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Effects of prescreening for likelihood ratio approaches in the forensic
identification of source problems

Abstract

Prescreening is a methodology where forensic examiners select samples similar to given trace evidence

to represent the background population. This background evidence helps assign a value of evidence using

a likelihood ratio or Bayes factor. A key advantage of prescreening is its ability to mitigate effects from

subpopulation structures within the alternative source population by isolating the relevant subpopulation.

This paper examines the impact of prescreening before assigning evidence value. Extensive simulations

with synthetic and real data, including trace element and fingerprint score examples, were conducted.

The findings indicate that prescreening can provide an accurate evidence value in cases of subpopulation

structures but may also yield more extreme or dampened evidence values within specific subpopulations.

The study suggests that prescreening is beneficial for presenting evidence relative to the subpopulation

of interest, provided the prescreening method and level are transparently reported alongside the evidence

value.

Keywords: value of evidence, likelihood ratio, relevant source population, latent population structures,

forensic source identification

1. Introduction1

In forensic source identification, the forensic examiner is often tasked with providing a value of evidence2

relative to two competing propositions about the source of the evidence [1, 2]. In the specific source problem,3

the first proposition is often referred to as the prosecution hypothesis, Hp, that the trace evidence is from4

the specified source of known origin. The second proposition is commonly called the defense hypothesis, Hd,5

that the trace evidence is from a randomly selected source in the alternative source population [3]. Often6

a sample from the background population is used to model the population of alternative sources [4, 5]. A7

slightly different problem that is encountered in forensic source identification is the common but unknown8

source problem. The hypotheses that the forensic examiner is evaluating now change to Hp : the two pieces9

of trace evidence are from the same randomly selected source in the alternative source population versus10

Hd : the two pieces of trace evidence are from two different randomly selected sources in the population11

of sources [3]. Like in the specific source problem, a sample from the background population is often12

introduced to model the alternative source population. The key difference between the two problems is13

that in the specific source problem, the source of one of the pieces of evidence is known [3].14

The use of the likelihood ratio (LR) approach for presenting a value of evidence has been proposed for15
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a variety of evidence types such as glass [4, 5, 6], handwriting [7, 8], footwear marks [9], fingerprints [10],16

facial images [11], and speech [12]. The normal-based likelihood ratio methods such as Lindley’s Bayes17

Factors (BFs) [4, 5, 13] and a multivariate kernel density-based LR [5] are commonly used methods for18

presenting a value of evidence. The normal-based Bayes factors are also presented as specific source BFs,19

but are equivalent to plug-in estimates of common but unknown source LRs due to prior specification [14].20

They are often used in the specific source setting, as such the paper will discuss these LRs through the21

specific source lens. These methods also assume a hierarchical normal sampling structure. This normality22

assumption may not always be reliable, as there can be a subpopulation structure in the population of23

sources.24

In likelihood ratio-based approaches, evidence about the relevant source population is needed to account25

for nuisance parameters. There has been discussion about what constitutes the relevant source population26

for use in speaker recognition [15, 16], glass, and textiles [17]. Discussions include whether information27

related to the trace evidence should be used in building the evidence about the background population,28

such as known categorical variables including speaker accent, fiber color, etc. There is also discussion of29

an important note, that by changing the relevant population considered, the hypotheses about the source30

of the trace evidence also change relative to that known subpopulation structure [16].31

Prescreening is a methodology in which a forensic examiner uses a subset of the given evidence about32

background (or control) objects in comparison with the trace evidence. Using this subset changes the33

proposed population from which the alternative source can arise. For example, prior to producing a34

value of evidence for a fingerprint comparison, the forensic examiner may do a database search to find35

the most similar known fingerprints to the latent print to calculate the value of evidence. As different36

examiners may use a different number of similar known fingerprints for comparison, studying the changes37

in the value of evidence as a result of prescreening is of interest. The National Institute of Standards and38

Technology (NIST) has developed process maps indicating current practices in forensic science. The process39

maps for friction ridge [18], speaker recognition [19], and handwriting [20] discuss selecting data to use in40

providing a summary of evidence, in which a subset of the original database may be used in comparison41

with the trace. Though likelihood ratios may not be common practice for all of these evidence types, it42

suggests that examiners sometimes think in terms of a relevant source population or a subpopulation of43

the original population. This paper extends previous works such as Ref. [16] that considered LRs for44

known subpopulation structures to unknown subpopulation structures characterized by a latent variable45

that cannot be accounted for a priori.46

This work discusses the implications of prescreening prior to obtaining an LR. One potential advan-47

tage of prescreening is that it may be useful in isolating samples from a subpopulation of interest. This48

subpopulation of interest may be characterized by a known variable, or a latent variable. In the case of49

the latent variable, when the subpopulation structure is well studied and the rate at which samples are en-50
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countered from the subpopulation are known, prescreening can be useful in isolating the samples from the51

subpopulation of interest in the database. This in turn can help assign a value of evidence relative to this52

subpopulation, which is the value of evidence assuming the true membership labels are known for objects53

belonging to the same subpopualtion as the trace evidence. In cases where there is not a subpopulation54

structure prescreening tends to give a dampened value of evidence relative to the LR in the entire popula-55

tion. In either case the propositions being evaluated change, as such the prescreening methodology should56

be transparently reported alongside the value of evidence, if it is used. The rest of the paper is organized57

as follows. Section 2 describes the proposed procedure to study prescreening prior to the evaluation of58

an LR or a SLR. Section 3 discusses the results from extensive simulation studies. Section 4 presents the59

application to various datasets in forensics. Section 5 concludes the paper.60

2. Methods61

2.1. Preliminaries62

One method of comparing the sampling models corresponding to Hp and Hd is through a likelihood63

ratio (LR) or a Bayes factor (BF) [21], where sampling models Mp and Md are specified corresponding to64

