

Effects of prescreening for likelihood ratio approaches in forensic source identification

November 27, 2023

Dylan Borchert, Semhar Michael, Andrew Simpson, Christopher P. Saunders, and Larry Tang

Dylan Borchert is a Ph.D. student in the Department of Mathematics Statistics at South Dakota State University

Semhar Michael is an Associate Professor in the Department of Mathematics and Statistics at South Dakota State University, Brookings SD 57007. email: semhar.michael@sdstate.edu.

Andrew Simpson is a Ph.D. student in the Department of Mathematics Statistics at South Dakota State University

Christopher P. Saunders is a Professor in the Department of Mathematics and Statistics at South Dakota State University, Brookings SD 57007.

Larry Tang is a Professor in the Department of Statistics and Data Science at the University of Central Florida, Orlando FL 32816, and Guest Researcher at the Rehabilitation Medicine Department, NIH Clinical Center, Bethesda, MD

Conflicts of Interest Statement:

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Effects of prescreening for likelihood ratio approaches in the forensic identification of source problems

Abstract

Prescreening is a methodology where forensic examiners select samples similar to given trace evidence to represent the background population. This background evidence helps assign a value of evidence using a likelihood ratio or Bayes factor. A key advantage of prescreening is its ability to mitigate effects from subpopulation structures within the alternative source population by isolating the relevant subpopulation. This paper examines the impact of prescreening before assigning evidence value. Extensive simulations with synthetic and real data, including trace element and fingerprint score examples, were conducted. The findings indicate that prescreening can provide an accurate evidence value in cases of subpopulation structures but may also yield more extreme or damped evidence values within specific subpopulations. The study suggests that prescreening is beneficial for presenting evidence relative to the subpopulation of interest, provided the prescreening method and level are transparently reported alongside the evidence value.

Keywords: value of evidence, likelihood ratio, relevant source population, latent population structures, forensic source identification

¹ 1. Introduction

² In forensic source identification, the forensic examiner is often tasked with providing a value of evidence
³ relative to two competing propositions about the source of the evidence [1, 2]. In the specific source problem,
⁴ the first proposition is often referred to as the prosecution hypothesis, H_p , that the trace evidence is from
⁵ the specified source of known origin. The second proposition is commonly called the defense hypothesis, H_d ,
⁶ that the trace evidence is from a randomly selected source in the alternative source population [3]. Often
⁷ a sample from the background population is used to model the population of alternative sources [4, 5]. A
⁸ slightly different problem that is encountered in forensic source identification is the common but unknown
⁹ source problem. The hypotheses that the forensic examiner is evaluating now change to H_p : the two pieces
¹⁰ of trace evidence are from the same randomly selected source in the alternative source population versus
¹¹ H_d : the two pieces of trace evidence are from two different randomly selected sources in the population
¹² of sources [3]. Like in the specific source problem, a sample from the background population is often
¹³ introduced to model the alternative source population. The key difference between the two problems is
¹⁴ that in the specific source problem, the source of one of the pieces of evidence is known [3].

¹⁵ The use of the likelihood ratio (LR) approach for presenting a value of evidence has been proposed for

16 a variety of evidence types such as glass [4, 5, 6], handwriting [7, 8], footwear marks [9], fingerprints [10],
17 facial images [11], and speech [12]. The normal-based likelihood ratio methods such as Lindley's Bayes
18 Factors (BFs) [4, 5, 13] and a multivariate kernel density-based LR [5] are commonly used methods for
19 presenting a value of evidence. The normal-based Bayes factors are also presented as specific source BFs,
20 but are equivalent to plug-in estimates of common but unknown source LRs due to prior specification [14].
21 They are often used in the specific source setting, as such the paper will discuss these LRs through the
22 specific source lens. These methods also assume a hierarchical normal sampling structure. This normality
23 assumption may not always be reliable, as there can be a subpopulation structure in the population of
24 sources.

25 In likelihood ratio-based approaches, evidence about the relevant source population is needed to account
26 for nuisance parameters. There has been discussion about what constitutes the relevant source population
27 for use in speaker recognition [15, 16], glass, and textiles [17]. Discussions include whether information
28 related to the trace evidence should be used in building the evidence about the background population,
29 such as known categorical variables including speaker accent, fiber color, etc. There is also discussion of
30 an important note, that by changing the relevant population considered, the hypotheses about the source
31 of the trace evidence also change relative to that known subpopulation structure [16].

32 Prescreening is a methodology in which a forensic examiner uses a subset of the given evidence about
33 background (or control) objects in comparison with the trace evidence. Using this subset changes the
34 proposed population from which the alternative source can arise. For example, prior to producing a
35 value of evidence for a fingerprint comparison, the forensic examiner may do a database search to find
36 the most similar known fingerprints to the latent print to calculate the value of evidence. As different
37 examiners may use a different number of similar known fingerprints for comparison, studying the changes
38 in the value of evidence as a result of prescreening is of interest. The National Institute of Standards and
39 Technology (NIST) has developed process maps indicating current practices in forensic science. The process
40 maps for friction ridge [18], speaker recognition [19], and handwriting [20] discuss selecting data to use in
41 providing a summary of evidence, in which a subset of the original database may be used in comparison
42 with the trace. Though likelihood ratios may not be common practice for all of these evidence types, it
43 suggests that examiners sometimes think in terms of a relevant source population or a subpopulation of
44 the original population. This paper extends previous works such as Ref. [16] that considered LRs for
45 known subpopulation structures to unknown subpopulation structures characterized by a latent variable
46 that cannot be accounted for a priori.

47 This work discusses the implications of prescreening prior to obtaining an LR. One potential advan-
48 tage of prescreening is that it may be useful in isolating samples from a subpopulation of interest. This
49 subpopulation of interest may be characterized by a known variable, or a latent variable. In the case of
50 the latent variable, when the subpopulation structure is well studied and the rate at which samples are en-

51 countered from the subpopulation are known, prescreening can be useful in isolating the samples from the
52 subpopulation of interest in the database. This in turn can help assign a value of evidence relative to this
53 subpopulation, which is the value of evidence assuming the true membership labels are known for objects
54 belonging to the same subpopualtion as the trace evidence. In cases where there is not a subpopulation
55 structure prescreening tends to give a damped value of evidence relative to the LR in the entire popula-
56 tion. In either case the propositions being evaluated change, as such the prescreening methodology should
57 be transparently reported alongside the value of evidence, if it is used. The rest of the paper is organized
58 as follows. Section 2 describes the proposed procedure to study prescreening prior to the evaluation of
59 an LR or a SLR. Section 3 discusses the results from extensive simulation studies. Section 4 presents the
60 application to various datasets in forensics. Section 5 concludes the paper.

61 **2. Methods**

62 *2.1. Preliminaries*

63 One method of comparing the sampling models corresponding to H_p and H_d is through a likelihood
64 ratio (LR) or a Bayes factor (BF) [21], where sampling models M_p and M_d are specified corresponding to
65 H_p and H_d , respectively and then the resulting ratio of (marginal) likelihoods is presented. An LR value
66 greater than one suggests support for M_p , where an LR value less than one suggests support for M_d . It is
67 important to note that M_p and M_d may differ under the specific source and common but unknown source
68 problems. As such, an LR for the specific source problem will not necessarily be the same as an LR under
69 the common but unknown source problem [3].

70 To begin discussing the sampling models consider \mathbf{Y}_{sj} for $j = 1, \dots, n_w$, which will denote the j^{th} sample
71 from the specific source. We have the specific source evidence, E_s , which is alternatively called the control
72 evidence, is the set of all n_w observation from the specific source. That is $E_s = \{\mathbf{Y}_{sj} : j = 1, \dots, n_w\}$.
73 Similarly, let \mathbf{Y}_{uj} for $j = 1, \dots, n_w$ denote the j^{th} sample of the recovered evidence of unknown source.
74 We define E_u as the the collection of samples from the unknown source, which is also called the trace
75 evidence. This gives $E_u = \{\mathbf{Y}_{uj} : j = 1, \dots, n_w\}$. Finally, consider \mathbf{Y}_{ij} for $i = 1, \dots, n_a$ and $j = 1, \dots, n_w$,
76 which is the j^{th} sample from the i^{th} background object. We will denote the collection of samples from
77 the i^{th} object or source as $O_i = \{\mathbf{Y}_{ij}, j = 1, \dots, n_w\}$, and the collection of measurements from all of the
78 n_a objects as $E_a = \{\mathbf{Y}_{ij} : i = 1, \dots, n_a, j = 1, \dots, n_w\}$. We will refer to E_a as the evidence about the
79 alternative source population or evidence about the background population. Thus we have our complete
80 set of evidence, $E = \{E_s, E_u, E_a\}$.

81 Following the developments in Ommen et al. [21], this model for generating background objects illus-
82 trates the case where there is not a latent subpopulation structure in the alternative source population.
83 When there is not a subpopulation structure we will refer to the background population as homogeneous.
84 In this case, we will assume that the observations are generated by a hierarchical normal sampling model,

85 M_1 , written as

$$\begin{aligned} \mathbf{Y}_{ij} &= \mathbf{a}_i + \boldsymbol{\epsilon}_{ij}, \\ \mathbf{a}_i &\sim MVN(\boldsymbol{\mu}, \boldsymbol{\Sigma}_a), \\ \boldsymbol{\epsilon}_{ij} &\sim MVN(\mathbf{0}, \boldsymbol{\Sigma}_\epsilon), \end{aligned} \tag{1}$$

86 for $i \in \{1, \dots, n_a\}$ and $j \in \{1, \dots, n_w\}$. In this model a_i represents the i^{th} randomly selected source's mean
87 and $\boldsymbol{\epsilon}_{ij}$ represents the deviation of the j^{th} sample from the i^{th} source's mean. Here $\boldsymbol{\Sigma}_a$ and $\boldsymbol{\Sigma}_\epsilon$ represent
88 the between- and within-source covariance matrices, respectively. For the case where the alternative source
89 population has a subpopulation structure, we propose the following hierarchical sampling model with a
90 Gaussian mixture model at the source level. This second model for generating background objects, M_2 ,
91 for $i \in \{1, \dots, n_a\}$ and $j \in \{1, \dots, n_w\}$ is given as

$$\begin{aligned} \mathbf{Y}_{ij} &= \mathbf{a}_i + \boldsymbol{\epsilon}_{ij}, \\ Z_i &\sim Categorical(K, \pi_1, \dots, \pi_K), \\ \mathbf{a}_i | Z_i = k &\sim MVN(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k), \\ \boldsymbol{\epsilon}_{ij} &\sim MVN(\mathbf{0}, \boldsymbol{\Sigma}_\epsilon). \end{aligned} \tag{2}$$

92 In this model, Z_i represents the result of randomly selecting one of the subpopulations in the alternative
93 source population. Given the result of $Z_i = k$, the random selection of the source mean, a_i , is characterized
94 by the source level distribution of the k^{th} subpopulation. Like before, $\boldsymbol{\epsilon}_{ij}$ represents a deviation of the j^{th}
95 sample from the i^{th} source mean. The distribution of these within source deviations is assumed to be the
96 same across all of the subpopulations.

