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Abstract 18 

Deforestation reduces the capacity of the terrestrial biosphere to take up the toxic 19 

pollutant mercury (Hg) and enhances the release of secondary Hg from soils. The 20 

consequences of deforestation for Hg cycling are not currently considered by 21 

anthropogenic emissions inventories or specifically addressed under the global Minamata 22 

Convention on Mercury. Using global Hg modeling constrained by field observations, we 23 

estimate that net Hg fluxes to the atmosphere due to deforestation are 217 Mg yr-1 (95% 24 

confidence interval, CI: 134–1650 Mg yr-1) for 2015, approximately 10% of global 25 

primary anthropogenic emissions. If deforestation of the Amazon rainforest continues at 26 

business-as-usual rates, net Hg emissions from the region will increase by 153 Mg yr-1 by 27 

2050 (CI: 97–418 Mg yr-1), enhancing the transport and subsequent deposition of Hg to 28 

aquatic ecosystems. Substantial Hg emissions reductions are found for two potential 29 

cases of land use policies: conservation of the Amazon rainforest (92 Mg yr-1, CI: 59 to 30 

234 Mg yr-1) and global reforestation (98 Mg yr‑1, CI: 64 to 449 Mg yr-1). We conclude 31 

that deforestation-related emissions should be incorporated as an anthropogenic source in 32 

Hg inventories, and that land use policy could be leveraged to address global Hg 33 

pollution. 34 

Synopsis 35 

This study quantifies the impact of deforestation on the global Hg cycle, finding that 36 

deforestation increases Hg fluxes to air and water. Conservation and reforestation are 37 

important policy tools to mitigate these fluxes.  38 
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Main Text 41 

Introduction 42 

Humans are exposed to the organic form of mercury (Hg), methylmercury (MeHg), 43 

mainly through seafood consumption1. Methylmercury is a potent neurotoxin, impairing 44 

the neurodevelopment of fetuses and children and costing the global economy $20–117 45 

billion annually according to some estimates2,3. Mercury is emitted to the atmosphere by: 46 

a) primary anthropogenic sources, including artisanal and small-scale gold mining 47 

(ASGM), fossil fuel combustion, and metal smelting; b) re-emissions of historical 48 

anthropogenic (“legacy”) Hg from ocean and land; and c) geogenic sources4. Mercury 49 

spreads globally in the atmosphere due to its overall elemental lifetime against deposition 50 

of 4–6 months5. A global treaty, the Minamata Convention on Mercury, aims to protect 51 

human health and the environment from anthropogenic emissions and releases of Hg. The 52 

Convention targets primary anthropogenic emissions sources by phasing out Hg use and 53 

adopting best available technologies for pollution control6. Primary anthropogenic 54 

emissions account for only 30% of present-day total emissions, with legacy re-emissions 55 

from land and ocean accounting for 60% 7. The future of Hg pollution will depend not 56 

only on reducing direct emissions through the Minamata Convention, but also on indirect 57 

anthropogenic influences on legacy Hg emissions and fate.  58 

Terrestrial ecosystems, and especially forests, are important sinks of Hg from the 59 

atmosphere, taking up an estimated 2200–3600 Mg Hg per year8, more than a third of 60 

total (anthropogenic, legacy, and geogenic) Hg emissions (7400 Mg yr-1)9. By taking up 61 

Hg, terrestrial ecosystems reduce the burden of Hg depositing in oceans and freshwater 62 

systems, where it can be more readily converted to MeHg and bioaccumulated in fish. 63 

Previous studies have drawn useful analogies between Hg and carbon cycling in 64 

terrestrial ecosystems10,11. Like carbon dioxide (CO2), elemental mercury (Hg0) is 65 

assimilated by foliage throughout the growing season12. Mercury is transported from the 66 

canopy to soil by foliage falling to the ground (“litterfall”) and dry deposited Hg being 67 

washed off by precipitation (“throughfall”), which together are the major source (60–68 

90%) of Hg in soils8. Anthropogenic land use and land cover changes (LULCC), 69 

including deforestation, perturb both CO2 and Hg fluxes to the atmosphere13–15. In the 70 
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case of carbon, scientific assessments14 have calculated the contribution of LULCC to 71 

total anthropogenic CO2 emissions (13% of total), and land management practices are 72 

governed by Article 5 of the Paris Agreement16. For Hg, on the other hand, quantitative 73 

estimates of the overall importance of land cover change are limited. Only one previous 74 

study modeled the impact of future LULCC on atmospheric Hg cycling, focusing on the 75 

effects of climate-induced changes to vegetation15. No anthropogenic Hg emissions 76 

inventories have quantified the impacts of historical and future deforestation, and land 77 

management is not currently addressed by Hg policy efforts like the Minamata 78 

Convention. 79 

Several processes mobilize Hg from terrestrial systems after deforestation. Along with 80 

removing a strong atmospheric sink of Hg8, deforestation leads to more insolation 81 

reaching the soil, which increases volatilization of Hg from soils through enhanced 82 

microbial17 or photochemical18 reduction. Fire-mediated deforestation leads to direct 83 

emission of Hg from forest and soil biomass19. Soils in deforested areas are subject to 84 

accelerated erosion rates, enhancing Hg export to downstream ecosystems17,20,21. Direct 85 

measurement of deforestation-driven fluxes at larger scales is challenging given 86 

variations in the land sink due to trends in environmental conditions, necessitating the use 87 

of models to quantify these fluxes22. Models of terrestrial–atmosphere Hg fluxes, while 88 

still much more uncertain than analogous carbon cycle models, are improving due to a 89 

better process understanding and increasing availability of terrestrial 90 

measurements8,12,23,24. Thus, the time is ripe for assessing the relative importance of 91 

deforestation-driven fluxes in the Hg cycle. 92 

Policies on local, national, and international scales will shape the future evolution of 93 

deforestation Hg fluxes. Deforestation due to agricultural land conversion threatens the 94 