Hp and Hd, respectively and then the resulting ratio of (marginal) likelihoods is presented. An LR value65

greater than one suggests support for Mp, where an LR value less than one suggests support for Md. It is66

important to note that Mp and Md may differ under the specific source and common but unknown source67

problems. As such, an LR for the specific source problem will not necessarily be the same as an LR under68

the common but unknown source problem [3].69

To begin discussing the sampling models consider Y sj for j = 1, . . . , nw, which will denote the jth sample70

from the specific source. We have the specific source evidence, Es , which is alternatively called the control71

evidence, is the set of all nw observation from the specific source. That is Es = {Y sj : j = 1, . . . , nw}.72

Similarly, let Y uj for j = 1, . . . , nw denote the jth sample of the recovered evidence of unknown source.73

We define Eu as the the collection of samples from the unknown source, which is also called the trace74

evidence. This gives Eu = {Y uj : j = 1, . . . , nw}. Finally, consider Y ij for i = 1, . . . , na and j = 1, . . . , nw,75

which is the jth sample from the ith background object. We will denote the collection of samples from76

the ith object or source as Oi = {Y ij , j = 1, . . . , nw}, and the collection of measurements from all of the77

na objects as Ea = {Y ij : i = 1, . . . , na, j = 1, . . . , nw}. We will refer to Ea as the evidence about the78

alternative source population or evidence about the background population. Thus we have our complete79

set of evidence, E = {Es, Eu, Ea}.80

Following the developments in Ommen et al. [21], this model for generating background objects illus-81

trates the case where there is not a latent subpopulation structure in the alternative source population.82

When there is not a subpopulation structure we will refer to the background population as homogeneous.83

In this case, we will assume that the observations are generated by a hierarchical normal sampling model,84

3
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M1, written as85

Y ij = ai + εij ,

ai ∼ MVN(µ,Σa),

εij ∼ MVN(0,Σε),

(1)

for i ∈ {1, . . . , na} and j ∈ {1, . . . , nw}. In this model ai represents the ith randomly selected source’s mean86

and εij represents the deviation of the jth sample from the ith source’s mean. Here Σa and Σε represent87

the between- and within-source covariance matrices, respectively. For the case where the alternative source88

population has a subpopulation structure, we propose the following hierarchical sampling model with a89

Gaussian mixture model at the source level. This second model for generating background objects, M2,90

for i ∈ {1, . . . , na} and j ∈ {1, . . . , nw} is given as91

Y ij = ai + εij ,

Zi ∼ Categorical(K,π1, . . . , πK),

ai|Zi = k ∼ MVN(µk,Σk),

εij ∼ MVN(0,Σε).

(2)

In this model, Zi represents the result of randomly selecting one of the subpopulations in the alternative92

source population. Given the result of Zi = k, the random selection of the source mean, ai, is characterized93

by the source level distribution of the kth subpopulation. Like before, εij represents a deviation of the jth94

sample from the ith source mean. The distribution of these within source deviations is assumed to be the95

same across all of the subpopulations.96

In addition, for the control evidence, we assume that Es is generated according to the model Ms which97

is given by98

Y sj ∼ MVN(µs,Σs), (3)

where µs and Σs are the mean and covariance matrix from the specific source from which the control99

evidence originated. Finally, to generate trace evidence, there are two competing models relative to the100

two competing propositions: the defense, Hd, and the prosecution, Hp. Under the prosecution proposition,101

Mp will be identical to Ms. Therefore, Y uj ∼ MVN(µs,Σs). On the other hand, under the defense102

proposition, Eu is treated as being randomly sampled from our alternative source population. This gives103

Md is the same as M1 or M2 with na = 1, depending on the existence of subpopulations in the alternative104

source population. We will denote realizations of the evidence and random variables/vectors as lower105

case letters, where our observed set of evidence is e = {es, eu, ea} and an observed sample is yi′j , for106

i′ ∈ {s, u, 1, . . . , na} and j = 1, . . . , nw.107
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2.2. Prescreening for LR methods108

The general prescreening procedure used by practitioners is defined as using a subset of the evidence109

about the background population for use in calculating the value of evidence. For ease, the general pre-110

screening procedure for use with LR methods is written out in algorithmic form in Algorithm 1. Therefore,111

in our notation, given a database (ea) the expert will select a subset e∗a using some criterion for selecting112

background objects oi for i ∈ {1, . . . , na} for use as the sample from the relevant population.

Algorithm 1 General Prescreening Procedure
1. Given evidence es, eu, and ea.

