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A B S T R A C T   

Surface electromyography (sEMG) plays a signi昀椀cant role in the everyday practice of clinic hand function 
rehabilitation. The materials and design of current typical clinic sEMG electrodes are rigid Ag/AgCl or 昀氀exible 
polyimide (PI) 昀椀lm, which cannot provide a stable interface between electrodes and skin for adequate long-term 
high-quality data. Thus, conformal, soft, breathable, wireless epidermal sEMG sensor systems have broad po-
tential relevance to clinic rehabilitation settings. Herein, we demonstrate a stretchable epidermal sEMG sensor 
array system with optimized materials and structure strategies for hand gesture recognition and hand function 
rehabilitation. The optimized serpentine structures with marvelous stretchability and improved 昀椀ll ratio, provide 
lower impedance and high-quality sEMG signals. Moreover, the easy-to-use airhole method further ensures stable 
and long-term contact with the skin for recording. In addition, integrated with a customized 昀氀exible wireless data 
acquisition system, the capability for real-time 8-channel sEMG monitoring is developed, and taking together 
with the CNN-based algorithm, the system can automatically and reliably realize the 7 kinds of hand gestures 
with an accuracy of 81.02%. Moreover, the low-cost yet high-performance epidermal sEMG sensor system 
demonstrated its conceptual feasibility in quantitatively evaluation of stroke patient’s hand and facilitating 
human-robot collaboration in hand rehabilitation by proof-of-the-concept clinical testing.   

1. Introduction 

Stroke, as a major public health issue, has become the second leading 
cause of death and the primary cause of long-term disability [1], and the 
majority of stroke patients (~75 %) suffer functional movement disorder 
in their hands [2]. On account of the capacity for direct measurement of 
the hand function neuromuscular activity compared with the traditional 
single force evaluation through strain or force sensors, surface electro-
myography (sEMG) is a fundamental and comprehensive tool in the 
everyday practice of clinic hand function rehabilitation [3–9] (quanti-
tative evaluation of patient [10], human–machine collaboration of 
rehabilitation equipment [11]). However, excessive pressure and med-
ical tape to ensure stable skin-sensor interface contact of existing clinic 

sEMG monitoring systems (i.e., fPCB-based sensors [12,13] or Ag/AgCl 
electrodes) still face the potential risks of iatrogenic skin injuries, 
meanwhile the poor skin-sensor interface also leads to higher impedance 
and lower signal-to-noise (SNR) ratio, which can’t be ignored for clinic 
sEMG monitoring [14,15]. 

To date, recent advances in materials and biomedical engineering 
serve as the basis for sEMG sensors that have epidermal properties 
(mechanically bendable, stretchable, adhesive, and dynamically 
conform to human skin), allowing the collection of sEMG signals with 
high SNR [16–20]. There are two strategies to construct the epidermal 
sensors, one development of stretchable or recon昀椀gurable sensors ex-
plores intrinsically stretchable conductive composites [17,21–23] or 
hydrogels [24], however, there are still challenges in integrating the 
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functional fPCB through a conventional soldering process to achieve 
extended signal processing and wireless capabilities for mass-production 
and commercialization. Alternatively, the stretchable metal structures 
(e.g., Au/Cr serpentine) with organic elastomer substrates (e.g., PDMS, 
Eco昀氀ex) allow the conventional rigid metal to conform to contact with 
skin and is easy to use for building a comprehensive stretchable, wireless 
sEMG system [25–27]. Currently, further improvements and optimiza-
tion of the widely used serpentine structure [28–31] are needed because 
of the lower 昀椀ll factor (the area of the metal traces divided by the area of 
the electrode), resulting in lower skin-sensor contact impedance and a 
higher SNR. Additionally, the current fabrication of metal-昀椀lm-based 
epidermal electrodes is the photolithography or “cut and paste” [32] 
method. Nevertheless, the complex process 昀氀ow and extra chemical 
reagents pollution, as well as the limitation of large-scale pattern, make 
the photolithography challenging in actual application, and the “cut and 
paste” method struggles to meet the demand of sophisticated sensor 
pattern due to the employment of the mechanical cutter plotter. 
Meanwhile, some problems must be solved in clinic long-term applica-
tions such as breathability, and biocompatibility [33]. 

To the best of our knowledge, low-cost and ef昀椀cient fabrication of 
epidermal sEMG sensor system is still lacking. Herein, we report a 
conformal, stretchable, breathable, biocompatible, wireless epidermal 
sEMG sensor system for hand gesture recognition and clinic hand 
function rehabilitation. An optimized design of serpentine structures 
was proposed to ensure suf昀椀cient stretchability and 昀椀ll factor, allowing 
for enhancement of the skin-sensor contact impedance and improving 
the signal quality of sEMG. Additionally, the “laser cut and paste” 

method was conducted to manufacture the proposed sEMG sensors, 
which have the potential to be compatible with industrial “roll-to-roll” 

large-scale fabrication (Fig. 1a). As a result, the epidermal sensor with 
optimized structure and fabrication combines and exceeds the 昀椀gure-of- 
merits of hydrogels, fPCB-based electrodes, and epidermal electrodes 
with traditional serpentine and self-similar structures to open wider 
application opportunities (Fig. 1b). Moreover, customized 昀氀exible WiFi- 
based wireless data acquisition electronics and software were integrated 
to demonstrate the capability of real-time 8 channels sEMG monitoring. 
Along with the proposed trained CNN algorithm, the seven-class hand 
gesture recognition related to hand function rehabilitation was achieved 
with high precision (~81.02 %). Furthermore, the proof-of-the-concept 
pilot study on stroke patients demonstrates the practical utility of the 

device for quantitative assessment of the patient’s hands and human-
–machine collaboration of the custom-built hand rehabilitation robot 
(Fig. 1c). 

