glove (EXOduino, Beijing Hangyi Technology Co., Ltd.),
and further drives the affected hand in the glove to perform grasping
motion (Fig. 5f and Movie S2). We believe in the future, the integrated
epidermal sEMG system will have enormous potential to be utilized for
more and more hand rehabilitation clinic settings. For instance, the two
application scenarios of HGR and positive rehabilitation training can be
combined, retraining the CNN model to provide a more intelligent
rehabilitation training environment for stroke patients based on mass
sEMG signals from clinical stroke patients. Overall, owing to the lost cost
and simple fabrication, the overall system can be commercialized and
provides a valuable tool for clinical hand rehabilitation assessments and
therapy.

4. Conclusion

In summary, a conformal, soft, breathable, wireless epidermal SEMG
sensor system has been fabricated by the “laser cut and paste” method to
construct the optimized serpentine structures which ensure excellent
stretchability and lower “electrode-skin” interface impedance. Such
low-cost yet high-performance epidermal electrodes have been
employed to hatch 8-channel array SEMG sensors, which during long-
term wearing on the skin without any inflammation due to the breath-
able and biocompatible structure and materials strategies. Moreover,
compared with the traditional serpentine and Ag/AgCl electrodes, the
self-adhesive property, lower impedance and better conformal contact
with skin ensures excellent SNR of the sEMG signals. These remarkable
properties of epidermal SEMG sensors integrated with flexible wireless
circuits and customized GUI, help us develop a standalone system for
hand gesture recognition, clinical evaluation, and therapy. Specifically,
with the CNN-based algorithm, the system can automatically and reli-
ably realize the 7 kinds of hand gestures with an accuracy of up to 81.02
%. This tool can be used not only in hand function rehabilitation but also
in other human-machine interface applications (prosthetic control
[62-64], sign-to-language translation [65-67], virtual reality [68-70],
et, al.). More importantly, in clinical scenarios, we have successfully
utilized this standalone epidermal system for sEMG evaluation of stroke
patients with hand dysfunction, and the easy-to-modify electrode posi-
tion and low-cost fabrication have enormous potential for other clinical
paradigms research. Depending on the information obtained by the
sEMG sensors, the integrated systems also be used for controlling the
hand rehabilitation glove to realize the mirror therapy. We believe in the
future, the integrated epidermal SEMG sensors have enormous potential
to provide a remarkable platform for diverse clinical and daily reha-
bilitation management and therapy scenarios.
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