Amazon rainforest25,26, which currently contributes 29% of the global land sink for 95 

atmospheric Hg0 (ref. 23). At current deforestation rates, 40% of the Amazon rainforest 96 

could be lost by 2050, while enhanced environmental legislation (e.g., expansion of 97 

protected areas and enforcement) can reduce the deforested area to 15% (ref. 27). 98 

Reforestation and afforestation on the global scale are being studied as part of the 99 

solution to reach net zero greenhouse gas emissions in the future28, though the efficacy of 100 
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these measures has been debated29. In any case, the climate mitigation benefits of 101 

forestation would not be realized without accompanying aggressive CO2 emissions 102 

reductions29,30. Similarly, forest conservation and reforestation policies may have 103 

potential benefits for Hg sequestration on land, yet the magnitude of impacts remain 104 

unquantified. 105 

Here, we apply the GEOS-Chem Hg model23 to calculate deforestation emission factors 106 

for Hg for different regions and evaluate them against available observations. We 107 

quantify the global atmospheric Hg fluxes in 2015 that result from deforestation. We 108 

study the impact of future Amazon deforestation policy scenarios27 and potential global 109 

reforestation efforts30 on the terrestrial Hg sink, to investigate the importance of land 110 

management policies for curbing Hg pollution. 111 

Materials and Methods 112 

Atmospheric Hg model (GEOS-Chem) description. In this study, we used the chemical-113 

transport model GEOS-Chem v12.8.1 with Hg0 dry deposition updates from Feinberg et 114 

al.23. The global model was run at 2.0° × 2.5° horizontal resolution and 47 vertical layers 115 

up to 80 km altitude. The model tracks emissions, transport, chemistry, and deposition of 116 

Hg in three chemical tracers: elemental mercury (Hg0), oxidized mercury (HgII), and 117 

particulate-bound mercury (HgP). Atmospheric transport of Hg species is based on 118 

MERRA-2 reanalysis meteorological data31. The Hg chemical mechanism assumes that 119 

Br is the primary Hg0 oxidant and uses offline monthly maps of previously-calculated 120 

oxidant concentrations to drive chemistry32. The aqueous photoreduction rate of HgII to 121 

Hg0 is parametrized as a function of the organic aerosol concentration and the NO2 122 

photolysis rate32. 123 

The wet removal of oxidized Hg (HgII and HgP) from the atmosphere is calculated in 124 

online parametrizations considering large-scale and convective scavenging of gas and 125 

particulate species33. Dry deposition in GEOS-Chem applies a resistance-based 126 

approach34, which determines the dry deposition velocities depending on meteorology 127 

(e.g., temperature and windspeed), land surface parameters (e.g., land type and leaf area 128 

index, LAI), and compound-specific parameters (biological reactivity, f0, and solubility, 129 
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H*). For Hg0, f0 was set to 0.2 within the Amazon rainforest and 3 × 10-5 elsewhere. 130 

These values of f0 were found to yield the best agreement with available measurements of 131 

Hg0 vegetation uptake23, though we later tested the impacts of uncertainties in these 132 

parameters on the modeling results (Section S4). The solubility of Hg0 is low (H* = 0.11 133 

M atm-1), whereas gaseous HgII is assumed to be highly soluble (H* = 1014 M atm-1) and 134 

biologically unreactive (f0 = 0). Dry deposition of HgP is determined according to the 135 

aerosol deposition parametrization in GEOS-Chem35. Dry deposition is calculated 136 

separately over each land type within a grid cell (e.g., rainforest, grassland, cropland, 137 

etc.) and then an overall area-weighted average is calculated for the grid cell. GEOS-138 

Chem accounts for 73 land types based on the Gibbs36 land cover product. The LAI data 139 

for this study was taken from a reprocessed version of the Moderate Resolution Imaging 140 

Spectroradiometer (MODIS) satellite product37.  141 

Anthropogenic Hg emissions followed AMAP/UNEP estimates38 for 2015. Biomass 142 

burning emissions were taken from the Global Fire Emissions Database (GFED) v4.1s39. 143 

Fixed concentrations of Hg0 in the surface ocean based on the MITgcm 3-D ocean 144 

model32 were used to calculate the Hg0 air-sea exchange40. We adopted a new 145 

formulation41 for the soil Hg0 emissions parametrization (Supplementary Information, 146 

Section S1): 147 

𝐸soil = 𝑎𝐶𝑏𝑅𝑔
𝑐    (Eq. 1) 148 

where Esoil is the Hg0 emissions from soil (units ng m–2 h–1), C is the concentration of Hg 149 

in soils (units µg g–1), Rg is solar radiation flux at the ground (units W m–2), and a, b, and 150 

c, are coefficients (set to 71, 2.5, and 0.76, respectively). The coefficients of this 151 

parametrization were tuned to match available soil emissions measurements (Section S1). 152 

The soil concentration map of Hg (C) was calculated using the method of Selin et al.42, 153 

deriving the spatial distribution of soil concentrations by first assuming a steady state 154 

balance between land emissions and deposition in the preindustrial and subsequently 155 

increasing soil concentrations according to the distribution of anthropogenic Hg 156 

deposition. As in Selin et al.42, the solar radiation at ground (Rg) is determined by 157 
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considering attenuation of the solar radiation flux (RS) by shading from the overhead 158 

canopy, parametrized by the LAI: 159 

𝑅𝑔 = 𝑅𝑆 exp (−
𝛼LAI

cos𝜃
)        (Eq. 2) 160 

where 𝛼 = 0.5, assuming extinction from a random angular distribution of leaves43, and 𝜃 161 

is the solar zenith angle. Deforestation reduces the leaf area index (LAI) in impacted grid 162 

cells, increasing the solar radiation flux at the ground (Eq. 2) and consequently enhancing 163 