97 In addition, for the control evidence, we assume that E_s is generated according to the model M_s which
98 is given by

$$\mathbf{Y}_{sj} \sim MVN(\boldsymbol{\mu}_s, \boldsymbol{\Sigma}_s), \tag{3}$$

99 where $\boldsymbol{\mu}_s$ and $\boldsymbol{\Sigma}_s$ are the mean and covariance matrix from the specific source from which the control
100 evidence originated. Finally, to generate trace evidence, there are two competing models relative to the
101 two competing propositions: the defense, H_d , and the prosecution, H_p . Under the prosecution proposition,
102 M_p will be identical to M_s . Therefore, $\mathbf{Y}_{uj} \sim MVN(\boldsymbol{\mu}_s, \boldsymbol{\Sigma}_s)$. On the other hand, under the defense
103 proposition, E_u is treated as being randomly sampled from our alternative source population. This gives
104 M_d is the same as M_1 or M_2 with $n_a = 1$, depending on the existence of subpopulations in the alternative
105 source population. We will denote realizations of the evidence and random variables/vectors as lower
106 case letters, where our observed set of evidence is $e = \{e_s, e_u, e_a\}$ and an observed sample is $\mathbf{y}_{i'j}$, for
107 $i' \in \{s, u, 1, \dots, n_a\}$ and $j = 1, \dots, n_w$.

108 *2.2. Prescreening for LR methods*

109 The general prescreening procedure used by practitioners is defined as using a subset of the evidence
110 about the background population for use in calculating the value of evidence. For ease, the general pre-
111 screening procedure for use with LR methods is written out in algorithmic form in Algorithm 1. Therefore,
112 in our notation, given a database (e_a) the expert will select a subset e_a^* using some criterion for selecting
background objects o_i for $i \in \{1, \dots, n_a\}$ for use as the sample from the relevant population.

Algorithm 1 General Prescreening Procedure

1. Given evidence e_s, e_u , and e_a .
2. Construct e_a^* , a subset of e_a , using subsetting method of preference.
3. Calculate the LR using e_s, e_u , and e_a^* .

113
114 Here we develop an algorithm to study the effects of prescreening on trace-element data. We do
115 this by using a distance or a dissimilarity score between the trace evidence e_u , the control evidence e_s ,
116 and o_i for $i \in \{1, \dots, n_a\}$. A logical score to use is a test statistic for a difference of means. Due to
117 the typical constraint that we have access to many classes with few samples within each class, we use
118 a statistic representing Hotelling's T^2 statistic, but utilizing a within-source sample covariance matrix
119 pooled across all background objects. The score used is $\delta(e_u, o_i) = \frac{2}{n_w}(\bar{y}_{u\cdot} - \bar{y}_{i\cdot})' S_w^{-1}(\bar{y}_{u\cdot} - \bar{y}_{i\cdot})$, where
120 $S_w = \frac{1}{n_a(n_w-1)} \sum_{i=1}^{n_a} \sum_{j=1}^{n_w} (\bar{y}_{ij} - \bar{y}_{i\cdot})(\bar{y}_{ij} - \bar{y}_{i\cdot})'$. This dissimilarity score will be used to build the sample
121 from relevant background population, which will then be used to calculate two likelihood ratios. The
122 likelihood ratios used are the normal-based (MVN-based) and density-based (KDE-based) LRs proposed
123 by Aitken and Lucy [5] and summarized in Zadora et. al [22]. The general prescreening procedure for trace-
124 element data is as follows. Given the control evidence, trace evidence, and evidence about the background
125 population, the objects in the sample of the background population are ordered based on their similarity
126 to the trace evidence. Then after specifying the proportion of background objects or a threshold for the
127 prescreening score, a subset of objects is selected for use as the sample from relevant source population to
128 calculate the LR. It is important when constructing the relevant source population that we do not construct
129 it only with objects that are more similar to the trace object than the control object. For a given trace e_u
130 and control e_s elements and the number of subsets L , the details to study this procedure are outlined in
131 Algorithm 2.

132 *2.3. Prescreening for SLR methods*

133 We also examine the effects of prescreening on score-based likelihood ratios in the context of fingerprints.
134 Given a score function, $\rho(\cdot, \cdot)$, that produces a similarity score of full rolled fingerprints to slap fingerprints,
135 we can prescreen our background samples using typicality of the same source scores [23]. This is done using
136 the empirical CDF of the same source scores $\hat{G}(\cdot)$, which estimates the CDF $G(\rho(o, s)) = Pr(\rho(O, S) \leq$

Algorithm 2 Studying Prescreening for Trace Element Data

1. Given evidence e_s, e_u , and e_a .
2. Choose L , the number of subsets.
3. Let n_a be the number of sources and n_w be the number of samples in each source of e_a .
4. Calculate $\tau = \delta(e_s, e_u)$.
5. Calculate $\delta_i = \delta(e_u, o_i)$ for $i = 1, \dots, n_a$.
6. Construct $Q = \{i : \delta_i > \tau\}$ and order Q based on decreasing order of $\{\delta_i : i = 1, \dots, n_a\}$.
7. Construct a sequence $N_1 = 1, \dots, N_L = |Q|$.

for $j = 1, \dots, L$ **do**

8. Construct e_a^* by removing the first N_j sources in Q from e_a .
9. Calculate the LR using e_s, e_u , and e_a^* and store.

end for

Algorithm 3 Studying Prescreening for SLR

1. Given the score $\rho(e_s, e_u)$ for e_u and e_s
2. Choose L , the number of subsets
3. Define e_a as the remaining sources.
4. Compute \hat{G} , the Empirical CDF of the same source scores of objects in e_a .
5. Given $\tau = \hat{G}(\rho(e_s, e_u))$ and $\delta_i = \hat{G}(\rho(o_i, e_u))$ $i = 1, \dots, n_a$
6. Construct $Q = \{i : \delta_i < \tau\}$ and order Q based on δ_i in increasing order.
7. Construct a sequence $N_1 = 1, \dots, N_L = |Q|$.

for $j = 1, \dots, L$ **do**

8. Construct e_a^* by removing the first N_j sources in Q from e_a .
9. Calculate the SLR using all pairwise comparisons of sources in e_a^*

end for

¹³⁷ $\rho(o, s)$), where O and S are randomly generated full rolled and slap fingerprints from the same randomly
¹³⁸ selected source. This prescreening procedure involves keeping objects where $\hat{G}(\rho(o_j, e_u)) > \alpha$, *i.e.* for a
¹³⁹ given α we cannot exclude the source that generated o_j as giving rise to the trace slap fingerprint. This
¹⁴⁰ assumes that it is possible to get the score between the trace object and the background objects in the
¹⁴¹ database. The score-based LR used is the plug-in estimate of the likelihood ratio using logistic regression.
¹⁴² Given n_1 between-source scores and n_2 within-source scores of objects in the sample from the background
¹⁴³ population, we have $SLR = \frac{\tau(\rho(e_s, e_u))}{1 - \tau(\rho(e_s, e_u))} / \frac{n_1}{n_2}$, where $\tau(\rho(e_s, e_u)) = \frac{1}{1 + exp\{-\hat{\beta}_0 - \hat{\beta}_1 * \rho(e_s, e_u)\}}$ and $\hat{\beta}_0$ and $\hat{\beta}_1$
¹⁴⁴ are the MLE's of the logistic regression fit on the known between-source and within-source scores in the
¹⁴⁵ background population [24]. Similarly to the trace-element data, the prescreening procedure for use with
¹⁴⁶ SLRs is as follows. Given the score comparing the trace object to the control object, the background

147 objects are ordered based on their scores with the trace object. Then after specifying a number of sources
 148 or a threshold for similarity, construct the sample from the relevant source population, and use the scores
 149 that compare two objects in the sample from the relevant source population to calculate the SLR. The
 150 details to study this procedure are shown in Algorithm 3.

151 **3. Simulation study**

152 To study the effects of prescreening on the value of LRs, we implement a Monte Carlo simulation
 153 to generate synthetic trace element data from different models for use as a sample from the background
 154 population. The background samples were generated from a population with and without subpopulation
 155 structures. We then control the mean of the control evidence e_s and the trace evidence e_u to see the effects
 156 of prescreening for these different scenarios. The simulations are implemented according to Algorithm 4.

Algorithm 4 Prescreening Simulation

1. Generate e_s and e_u from $MVN(\mu_s, \Sigma_\epsilon)$ and $MVN(\mu_u, \Sigma_\epsilon)$, respectively with n_w samples each.
2. Calculate $\tau = \delta(e_s, e_u)$.
3. Choose L , the number of subsets

for $t = 1, \dots, B$ **do**

4. Generate e_a with n_a objects and n_w samples from each object from the hierarchical model of choice (M_1 or M_2).
5. Calculate $\delta_i = \delta(o_i, e_u)$ for $i = 1, \dots, n_a$.
6. Construct $Q = \{i : \delta_i > \tau\}$ and order Q based on decreasing order of $\{\delta_i : i = 1, \dots, n_a\}$.
7. Construct a sequence $N_1 = 1, \dots, N_L = |Q|$.

for $j = 1, \dots, L$ **do**

8. Construct e_a^* by removing the first N_j sources in Q from e_a .
9. Calculate the MVN and KDE-based LRs using e_s, e_u , and e_a^* and store.

end for

end for

157 *3.1. Simulation setup*

158 Two models are used to study the effects of prescreening used in combination with the MVN-based and
 159 KDE-based LRs via Monte Carlo simulations. All the simulations are implemented according to Algorithm
 160 4 with $n_a = 100$, $n_w = 10$, $B = 10$, and $L = 50$. The list of all parameters used for the generative models
 161 can be found in Appendix A.

162 The first simulation experiment (Sim 1) utilizes a bivariate model with two subpopulations generated
 163 with a small overlap between components derived from misclassification probabilities as given by Ref. [25].