2. Experimental section 

2.1. Materials 

A glass substrate (150 × 150 mm) was purchased from GuLuo™, 
China. PDMS kit (SYLGARD™ 184 Silicone Elastomer) was purchased 
from the Dow Chemical Company, USA. The Pyralux® copper/poly-
imide 昀椀lm (Cu/PI of 9 µm/12 µm) and PET 昀椀lm (200 µm) were pur-
chased from DuPontTM, USA. The water-soluble tape ASWT-2 was 
obtained from Aquasol™, Australia. Eco昀氀ex 0030 (Part A and B) and 
release agent Ease Release®200 were purchased from Smooth-On, USA. 
The Silbione RT Gel4317 A/B was obtained from the Elkem™, USA. The 
Anisotropic Conductive Film ANISOLM® AC-2056R was purchased from 
Hitachi™, Japan. Other chemical agents are purchased from Alfa Aesar. 
All electronic components are obtained from Mouser™, USA. 

2.2. Fabrication 

2.2.1. Fabrication of epidermal sEMG sensors (“Laser cut and paste” 

method) 
The low-cost fabrication of the optimized epidermal sEMG sensor 

(Fig. S2) can be divided into the following three parts: 
(i) Copper/polyimide 昀椀lm patterning (“Laser cut”). 
The transparent glass substrate was cleaned by isopropanol (IPA) 

昀椀rst, and a mixture of base and curing agent in a weight ratio of 20:1 for 
polydimethylsiloxane (PDMS) precursor was spin-coated at 500 rpm for 
20 s on a glass plate and cured at 90 çC for 20 min to form the sacri昀椀cial 
substrate. A layer of copper/polyimide 昀椀lm was laminated onto the 
cured PDMS surface. The designed epidermal sEMG sensors pattern by 
AutoCAD 昀椀le was cut by a 355 nm UV laser at a pulse frequency of 50 
kHz and a speed of 300 mm/s through a total of 9 times repeated cutting. 
It should be noted that the excess part near the pattern was directly 
removed by the laser to ensure that the remaining parts were connected 
and could be manually removed at once (Fig. S11). 

(ii) Preparing breathable elastomer substrate. 
After laminating a layer of double-sided tape on the glass plate, and a 

Fig. 1. The schematic illustrating the conformal, soft, breathable, wireless epidermal sEMG sensor system and application for hand gesture recognition rehabilitation 
of stroke hand function. 
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polyethylene terephthalate (PET) 昀椀lm was adhered to the double-sided 
tape. Then, a mixture of Eco昀氀ex elastomer in a weight ratio of 1:1 
(partA: partB) was spin-coated at 500 rpm for 20 s on the glass plate and 
cured at room temperature for 1 h. Silbione Gel4317 was spin-coated on 
the cured Eco昀氀ex elastomer with a speed of 500 rpm for 20 s, followed 
by curing at 120 çC for 20 min. Moreover, the airholes were fabricated 
by the 50 W-CO2 laser with raster mode at a power of 6.4 W and a speed 
of 40.89 mm/s to form the breathable elastomer substrate. 

(iii) Transfer printing (“Paste”). 
The pattern formed by the “laser cut” part was picked up from the 

PDMS surface using water-soluble tape and transferred onto the 
breathable elastomer substrate. After dissolving the water-soluble tape 
with deionized (DI) water for 3 min to form the epidermal sEMG sensor. 

2.2.2. Integration between recording system and epidermal sEMG sensors 
The recording system and sensor-system connectors (SSC) were 

made by polyimide 昀氀exible printed circuit (FPC), and the electrical 
components of the recording system were soldered on the FPC according 
to the circuit design (Fig. S6). The SSC was designed and fabricated 
(EasyEDA, China) for connecting epidermal sEMG sensors. The SSC, ACF 
tape, and epidermal sEMG sensors were hot-pressed with a force of 40 N 
and temperature of 150 çC for 30 s by a hot-press machine (GZC-MS200, 
Hailunda, China). With a customized back-end connector, every channel 
of the epidermal sEMG sensor can be independently connected to the 
EMG recording system. 