Hg0 emissions from soils (Eq. 1). We have also updated GEOS-Chem to calculate soil 164 

emissions at the sub-grid scale for each land use category contained within the grid cell.  165 

Reference (HIST) simulation. We ran a GEOS-Chem simulation for the land cover and 166 

LAI conditions of the year 2003 (HIST simulation), the first year where reprocessed LAI 167 

data is available. To highlight the role of land cover changes alone, meteorological 168 

conditions were kept constant by running all simulations with meteorology for 2014–169 

2015. We considered the first year as spinup to equilibrate the new land cover conditions, 170 

and analyzed simulation differences for the meteorological year 2015. 171 

Estimating historical global deforestation-driven Hg emissions. We calculated regional 172 

emissions factors (EFs) for deforestation through conducting perturbation experiments in 173 

GEOS-Chem. Emission factors were distinguished for the following regions based on 174 

biogeographic realms44: Palearctic, Nearctic, Afrotropic, Neotropic, Australasia & 175 

Oceania, Indomalaya, China, and the Amazon rainforest (mapped in Fig. S5). We 176 

separated China into its own region as soil Hg concentrations are higher than surrounding 177 

areas due to historical Hg emissions. The Amazon rainforest was separated from other 178 

Neotropic forests due to it having higher observed vegetation uptake fluxes and a 179 

different assigned f0 parameter in the model dry deposition scheme. For each region, a 180 

simulation was conducted with perturbed land cover in the grid cells that experienced 181 

deforestation during 2000–2014 in the 0.25° × 0.25° resolution CMIP6 Land-Use 182 

Harmonization (LUH2) dataset45. As deforestation is mainly driven by agricultural 183 

expansion46,47, we replaced forest land cover in these grid cells with the most common 184 

agricultural land cover relevant to the region: “Crops and Town” (Afrotropic, 185 
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Indomalaya, Palearctic, Australasia & Oceania, and China), “Corns and Beans 186 

Croplands” (Neotropic and Nearctic), and “Fields and Woody Savannah” (Amazon). For 187 

the new agricultural areas, the LAI was set to the average annual cycle for the existing 188 

agricultural grid cells within the region. Eight deforestation (DFR) simulations (1 for 189 

each region) were conducted for 2014–2015, comparing year 2015 fluxes to the HIST 190 

simulation. To calculate the net emissions factor (EF) from deforestation, we calculated 191 

changes to the land-air exchange over the deforested grid cells: 192 

EF =
(𝐸DFR−𝐷DFR)− (𝐸HIST−𝐷HIST)

𝐴DFR
 (Eq. 3) 193 

where E refers to Hg emissions, D refers to Hg deposition, and A refers to the area that is 194 

deforested in the simulation. The emissions factor represents the net emissions of Hg 195 

released by a deforested area annually, in units Mg m-2 yr-1, capturing both the impact of 196 

increased soil Hg0 emissions and reduced forest Hg0 uptake. The assumption of linearity 197 

of the net emissions to deforested area holds in simulations conducted in the Amazon 198 

with differing spatial distributions of deforestation (Fig. S4), supporting an emissions 199 

factor approach to deforestation. We compared calculated emissions factors with existing 200 

estimates from observational studies18,21,24,48–64 for total deforestation EFs and the 201 

component of EFs due to soil Hg0 emissions (Supplementary Information, Section S2). 202 

Based on our literature review (SI Spreadsheet), observational data is available for three 203 

of the tested regions (Amazon, China, and Nearctic). 204 

We applied the regional emissions factor to historical land use data from the LUH2 205 

dataset to calculate emissions from deforestation. We defined gross deforested areas from 206 

the LUH2 dataset by summing the areas with transitions from primary or secondary 207 

forest to a non-forest land type. This approach does not consider LULCC fluxes due to 208 

harvesting of a forest without complete deforestation or the regrowth of vegetation after 209 

clearing, due to a lack of corresponding observations for Hg to constrain these 210 

parameters. Likewise, the emissions factors were assumed to be constant annually, so a 211 

deforested area continues to have the same total emissions for each year over the 212 

considered time horizon. In reality, deforested areas could have a recovery timescale as 213 

vegetation regrows, which is accounted for in carbon LULCC fluxes65; for Hg, the 214 
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response timescales during regrowth are largely unknown. To account for these 215 

uncertainties, we produced global and country-level estimates of Hg emissions in 2015 216 

due to deforestation by summing deforestation over different time horizons: 15 years 217 

(2000–2014), 30 years (1985–2014), 45 years (1970–2014), and 60 years (1955–2014). 218 

The 45-year (1970–2014) accumulated results are presented in the main text, with the 219 

others presented in Fig. S6.  220 

Future Amazon deforestation scenarios. We employed deforestation scenarios from 221 

Soares-Filho et al.27, who developed a model for predicting the extent of deforestation 222 

within the Amazon based on environmental policies and highway construction. They 223 

presented two scenarios for 2050, encompassing a range of future deforestation 224 

trajectories. In the Business as Usual (BAU) scenario, recent deforestation trends 225 

continue into the future, assuming that compliance with conservation laws remains low 226 

and no new areas will be protected. On the other hand, the Governance (GOV) scenario 227 

assumes that the expansion of environmental legislation and increased enforcement of 228 

protected areas will lead to a reduction in the deforestation rate. Compared to the 229 

Amazon forest area in 2003 (5.3 million km2), in 2050 the BAU scenario projects 3.2 230 

million km2 remaining and GOV projects 4.5 million km2 remaining27. We focused our 231 

analysis on comparing the forest coverage in the years 2003 and 2050. 232 

We translated these scenarios into required inputs for the calculations in GEOS-Chem 233 