2. Construct e∗a, a subset of ea, using subsetting method of preference.

3. Calculate the LR using es, eu, and e∗a.

113

Here we develop an algorithm to study the effects of prescreening on trace-element data. We do114

this by using a distance or a dissimilarity score between the trace evidence eu, the control evidence es,115

and oi for i ∈ {1, . . . , na}. A logical score to use is a test statistic for a difference of means. Due to116

the typical constraint that we have access to many classes with few samples within each class, we use117

a statistic representing Hotelling’s T 2 statistic, but utilizing a within-source sample covariance matrix118

pooled across all background objects. The score used is δ(eu, oi) = 2
nw

(ȳu· − ȳi·)
′S−1

w (ȳu· − ȳi·), where119

Sw = 1
na(nw−1)

∑na

i=1

∑nw

j=1(yij − ȳi·)(yij − ȳi·)
′. This dissimilarity score will be used to build the sample120

from relevant background population, which will then be used to calculate two likelihood ratios. The121

likelihood ratios used are the normal-based (MVN-based) and density-based (KDE-based) LRs proposed122

by Aitken and Lucy [5] and summarized in Zadora et. al [22]. The general prescreening procedure for trace-123

element data is as follows. Given the control evidence, trace evidence, and evidence about the background124

population, the objects in the sample of the background population are ordered based on their similarity125

to the trace evidence. Then after specifying the proportion of background objects or a threshold for the126

precreening score, a subset of objects is selected for use as the sample from relevant source population to127

calculate the LR. It is important when constructing the relevant source population that we do not construct128

it only with objects that are more similar to the trace object than the control object. For a given trace eu129

and control es elements and the number of subsets L, the details to study this procedure are outlined in130

Algorithm 2.131

2.3. Presecreening for SLR methods132

We also examine the effects of prescreening on score-based likelihood ratios in the context of fingerprints.133

Given a score function, ρ(·, ·), that produces a similarity score of full rolled fingerprints to slap fingerprints,134

we can prescreen our background samples using typicality of the same source scores [23]. This is done using135

the empirical CDF of the same source scores Ĝ(·), which estimates the CDF G(ρ(o, s)) = Pr(ρ(O,S) ≤136

5
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Algorithm 2 Studying Prescreening for Trace Element Data
1. Given evidence es, eu, and ea.

2. Choose L, the number of subsets.

3. Let na be the number of sources and nw be the number of samples in each source of ea.

4. Calculate τ = δ(es, eu).

5. Calculate δi = δ(eu, oi) for i = 1, . . . , na.

6. Construct Q = {i : δi > τ} and order Q based on decreasing order of {δi : i = 1, . . . , na}.

7. Construct a sequence N1 = 1, . . . , NL = |Q|.

for j = 1, . . . , L do

8. Construct e∗a by removing the first Nj sources in Q from ea.

9. Calculate the LR using es, eu, and e∗a and store.

end for

Algorithm 3 Studying Prescreening for SLR
1. Given the score ρ(es, eu) for eu and es

2. Choose L, the number of subsets

3. Define ea as the remaining sources.

4. Compute Ĝ, the Empirical CDF of the same source scores of objects in ea.

5. Given τ = Ĝ(ρ(es, eu)) and δi = Ĝ(ρ(oi, eu)) i = 1, . . . , na

6. Construct Q = {i : δi < τ} and order Q based on δi in increasing order.

7. Construct a sequence N1 = 1, . . . , NL = |Q|.

for j = 1, . . . , L do

8. Construct e∗a by removing the first Nj sources in Q from ea.

9. Calculate the SLR using all pairwise comparisons of sources in e∗a

end for

ρ(o, s)), where O and S are randomly generated full rolled and slap fingerprints from the same randomly137

selected source. This prescreening procedure involves keeping objects where Ĝ(ρ(oj , eu)) > α, i.e. for a138

given α we cannot exclude the source that generated oj as giving rise to the trace slap fingerprint. This139

assumes that it is possible to get the score between the trace object and the background objects in the140

database. The score-based LR used is the plug-in estimate of the likelihood ratio using logistic regression.141

Given n1 between-source scores and n2 within-source scores of objects in the sample from the background142

population, we have SLR = τ(ρ(es,eu))
1−τ(ρ(es,eu))

/n1

n2
, where τ(ρ(es, eu)) = 1

1+exp{−β̂0−β̂1∗ρ(es,eu)}
and β̂0 and β̂1143

are the MLE’s of the logistic regression fit on the known between-source and within-source scores in the144

background population [24]. Similarly to the trace-element data, the prescreening procedure for use with145

SLRs is as follows. Given the score comparing the trace object to the control object, the background146

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4904957

Pr
ep

rin
t n

ot 
pe

er
 re

vie
wed



objects are ordered based on their scores with the trace object. Then after specifying a number of sources147

or a threshold for similarity, construct the sample from the relevant source population, and use the scores148

that compare two objects in the sample from the relevant source population to calculate the SLR. The149

details to study this procedure are shown in Algorithm 3.150

3. Simulation study151

To study the effects of prescreening on the value of LRs, we implement a Monte Carlo simulation152

to generate synthetic trace element data from different models for use as a sample from the background153

population. The background samples were generated from a population with and without subpopulation154

structures. We then control the mean of the control evidence es and the trace evidence eu to see the effects155

of prescreening for these different scenarios. The simulations are implemented according to Algorithm 4.156

Algorithm 4 Prescreening Simulation
1. Generate es and eu from MVN(µs,Σε) and MVN(µu,Σε), respectively with nw samples each.

2. Calculate τ = δ(es, eu).

3. Choose L, the number of subsets

for t = 1, . . . , B do

4. Generate ea with na objects and nw samples from each object from the hierarchical model of choice

(M1 or M2).