2.3. Characterization and algorithm model construction 

2.3.1. FEA of mechanical properties 
The commercial software ABAQUS (ABAQUS Analysis User Manual 

2010, version 6.10) was employed for the determination of strain dis-
tribution (ε) in the stretchable copper foil structure of the sensor under 
tensile and bending deformations. Both the elastomer substrate layer 
and conductive electrodes layer of the sensor were modeled using hex-
ahedral elements (C3D8R). The model consisted of approximately 3 ×
105 elements and the mesh re昀椀nement was carried out to ensure 
convergence. The material properties of the electrodes were speci昀椀ed as 
Cu, with an elastic modulus (E) and Poisson’s ratio (ν) of ECu = 119 GPa 
and νCu = 0.34, respectively. The 昀氀exible base layer was modeled using 
Eco昀氀ex, employing an isotropic Mooney-Rivlin material model with 
parameters (C10 = 0.008054, C01 = 0.002013, D1 = 2). 

2.3.2. Characterizations of the water–vapor transmission and peel force of 
the elastomer substrate 

Based on ASTM E96 standards, water–vapor transmission rates were 
calculated by measuring the weight loss of water every 12 h by attaching 
the sample to seal the opening of a bottle with pure water. 

Based on ASTM D3330 standards, 90ç peeling tests were used to 
evaluate the peel force of the elastomer substrate by using a customized 
universal testing machine (M230pro, YiGao) (Fig. S12). The elastomer 
was attached to the volunteer’s forearm skin, and with a stretching 
speed of 500 mm/min, the peel force was recorded by the force sensor. 

2.3.3. Characterizations of the electronic property of the electrode 
The skin-contact impedance of these electrodes (serpentine elec-

trodes, optimized serpentine electrodes, traditional Ag/AgCl electrodes) 
was measured based dual-electrode method by using an electrochemical 
workstation (CHI660E, ChenHua) over a frequency range from 1 to 105 

Hz at a voltage of 100 mV. Two electrodes were placed on the forearm 
with a separation of 50 mm. The EMG signals measured by these elec-
trodes were recorded by the commercial data acquisition hardware 
(PowerLab, AD instruments) with a sample rate of 1000 Hz, and the SNR 
values were calculated with a 2 s window size using the following 
equation: 

SNR(dB) = 20 log10 ×
Asignal
Anoise  

where the Asingal and Anoise mean the mean absolute value (MAV) of the 
signal and noise. 

Furthermore, the signal-to-motion artifact ratio (SMR) is mainly used 
to quantitatively assess motion artifacts and is calculated as follows 
[34]: 

SMR =
Psignal

P0-20 Hz  

The signal-to-high-frequency noise ratio (SHR) is mainly used to quan-
tify high-frequency noise and is calculated by the formula [34]: 

SHR =
Psignal

Pupper20%  

where Psignal denotes the activation signal power, P0-20 Hz denotes the 
sum of the power densities of the activation signals below 20 Hz, and 
Pupper20% denotes the sum of the power densities of the activation signals 
at the higher 20 % of the frequencies. 

2.3.4. In vitro evaluation of cell biocompatibility 
A549 cells were cultured in serum-free medium (RPMI-1640, USA) 

supplemented with sterile-昀椀ltered L-glutamine, 100 units/mL penicillin, 
100 μg/mL streptomycin (Penicillin Streptomycin, USA), and 0.1 g of 
the elastomer. The cultivation was carried out at 37 çC in an environ-
ment with 5 % CO2 humidity. Subsequently, cell viability was observed 
under a microscope at 0, 18, and 24 h. 

2.3.5. Machine learning and CNN classi昀椀cation model building 
We utilized the epidermal sensor to acquire a 7-class gesture recog-

nition dataset. The data collection took place in an indoor environment 
with 5 healthy adults as the participants. The experiment involved 
capturing 7 gesture actions, including thumb extension, index 昀椀nger 
extension, middle 昀椀nger extension, ring 昀椀nger extension, little 昀椀nger 
extension, 昀椀ve-昀椀nger open, and gripping. A total of 4050 gesture ex-
amples were collected, each consisting of an 11 s time series sampled at 
500 Hz (window size: 11 × 500 = 5500 samples). 

Several data preprocessing steps were undertaken to prepare the 
gesture recognition data. Initially, we applied a 50 Hz notch 昀椀lter and a 
10 Hz high-pass 昀椀lter to the raw data. Subsequently, we standardized 
the time series data by scaling the amplitudes to a range between 0 and 
1, with 80 % allocated to the training set and 20 % to the testing set. 
Labels indicated the gesture category corresponding to each sample, 
with a total of 7 gesture categories. Finally, we employed a CNN for 
gesture recognition. 

The CNN architecture comprised multiple convolutional layers, 
speci昀椀cally 9 convolutional layers, each consisting of a convolution 
operation and a ReLU activation function, followed by two fully con-
nected layers. Dropout layers (p = 0.5) were added between the fully 
connected layers to mitigate over昀椀tting risks. The parameters of the 
convolutional and fully connected layers were initialized using the 
Xavier initialization method, contributing to the stability and conver-
gence of model training. The training process of the network involved 
the Adam optimizer and cross-entropy loss function for supervised 
learning. The learning rate was set to 0.001, with a batch size of 64 and 
the inclusion of L2 regularization. These hyperparameter values were 
chosen to enhance the model’s convergence speed and generalization 
performance. The model’s performance, including the confusion matrix 
and ROC curve, was evaluated on the test set to determine its classi昀椀-
cation accuracy across different gesture categories. 
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2.4. Clinical experiment 

2.4.1. Experiment involving human participants 
The human subject study was approved by the Medical Ethics 

Committee of The People’s Hospital of Suzhou New District (Approval 
No. 2023-141). All human subjects gave written and informed consent 
before participation in the studies. 