(spatially gridded land use categories, LAI, and biomass burning emissions). The Soares-234 

Filho et al.27 dataset assigns 1 km2 pixels within the Amazon basin as being forested, 235 

deforested, or agricultural areas for every year between 2003 and 2050. These annual 236 

datasets were regridded to 0.25° × 0.25° resolution, the native resolution of land use and 237 

LAI maps in GEOS-Chem. We calculated the relative change in forested area in the 238 

scenarios for every 0.25° × 0.25° grid cell. The rainforest land use category in deforested 239 

grid cells was correspondingly reduced by this factor, with the lost land area added to the 240 

land use category for “Fields and Woody Savanna”. The LAI annual cycle for existing 241 

Fields and Woody Savanna grid cells within the Amazon basin was spatially averaged 242 

over 2003 and assigned to the deforested areas. Annual average LAI maps for the 243 

Amazon scenarios used in GEOS-Chem are shown in Fig. S9. For these simulations, we 244 
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assumed that conversion of forest to agricultural land within the Amazon is fire-245 

mediated66. Gridded biomass burning emissions were calculated by multiplying the 246 

newly deforested areas for each year by mean fire Hg emissions (380 µg m–2 yr–1) from 247 

two observational studies in the Amazon19,67. An additional 50% of the emissions (190 248 

µg m‑2 yr‑1) are released to the atmosphere within the first year as post-burn Hg0 249 

emissions from soils18. To account for seasonal differences in meteorology and realistic 250 

timing for forest clearing and burning66, we assumed that deforestation occurs at the start 251 

of June and deforestation biomass burning emissions occur in August and September .  252 

The BAU and GOV scenarios do not account for any land-climate feedbacks27, wherein 253 

deforestation of the rainforest can lead to reduced moisture recycling and widespread 254 

savannization (conversion of rainforest to savanna)68. As an upper bound for this process, 255 

we considered an extreme scenario (SAV) where the Amazon rainforest is fully 256 

converted to savanna69. The impact of this scenario on Hg0 deposition was previously 257 

quantified23, but here we reran the SAV simulation in GEOS-Chem to account for 258 

updates in the soil Hg0 emissions parametrization. Fluxes for the Amazon region were 259 

calculated by averaging over the area covered by the Soares-Filho et al.27 deforestation 260 

projections (shown in Fig. S8).  261 

Potential reforestation scenario. We applied a reforestation scenario (RFR) in GEOS-262 

Chem based on the Global Reforestation Potential map30,70, which considers the binary 263 

potential of every 1 km2 grid cell to be converted from non-forest (<25% tree cover in 264 

2000–2009) to forest (>25% tree cover). The reforestation potential dataset does not 265 

include areas that are native non-forest land cover types (e.g., grasslands) or cropland 266 

areas. The reforestation potential was regridded to 0.25° × 0.25° resolution. For every 267 

grid cell where reforestation can occur, we identified the corresponding biome in the 268 

Ecoregions2017 dataset44 to determine the type of native forest vegetation that would 269 

occur. If the corresponding biome of the grid cell was not a forest (e.g., coastal grid 270 

cells), the most common forest type in the 8 neighboring grid cells was selected. The 271 

added forest was assumed to have a LAI annual cycle equal to the 2003 spatial average 272 

for all grid cells in the corresponding biome and biogeographic realm (LAIbiome). For grid 273 

cells that were not a forest land type in 2003, we converted the reforested area fraction 274 
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(frfr) from the original land type to the new forest land type. Only grid cells where 275 

LAIbiome is larger than the original land type LAI (LAIold) were reforested. Since the land 276 

map used in GEOS-Chem is at coarser resolution (0.25° × 0.25°) than the reforestation 277 

potential dataset (1 km × 1 km), the reforested grid cell may already be a forest land type 278 

in GEOS-Chem. In this case, we assumed that the grid cell LAI (LAInew) will become 279 

denser due to the new reforested area: 280 

LAInew = LAIold + 𝑓rfr ∙ LAIbiome (Eq. 4) 281 

The resultant average LAI map in the RFR scenario is shown in Fig. S10. 282 

Uncertainty analysis. We employed offline Python-based models for Hg0 dry deposition 283 

and soil Hg0 emissions to estimate uncertainties in the simulated terrestrial-atmosphere 284 

Hg fluxes from GEOS-Chem. These models are made publicly available for further reuse 285 

(see Code and Data Availability). We focused on offline modeling of the Hg0 dry 286 

deposition and soil emissions as these processes contribute the overwhelming majority 287 

(>98%) of the flux response to deforestation. The offline models contain the stand-alone 288 

GEOS-Chem code for calculation of dry deposition velocities and soil emissions across 289 

the horizontal model grid, but do not calculate atmospheric transport or chemical 290 

transformations. Dry deposition fluxes of Hg0 were calculated by multiplying the 291 

deposition velocities by previously computed monthly Hg0 concentration fields from the 292 

online simulations. The offline models were run for the year 2015 using monthly average 293 

diurnal cycles (12 × 24 h = 288 timesteps) of meteorological parameters, land surface 294 

parameters, and Hg0 concentration fields. At this time resolution, the offline models 295 

showed sufficient accuracy compared to full online GEOS-Chem simulations, with 296 

maximum errors compared to online predictions of 1% for annual mean soil emissions 297 

and 5% for Hg0 deposition. Given this level of accuracy and reduced computational 298 

expense, the offline models are appropriate for estimating the parametric uncertainties in 299 

atmosphere-terrestrial fluxes of the online GEOS-Chem model. We considered the 300 

contributions of deposition parameters (f0), soil emission parametrizations, the 301 

assumption for LAI for replaced land types, and biomass burning emission factors (for 302 

the Amazon simulations) to the overall uncertainty in fluxes. Uncertainty bounds of these 303 
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parameters are tabulated in Table S4. Latin Hypercube sampling71 was used to sample 304 