5. Calculate δi = δ(oi, eu) for i = 1, . . . , na.

6. Construct Q = {i : δi > τ} and order Q based on decreasing order of {δi : i = 1, . . . , na}.

7. Construct a sequence N1 = 1, . . . , NL = |Q|.

for j = 1, . . . , L do

8. Construct e∗a by removing the first Ni sources in Q from ea.

9. Calculate the MVN and KDE-based LRs using es, eu, and e∗a and store.

end for

end for

3.1. Simulation setup157

Two models are used to study the effects of prescreening used in combination with the MVN-based and158

KDE-based LRs via Monte Carlo simulations. All the simulations are implemented according to Algorithm159

4 with na = 100, nw = 10, B = 10, and L = 50. The list of all parameters used for the generative models160

can be found in Appendix A.161

The first simulation experiment (Sim 1) utilizes a bivariate model with two subpopulations generated162

with a small overlap between components derived from misclassification probabilities as given by Ref. [25].163
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Figure 1: Sample generated from the bivariate model with two subpopulation structures (in Sim 1) represented by red and

blue colors. The source means (red and blue points) and objects from each source (gray segments) for each subpopulation

are given. The 95% probability contours for each component in the between-source distribution mixture model are shown in

blue dashed line and red solid line.

The components of the source-level mixture have the same covariance matrix and the overlap is equal to164

0.001 for both clusters. The covariance matrix for the within-source distribution is the covariance of the165

between-source distribution’s components scaled by 0.1. The second simulation study (Sim 2) is based on166

data-suggested model. Sim 2 utilizes an 8-dimensional model with two subpopulations suggested by copper167

wire data presented in Dettman et al. [26] where the model parameters are given. Figures 1 and 2 show168

pairwise scatter plots of example data sets generated from the sampling models given in Sim 1 and Sim 2,169

respectively. For both cases, 30 sources with 5 observations from each source are generated and displayed170

along with the 95% probability contours [27] for the between source distribution. For the bivariate model,171

we can see that the subpopulations are well separated as shown by the elliptical contours in Figure 1. The172

Figure also visualizes the within source variation as shown by observations as line segments branching from173

each source mean. The 8-dimensional copper model is visualized in Figure 2. We can see that in certain174

dimensions there is more overlap and there is more separation in other dimensions. For these simulation175

studies the MixSim R package [28] is utilized to generate mixtures and/or data sets from the corresponding176

mixtures. Also, a modified version of the hotelling.stat() function from the Hotelling package is used to177

calculate the prescreening statistic [29].178
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Figure 2: Sample generated from the copper data suggested model in Sim 2. The source means of the two subpopulations

(red and blue points) and objects from each source (endpoints of the gray segments) are given. The 95% probability contours

for each component in the between-source distribution mixture model are shown in blue dashed line and red solid.

3.2. Simulation results179

The results of the Monte Carlo simulations implemented according to Algorithm 4 are displayed in180

Figures 3 - 6 with subplots in each figure representing different settings. In all the subplots within each181

figure, the vertical axis displays log10(LR) (LLR) for both the MVN-based and KDE-based LRs, and the182

horizontal axis corresponds to the proportion of the candidate sources remaining in the sample from the183

relevant source population after prescreening. It is important to note that the horizontal axis has been184

reversed in order to visualize the value of the evidence as a function of prescreening, that is, subsetting185

the evidence about the background population further and further to consider a more refined relevant186

source population. In each subplot, the MVN-based LR, the KDE-based LR, and the true value of the LR187

calculated within the subpopulation containing eu with the true parameters of the generative model are188

shown. If the number of sources remaining in the collection of background samples is less than the number189
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of sources needed to estimate the between-source covariance matrix before the stopping condition is met190

(all L subsets were considered), the last point in the plot is displayed as a star.191

For the prosecution cases, we will consider three cases for the shared mean of the control and trace192

object. The first case we consider is when es and eu have a mean at the center of the subpopulation193

of interest, that is when µs = µu = µg, where g is the index of the subpopulation of interest. In the194

simulations, g = 1 and g = 2, for Sim 1 and Sim 2, respectively. We will refer to this mean as µu1
. The195

second and third cases considered involve “rare” means. These utilize the points wv = µg + α v
||v|| such196

that (wv −µg)
′Σ−1

g (wv −µg) = χ2
p,.99, where v is the direction vector and χ2

p,.99 is the 99th percentile of197

the χ2 distribution with p degrees of freedom. Solving for α we get α =

√
χ2
p,.99||v||
v′Σ−1

g v
. The second case uses198

the mean µu2
, which is µs = µu = wv1

, where v1 = µg −µg′ and g′ is the index of the subpopulation that199

is not the subpopulation of interest. The third case uses the mean µu3
, which is µs = µu = wv2 , where200

v2 = µg′ − µg.201

Figure 3 shows the results of the prescreening simulation under the prosecution cases when the alterna-202

tive source population is homogeneous, that is when es and eu share the same source and ea was generated203

under M1. The rows in the figure represent the two generative models used to generate data (Sim 1 and204

Sim 2) as set up in Section 3.1. The columns show the three locations for the mean, that is µu1
,µu2