3. Results and discussion 

3.1. Overall design, material, and fabrication strategies for epidermal 
sEMG sensors 

There are three key functional layers of the 8 channels epidermal 
sEMG sensor as shown in Fig. 2a, the conductive metal trace layer (Cu/ 
PI, 9 μm/10 μm) is in direct contact with skin, which consists of 10 
optimized serpentine electrodes (Fig. 2a-ii) (8 working electrodes, a 

ground electrode, and a reference electrode) connected by 昀椀lamentary 
serpentine wires (Fig. 2a-iii) (400 μm width), and the 10-pin 昀氀exible 
cables (Fig. 2a-iv) endow the sensors capacity of integrating external 
data acquisition and wireless transmission electronics. It’s important to 
note that the coating of polyimide (PI) under the Cu-based wires pro-
vides mechanical strain isolation while enhancing the bonding force 
with silicone elastomer to avoid excessive out-of-plane strain. Addi-
tionally, an adhesive layer (Silbione RT Gel 4317, Elkem, 166.28 ±
15.65 μm) and an ultra-thin support layer (Eco昀氀ex-0030, 159.625 ±
2.40 μm) compose the elastomer substrate. The adhesive layer provides 
weaker but robust bonding strength (peel adhesion of 0.89 N per 2.5 cm) 
with skin for long-term wear compared with traditional acrylic-based 
medical adhesives. Meanwhile, a removable PET sheet is always uti-
lized to facilitate the manual manipulation of human skin (Fig. S1). 

The “laser cut and paste” fabrication of epidermal sEMG sensors 
starts with the patterning of the conductive metal trace layer with a UV 
laser (LM-UV-3, DeLong) (Fig. 2b and Fig. S2). The pattern was followed 

Fig. 2. Overview of the conformable, soft, breathable 8 channels epidermal sEMG sensor. (a) (i) Schematic illustration showing the three functional layers of the 
epidermal sEMG sensors. Diagrams of the (ii) optimized stretchable serpentine structure for EMG electrode (Scale bar, 3 mm), (iii) stretchable connect wires (Scale 
bar, 2.5 mm), and (iv) cables (Scale bar, 2.5 mm). (b) Fabrication process of the “laser cut and paste” for epidermal sEMG sensors. (c) Schematic illustration of the 
epidermal electrode with optimized serpentine design. (d) Photo of an epidermal sEMG sensor showing the conformable and soft property for direct lamination with 
the skin without other adhesives, and optical images of the epidermal sEMG sensor contact with skin during various mechanical deformations upon stretching and 
buckling. (e) Photography of Eco昀氀ex0030/Gel4317 elastomer substrate with airholes attached to human skin. (f) Water vapor transmission range of the elastomer 
substrate with and w/o airholes, and open bottle. (g) Determination of conformal contact: The dotted curve represents the critical contact points of 300 µm thick 
elastomers. (h) Optical microscopy images of the human lung 昀椀broblast cells cultured with Eco昀氀ex0030/4317 for 18 h, and 24 h. 
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by water-soluble transfer processing from the PDMS sacri昀椀cial layer to 
bonding with the new elastomer substrate (Eco昀氀ex/4317). As shown in 
Fig. S3, the energy release rate (G) is crucial for the transfer processing, 
the pattern can successfully pick up from PDMS due to the G at the 

interface of water-soluble tape (WST) and pattern (GWST/Cu) is greater 
than the interface of PDMS and pattern (GPDMS/Cu), and then the pattern 
with WST was laminated on the received elastomer substrate, and the 
GWST/Cu can suddenly disappear with the dissolution of WST, allowing 

Fig. 3. Mechanical and electronic characterization of epidermal sEMG sensors system. (a) Illustration of the (i) design, (ii) mechanical simulation, and (iii) 
impedance of the traditional and optimized serpentine epidermal electrode, Ag/AgCl electrode. (b) Simulation results for the deformed geometry and distribution of 
strain in the copper layer of the epidermal sEMG sensors during uniaxial stretch (~10 %) and bending. (c) (i) EMG signals, (ii) noise baseline, (iii) spectrogram, (iv) 
SMR, and (v) SHR were measured by traditional (black) and optimized (red) serpentine epidermal electrodes, Ag/AgCl electrode (blue). (d) (i) Photographic image 
and (ii) mechanical simulation of the fPCB. Scale bar, 1 cm. (e) System-level block diagram showing the signal transduction, processing, and wireless transmission 
from the sensors to the user interface. (For interpretation of the references to colour in this 昀椀gure legend, the reader is referred to the web version of this article.) 
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for achieving the “paste” stage and 昀椀nish the fabrication of the 
epidermal sEMG sensors. 