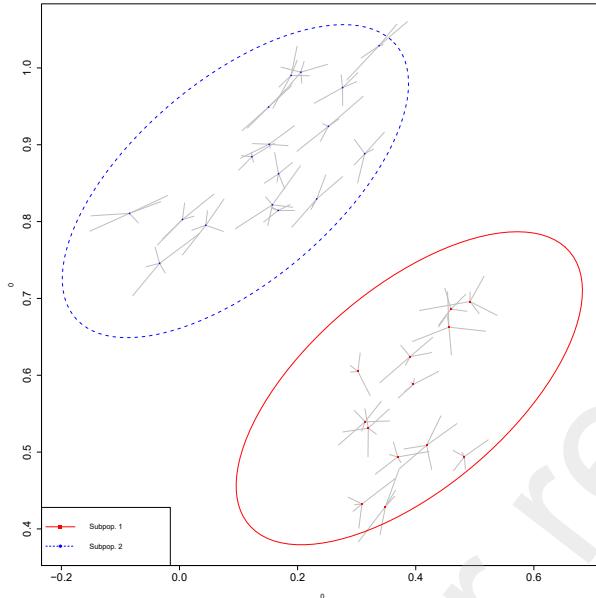


Figure 1: Sample generated from the bivariate model with two subpopulation structures (in Sim 1) represented by red and blue colors. The source means (red and blue points) and objects from each source (gray segments) for each subpopulation are given. The 95% probability contours for each component in the between-source distribution mixture model are shown in blue dashed line and red solid line.

164 The components of the source-level mixture have the same covariance matrix and the overlap is equal to
 165 0.001 for both clusters. The covariance matrix for the within-source distribution is the covariance of the
 166 between-source distribution's components scaled by 0.1. The second simulation study (Sim 2) is based on
 167 data-suggested model. Sim 2 utilizes an 8-dimensional model with two subpopulations suggested by copper
 168 wire data presented in Dettman et al. [26] where the model parameters are given. Figures 1 and 2 show
 169 pairwise scatter plots of example data sets generated from the sampling models given in Sim 1 and Sim 2,
 170 respectively. For both cases, 30 sources with 5 observations from each source are generated and displayed
 171 along with the 95% probability contours [27] for the between source distribution. For the bivariate model,
 172 we can see that the subpopulations are well separated as shown by the elliptical contours in Figure 1. The
 173 Figure also visualizes the within source variation as shown by observations as line segments branching from
 174 each source mean. The 8-dimensional copper model is visualized in Figure 2. We can see that in certain
 175 dimensions there is more overlap and there is more separation in other dimensions. For these simulation
 176 studies the *MixSim* R package [28] is utilized to generate mixtures and/or data sets from the corresponding
 177 mixtures. Also, a modified version of the *hotelling.stat()* function from the *Hotelling* package is used to
 178 calculate the prescreening statistic [29].

Figure 2: Sample generated from the copper data suggested model in Sim 2. The source means of the two subpopulations (red and blue points) and objects from each source (endpoints of the gray segments) are given. The 95% probability contours for each component in the between-source distribution mixture model are shown in blue dashed line and red solid.

179 *3.2. Simulation results*

180 The results of the Monte Carlo simulations implemented according to Algorithm 4 are displayed in
 181 Figures 3 - 6 with subplots in each figure representing different settings. In all the subplots within each
 182 figure, the vertical axis displays $\log_{10}(LR)$ (LLR) for both the MVN-based and KDE-based LRs, and the
 183 horizontal axis corresponds to the proportion of the candidate sources remaining in the sample from the
 184 relevant source population after prescreening. It is important to note that the horizontal axis has been
 185 reversed in order to visualize the value of the evidence as a function of prescreening, that is, subsetting
 186 the evidence about the background population further and further to consider a more refined relevant
 187 source population. In each subplot, the MVN-based LR, the KDE-based LR, and the true value of the LR
 188 calculated within the subpopulation containing e_u with the true parameters of the generative model are
 189 shown. If the number of sources remaining in the collection of background samples is less than the number

190 of sources needed to estimate the between-source covariance matrix before the stopping condition is met
191 (all L subsets were considered), the last point in the plot is displayed as a star.

192 For the prosecution cases, we will consider three cases for the shared mean of the control and trace
193 object. The first case we consider is when e_s and e_u have a mean at the center of the subpopulation
194 of interest, that is when $\mu_s = \mu_u = \mu_g$, where g is the index of the subpopulation of interest. In the
195 simulations, $g = 1$ and $g = 2$, for Sim 1 and Sim 2, respectively. We will refer to this mean as μ_{u_1} . The
196 second and third cases considered involve “rare” means. These utilize the points $\mathbf{w}_v = \mu_g + \alpha \frac{\mathbf{v}}{\|\mathbf{v}\|}$ such
197 that $(\mathbf{w}_v - \mu_g)' \Sigma_g^{-1} (\mathbf{w}_v - \mu_g) = \chi^2_{p,.99}$, where \mathbf{v} is the direction vector and $\chi^2_{p,.99}$ is the 99th percentile of
198 the χ^2 distribution with p degrees of freedom. Solving for α we get $\alpha = \sqrt{\frac{\chi^2_{p,.99} \|\mathbf{v}\|}{\mathbf{v}' \Sigma_g^{-1} \mathbf{v}}}$. The second case uses
199 the mean μ_{u_2} , which is $\mu_s = \mu_u = \mathbf{w}_{v_1}$, where $\mathbf{v}_1 = \mu_g - \mu_{g'}$ and g' is the index of the subpopulation that
200 is not the subpopulation of interest. The third case uses the mean μ_{u_3} , which is $\mu_s = \mu_u = \mathbf{w}_{v_2}$, where
201 $\mathbf{v}_2 = \mu_{g'} - \mu_g$.

202 Figure 3 shows the results of the prescreening simulation under the prosecution cases when the alterna-
203 tive source population is homogeneous, that is when e_s and e_u share the same source and e_a was generated
204 under M_1 . The rows in the figure represent the two generative models used to generate data (Sim 1 and
205 Sim 2) as set up in Section 3.1. The columns show the three locations for the mean, that is μ_{u_1} , μ_{u_2} ,
206 and μ_{u_3} . Looking at the first case μ_{u_1} , the KDE-based LR provides a larger value of evidence than the
207 MVN-based LR. As we prescreen in this case, both LRs decrease gradually away from the true LR within
208 the subpopulation of interest. When we consider the cases where μ_s and μ_u are away from the mean of
209 the subpopulation of interest (μ_{u_2} and μ_{u_3}), both LLRs again start around the target value of the LLR
210 and in some iterations remain relatively constant and in some cases increases as we prescreen e_a further
211 and further. We see in Sim 2 that some of these increases are very dramatic where the LR increases in
212 many orders of magnitude. Also, when the e_a contains a relatively small number of objects compared to
213 the dimensionality of the data the value of the LLR behaves radically, likely due to parameter estimation.

214 Figure 4 shows the prosecution cases when the alternative source population is heterogeneous, that is
215 when e_a was generated under M_2 . The rows and columns have the same interpretation as in Figure 3. We
216 see a similar behavior when there is a subpopulation structure in the alternative source population where
217 the LR decreases when the means of e_u and e_s are centered in the subpopulation of interest and remains
218 constant or increases when μ_s and μ_u are moved away from the mean of the subpopulation of interest.
219 When we have this subpopulation structure, we see sharp decreases or increases in the value of the LLR.
220 The sharp changes happen when around 50% and 80% of the original objects remain in e_a in Sim 1 and Sim
221 2, respectively, which line up with the mixing proportions of the subpopulations of interest suggesting that
222 they occur when the samples of background objects consists of only the objects from the subpopulation
223 of interest. These sharp changes in the LLR slow around the true value of the LLR in the subpopulation
224 of interest, suggesting that prescreening can be useful in returning a value of evidence relative to the