100 parameter combinations. We conducted 100 simulations in the offline emissions and 305 

deposition models for each studied scenario, calculating 95% confidence intervals from 306 

the 2.5th and 97.5th percentile values in the offline calculated fluxes. 307 

Results and Discussion 308 

Global estimate of deforestation-driven Hg fluxes. To calculate net deforestation 309 

emissions, we computed the difference in the net terrestrial-atmosphere exchange 310 

(emissions from a grid cell minus deposition to a grid cell) before and after deforestation 311 

(Eq. 3). For our global estimate of deforestation-driven emissions, we did not consider 312 

immediate biomass burning emissions of Hg due to fire-mediated forest clearing nor 313 

enhanced erosion fluxes, instead focusing on the impact on net Hg fluxes to the 314 

atmosphere in the years after the clearing event. The major impacts to Hg fluxes arise 315 

through enhanced soil Hg0 emissions and decreased Hg0 dry deposition due to reduced 316 

canopy coverage, which can continue many years after the initial deforestation event18,61. 317 

Using perturbation simulations in GEOS-Chem for 8 global land regions, we calculated 318 

regional emission factors (EFs) representing net fluxes to the atmosphere per unit 319 

deforested area (in units Mg Hg m-2 yr-1).  320 
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 321 

Figure 1. Comparison between modeled and observation-derived net emission factors (EFs) for 322 
deforestation in different regions. The upper panel shows total EFs and the lower panel shows the 323 
soil Hg0 emissions component of deforestation EFs. Modeled circles show the best estimate 324 
(online simulations), while error bars show the 95% confidence interval due to model parameter 325 
uncertainties (calculated in offline simulations, Section S4). Observation estimates are from 326 
refs.18,21,24,48–64, with the Amazon Total EF estimate based on measurements in Fig. S3. Observed 327 
error bars refer to uncertainty ranges when multiple plots were measured within a study (further 328 
information about these calculations can be found in Section S2 and the SI Spreadsheet). 329 

 330 

The calculated EFs are on the order of 10-6 to 10-4 Mg Hg m-2 yr-1 depending on the 331 

region (Fig. 1; Table S3), with the Amazon rainforest showing the highest EF (7 × 10-5 332 

Mg Hg m-2 yr-1; 95% confidence interval, CI: 4 × 10‑5 to 2 × 10‑4 Mg Hg m-2 yr-1). This is 333 

to be expected from litterfall and throughfall measurements in the Amazon, which show 334 

some of the highest levels of Hg0 vegetation uptake observed globally13, as well as Hg0 335 

soil flux measurements from deforested areas in the Amazon, which show higher levels 336 
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of emissions compared to deforested North American soils18. The variation of simulated 337 

EFs between regions depend on the factors that affect dry deposition (vegetation type and 338 

LAI) and soil emission fluxes (LAI, soil Hg concentrations, and solar radiation). We 339 

compiled available estimates of deforestation EFs from previous observational 340 

studies18,21,24,48–64 and compared these to our modeled values (Fig. 1). Our EFs overlap 341 

with available factors derived from observations, for the three regions where data are 342 

available. The modeled error ranges appear well-calibrated as they cover a similar range 343 

as the variability between observation-derived fluxes in the same region (Fig. 1). Fig. 1 344 

also highlights that no observations of the impact of deforestation on Hg cycling are 345 

currently available from the Afrotropic and Indomalayan regions, where deforestation is 346 

widespread. 347 

We multiplied the regional EFs by the deforested area from the CMIP6 Land-Use 348 

Harmonization (LUH2) dataset45 to calculate the net Hg fluxes to the atmosphere from 349 

deforestation. Given the uncertain timescale for recovery in Hg sink capacity after 350 

deforestation, we assumed that a deforested area has constant annual emissions over a 351 

considered time horizon. Previous LULCC studies for carbon suggest that forests recover 352 

their original biomass within 75 years after deforestation65, so we employed time 353 

horizons between 15–60 years (Fig. S6) to calculate 2015 deforestation-driven emissions. 354 

In Fig. 2a, country-level deforestation emissions are shown based on a 45-year time 355 

horizon (emissions released from areas deforested between 1970 and 2014). Net 356 

emissions occurring in 2015 considering this 45-year deforestation time horizon are 217 357 

Mg yr-1 globally (CI: 134–1650 Mg yr-1). Countries with substantial (>10 Mg yr-1) 358 

deforestation-driven emissions include Brazil (43 Mg yr-1), Indonesia (35 Mg yr‑1), China 359 

(16 Mg yr-1), Colombia (14 Mg yr-1), India (13 Mg yr‑1), Philippines (11 Mg yr-1), and 360 

Myanmar (11 Mg yr‑1). To put these emissions into context, Fig. 2b compares the 361 

deforestation emissions with 2015 primary anthropogenic emissions inventory from 362 

AMAP/UNEP9,38. Deforestation Hg emissions are minor (<5%) compared to primary 363 

anthropogenic emissions for most countries. However, for 32 countries, all located in the 364 

tropics, deforestation emissions are greater than 30% of primary emissions. For Brazil, 365 

which is the fifth highest emitter of primary Hg9,38, deforestation emissions (43 Mg yr-1) 366 

https://doi.org/10.1021/acs.est.3c07851


Post print of accepted manuscript in Environ. Sci. Tech. doi: 10.1021/acs.est.3c07851 

15 

 

are only 40% smaller than the 2015 emissions from primary anthropogenic sources (71 367 

Mg yr‑1). Deforestation emissions even exceed primary emissions in some countries, 368 

including Madagascar (deforestation emissions are 2.4× larger), Paraguay (2.3×), Liberia 369 