,205

and µu3
. Looking at the first case µu1

, the KDE-based LR provides a larger value of evidence than the206

MVN-based LR. As we prescreen in this case, both LRs decrease gradually away from the true LR within207

the subpopulation of interest. When we consider the cases where µs and µu are away from the mean of208

the subpopulation of interest (µu2
and µu3

), both LLRs again start around the target value of the LLR209

and in some iterations remain relatively constant and in some cases increases as we prescreen ea further210

and further. We see in Sim 2 that some of these increases are very dramatic where the LR increases in211

many orders of magnitude. Also, when the ea contains a relatively small number of objects compared to212

the dimensionality of the data the value of the LLR behaves radically, likely due to parameter estimation.213

Figure 4 shows the prosecution cases when the alternative source population is heterogeneous, that is214

when ea was generated under M2. The rows and columns have the same interpretation as in Figure 3. We215

see a similar behavior when there is a subpopulation structure in the alternative source population where216

the LR decreases when the means of eu and es are centered in the subpopulation of interest and remains217

constant or increases when µs and µu are moved away from the mean of the subpopulation of interest.218

When we have this subpopulation structure, we see sharp decreases or increases in the value of the LLR.219

The sharp changes happen when around 50% and 80% of the original objects remain in ea in Sim 1 and Sim220

2, respectively, which line up with the mixing proportions of the subpopulations of interest suggesting that221

they occur when the samples of background objects consists of only the objects from the subpopulation222

of interest. These sharp changes in the LLR slow around the true value of the LLR in the subpopulation223

of interest, suggesting that prescreening can be useful in returning a value of evidence relative to the224
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Figure 3: Prescreening simulation results under the prosecution cases when there is not a subpopulation structure in the

alternative source population. The KDE-based LLR in (red dashed lines), the MVN-based LLR (solid blue lines), and the

true LLR in the subpopulation that contains eu (solid black line) are presented versus p the proportion of background objects

remaining. The rows represent Sim 1 and 2 and the columns are for the different locations of eu and es.
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subpopulation of interest when the approximate value of mixing proportions is known. Again, when there225

are relatively few sources in the relevant source population the LLR value can drastically change.226
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Figure 4: Prescreening simulation results under the prosecution cases when there is a subpopulation structure in the alternative

source population. The KDE-based LLR in (red dashed lines), the MVN-based LLR (solid blue lines), and the true LLR in

the subpopulation that contains eu (solid black line) are presented versus p the proportion of background objects remaining.

The rows represent Sim 1 and 2 and the columns are for the different locations of eu and es.

For Sim 3, there are not any results displayed when ea was generated under M1, that is when there227

is a homogeneous background population. This is due to the covariance of the subpopulation of interest228

between-source component of the Gaussian mixture being small compared to the within-source covariance.229

This caused the estimate for the covariance used in the comparison R package [30] to have a negative230

determinant when we only have sources from the subpopulation of interest. For this reason, we were not231

comfortable using the LR values outputted for these cases. An illustrative example of this scenario can be232

found in Appendix B.233
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Figure 5: Prescreening simulation results under the defense cases when there is not a subpopulation structure in the alternative

source population. The KDE-based LLR in (red dashed lines), the MVN-based LLR (solid blue lines), and the true LLR in

the subpopulation that contains eu (solid black line) are presented versus p the proportion of background objects remaining.

The rows represent Sim 1 and 2 and the columns are for the different locations of eu and es.
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Figure 6: Prescreening simulation results under the defense cases when there is a subpopulation structure in the alternative

source population. The KDE-based LLR in (red dashed lines), the MVN-based LLR (solid blue lines), and the true LLR in

the subpopulation that contains eu (solid black line) are presented versus p the proportion of background objects remaining.

The rows represent Sim 1 and 2 and the columns are for the different locations of eu and es.
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For the defense cases when µu 6= µs, we will consider the case when µs = µg and when µu lies on234

the line between µg and µg′ . Two points will be considered for µu, which we will refer to as µu4
and µu5

235

where the latter is closer to µg′ than the former.236

Figure 5 shows the results of the prescreening simulation under the defense cases when the alternative237

source population is homogeneous, that is, when es and eu are generated from different sources and ea238

is generated under M1. Again rows indicate the model used to generate background samples (Sim 1 and239

Sim 2), and columns indicate how far the eu is from es, that is when µu equals µu4
and µu5

. We see in240

these defense cases that there does not appear to be a clear trend in the value of the LLR as a results of241

prescreening as in the prosecution cases. There is again, however, the familiar unpredictable behavior of242

the LLR when there are few sources remaining in the relevant source population.243

Figure 6 shows the results of the prescreening simulations under the defense cases when there is a244

subpopulation structure in the alternative source population. The rows and columns have the same meaning245

as in Figure 5. We again see that there is not a noticeable trend in the value of the LLR as a result of246

prescreening except a slight downward trend in the first subplot of the Sim 1 results. We again see that247

the value of the LLR is very unstable when there are only a few sources remaining the alternative source248

population.249

4. Real data analysis250

Three datasets are considered. The first two will illustrate the effects of prescreening on trace element251

data using LR methods and the third will illustrate the effects on fingerprint data using SLRs. All three252

examples have the prosecution model as ground truth, where the trace and control observations come from253

the same source.254

4.1. Glass data sets255

The first data set used to illustrate examples is a three-dimensional glass data set collected by JoAnn256

Buscaglia and distributed with Aiken and Lucy [5]. The data set has 62 windows with 3 labeled sub-257

populations. Each window has measurements on five fragments. The scatterplot of the data is shown in258