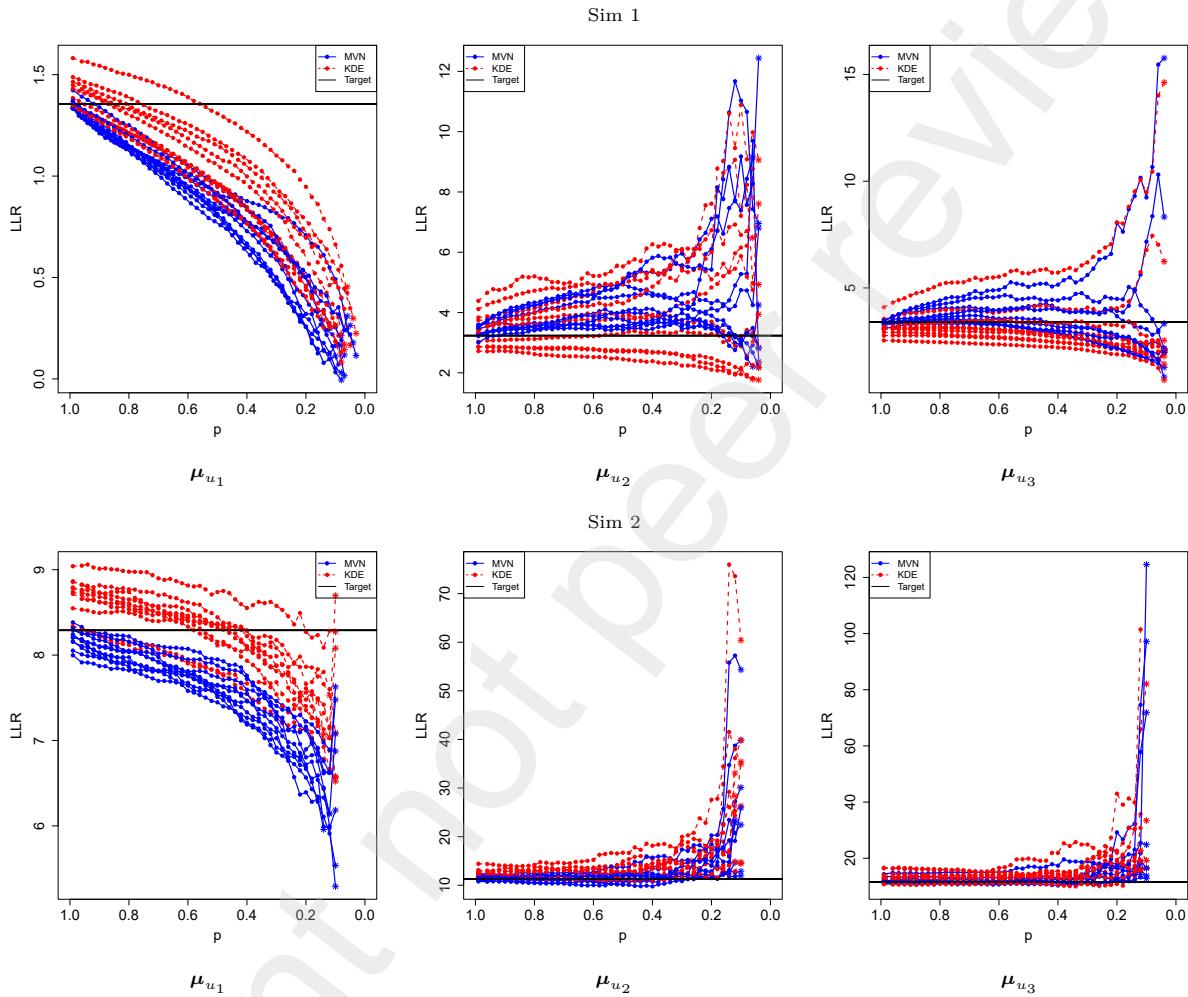


Figure 3: Prescreening simulation results under the prosecution cases when there is not a subpopulation structure in the alternative source population. The KDE-based LLR in (red dashed lines), the MVN-based LLR (solid blue lines), and the true LLR in the subpopulation that contains e_u (solid black line) are presented versus p the proportion of background objects remaining. The rows represent Sim 1 and 2 and the columns are for the different locations of e_u and e_s .

225 subpopulation of interest when the approximate value of mixing proportions is known. Again, when there
 226 are relatively few sources in the relevant source population the LLR value can drastically change.

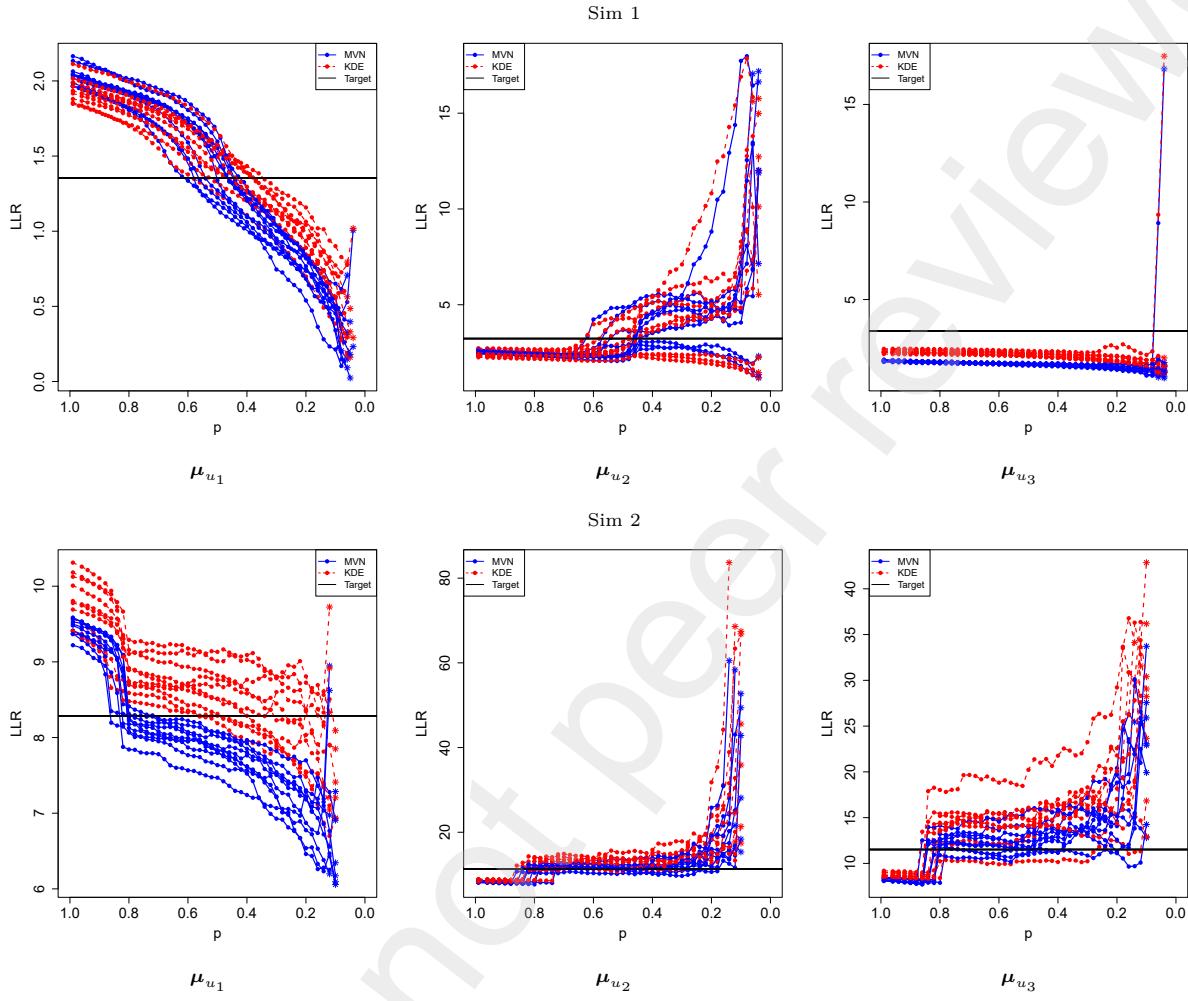


Figure 4: Prescreening simulation results under the prosecution cases when there is a subpopulation structure in the alternative source population. The KDE-based LLR in (red dashed lines), the MVN-based LLR (solid blue lines), and the true LLR in the subpopulation that contains e_u (solid black line) are presented versus p the proportion of background objects remaining. The rows represent Sim 1 and 2 and the columns are for the different locations of e_u and e_s .

227 For Sim 3, there are not any results displayed when e_a was generated under M_1 , that is when there
 228 is a homogeneous background population. This is due to the covariance of the subpopulation of interest
 229 between-source component of the Gaussian mixture being small compared to the within-source covariance.
 230 This caused the estimate for the covariance used in the *comparison* R package [30] to have a negative
 231 determinant when we only have sources from the subpopulation of interest. For this reason, we were not
 232 comfortable using the LR values outputted for these cases. An illustrative example of this scenario can be
 233 found in Appendix B.

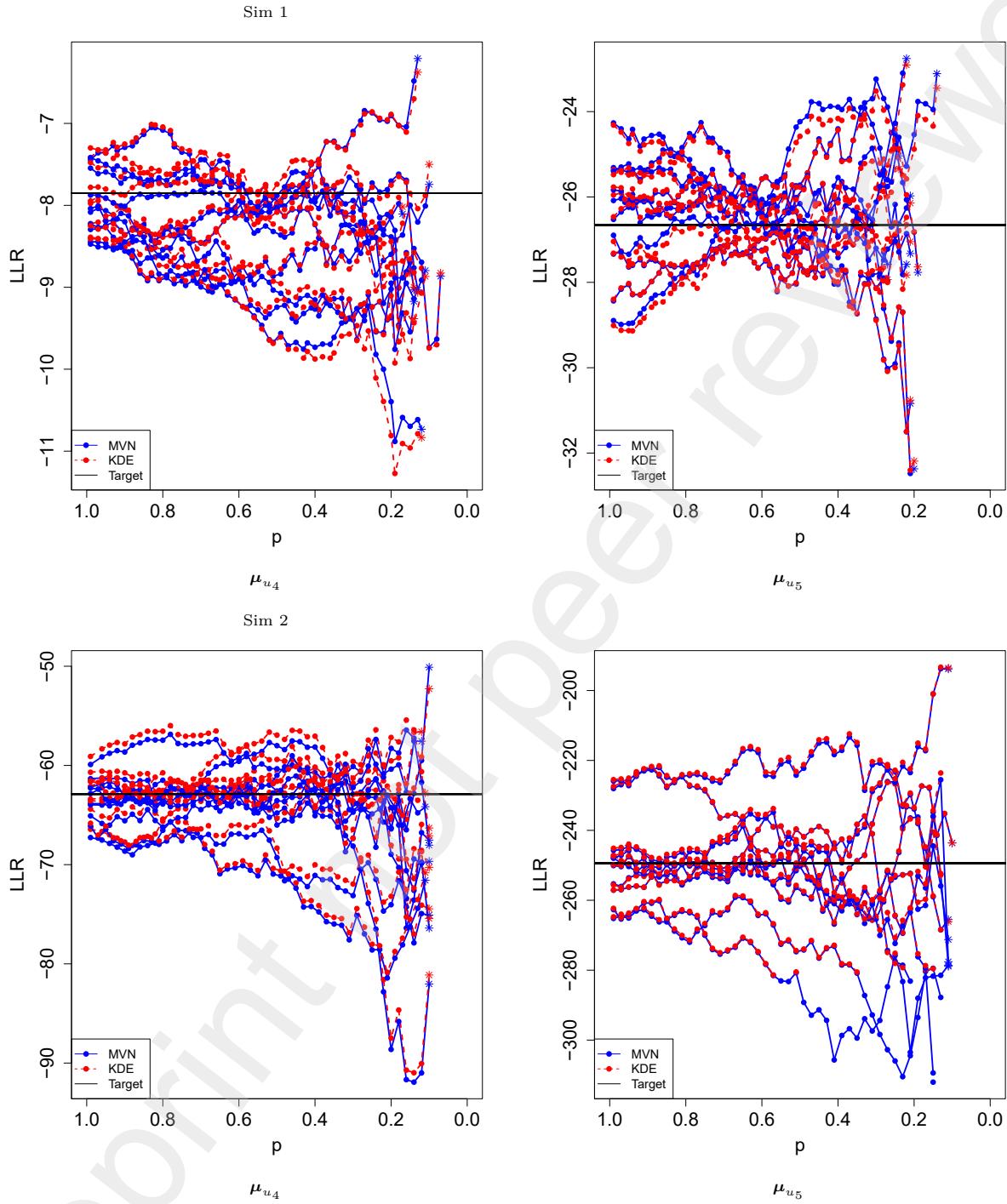


Figure 5: Prescreening simulation results under the defense cases when there is not a subpopulation structure in the alternative source population. The KDE-based LLR in (red dashed lines), the MVN-based LLR (solid blue lines), and the true LLR in the subpopulation that contains e_u (solid black line) are presented versus p the proportion of background objects remaining. The rows represent Sim 1 and 2 and the columns are for the different locations of e_u and e_s .