Previous studies suggest that the 昀椀ll factor of the electrode is a 
noticeable dent in the electrical impedance of the electrode–skin inter-
face, which is the basic requirement for the ability of the electrode to 
record the EMG signal [35]. As Fig. 2c shows, the traditional serpentine 
network design with 200 μm linewidth trades off a higher 昀椀ll factor (昀椀ll 
factor is ~10 %) for better stretchability. However, further increasing 
the width of the serpentine only can slightly improve the 昀椀ll factor, and 
the fractal designs (Peano curve, Hilbert curve, et. al) are too complex to 
design and fabricate. Thus, an easy-to-use optimized design was pro-
posed by appending a solid circle (radius = 1 mm) at the intersection of 
the horizontal and vertical serpentine wires (~400 μm), allowing for 
increasing the 昀椀ll factor to ~34 %. 

The stretchable design and multi-layer material strategies of such 
sensor allow for being directly applied to the skin for real-time surface 
sEMG signal monitoring without additional adhesives (Fig. 2d), and 
withstanding skin mechanical deformations (e.g., stretching, and 
buckling) (Fig. 2d). Moreover, several mini-airholes (~100 μm diam-
eter) were constructed (Fig. 2e and Fig. S4) at the elastomer substrate by 
a CO2 laser machine with raster mode (VLS 3.50, Universal) to ensure 
the great breathability of the sensors. It should be noted that though 
these mini-airholes are visible, the substrate still maintains good trans-
parency when it interfaces with the skin conformally. As Fig. 2f depic-
ted, its water vapor transmission rate (WVTR, ~2.717 mg cm-2h−1) is 
over 6 times higher than that (~0.416 mg cm-2h−1) of the substrate 
without mini-airholes, and is similar to that of an open bottle (~3.287 
mg cm-2h−1). Conformal contact at the sensor-skin interface is a key 
factor that has signi昀椀cantly in昀氀uenced the signal quality [36]. Thus, a 
model based on the energy-variational method (Supplementary Mate-
rials Note 1) was established to understand the relationship between 
different material strategies with conformal contact [31,36]. The dotted 
boundary curve shown in Fig. 2g represents the critical points and in-
dicates our proposed epidermal sEMG sensor’s properties required for 
conformal contact. The results verify that the Eco昀氀ex-0030 with Gel 
4317 has formed conformal contact with the skin due to the extremely 
low modulus (~32.23 kPa) and high tackiness (~3.56 N/m). Further-
more, the cytocompatibility test by culturing human lung adenocarci-
noma cell line A549 with Eco昀氀ex 0030 and Gel 4317 for 24 h 
demonstrates healthy growth of the cells and biocompatibility of the 
elastomer materials (Fig. 2h). There is no sign of skin irritation or 
allergic reactions as well after using the device on the skin for 12 h 
(Fig. S5) compared with the traditional Ag/AgCl electrode. With the 
drastically reduced cost in manufacturing, the low-cost (Table S1) yet 
high-performance epidermal sEMG sensors promise wide adoption for 
large-scale application of patients with hand functional movement 
disorder. 

3.2. Mechanical and electrical performance of the fully integrated sEMG 
system 

The stretchability and impedance of these three designs with 
different 昀椀ll factors (10 %, 34 %, and 100 %) have been investigated 
(Fig. 3a). Speci昀椀cally, the maximum strain in the copper foil in the 
traditional serpentinite structure is 0.08 % under uniaxial stretching of 
up to 10 % (with the uniaxial strain of the skin in the target forearm area 
less than 10 %), which is much lower than the fracture strain of Cu (0.3 
%), but the impendence at ~1000 Hz is almost double than the solid 
electrode. The results of the simulation and experiment found clear 
support that there is still enough stretchability design margin to sacri昀椀ce 
for the lower impedance. Fortunately, 昀椀nite element analysis (FEA) il-
lustrates the max strain of the Cu in the optimized serpentinite structure 
is 0.15 % at the elastic stretchability of 10 %, which is suf昀椀cient for 
strains encountered during natural motions of the skin. Moreover, the 
impedance of the optimized electrode with a 昀椀ll factor of 34 % is only 
slightly higher than that of the conductive Ag/AgCl electrode from 1 Hz 

to 100 kHz (which is most relevant to EMG signals), and signi昀椀cantly 
lower than the electrode of traditional serpentine design. Moreover, the 
simulation result indicates that the single optimized design electrode is 
employed for the 8-channel epidermal sEMG array inheriting their 
excellent stretchability (Fig. 3b). Owing to their lower impedance, 
optimized epidermal electrodes provide high-quality sEMG signals with 
proven higher SNR (~29.15 dB) compared to traditional serpentine 
electrodes (~18.89 dB) and standard Ag/AgCl electrodes (~26.43 dB) 
(Fig. 3c-i), and the amplitude of noise baseline is almost as low as the 
standard Ag/AgCl electrode (Fig. 3c-ii), which provides evidence of the 
outstanding conformable and low-impedance property of optimized 
electrodes. The sEMG signal spectrogram of the traditional design, the 
optimized design, and the Ag/AgCl standard electrode have been eval-
uated (Fig. 3c-iii), which revealed that the optimized design electrodes 
were able to acquire higher energy signals in the critical frequency band 
of sEMG. Furthermore, the signal-to-motion artifact ratio (SMR) is 
mainly used to quantitatively assess motion artifacts and is calculated as 
follows [34]: 