(2.0×), and Bangladesh (1.8×). Currently, Hg emissions inventories9 only consider 370 

primary anthropogenic emissions (2222 Mg yr-1 in 2015), overlooking deforestation as a 371 

significant source of anthropogenic Hg to the atmosphere (217 Mg yr-1). The relative 372 

importance of deforestation as an anthropogenic driver of Hg pollution could increase 373 

over the next decades, with primary anthropogenic emissions of Hg projected to halve to 374 

1020 Mg yr-1 by 2035 under Minamata policies and reductions in fossil fuel use72. 375 

Therefore, assessing the potential impacts of land use policy scenarios will be crucial for 376 

predicting future Hg cycling, as primary anthropogenic emissions decline in the future. 377 

 378 

 379 

Figure 2. Country-level annual deforestation emissions of Hg in 2015. (a) Deforestation-driven 380 
net emissions of Hg by country, assuming that deforested areas from the previous 45 years 381 
(1970–2014) contribute to emissions. (b) Ratio of deforestation emissions to primary 382 
anthropogenic emissions9,38 by country. 383 

 384 

Amazon conservation policy impacts on Hg cycling. The Amazon is one of the regions 385 

with the highest Hg fluxes from deforestation (Fig. 2) and land policy choices will 386 

determine how this evolves in the future. Under historical forest coverage from 2003 387 

(HIST simulation), the Amazon rainforest stands out as a strong global sink of Hg (Fig. 388 

3a), with net input from the atmosphere to the rainforest totaling 332 Mg yr-1 (CI: 179–389 

463 Mg yr-1). We studied the evolution of the Amazon Hg sink in two deforestation 390 

scenarios27 for 2050: a business-as-usual scenario (BAU), which extrapolates historical 391 

deforestation tendencies into the future, and a governance scenario (GOV), which 392 
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assumes expanded conservation of the rainforest in the future. In the BAU scenario, 393 

widespread deforestation, mainly in eastern Amazonia, reduces the net Hg inputs to soils 394 

(Fig. 3b). While the Amazon region overall remains a net Hg sink in BAU, the removed 395 

vegetation leads to decreased Hg0 deposition in the Amazon (change from HIST: ‑105 396 

Mg yr‑1; CI: -53 to -152 Mg yr-1) and enhanced Hg0 emissions from soils (+35 Mg yr-1 ; 397 

CI: 28–275 Mg yr‑1). For the Amazon policy scenarios, we have also considered the 398 

impact that fire-mediated forest clearing66,73 has on biomass burning emissions of Hg, 399 

which are 15 Mg yr-1 (CI: 10–17 Mg yr-1) larger in BAU than HIST. The BAU scenario 400 

shows atmospheric Hg0 concentrations increasing up to 0.3 ng m‑3 (+50%) within the 401 

Amazon region (Fig. S11); this would be a detectable change in Hg0, comparable to the 402 

0.5 ng m‑3 (-30%) decrease between 1995–2015 in North American Hg0 observations74. 403 

The additional Hg fluxes from deforested areas can be transported over long distances in 404 

the atmosphere and lead to more Hg deposition over oceans and remaining intact forest 405 

areas (Fig. 3b). In the GOV scenario, deforestation is slowed by the conservation 406 

measures, leading to smaller perturbations in the dry deposition flux from HIST (‑47 Mg 407 

yr-1 ; CI: -25 to ‑68 Mg yr‑1) and the soil emission flux (+16 Mg yr-1; CI: 12–126 Mg yr-1) 408 

(Fig. 3b). In GOV, burning emissions from deforestation are 1 Mg yr-1 lower than in 409 

HIST, due to lower annual rates of deforestation in the 2050 GOV scenario compared to 410 

the HIST case representing 2003. Globally, the weakened rainforest sink of Hg yields 411 

higher deposition of Hg to oceans compared to the reference simulation (BAU – HIST = 412 

+108 Mg yr-1; GOV – HIST = +44 Mg yr-1).  413 

Deforestation can be exacerbated through climate feedbacks, which are not considered in 414 

these policy scenarios. For example, BAU projects that 40% of the Amazon will be 415 

deforested by 205027, which could trigger a tipping point with widespread transition of 416 

the rainforest to a savannah biome under diminished regional moisture recycling68. To 417 

evaluate this, we also re-ran an upper limit scenario from our previous work23 where the 418 

entire rainforest is converted to savannah (SAV). In this case, a strong decline in Hg0 dry 419 

deposition (‑359 Mg yr-1; CI: -210 to ‑503 Mg yr-1) and an increase in Hg0 soil emissions 420 

(+89 Mg yr-1; CI: 68 to 652 Mg yr-1) drive enhanced inputs of Hg to the ocean (343 Mg 421 

yr-1) (Fig. 3b).  422 
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 423 

Figure 3. Impacts of Amazon deforestation scenarios on surface-atmosphere Hg exchange. (a) 424 
The simulated surface-atmosphere exchange (net deposition is negative and net emission is 425 
positive) of Hg in the reference simulation (HIST). (b) Changes in exchange fluxes from HIST 426 
are shown for the deforestation scenarios: Business-as-usual (BAU), Governance (GOV), and 427 
Savannization (SAV); negative values refer to increased net fluxes to the surface compared to 428 
HIST and positive values refer to increased net fluxes to the atmosphere. (c) Total simulated 429 
fluxes of Hg emissions and deposition are calculated for the Amazon region in each scenario. 430 
White diamonds illustrate the net flux of Hg to the atmosphere (= emissions – deposition) and 431 
error bars refer to the 95% confidence interval based on model parameter uncertainties. 432 

 433 

This change in the fate of atmospheric Hg (deposition to ocean instead of land) affects 434 

both the spatial distribution and bioavailability of Hg pollution. When sequestered in 435 

soils, Hg has an estimated residence time on the order of hundreds of years, whereas in 436 

the surface ocean Hg is recycled to the atmosphere within months to years7,11. 437 