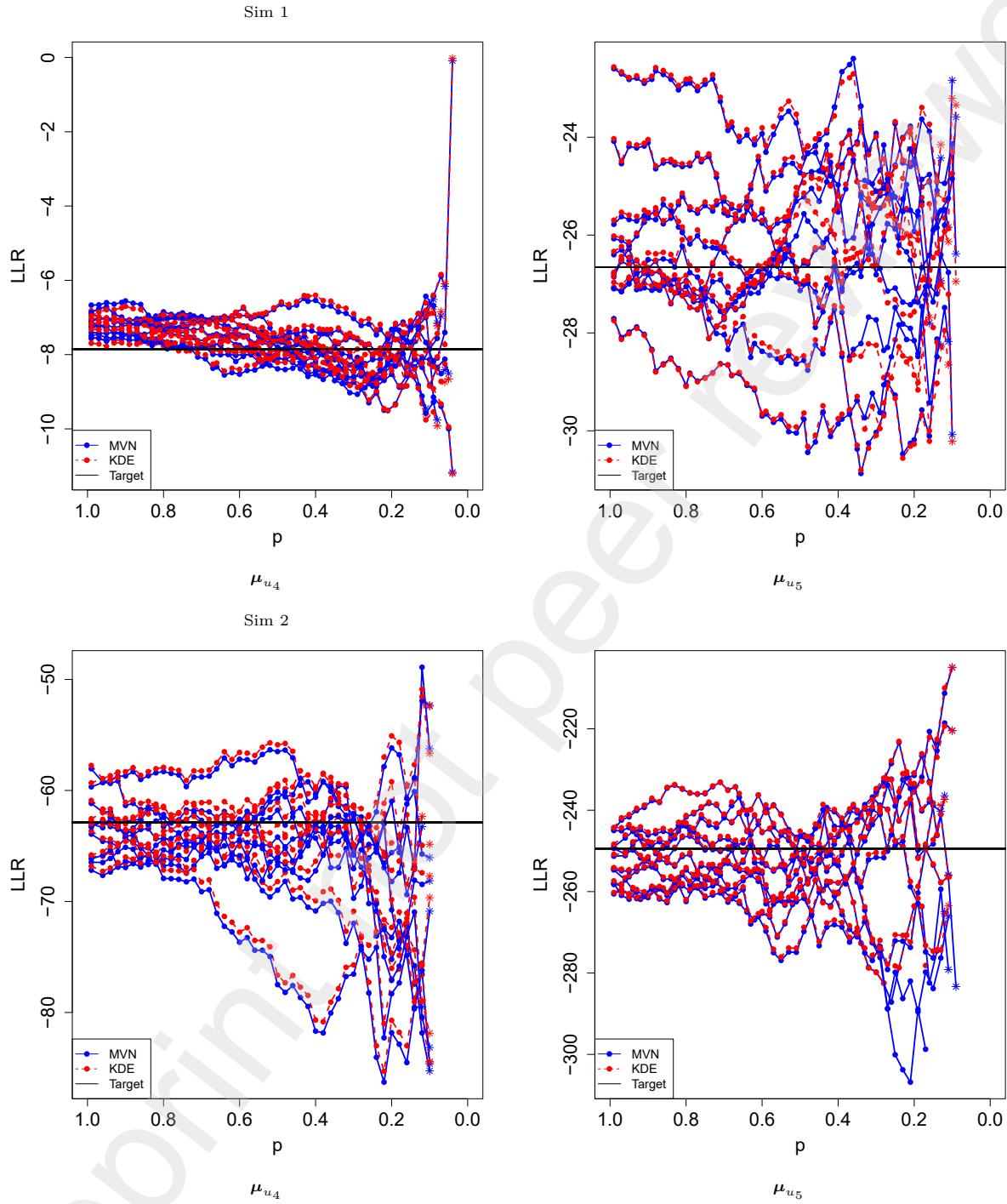


Figure 6: Prescreening simulation results under the defense cases when there is a subpopulation structure in the alternative source population. The KDE-based LLR in (red dashed lines), the MVN-based LLR (solid blue lines), and the true LLR in the subpopulation that contains e_u (solid black line) are presented versus p the proportion of background objects remaining. The rows represent Sim 1 and 2 and the columns are for the different locations of e_u and e_s .

234 For the defense cases when $\mu_u \neq \mu_s$, we will consider the case when $\mu_s = \mu_g$ and when μ_u lies on
235 the line between μ_g and $\mu_{g'}$. Two points will be considered for μ_u , which we will refer to as μ_{u_4} and μ_{u_5}
236 where the latter is closer to $\mu_{g'}$ than the former.

237 Figure 5 shows the results of the prescreening simulation under the defense cases when the alternative
238 source population is homogeneous, that is, when e_s and e_u are generated from different sources and e_a
239 is generated under M_1 . Again rows indicate the model used to generate background samples (Sim 1 and
240 Sim 2), and columns indicate how far the e_u is from e_s , that is when μ_u equals μ_{u_4} and μ_{u_5} . We see in
241 these defense cases that there does not appear to be a clear trend in the value of the LLR as a results of
242 prescreening as in the prosecution cases. There is again, however, the familiar unpredictable behavior of
243 the LLR when there are few sources remaining in the relevant source population.

244 Figure 6 shows the results of the prescreening simulations under the defense cases when there is a
245 subpopulation structure in the alternative source population. The rows and columns have the same meaning
246 as in Figure 5. We again see that there is not a noticeable trend in the value of the LLR as a result of
247 prescreening except a slight downward trend in the first subplot of the Sim 1 results. We again see that
248 the value of the LLR is very unstable when there are only a few sources remaining the alternative source
249 population.

250 4. Real data analysis

251 Three datasets are considered. The first two will illustrate the effects of prescreening on trace element
252 data using LR methods and the third will illustrate the effects on fingerprint data using SLRs. All three
253 examples have the prosecution model as ground truth, where the trace and control observations come from
254 the same source.

255 4.1. Glass data sets

256 The first data set used to illustrate examples is a three-dimensional glass data set collected by JoAnn
257 Buscaglia and distributed with Aiken and Lucy [5]. The data set has 62 windows with 3 labeled sub-
258 populations. Each window has measurements on five fragments. The scatterplot of the data is shown in
259 Figure 7 with colors denoting the three subpopulations in the data. We will focus on three windows for
260 the examples. These are windows 46, 48, 58. The parameter estimates for the hierarchical models for this
261 data set are given in Appendix C.

262 The second glass data set used is a 7-dimensional trace element glass data collected by Grzegorz Zadora
263 and distributed with Aitken et al. [31]. The data set is also available through the *comparison* R package
264 [30]. There are 200 windows with four fragments from each window and three technical replicates on each
265 fragment. The mean was taken of the technical replicates to get an observation for each fragment. We will
266 focus again on three windows from this data set, namely s127, s144, s188.

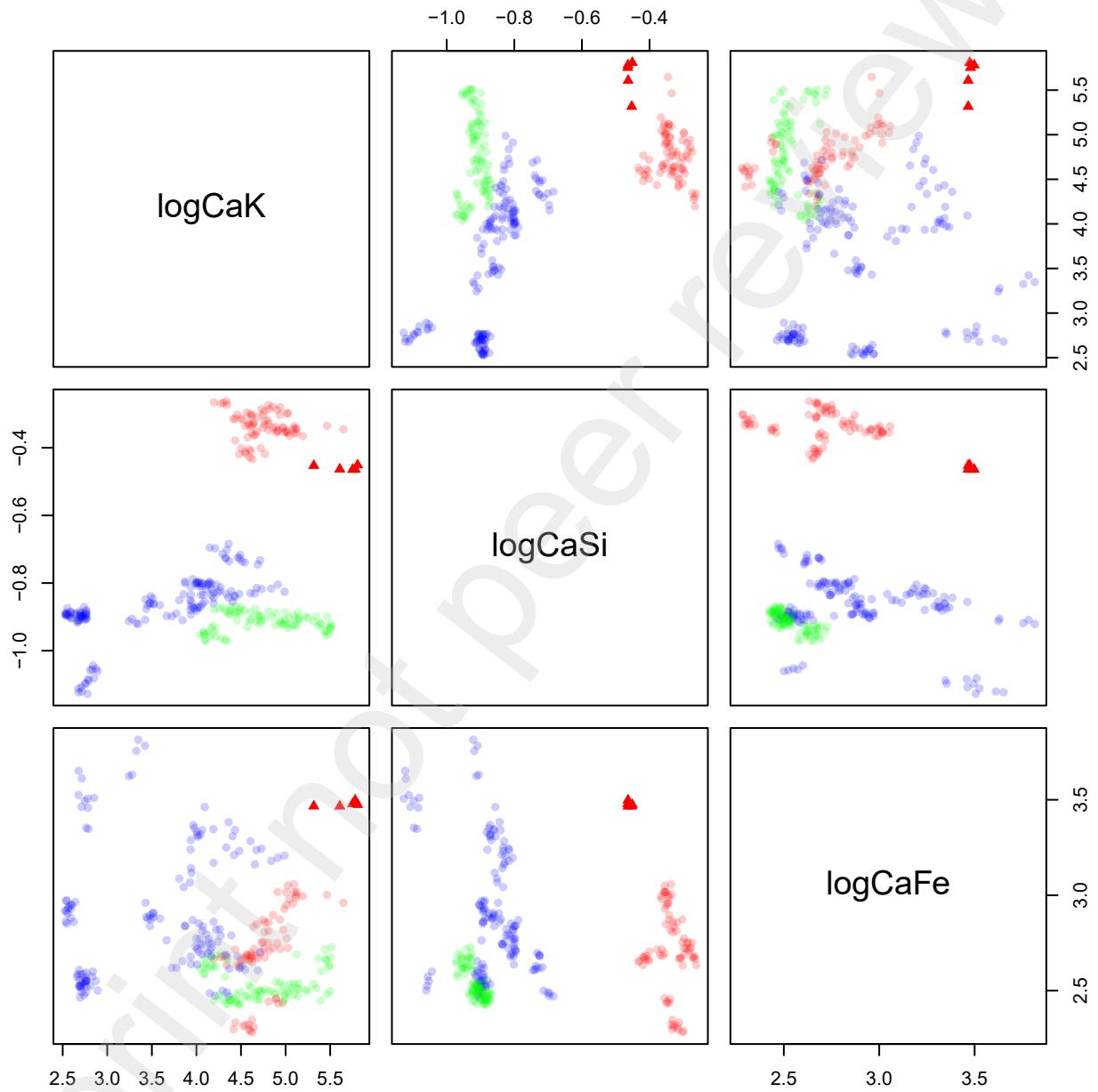


Figure 7: Scatter plot matrix visualizing the three-dimensional glass data. The colors denote the three subpopulations in the data set. The points corresponding to window 58 are displayed as triangles.