SMR =
Psignal

P0-20 Hz  

The signal-to-high-frequency noise ratio (SHR) is mainly used to quan-
tify high-frequency noise and is calculated by the formula [34]: 

SHR =
Psignal

Pupper20%  

where Psignal denotes the activation signal power, P0-20 Hz denotes the 
sum of the power densities of the activation signals below 20 Hz, and 
Pupper20% denotes the sum of the power densities of the activation signals 
at the higher 20 % of the frequencies. The evaluation of the SMR 
(Fig. 3c-iv) and SHR (Fig. 3c-v) of these three electrodes reveals that the 
motion artifacts and high-frequency noise of the electrode with opti-
mized structure design are the lowest, further proving the noise-restrain 
ability of the electrode with optimized design. 

The disposable epidermal array is connected to a reusable 昀氀exible 
printed circuit board (fPCB) (Fig. 3d), and the simulation results indicate 
that it can ensure bending conformity with the human skin without 
mechanical failure. In addition, the 8-channel sEMG hardware design 
comprises MCU, battery, signal analog signal front end (AFE), and Wi-Fi 
modules (the schematic and PCB diagram are shown in Fig. S6). The 
system-level block diagram and the circuit diagram (Fig. 3e) illustrate 
the 昀氀ow of electrical signals in the sEMG monitoring. A shared top 
ground electrode and reference electrode facilitate the improvement of 
the common mode rejection ratio (CMRR) and get high-quality bipolar 
sEMG signals, the resulting weak biological potential response is 
ampli昀椀ed and 昀椀ltered by the signal AFE chip (ADS1299-8, TI). It’s worth 
noting that the ADS1299 outputs 24 bits of data per channel in binary 
twos complement format with a 24 × ampli昀椀cation factor. After being 
converted to voltage by a built-in analog-to-digital converter (ADC) with 
the 500 Hz sampling rate, the acquired data are processed by the MCU 
chip (STM32F103) and wirelessly transmitted to the user device over 
Wi-Fi (ESP8266) for further analysis. A self-made graphics user interface 
(GUI) (Movie S1) is proposed to display and record real-time sEMG 
waveform and data, and an adjustable bandpass 昀椀lter is also integrated 
for further removing noise, the dynamic sEMG maps calculated by root 
mean square (RMS) provided the spatial and temporal properties of the 
electrical muscle activity. The overall conformal, soft, breathable, 
wireless epidermal sEMG sensor system provides a facilitated and pre-
cise tool with the clinic application of rehabilitation of hand function. 

3.3. Hand gesture recognition by integrated epidermal sEMG system 

The hand gesture recognition (HGR) 昀椀eld is of growing interest for 
hand functional rehabilitation [37–39], motivated by the thirst 
requirement for both the evaluation of the execution of clinic 
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prescription action and the hand motion trajectory prediction for active 
rehabilitation [40–42]. Such an integrated epidermal sEMG system is 
applied to monitor sEMG signals by uniform coverage across related 
forearm super昀椀cial muscle groups (Fig. 4a). As Fig. 4a shows, the overall 
sensor array size is 82.25 mm × 110 mm, which allows for monitoring 
brachioradialis, 昀氀exor carpi radialis, extensor carpi radialis longus, 
extensor carpi radialis brevis, and extensor digitorum. There are 14 

basic functional movements of the hand including the 昀氀exion and 
extension of 昀椀ve 昀椀ngers, as well as the 昀氀exion, extension, abduction, and 
adduction of the wrist. As Fig. S7 shows, each movement of a 24-year- 
old male subject induces a different pattern of EMG signals, and 7 
different motion classes (extension of thumb, index 昀椀nger, middle 
昀椀nger, ring 昀椀nger, and little 昀椀nger, as well as the clenching and opening) 
related rehabilitation have been selected to validate the feasibility of the 

Fig. 4. Hand gesture recognition of the integrated epidermal sEMG sensors system. (a) Schematic illustration of Hand gesture recognition related to forearm su-
per昀椀cial muscle groups, and the position of the epidermal sEMG electrode. (b) The architecture of a CNN that takes in sEMG raw data and outputs its probabilities of 
classes. (c) The confusion matrix of subject 1 from the CNN model. (d) The accuracy of various machine learning models and a CNN model based on the dataset from 
subject 1. (e) The ROC curves of each classi昀椀cation and the corresponding AUC based on the dataset from subject 1. (f) (i) The accuracy and (ii) ROC curves of each 
classi昀椀cation and the corresponding AUC based on the dataset from only one channel. (g) The accuracy of HGR based on the dataset from 昀椀ve subjects. 
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integrated epidermal sEMG system for HGR. However, the classi昀椀cation 
of different hand gestures demands a machine learning model, a 2D deep 
learning network based on convolutional neural networks (CNN) 
(Fig. 4b) has been constructed by 8 convolutional layers and 2 fully 
connected layers with recti昀椀ed linear unit activation and two dropout 
layers (p = 0.5) alternately. In addition, the CNN model has been 
employed and starts with transforming the data format from raw 1D 
data into a 2D resembling image matrices with shapes of 8 × 5500 × 1 
for further processing as inputs, and the data through multiple iterations 
to pass to pooling layers and activation layers to reduce dimensionality, 
the 昀椀nal fully connected layer of the CNN model has seven neurons with 
ReLU activation, which corresponds to probabilities associated with the 
seven types of hand gestures. 