Deforestation thus increases the mobility of Hg by transferring Hg from locally-438 

sequestered reservoirs to the global pool. Human health risks are driven by exposure to 439 

the more toxic form of the element, MeHg, which is produced through methylation in the 440 
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environment2,75. Deforestation shifts Hg inputs from land to the ocean, where Hg can 441 

more readily be methylated and bioaccumulate to dangerous levels in commercial fish. 442 

Methylation and bioaccumulation of Hg can also occur in forested soils, but MeHg levels 443 

in aquatic ecosystems are generally much higher (overall global ocean average = 15%)76 444 

than in Amazonian soils (1–5%)48,77 . In addition, the long length of aquatic food chains 445 

leads to high levels of MeHg in commonly consumed fish species at higher trophic levels 446 

(e.g., tuna, cod, and swordfish)75.  447 

Deforestation policy substantially impacts the soil mass balance of Hg in the Amazon 448 

region, illustrated by our modeling simulations (Fig. 3c) and available field observations 449 

(Fig. S3). If agricultural expansion continues as in BAU, the net Amazon sink of 450 

atmospheric Hg is weakened by 153 Mg yr-1 (CI: 97–418 Mg yr-1) (Fig. 3c). The 451 

reduction of forest Hg0 uptake contributes two-thirds of the net flux response in the BAU 452 

scenario, while increases in emissions contribute the remaining third. Under the more 453 

moderate GOV scenario, the Amazon Hg sink (272 Mg yr-1; CI: 79–367 Mg yr-1) is better 454 

preserved, though still 18% (CI: 14–65%) smaller than HIST. Stricter conservation 455 

policies in GOV yield an additional 92 Mg yr‑1 (CI: 59–234 Mg yr-1) of Hg sequestered in 456 

the Amazon compared to BAU. The SAV scenario illustrates that additional climate 457 

feedbacks could flip the Amazon from a net Hg sink to a source (+109 Mg yr‑1; CI: 13–458 

768 Mg yr-1). These Hg projections parallel recent findings on Amazon carbon cycling, 459 

which have demonstrated that climate change and deforestation are turning the Amazon 460 

into a CO2 source25. In addition to atmosphere-terrestrial exchange fluxes, soil erosion of 461 

Hg can also be altered due to deforestation. We applied a soil erosion model GloSEM78,79 462 

to evaluate the impact of deforestation on erosion in the Amazon basin (Supplementary 463 

Information Section S6). In terms of Hg flux magnitudes, perturbations to erosion are 464 

smaller (<15%) than changes to the atmosphere-terrestrial exchange fluxes (Section S6), 465 

which is supported by field studies64. Nevertheless, deforestation also enhances Hg 466 

erosion in both scenarios (BAU: +33%; GOV: +14%), accelerating the transfer of 467 

terrestrial Hg to aquatic ecosystems.  468 

Quantifying the Hg mitigation potential of reforestation. Reforestation has been 469 

identified as a potential mitigation approach for climate change, by strengthening the 470 
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terrestrial CO2 sink30,80. To investigate the concurrent strengthening of the terrestrial Hg 471 

sink and the impacts on Hg cycling, we considered a global reforestation scenario (RFR) 472 

based on the Global Reforestation Potential Map30,70, which identified areas suitable for 473 

reforestation worldwide (i.e., not including croplands or areas where forests are not 474 

native). Figure 4 maps the impacts of reforestation on Hg surface-atmosphere exchange, 475 

comparing to the reference HIST simulation. The spatial distribution of reforestation 476 

impacts depends both on the areal extent of reforestation as well as the reforested 477 

vegetation type. Net deposition of Hg increases over reforested areas (blue areas in Fig. 478 

4), while net deposition declines over the ocean as well as land areas with existing forests 479 

(red areas in Fig. 4). Globally, RFR enhances uptake of Hg on land by 98 Mg yr-1 (CI: 480 

64–449 Mg yr-1) compared to HIST, thereby reducing Hg deposition to oceans. 481 

Reforestation could thus take up approximately 5% of the anthropogenic Hg emission 482 

flux (~2200 Mg yr‑1)9. In addition to the targeted benefits for biodiversity and climate 483 

change mitigation30, reforestation could moderately reduce levels of Hg in marine 484 

ecosystems, and thus commercial fish. Nevertheless, the magnitude of reforestation 485 

impact (5% of primary emissions) illustrates that reforestation is not a substitute for 486 

implementing extensive cuts to primary Hg emissions, like in the CO2 context29. 487 

 488 
Figure 4. Enhanced land sink of Hg with reforestation. The impact of the potential reforestation 489 
(RFR) scenario on surface-atmosphere exchange. The differences from the reference (HIST) 490 
simulation are shown, with negative values referring to increased net fluxes to the surface and 491 
positive values referring to decreased net fluxes to the surface. 492 
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Potential reforestation opportunities for Hg are dominated by the Amazon and Atlantic 493 

forest regions in South America (71 Mg yr-1, 72% of total land sink impact) (Fig. 4). The 494 

potential reforestation impact on atmospheric fluxes in Northern extratropical areas alone 495 

(‑29 Mg yr-1) would not compensate for increased Hg emissions due to deforestation in 496 

the Amazon (BAU: +153 Mg yr‑1; GOV: +61 Mg yr‑1). Overall, more information would 497 

be needed to compare the potentials of reforestation and conservation policies on a global 498 

scale, as the deforestation policy scenarios focused only on a specific region (the 499 