267 Figure 8 shows the results of prescreening on the two glass dataset examples. The rows denote the
268 data set used, and the columns denote the object within the data set used as the trace and control. Row
269 one shows the results of prescreening on these windows using the first two fragments within the window as
270 the trace evidence, e_u , and the last three fragments as the control evidence, e_s for each of these windows.
271 We see that windows 46 and 48, have a decrease in the value of the LR as we increase the prescreening
272 level (decrease the number of sources in the background sample). There is also a sharp decrease around
273 the value of 0.25, which agrees with the fact that the proportion of windows in the same subpopulation is
274 approximately 0.258. Window 58 has an increase in the value of the LR as the prescreening level increases.
275 Window 58 is “far away” from the other windows from the same subpopulation. This can be seen in
276 Figure 7, where the red triangles show the points corresponding to window 58. This echos the results from
277 the simulation, where when a same source pair is “rare” for its subpopulation, there can be an increase in
278 the LR as a consequence of prescreening.

279 For the second glass data, the first two fragments for each window are used as the trace evidence, e_u
280 and the last two fragments are used as the control evidence, e_s for that window. Figure 8-row 2 shows the
281 results using this data set. We see the familiar trend in windows s127 and s188 where there is a decrease
282 as we increase the prescreening level with a sharp decrease seen. Window s144 has an increase in the value
283 of the LR as we prescreen, also with a sharp increase seen in the MVN-based LR when around 20-30%
284 of the candidate background objects remain in the evidence about the relevant source population. It is
285 interesting that there is also a sharp increase seen in the window at around a proportion of 0.9 to 0.8.
286 This sharp increase is seen in both the MVN-based and KDE-based LRs, and the jumps is larger in the
287 KDE-based LR. After this first sharp change the KDE-based LR levels off to around the same LR value as
288 the MVN-based LR after both jumps. In this data set we do not have any labeled subpopulations, but after
289 these changes suggest that we may be providing a value of evidence relative to an unknown subpopulation
290 in the alternative source population.

291 4.2. Fingerprint scores

292 The third data set we use is a data set of scores on fingerprints [24]. We have all pairwise comparisons
293 of full rolled and slap fingerprints. We focus on the scores that compare a full rolled fingerprint to a slap.
294 We also have access to the pattern-level class of the fingerprint namely arch, left loop, right loop, tented
295 arch, and whorl. In this data, we defined subpopulations based on the pattern-level class, which are all
296 represented equally in the dataset. The prescreening procedure was implemented according to Algorithm
297 3.

298 Figure 9 shows the results of prescreening on three different sources namely, sources 797, 1013, and 1825.
299 The value of the SLR decreased as we prescreen starting with the entire set of scores in the background
300 population (blue solid lines). In this case, we see a steep decrease at some levels of prescreening. In the
301 data set, there was an even split of each pattern-level fingerprints (e.g., left or right loop). The plots

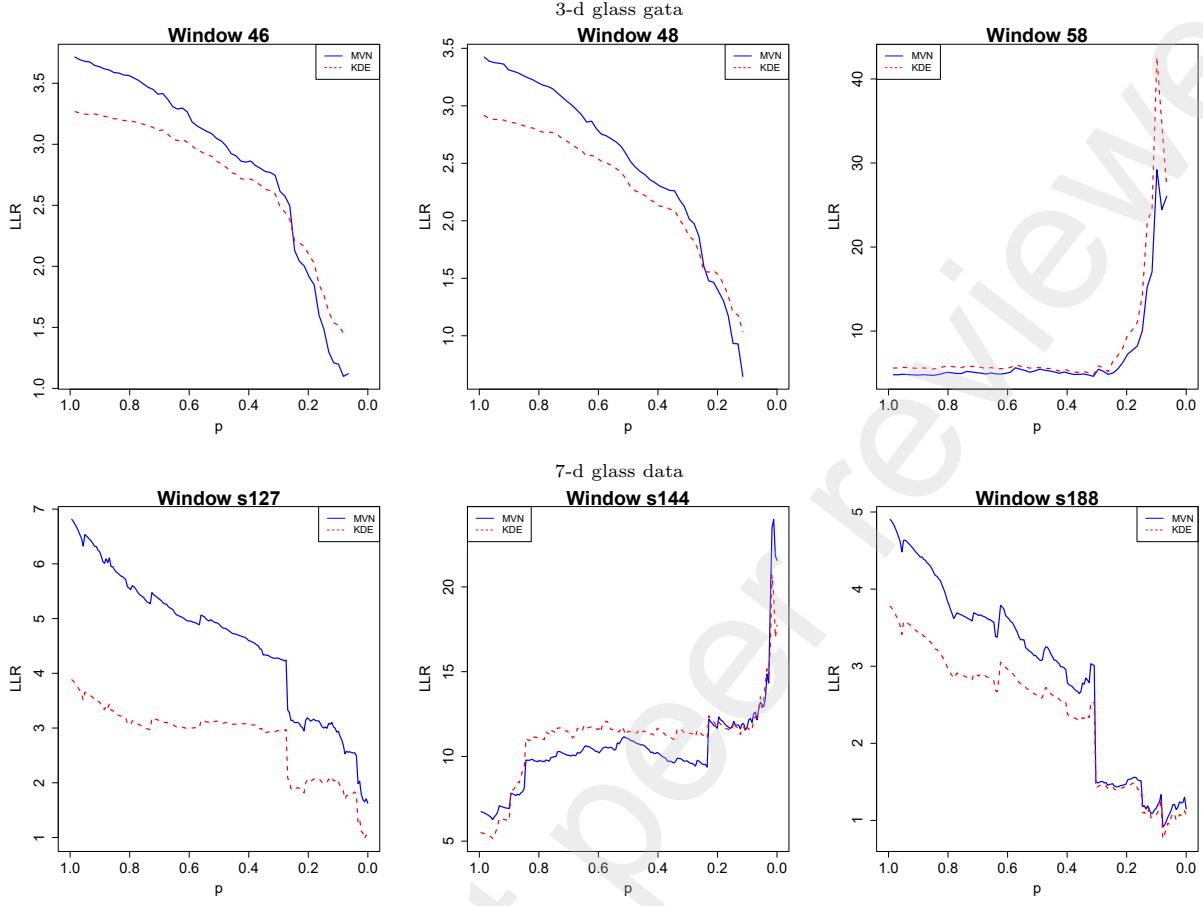


Figure 8: Prescreening results for select windows in two glass datasets under the prosecution cases. The KDE-based LLR in (red dashed lines) and the MVN-based LLR (solid blue lines) versus p the proportion of sources remaining in the relevant population are presented. The rows indicate the data set used where the first row is the 3-dimensional glass data and the second row is the 7-dimensional glass data.

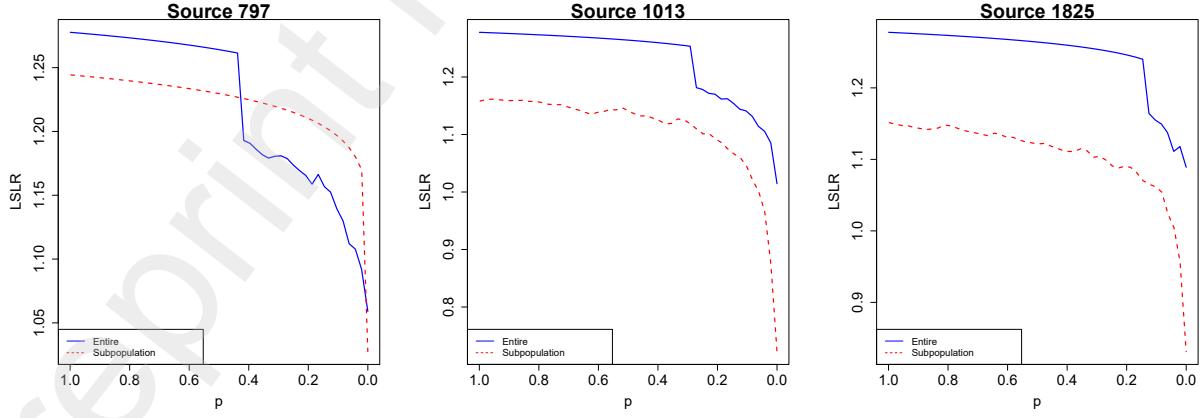


Figure 9: Prescreening results for select fingerprints in the fingerprint score data under the prosecution cases. The score-based SLR with the entire population (blue solid lines) and with pattern level subpopulation (red dashed lines) versus p the proportion of sources remaining in the relevant population are presented.

302 suggest that these sharp decreases may occur as pattern-level classes are removed from the alternative
303 source populations, as the sharp changes occur around 0.4 for sources 797 and 1013, and around 0.2 for
304 source 1825. When we only consider scores comparing objects within the same subpopulation (red dashed
305 line), or those fingerprint of the same pattern-level class, the SLR value as a result of prescreening gradually
306 decreases until a point of steep decrease.

307 **5. Conclusion**

308 This work demonstrates the empirical effect of population subsetting for some of the common methods
309 for assigning values of evidence. The results of the simulation experiments show an interesting behavior of
310 prescreening on multivariate normal and Kernel-based likelihood ratios. The simulation results suggest that
311 prescreening the background samples when the control and trace are from the same source and common
312 for their subpopulation causes a decrease in the LR. If there is a subpopulation structure in the alternative
313 source population, prescreening the background samples can help give the value of the LR relative to the
314 subpopulation of interest. This value of the LR seems to be indicated after a sharp decrease in the value of
315 the LR as the prescreening level is increased. When there is no subpopulation structure in the alternative
316 source population, prescreening dampens the value of the LR when the control and trace are common of
317 their subpopulation. In either case, we must note that the propositions of interest will change with the
318 prescreening levels, as the set of possible alternative sources at each level will be a subset of that which was
319 originally considered; where this subset of possible alternative sources is selected to be the most similar
320 to the evidence with an unknown source in some sense. Depending on the approach to defining “similar”,
321 this screening generally has the effect of increasing the likelihood of the evidence with an unknown source
322 for each of the individual sources that make up the new background population.