There are a total of 1470 pieces of EMG data (class1: 172, class2: 205, 
class3: 228, class4: 211, class5: 216, class6: 223, class7: 215) in the 
customized dataset, which are collected by the integrated epidermal 
sEMG system with a 500 Hz sample rate. Moreover, a high-pass 昀椀lter 
(10 Hz) and a notch 昀椀lter (50 Hz) are utilized to remove the noise. Each 

training set consists of a random collection of 80 % of the labeled data, 
with the remaining 20 % used for validation, and the cross-entropy is 
employed as the target function for classi昀椀cation. Fig. 4c shows the 
confusion matrix and demonstrates that the CNN-based deep learning 
algorithm demonstrates higher prediction accuracy of 97.96 % 
compared to other commonly used machine learning algorithms (Fig. 4d 
and Fig. S8), including random forest models, support vector machines, 
and others. Moreover, the high area under the ROC curve (AUC) is ~100 
% for 昀椀ve gestures, and the AUC of the middle 昀椀nger extension gesture 
classi昀椀cation (class3) is the lowest but still exceeds ~85 %, which in-
dicates that the model achieves a good balance between sensitivity and 
speci昀椀city. However, the accuracy of HGR with only single-channel data 
(channel 1) drops sharply to ~65 % (Fig. 4f). Since the signal from 
channel 1 contains information related to the 昀氀exor carpi radialis, the 
recognition accuracy of Class 1 (~99 %) is higher than other gestures, 
which proves the signi昀椀cance of multi-channel sEMG. Furthermore, the 
data from the other 4 subjects were collected to expand the dataset, and 
each person collected 350 sets for seven hand gestures. As Fig. 4g shows, 

Fig. 5. Clinic application of the integrated epidermal sEMG system in hand function rehabilitation. (a) Photograph of the stroke upper limb hemiplegia patient 
during grip training. (b) (i) illustration of clinical evaluation setting and (ii) sEMG data recording by the integrated epidermal sEMG system. The comparison of (c) 
number of complete counts, (d) MAV, and (e) mean frequencies between the intact and affected side hand. (f) (i) Photograph of the MT with the epidermal sEMG 
sensor for grip exercises and (ii) a session including closed and open affected hand processes. 
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the accuracy based on the hybrid dataset has declined from 97.96 % to 
81.02 % due to the individual differences in muscle position. It should be 
noted that optimizing the electrode position based on individual muscle 
size or increasing the density of the array will help further improve the 
accuracy. In conclusion, the successful HGR application of our proposed 
epidermal sEMG system paves the way for further hand function 
rehabilitation. 

3.4. Demonstration of the integrated epidermal sEMG system as a 
versatile clinical evaluation and control tool 

The sEMG can record multiplexed information about stroke patients’ 

muscle and neural recovery activities, and interpretation of the multi- 
channel sEMG data by the feature of time and frequency domains has 
been widely used for rehabilitation task assessment to dynamic redesign 
clinical strategies [43–45]. Moreover, the decoding of the patients’ hand 
movement intention can be applied to control rehabilitation robots to 
achieve active rehabilitation with better treatment effectiveness 
[46–48]. Compared with the current Ag/AgCl electrodes and fPCB- 
based electrodes [12,13], our proposed epidermal electrodes are soft, 
self-adhesive, arrayed, and breathable, which can be distinguished for 
its conformable, stable, and long-term integration with the skin while 
preserving the quality of physiological signals despite suffering from the 
uncontrollable movement and natural sweating. To fully depict its 
utility as a versatile clinical evaluation and control tool, the epidermal 
sEMG sensor is applied to the forearm of a postoperative stroke patient 
(Fig. 5a) who underwent one-month clinic rehabilitation training, to 
collect sEMG signals from both the intact and affected side during the 
task formulated by clinic doctors. In particular, the grasp motion is the 
fundamental behavior according to Brunnstrom’s hand function stage 
(BRS-H) scale [49], and the future daily home-set evaluations should be 
low-cost and portable. Therefore, the task without other auxiliary 
equipment revolves around grasp motion as de昀椀ned by the clinic reha-
bilitation physician: the subject should repeat the grasp motion as soon 
as possible during the task time (15 s) for both the intact and affected 
side, followed by a 20 s rest interval, and considering the patient’s 
physical recovery and fatigue, this task was repeated four times (Fig. 5b- 
i). The sEMG data (Fig. 5b-ii) is successfully recorded with higher SNR 
and describes the workload-dependent signal amplitude changes for 
both hands. 