Figure 7 with colors denoting the three subpopulations in the data. We will focus on three windows for259

the examples. These are windows 46, 48, 58. The parameter estimates for the hierarchical models for this260

data set are given in Appendix C.261

The second glass data set used is a 7-dimensional trace element glass data collected by Grzegorz Zadora262

and distributed with Aitken et al. [31]. The data set is also available through the comparison R package263

[30]. There are 200 windows with four fragments from each window and three technical replicates on each264

fragment. The mean was taken of the technical replicates to get an observation for each fragment. We will265

focus again on three windows from this data set, namely s127, s144, s188.266
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Figure 7: Scatter plot matrix visualizing the three-dimensional glass data. The colors denote the three subpopulations in the

data set. The points corresponding to window 58 are displayed as triangles.
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Figure 8 shows the results of prescreening on the two glass dataset examples. The rows denote the267

data set used, and the columns denote the object within the data set used as the trace and control. Row268

one shows the results of prescreening on these windows using the first two fragments within the window as269

the trace evidence, eu, and the last three fragments as the control evidence, es for each of these windows.270

We see that windows 46 and 48, have a decrease in the value of the LR as we increase the prescreening271

level (decrease the number of sources in the background sample). There is also a sharp decrease around272

the value of 0.25, which agrees with the fact that the proportion of windows in the same subpopulation is273

approximately 0.258. Window 58 has an increase in the value of the LR as the prescreening level increases.274

Window 58 is “far away” from the other windows from the same subpopulation. This can be seen in275

Figure 7, where the red triangles show the points corresponding to window 58. This echos the results from276

the simulation, where when a same source pair is “rare” for its subpopulation, there can be an increase in277

the LR as a consequence of prescreening.278

For the second glass data, the first two fragments for each window are used as the trace evidence, eu279

and the last two fragments are used as the control evidence, es for that window. Figure 8-row 2 shows the280

results using this data set. We see the familiar trend in windows s127 and s188 where there is a decrease281

as we increase the prescreening level with a sharp decrease seen. Window s144 has an increase in the value282

of the LR as we prescreen, also with a sharp increase seen in the MVN-based LR when around 20-30%283

of the candidate background objects remain in the evidence about the relevant source population. It is284

interesting that there is also a sharp increase seen in the window at around a proportion of 0.9 to 0.8.285

This sharp increase is seen in both the MVN-based and KDE-based LRs, and the jumps is larger in the286

KDE-based LR. After this first sharp change the KDE-based LR levels off to around the same LR value as287

the MVN-based LR after both jumps. In this data set we do not have any labeled subpopulations, but after288

these changes suggest that we may be providing a value of evidence relative to an unknown subpopulation289

in the alternative source population.290

4.2. Fingerprint scores291

The third data set we use is a data set of scores on fingerprints [24]. We have all pairwise comparisons292

of full rolled and slap fingerprints. We focus on the scores that compare a full rolled fingerprint to a slap.293

We also have access to the pattern-level class of the fingerprint namely arch, left loop, right loop, tented294

arch, and whorl. In this data, we defined subpopulations based on the pattern-level class, which are all295

represented equally in the dataset. The prescreening procedure was implemented according to Algorithm296

3.297

Figure 9 shows the results of prescreening on three different sources namely, sources 797, 1013, and 1825.298

The value of the SLR decreased as we prescreen starting with the entire set of scores in the background299

population (blue solid lines). In this case, we see a steep decrease at some levels of prescreening. In the300

data set, there was an even split of each pattern-level fingerprints (e.g., left or right loop). The plots301
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Figure 8: Prescreening results for select windows in two glass datasets under the prosecution cases. The KDE-based LLR in

(red dashed lines) and the MVN-based LLR (solid blue lines) versus p the proportion of sources remaining in the relevant

population are presented. The rows indicate the data set used where the first row is the 3-dimensional glass data and the

second row is the 7-dimensional glass data.
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Figure 9: Prescreening results for select fingerprints in the fingerprint score data under the prosecution cases. The score-

based SLR with the entire population (blue solid lines) and with pattern level subpopulation (red dashed lines) versus p the

proportion of sources remaining in the relevant population are presented.
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suggest that these sharp decreases may occur as pattern-level classes are removed from the alternative302

source populations, as the sharp changes occur around 0.4 for sources 797 and 1013, and around 0.2 for303

source 1825. When we only consider scores comparing objects within the same subpopulation (red dashed304

line), or those fingerprint of the same pattern-level class, the SLR value as a result of prescreening gradually305

decreases until a point of steep decrease.306

5. Conclusion307

This work demonstrates the empirical effect of population subsetting for some of the common methods308

for assigning values of evidence. The results of the simulation experiments show an interesting behavior of309

prescreening on multivariate normal and Kernel-based likelihood ratios. The simulation results suggest that310

prescreening the background samples when the control and trace are from the same source and common311

for their subpopulation causes a decrease in the LR. If there is a subpopulation structure in the alternative312

source population, prescreening the background samples can help give the value of the LR relative to the313

subpopulation of interest. This value of the LR seems to be indicated after a sharp decrease in the value of314

the LR as the prescreening level is increased. When there is no subpopulation structure in the alternative315

source population, prescreening dampens the value of the LR when the control and trace are common of316

their subpopulation. In either case, we must note that the propositions of interest will change with the317

prescreening levels, as the set of possible alternative sources at each level will be a subset of that which was318

originally considered; where this subset of possible alternative sources is selected to be the most similar319

to the evidence with an unknown source in some sense. Depending on the approach to defining “similar”,320

this screening generally has the effect of increasing the likelihood of the evidence with an unknown source321

for each of the individual sources that make up the new background population.322