323 When the control and trace are from the same source but rare for the subpopulation, the value of the
324 likelihood ratio can increase, though we also saw cases where the LR decreased. Prescreening when the
325 control and latent measurements come from different sources, yields no clear trend. When we prescreen
326 too many sources, the value of the plug-in estimate of the LR becomes unstable, which is presumably due
327 to a decrease in the quality of the parameter estimates.

328 Real glass data (two data sets) examples show similar results to the simulations. We see similar results
329 with a decrease in the value of the likelihood ratio as we increase the prescreening level in certain cases, as
330 well as cases with the increase. This behavior is also seen in a fingerprint score data set with a SLR.

331 These results suggest that prescreening the background sample to obtain a sample from the relevant
332 source population for use with likelihood ratio can be useful, as it can provide a value of evidence relative
333 to the subpopulation to which the trace evidence belongs. However, if we prescreen too far the value of
334 the LR becomes unstable. Thus prescreening can be useful in giving a value of evidence relative to a
335 given subpopulation that we do not know exists, but prescreening too far can also provide an unreliable

336 value of evidence. Though it may protect against overstating the value of evidence relative to the value
337 of evidence in the latent subpopulation, prescreening fundamentally answers a different question than the
338 non-prescreened LR. Thus, if prescreening is implemented prior to the evaluation of an LR, the prescreening
339 methodology should be transparently presented along side the value of the LR. Our recommended wording
340 is something similar to:

341 “After prescreening $x\%$ of the candidate background objects to obtain a sample of the relevant source
342 population according to the method outlined in Algorithm Y the plug-in estimate of the LR is z .”

343 **Appendix A. Parameters for simulation**

344 Three models were used to generate synthetic data sets to study prescreening under simulation. The
345 first model was a generated bivariate model, the second and third models were estimated from copper data
346 and glass data, respectively.

347 *Appendix A.1. Sim 1 parameters*

348 Sim 1 utilized a bivariate model. The parameters for this model were generated using the *MixSim*
349 R package [28]. The mixing proportions for the source level Gaussian mixture are equal $\pi = (0.5, 0.5)'$.
350 The means of the source level components are $\mu_1 = (0.3891, 0.5831)'$, and $\mu_2 = (0.0947, 0.8526)'$. The
351 covariance matrices of the source level components are the same

$$\Sigma_1 = \Sigma_2 = \begin{bmatrix} 0.0143 & 0.0062 \\ 0.0062 & 0.0069 \end{bmatrix},$$

352 and the within source covariance matrix is equal to the between source covariance matrix by a factor of
353 100, $\Sigma_\epsilon = \frac{1}{100} \Sigma_1$.

354 *Appendix A.2. Sim 2 parameters*

355 Sim 2 utilized a model suggested by copper wire data. For completeness we are including the estimates
356 of the parameters for this model which is presented in Dettman et al. in the supporting material [26]. The
357 mixing proportions for the source level model are $\pi = (0.172, 0.828)'$, with means of the components of the
358 source level Gaussian mixture given by

$$\mu_1 = (7.429, 0.761, 0.774, 0.070, 0.030, 2.033, 0.917, 0.756)',$$

359 and

$$\mu_2 = (4.524, 0.465, 0.687, 0.037, 0.28, 1.065, 0.512, 0.536)'.$$

360 The covariance matrices of the source level components are equal,

$$\Sigma_1 = \Sigma_2 = \begin{bmatrix} 0.58300 & 0.043300 & -0.041700 & 3.61e-03 & -1.15e-03 & 0.083000 & 0.034700 & 0.048900 \\ 0.04330 & 0.005540 & -0.010100 & 4.17e-04 & -2.52e-04 & 0.008440 & 0.004040 & 0.004340 \\ -0.04170 & -0.010100 & 0.153000 & -8.82e-04 & 2.09e-03 & -0.014900 & -0.008780 & -0.016500 \\ 0.00361 & 0.000417 & -0.000882 & 7.80e-05 & -1.66e-05 & 0.000784 & 0.000309 & 0.000253 \\ -0.00115 & -0.000252 & 0.002090 & -1.66e-05 & 7.04e-05 & -0.000466 & -0.000285 & -0.000243 \\ 0.08300 & 0.008440 & -0.014900 & 7.84e-04 & -4.66e-04 & 0.055700 & 0.014700 & 0.002910 \\ 0.03470 & 0.004040 & -0.008780 & 3.09e-04 & -2.85e-04 & 0.014700 & 0.009250 & 0.001530 \\ 0.04890 & 0.004340 & -0.016500 & 2.53e-04 & -2.43e-04 & 0.002910 & 0.001530 & 0.019300 \end{bmatrix}.$$

361 The within-source covariance matrix is given as

$$\Sigma_w = \begin{bmatrix} 4.33e-03 & 4.05e-04 & 3.89e-04 & 1.66e-05 & -2.45e-05 & 9.05e-04 & 6.79e-04 & 4.28e-04 \\ 4.05e-04 & 3.95e-04 & 1.34e-05 & -1.18e-06 & 2.39e-06 & 3.76e-04 & 2.36e-04 & 1.57e-04 \\ 3.89e-04 & 1.34e-05 & 1.71e-04 & 9.30e-06 & 4.89e-06 & 7.65e-05 & 4.46e-05 & -1.37e-04 \\ 1.66e-05 & -1.18e-06 & 9.30e-06 & 1.67e-06 & 7.29e-07 & 6.64e-06 & -5.34e-06 & -1.08e-05 \\ -2.45e-05 & 2.39e-06 & 4.89e-06 & 7.29e-07 & 1.69e-06 & 1.52e-05 & -8.06e-06 & -1.24e-05 \\ 9.05e-04 & 3.76e-04 & 7.65e-05 & 6.64e-06 & 1.52e-05 & 3.47e-03 & 1.49e-04 & 2.20e-04 \\ 6.79e-04 & 2.36e-04 & 4.46e-05 & -5.34e-06 & -8.06e-06 & 1.49e-04 & 3.61e-04 & 1.81e-04 \\ 4.28e-04 & 1.57e-04 & -1.37e-04 & -1.08e-05 & -1.24e-05 & 2.20e-04 & 1.81e-04 & 2.27e-03 \end{bmatrix}.$$

362 Appendix B. Covariance estimation

363 When working with the simulated glass data, an interesting scenario for the estimation of the covariance
 364 matrix was found. In particular when the between source covariance matrix, Σ_a , was around the same
 365 “size” as or smaller than the within source covariance matrix, Σ_ϵ . The method used in the *comparison* R
 366 package gave an estimate of Σ_a that had a small but negative eigenvalue. Thus the resulting estimate of
 367 the between source covariance matrix does not lie within the parameter space of covariance matrices. We
 368 will walk through a simple bivariate example showing a case when this estimation can arise.

369 A sample of $n_a = 3$ sources with $n_w = 10$ observations from each source was generating according to
 370 M_1 with parameters $\mu = (0, 0)'$,

$$\Sigma_a = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 2 \end{bmatrix},$$

371 and $\Sigma_\epsilon = \frac{2}{3}\Sigma_a$. Running this data through the *two.level.components()* function in the *comparison* package
 372 yields an estimate of the between source covariance matrix of

$$\hat{\Sigma}_a = \begin{bmatrix} 2.493 & 3.588 \\ 3.588 & 5.045 \end{bmatrix},$$

373 which has eigenvalue of 7.577 and -0.0388 . Thus this resulting matrix is not positive definite and is not
 374 a covariance matrix. When using e_a to calculate the KDE LR, an error stating “negative determinant -
 375 taking absolute value” is displayed, but still returns a value of the LR. In cases where this appeared, we
 376 were not comfortable reporting the value of the LR.

377 **Appendix C. Glass data summaries**

378 The parameter estimates for the for the 7-dimensional trace element glass data collected by Grzegorz
 379 Zadora and distributed with Aitken et al. [31] needed for the normal-based likelihood ratio are listed
 380 here. The data set is also available through the *comparison* R package [30]. After taking the mean of the
 381 technical replicates to get a measurement for each fragment, the overall mean estimate is

$$\hat{\mu} = (-0.7101, -1.8473, -2.3097, -0.1539, -3.1066, -1.1383, -4.7975)'.$$

382 The estimate of the covariance matrix of the between source distribution is

$$\hat{\Sigma}_a = \begin{bmatrix} 0.00355 & 0.03543 & -0.00476 & 0.00024 & -0.03345 & 0.03870 & 0.01106 \\ 0.03543 & 1.52429 & -0.22578 & -0.00598 & -0.75369 & 0.63492 & 0.37796 \\ -0.00476 & -0.22578 & 0.90573 & -0.00282 & 0.69872 & -0.15166 & -0.34354 \\ 0.00024 & -0.00598 & -0.00282 & 0.00136 & 0.00232 & -0.00237 & 0.00761 \\ -0.03345 & -0.75369 & 0.69872 & 0.00232 & 2.23979 & -0.50312 & -0.27782 \\ 0.03870 & 0.63492 & -0.15166 & -0.00237 & -0.50312 & 0.85480 & 0.16917 \\ 0.01106 & 0.37796 & -0.34354 & 0.00761 & -0.27782 & 0.16917 & 1.86819 \end{bmatrix}.$$

383 The estimate for the covariance matrix of the within source distribution is

$$\hat{\Sigma}_\epsilon = \begin{bmatrix} 0.00018 & 0.00017 & -0.00016 & 0.00001 & 0.00038 & 0.00020 & 0.00017 \\ 0.00017 & 0.04394 & -0.00063 & 0.00054 & -0.00057 & -0.00039 & 0.00221 \\ -0.00016 & -0.00063 & 0.02934 & 0.00029 & 0.00232 & 0.00030 & -0.00010 \\ 0.00001 & 0.00054 & 0.00029 & 0.00105 & 0.00282 & 0.00168 & 0.00059 \\ 0.00038 & -0.00057 & 0.00232 & 0.00282 & 0.26230 & 0.00378 & -0.03141 \\ 0.00020 & -0.00039 & 0.00030 & 0.00168 & 0.00378 & 0.01285 & 0.00295 \\ 0.00017 & 0.00221 & -0.00010 & 0.00059 & -0.03141 & 0.00295 & 0.09435 \end{bmatrix}.$$