The complete counts of the grasp motion during the task period have 
been calculated through discriminating active segments and relax seg-
ments of sEMG based on short-time zero crossing rate autocorrelation 
measurement, to evaluate the time response ability of neural innerva-
tion grasping actions [50,51]. As Fig. 5c shows, the number of grasps on 
the intact side (~9 times) is higher than on the affected side (~5 times), 
and the simultaneously tested functional near-infrared spectroscopy 
(fNIRs) [52,53] of the brain also con昀椀rmed that the cerebral blood ox-
ygen activity shows a more disordered status during the stroke hand task 
period (Fig. S9). Furthermore, the time-domain and frequency-domain 
characteristics of the sEMG signals under this task were analyzed. 
Owing to the wide use of mean absolute value (MAV) to re昀氀ect the in-
tensity of muscle activation [54], such features has been employed for 
further analysis. The MAV of each channel for each task period on the 
intact side was much higher than on the affected side (Fig. 5d), re昀氀ecting 
the faster activation speed, the better recruitment of activated motor 
units, and the synchronization on the intact side compared to the 
affected side [55,56]. The integrated EMG (iEMG) can fully re昀氀ect the 
overall EMG output during the concerned period, which can assist the 
further studies of muscle fatigue, and power output of the stroke patients 
[57]. The waveform length (WL) includes not only intensity and dura-
tion of muscle activation and fatigue status, which is useful for evalu-
ating muscle function and movement control [58]. The features of other 
time domains (iEMG, WL) (Fig. S9) also exhibit the same trend as the 
above conclusion. Comparing the changes in mean power frequency 
(MPF) between the patient’s intact and affected sides, no signi昀椀cant 

differences were observed and indicate that the fatigue degree of the 
normal hand and stroke hand is the same during the task setting (Fig. 5e) 
[59,60]. If further information on fatigue level is needed, additional 
clinic task settings need to be complemented. However, these proof-of- 
concept clinic experiments have con昀椀rmed that the integrated 
epidermal sEMG system can facilitate the more universal, convenient, 
and effective assessment of hand function rehabilitation. 

Since severe stroke patients can hardly generate strong sEMG signals, 
mirror therapy (MT) based on the theory of brain function remodeling 
[61] is a widely used clinical strategy that controls the affected side hand 
rehabilitation robots by collecting the intention of intact side, creating 
visual and imagination artifacts of normal hand movement function on 
the affected side to active the motor cortex of the brain and reduce the 
degree of the learned non-use. Our integrated epidermal sEMG system 
has been induced in collaboration with the clinic hand rehabilitation 
glove for the MT application. Subsequently, the host computer suc-
cessfully processes the grasping signals to control the commercial 
rehabilitation glove (EXOduino, Beijing Hangyi Technology Co., Ltd.), 
and further drives the affected hand in the glove to perform grasping 
motion (Fig. 5f and Movie S2). We believe in the future, the integrated 
epidermal sEMG system will have enormous potential to be utilized for 
more and more hand rehabilitation clinic settings. For instance, the two 
application scenarios of HGR and positive rehabilitation training can be 
combined, retraining the CNN model to provide a more intelligent 
rehabilitation training environment for stroke patients based on mass 
sEMG signals from clinical stroke patients. Overall, owing to the lost cost 
and simple fabrication, the overall system can be commercialized and 
provides a valuable tool for clinical hand rehabilitation assessments and 
therapy. 

4. Conclusion 

In summary, a conformal, soft, breathable, wireless epidermal sEMG 
sensor system has been fabricated by the “laser cut and paste” method to 
construct the optimized serpentine structures which ensure excellent 
stretchability and lower “electrode–skin” interface impedance. Such 
low-cost yet high-performance epidermal electrodes have been 
employed to hatch 8-channel array sEMG sensors, which during long- 
term wearing on the skin without any in昀氀ammation due to the breath-
able and biocompatible structure and materials strategies. Moreover, 
compared with the traditional serpentine and Ag/AgCl electrodes, the 
self-adhesive property, lower impedance and better conformal contact 
with skin ensures excellent SNR of the sEMG signals. These remarkable 
properties of epidermal sEMG sensors integrated with 昀氀exible wireless 
circuits and customized GUI, help us develop a standalone system for 
hand gesture recognition, clinical evaluation, and therapy. Speci昀椀cally, 
with the CNN-based algorithm, the system can automatically and reli-
ably realize the 7 kinds of hand gestures with an accuracy of up to 81.02 
%. This tool can be used not only in hand function rehabilitation but also 
in other human–machine interface applications (prosthetic control 
[62–64], sign-to-language translation [65–67], virtual reality [68–70], 
et, al.). More importantly, in clinical scenarios, we have successfully 
utilized this standalone epidermal system for sEMG evaluation of stroke 
patients with hand dysfunction, and the easy-to-modify electrode posi-
tion and low-cost fabrication have enormous potential for other clinical 
paradigms research. Depending on the information obtained by the 
sEMG sensors, the integrated systems also be used for controlling the 
hand rehabilitation glove to realize the mirror therapy. We believe in the 
future, the integrated epidermal sEMG sensors have enormous potential 
to provide a remarkable platform for diverse clinical and daily reha-
bilitation management and therapy scenarios. 
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