When the control and trace are from the same source but rare for the subpopulation, the value of the323

likelihood ratio can increase, though we also saw cases where the LR decreased. Prescreening when the324

control and latent measurements come from different sources, yields no clear trend. When we prescreen325

too many sources, the value of the plug-in estimate of the LR becomes unstable, which is presumably due326

to a decrease in the quality of the parameter estimates.327

Real glass data (two data sets) examples show similar results to the simulations. We see similar results328

with a decrease in the value of the likelihood ratio as we increase the prescreening level in certain cases, as329

well as cases with the increase. This behavior is also seen in a fingerprint score data set with a SLR.330

These results suggest that prescreening the background sample to obtain a sample from the relevant331

source population for use with likelihood ratio can be useful, as it can provide a value of evidence relative332

to the subpopulation to which the trace evidence belongs. However, if we prescreen too far the value of333

the LR becomes unstable. Thus prescreening can be useful in giving a value of evidence relative to a334

given subpopulation that we do not know exists, but prescreening too far can also provide an unreliable335
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value of evidence. Though it may protect against overstating the value of evidence relative to the value336

of evidence in the latent subpopulation, prescreening fundamentally answers a different question than the337

non-prescreened LR. Thus, if prescreening is implemented prior to the evaluation of an LR, the prescreening338

methodology should be transparently presented along side the value of the LR. Our recommended wording339

is something similar to:340

“After prescreening x% of the candidate background objects to obtain a sample of the relevant source341

population according to the method outlined in Algorithm Y the plug-in estimate of the LR is z.”342

Appendix A. Parameters for simulation343

Three models were used to generate synthetic data sets to study prescreening under simulation. The344

first model was a generated bivariate model, the second and third models were estimated from copper data345

and glass data, respectively.346

Appendix A.1. Sim 1 parameters347

Sim 1 utilized a bivariate model. The parameters for this model were generated using the MixSim348

R package [28]. The mixing proportions for the source level Gaussian mixture are equal π = (0.5, 0.5)′.349

The means of the source level components are µ1 = (0.3891, 0.5831)′, and µ2 = (0.0947, 0.8526)′. The350

covariance matrices of the source level components are the same351

Σ1 = Σ2 =

0.0143 0.0062

0.0062 0.0069

 ,

and the within source covariance matrix is equal to the between source covariance matrix by a factor of352

100, Σε =
1

100Σ1.353

Appendix A.2. Sim 2 parameters354

Sim 2 utilized a model suggested by copper wire data. For completeness we are including the estimates355

of the parameters for this model which is presented in Dettman et al. in the supporting material [26]. The356

mixing proportions for the source level model are π = (0.172, 0.828)′, with means of the components of the357

source level Gaussian mixture given by358

µ1 = (7.429, 0.761, 0.774, 0.070, 0.030, 2.033, 0.917, 0.756)′,

and359

µ2 = (4.524, 0.465, 0.687, 0.037, 0.28, 1.065, 0.512, 0.536)′.
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The covariance matrices of the source level components are equal,360

Σ1 = Σ2 =



0.58300 0.043300 −0.041700 3.61e− 03 −1.15e− 03 0.083000 0.034700 0.048900

0.04330 0.005540 −0.010100 4.17e− 04 −2.52e− 04 0.008440 0.004040 0.004340

−0.04170 −0.010100 0.153000 −8.82e− 04 2.09e− 03 −0.014900 −0.008780 −0.016500

0.00361 0.000417 −0.000882 7.80e− 05 −1.66e− 05 0.000784 0.000309 0.000253

−0.00115 −0.000252 0.002090 −1.66e− 05 7.04e− 05 −0.000466 −0.000285 −0.000243

0.08300 0.008440 −0.014900 7.84e− 04 −4.66e− 04 0.055700 0.014700 0.002910

0.03470 0.004040 −0.008780 3.09e− 04 −2.85e− 04 0.014700 0.009250 0.001530

0.04890 0.004340 −0.016500 2.53e− 04 −2.43e− 04 0.002910 0.001530 0.019300



.

The within-source covariance matrix is given as361

Σw =



4.33e− 03 4.05e− 04 3.89e− 04 1.66e− 05 −2.45e− 05 9.05e− 04 6.79e− 04 4.28e− 04

4.05e− 04 3.95e− 04 1.34e− 05 −1.18e− 06 2.39e− 06 3.76e− 04 2.36e− 04 1.57e− 04

3.89e− 04 1.34e− 05 1.71e− 04 9.30e− 06 4.89e− 06 7.65e− 05 4.46e− 05 −1.37e− 04

1.66e− 05 −1.18e− 06 9.30e− 06 1.67e− 06 7.29e− 07 6.64e− 06 −5.34e− 06 −1.08e− 05

−2.45e− 05 2.39e− 06 4.89e− 06 7.29e− 07 1.69e− 06 1.52e− 05 −8.06e− 06 −1.24e− 05

9.05e− 04 3.76e− 04 7.65e− 05 6.64e− 06 1.52e− 05 3.47e− 03 1.49e− 04 2.20e− 04

6.79e− 04 2.36e− 04 4.46e− 05 −5.34e− 06 −8.06e− 06 1.49e− 04 3.61e− 04 1.81e− 04

4.28e− 04 1.57e− 04 −1.37e− 04 −1.08e− 05 −1.24e− 05 2.20e− 04 1.81e− 04 2.27e− 03



.