The estimated parameter estimates for the three-dimensional glass data set collected by JoAnn Buscaglia and distributed with Aiken and Lucy [5] are listed as follows. The data set has 62 windows with 3 labeled subpopulations. The estimate of the mixing proportions for the three subpopulations are

$$\hat{\pi} = (0.258, 0.258, 0.484).$$

The overall mean estimate is

$$\hat{\mu} = (4.1983, -0.7450, 2.7684)'.$$

The mean estimate for the first group is

$$\hat{\mu}_1 = (4.8134, -0.3441, 2.7540)'$$

The mean estimate for the second group is

$$\hat{\mu}_2 = (4.7594, -0.9146, 2.5343)'$$

Finally, the mean estimate for the third group is

$$\hat{\mu}_3 = (3.5709, -0.8685, 2.9011)'$$

384 The estimate of the covariance matrix of the within-source and between-source distributions are

$$385 \quad \hat{\Sigma}_\epsilon = \begin{bmatrix} 1.679e-02 & 2.6619e-05 & 2.209e-04 \\ 2.661e-05 & 6.530e-05 & 7.399e-06 \\ 2.209e-04 & 7.399e-06 & 1.332e-03 \end{bmatrix} \text{ and } \hat{\Sigma}_a = \begin{bmatrix} 0.7059 & 0.0988 & -0.0463 \\ 0.0988 & 0.0621 & -0.0070 \\ -0.0463 & -0.0070 & 0.1009 \end{bmatrix}.$$

388 The estimate of the between-source covariance matrix of the three subpopulations are

$$389 \quad \hat{\Sigma}_1 = \begin{bmatrix} 0.1060 & -0.0083 & 0.0762 \\ -0.0083 & 0.0026 & -0.0069 \\ 0.0762 & -0.0069 & 0.0825 \end{bmatrix}, \quad \hat{\Sigma}_2 = \begin{bmatrix} 0.1771 & 0.0007 & 0.0019 \\ 0.0007 & 0.0007 & -0.0019 \\ 0.0019 & -0.0019 & 0.0065 \end{bmatrix},$$

$$390 \quad \text{and } \hat{\Sigma}_3 = \begin{bmatrix} 0.5490 & 0.0480 & 0.0257 \\ 0.0480 & 0.0085 & -0.0119 \\ 0.0257 & -0.0119 & 0.1178 \end{bmatrix}.$$

391 **References**

392 [1] C. Aitken, P. Roberts, G. Jackson, Practitioner guide no 1 : Fundamentals of probability and statistical
393 evidence in criminal proceedings guidance for judges, lawyers, forensic scientists and expert witnesses,
394 Prepared under the auspices of the Royal Statistical Society's Working Group on Statistics and the
395 Law, London, United Kingdom (2010).

396 [2] European Network of Forensic Science Institutes, Strengthening the evaluation of forensic results across
397 europe (STEEOFRAE), ENFSI guideline for evaluative reporting in forensic science, approved version
398 3.0, European Network of Forensic Science Institutes, Wiesbaden, Germany (2015).

399 [3] D. M. Ommen, C. P. Saunders, Building a unified statistical framework for the forensic identification
400 of source problems, *Law, Probability and Risk* 17 (2) (2018) 179–197. doi:10.1093/lpr/mgy008.

401 [4] D. V. Lindley, A problem in forensic science, *Biometrika* 64 (2) (1977) 207–213. doi:10.2307/2335686.

402 [5] C. G. G. Aitken, D. Lucy, Evaluation of trace evidence in the form of multivariate data, *Journal of*
403 *the Royal Statistical Society. Series C (Applied Statistics)* 53 (1) (2004) 109–122. doi:10.1046/j.
404 0035-9254.2003.05271.x.

405 [6] J. M. Curran, The statistical interpretation of forensic glass evidence, *International Statistical Review*
406 / *Revue Internationale de Statistique* 71 (3) (2003) 497–520.
407 URL <http://www.jstor.org/stable/1403825>

408 [7] S. Bozza, F. Taroni, R. Marquis, M. Schmittbuhl, Probabilistic evaluation of handwriting evidence:
409 Likelihood ratio for authorship, *Journal of the Royal Statistical Society. Series C (Applied Statistics)*
410 57 (3) (2008) 329–341. doi:10.1111/j.1467-9876.2007.00616.x.

411 [8] A. B. Hepler, C. P. Saunders, L. J. Davis, J. Buscaglia, Score-based likelihood ratios for handwriting
412 evidence, *Forensic Science International* 219 (1-3) (2012) 129–140. doi:10.1016/j.forsciint.2011.
413 12.009.

414 [9] I. Evett, J. Lambert, J. Buckleton, A Bayesian approach to interpreting footwear marks in forensic
415 casework, *Science & Justice* 38 (4) (1998) 241–247. doi:10.1016/S1355-0306(98)72118-5.

416 [10] C. Neumann, C. Champod, R. Puch-Solis, N. Egli, A. Anthonioz, A. Bromage-Griffiths, Computation
417 of likelihood ratios in fingerprint identification for configurations of any number of minutiae, *Journal*
418 *of Forensic Sciences* 52 (1) (2007) 54–64. doi:10.1111/j.1556-4029.2006.00327.x.

419 [11] A. Ruifrok, P. Vergeer, A. M. Rodrigues, From facial images of different quality to score based LR,
420 *Forensic Science International* 332 (2022) 111201. doi:10.1016/j.forsciint.2022.111201.

421 [12] C. Champod, D. Meuwly, The inference of identity in forensic speaker recognition, *Speech Communication* 31 (2) (2000) 193–203. doi:10.1016/S0167-6393(99)00078-3.

422 [13] C. G. G. Aitken, D. Lucy, Corrigendum: Evaluation of Trace Evidence in the Form of Multivariate
423 Data, *Journal of the Royal Statistical Society Series C: Applied Statistics* (2004) 665–666doi:10.
424 1111/j.1467-9876.2004.02031.x.

425 [14] P. Vergeer, From specific-source feature-based to common-source score-based likelihood-ratio systems:
426 ranking the stars, *Law, Probability and Risk* 22 (1) (2023) mgad005. doi:10.1093/lpr/mgad005.

427 [15] T. Hicks, A. Biedermann, J. de Koeijer, F. Taroni, C. Champod, I. Evett, The importance of dis-
428 tinguishing information from evidence/observations when formulating propositions, *Science & Justice*
429 55 (6) (2015) 520–525. doi:10.1016/j.scijus.2015.06.008.

430 [16] G. S. Morrison, E. Enzinger, C. Zhang, Refining the relevant population in forensic voice com-
431 parison – a response to hicks et alii (2015) the importance of distinguishing information from

433 evidence/observations when formulating propositions, *Science & Justice* 56 (6) (2016) 492–497.
434 doi:10.1016/j.scijus.2016.07.002.

435 [17] D. de Zwart, J. van der Weerd, Extraction of the relevant population from a forensic database, *Science & Justice* 61 (4) (2021) 419–425. doi:10.1016/j.scijus.2021.03.008.

436

437 [18] National Institute of Standards and Technology, Friction ridge process map (current practice),
438 https://www.nist.gov/system/files/documents/2019/12/10/Friction%20Ridge%20Process%20Map_December%202019.pdf, accessed July 10, 2023 (December 2019).

439

440 [19] National Institute of Standards and Technology, Process map of current practices in forensic
441 speaker recognition, https://www.nist.gov/system/files/documents/2019/11/05/speaker_recognition_process_map_20190930.pdf, accessed July 10, 2023 (September 2019).

442

443 [20] Expert Working Group for Human Factors in Handwriting Examination, Forensic handwriting examination and human factors: Improving the practice through a systems approach, U.S. Department
444 of Commerce, National Institute of Standards and Technology (May 2021). doi:10.6028/NIST.IR.
445 8282r1.

446

447 [21] D. M. Ommen, C. P. Saunders, A Problem in Forensic Science Highlighting the Differences between
448 the Bayes Factor and Likelihood Ratio, *Statistical Science* 36 (3) (2021) 344 – 359. doi:10.1214/20-STS805.

449

450 [22] G. Zadora, A. Martyna, D. Ramos, C. Aitken, *Statistical analysis in forensic science: evidential value of multivariate physicochemical data*, John Wiley & Sons, 2014.

451

452 [23] A. O'Brien, A kernel based approach to determine atypicality, Ph.D. thesis, South Dakota State
453 University (2017).

454 URL <https://openprairie.sdsstate.edu/etd/1711>

455

456 [24] E. Tabassi, L. Tang, X. Zhu, Repeatability and reproducibility of forensic likelihood ratio methods
457 when sample size ratio varies, The International Joint Conference on Biometrics (IJCB 2017), Denver,
458 CO, 2018. doi:10.1109/BTAS.2017.8272737.

459

460 [25] R. Maitra, V. Melnykov, Simulating data to study performance of finite mixture modeling and
461 clustering algorithms, *Journal of Computational and Graphical Statistics* 19 (2) (2010) 354–376.
462 doi:10.1198/jcgs.2009.08054.

463

464 [26] J. R. Dettman, A. A. Cassabaum, C. P. Saunders, D. L. Snyder, J. Buscaglia, Forensic discrimination
465 of copper wire using trace element concentrations, *Analytical Chemistry* 86 (16) (2014) 8176–8182.
466 doi:10.1021/ac5013514.

467

464 [27] D. J. Murdoch, E. D. Chow, A graphical display of large correlation matrices, *The American Statistician* 50 (2) (1996) 178–180. doi:10.2307/2684435.

465

466 [28] V. Melnykov, W.-C. Chen, R. Maitra, Mixsim: An **R** package for simulating data to study performance
467 of clustering algorithms, *Journal of Statistical Software* 51 (12) (2012) 1–25. doi:10.18637/jss.v051.i12.

468

469 [29] J. Curran, T. Hersh, Hotelling: Hotelling's T^2 Test and Variants, R package version 1.0-8 (2021).
470 URL <https://CRAN.R-project.org/package=Hotelling>

471 [30] D. Lucy, J. Curran, A. Martyna, comparison: Multivariate Likelihood Ratio Calculation and Evalu-
472 ation, R package version 1.0-5 (2020).
473 URL <https://CRAN.R-project.org/package=comparison>

474 [31] C. G. G. Aitken, G. Zadora, D. Lucy, A two-level model for evidence evaluation, *Journal of Forensic
475 Sciences* 52 (2) (2007) 412–419. doi:10.1111/j.1556-4029.2006.00358.x.