Appendix B. Covariance estimation362

When working with the simulated glass data, an interesting scenario for the estimation of the covariance363

matrix was found. In particular when the between source covariance matrix, Σa, was around the same364

“size” as or smaller than the within source covariance matrix, Σε. The method used in the comparison R365

package gave an estimate of Σa that had a small but negative eigenvalue. Thus the resulting estimate of366

the between source covariance matrix does not lie within the parameter space of covariance matrices. We367

will walk through a simple bivariate example showing a case when this estimation can arise.368

A sample of na = 3 sources with nw = 10 observations from each source was generating according to369

M1 with parameters µ = (0, 0)′,370

Σa =

 1 0.5

0.5 2

 ,

and Σε =
2
3Σa. Running this data through the two.level.components() function in the comparison package371

yields an estimate of the between source covariance matrix of372

Σ̂a =

2.493 3.588

3.588 5.045

 ,
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which has eigenvalue of 7.577 and −0.0388. Thus this resulting matrix is not positive definite and is not373

a covariance matrix. When using ea to calculate the KDE LR, an error stating “negative determinant -374

taking absolute value” is displayed, but still returns a value of the LR. In cases where this appeared, we375

were not comfortable reporting the value of the LR.376

Appendix C. Glass data summaries377

The parameter estimates for the for the 7-dimensional trace element glass data collected by Grzegorz378

Zadora and distributed with Aitken et al. [31] needed for the normal-based likelihood ratio are listed379

here. The data set is also available through the comparison R package [30]. After taking the mean of the380

technical replicates to get a measurement for each fragment, the overall mean estimate is381

µ̂ = (−0.7101,−1.8473,−2.3097,−0.1539,−3.1066,−1.1383,−4.7975)′.

The estimate of the covariance matrix of the between source distribution is382

Σ̂a =



0.00355 0.03543 −0.00476 0.00024 −0.03345 0.03870 0.01106

0.03543 1.52429 −0.22578 −0.00598 −0.75369 0.63492 0.37796

−0.00476 −0.22578 0.90573 −0.00282 0.69872 −0.15166 −0.34354

0.00024 −0.00598 −0.00282 0.00136 0.00232 −0.00237 0.00761

−0.03345 −0.75369 0.69872 0.00232 2.23979 −0.50312 −0.27782

0.03870 0.63492 −0.15166 −0.00237 −0.50312 0.85480 0.16917

0.01106 0.37796 −0.34354 0.00761 −0.27782 0.16917 1.86819


.

The estimate for the covariance matrix of the within source distribution is383

Σ̂ε =



0.00018 0.00017 −0.00016 0.00001 0.00038 0.00020 0.00017

0.00017 0.04394 −0.00063 0.00054 −0.00057 −0.00039 0.00221

−0.00016 −0.00063 0.02934 0.00029 0.00232 0.00030 −0.00010

0.00001 0.00054 0.00029 0.00105 0.00282 0.00168 0.00059

0.00038 −0.00057 0.00232 0.00282 0.26230 0.00378 −0.03141

0.00020 −0.00039 0.00030 0.00168 0.00378 0.01285 0.00295

0.00017 0.00221 −0.00010 0.00059 −0.03141 0.00295 0.09435


.

The estimated parameter estimates for the three-dimensional glass data set collected by JoAnn Buscaglia

and distributed with Aiken and Lucy [5] are listed as follows. The data set has 62 windows with 3 labeled

subpopulations. The estimate of the mixing proportions for the three subpopulations are

π̂ = (0.258, 0.258, 0.484).

The overall mean estimate is

µ̂ = (4.1983,−0.7450, 2.7684)′.
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The mean estimate for the first group is

µ̂1 = (4.8134,−0.3441, 2.7540)′.

The mean estimate for the second group is

µ̂2 = (4.7594,−0.9146, 2.5343)′.

Finally, the mean estimate for the third group is

µ̂3 = (3.5709,−0.8685, 2.9011)′.

The estimate of the covariance matrix of the within-source and between-source distributions are384

385

Σ̂ε =


1.679e− 02 2.6619e− 05 2.209e− 04

2.661e− 05 6.530e− 05 7.399e− 06

2.209e− 04 7.399e− 06 1.332e− 03

and Σ̂a =


0.7059 0.0988 −0.0463

0.0988 0.0621 −0.0070

−0.0463 −0.0070 0.1009

 .386

387

The estimate of the between-source covariance matrix of the three subpopulations are388

Σ̂1 =


0.1060 −0.0083 0.0762

−0.0083 0.0026 −0.0069

0.0762 −0.0069 0.0825

 , Σ̂2 =


0.1771 0.0007 0.0019

0.0007 0.0007 −0.0019

0.0019 −0.0019 0.0065

 ,389

and Σ̂3 =


0.5490 0.0480 0.0257

0.0480 0.0085 −0.0119

0.0257 −0.0119 0.1178

 .390
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