Amazon); future research could study conservation impacts in other tropical regions with 500 

high Hg deforestation emissions (Fig. 2) (e.g., in Africa and Southeast Asia). Our 501 

simulated fluxes consider the uptake of Hg upon maturation of forest stands, as reforested 502 

areas are assumed to have LAI of existent corresponding biomes. Further experimental 503 

research would be required to understand the transient response of Hg uptake during the 504 

growth of forests. 505 

Limitations of modeling approach. The current work provides an initial assessment of 506 

the global emissions of Hg from deforestation, which can spur future investigation into 507 

the impact of LULCC on Hg. Other LULCC processes (e.g., wood harvest and 508 

agricultural practices) may also affect Hg fluxes but have not been considered within this 509 

study. As well, due to the early stage of Hg research, there is not yet the same level of 510 

information for Hg that is commonly included in LULCC assessments for carbon, 511 

including temporal information on the release of Hg from soils and Hg uptake rates 512 

during regrowth of vegetation22. Although we have assembled a dataset of available 513 

deforestation flux measurements covering multiple regions (SI Spreadsheet), there 514 

continues to be a lack of measurements in relevant regions (e.g., Afrotropic and 515 

Indomalayan) to constrain the response of Hg fluxes to deforestation, contributing 516 

uncertainty to this work. As information from field measurements becomes more 517 

available, it will be possible for future modeling studies to analyze smaller sub-regions 518 

differentiated by ecosystem types, improving the accuracy of deforestation-driven 519 

emissions. In the current work, the parametrization of Hg0 soil emissions is based on 520 

solar radiation and soil Hg concentration, which is the current state of the art for global 521 

models and in agreement with available flux measurements (Fig. 1). Field 522 
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observations81,82 have investigated the role of other environmental parameters including 523 

precipitation, soil moisture, soil chemistry, soil physics, and microbial interactions, along 524 

with anthropogenic factors such as emissions from directly contaminated soils83 that 525 

would not be captured at the resolution of the global modeling approach. Regional 526 

models of Hg0 soil emissions include a wider array of these parameters24, but further 527 

research would be required to produce a tuned parametrization of this complexity at the 528 

global scale. The development of terrestrial Hg cycles and LULCC processes within 529 

Earth system models84 will be vital to investigate the evolution of the Hg land sink over 530 

time and the effect on environmental Hg risks. 531 

Implications for global Hg policy. Land use policy has been largely unexplored as a 532 

lever to mitigate Hg pollution. On the global scale, the estimated deforestation-driven Hg 533 

emissions in 2015 (217 Mg yr-1; CI: 134–1650 Mg yr‑1) correspond to 10% of the global 534 

primary anthropogenic emissions9 (2222 Mg yr-1) (Fig. 5a). Therefore, though cutting 535 

primary anthropogenic emissions remains a priority, deforestation fluxes should not be 536 

overlooked in assessments of Hg pollution, especially for countries in the tropics (Fig. 537 

2b). The potential of Amazon conservation and global reforestation to reduce net Hg 538 

emissions in the future is substantial compared to previously quantified policies aimed at 539 

tackling primary anthropogenic emissions (Fig. 5b). Potential emissions reductions from 540 

Amazon conservation (92 Mg yr-1) and global reforestation (98 Mg yr-1) are within the 541 

range of impacts of past policy and future policy scenarios aimed at reducing Hg from 542 

specific anthropogenic sources or due to national climate and air pollution policies (5–543 

262 Mg yr-1)85–90. Emissions reductions from land use policies are different from primary 544 

emissions reductions in that their efficacy depends on whether the storage of Hg in soils 545 

is over a long-term period. Similar to CO2, the potential benefits of enhanced Hg uptake 546 

on land can be reversed by human or natural disturbances, e.g., by climate change 547 

increasing the frequency of wildfires — which re-emit Hg and carbon from terrestrial 548 

ecosystems — and droughts — which reduce Hg and CO2 uptake by plants30,91. Thus, 549 

mitigation of Hg pollution by conserving and increasing forest area can only be realized 550 

with concurrent efforts to sustainably manage land areas and preventing severe climate 551 

change. The potential of sustainable land use to mitigate Hg pollution could enable 552 
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collaborations between the Minamata Convention and other global policy efforts to 553 

reduce deforestation, e.g., the 2021 Glasgow Declaration92. Ultimately, mitigation of 554 

global Hg pollution depends not only on reducing primary anthropogenic emissions, but 555 

also reducing anthropogenic activities like deforestation that re-mobilize legacy Hg. 556 

 557 
Figure 5. Potential of land use policies to reduce net Hg fluxes to the atmosphere. (a) Comparing 558 
global 2015 emissions from primary anthropogenic emissions9,38 and deforestation-driven 559 
emissions, assuming a 45-year time horizon (1970–2014 deforested areas). (b) Net Hg emissions 560 
reductions from land use policies (this study) are compared to primary anthropogenic emissions 561 
policies, whose impacts have been quantified in the literature85–90. ASGM refers to artisanal and 562 
small-scale gold mining. For land use scenarios, “Amazon conservation by 2050” refers to the net 563 
emissions reductions in the 2050 governance (GOV) from the business-as-usual (BAU) 564 
simulations and “Global reforestation scenario” compares the net emissions reductions in the 565 
reforestation scenario (RFR) compared to the reference simulation (HIST). Error bars for this 566 
study refer to the 95% confidence interval based on model parameter uncertainties. 567 
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Section S1. Soil emissions parameterization 19 
We improved the model’s parametrization of Hg0 soil emissions by adopting a new formulation for the 20 
parametrization, suggested by Khan et al.1: 21 

𝐸soil = 𝑎𝐶𝑏𝑅𝑔
𝑐    (Eq. S1) 22 

where Esoil are soil emissions (ng m–2 h–1), C is the concentration of Hg in soils (µg g–1), Rg is the solar 23 
radiation flux at the ground (W m–2), and a, b, and c are coefficients. 24 
 25 
As in Selin et al.2, the solar radiation atwi ground (Rg) is determined by considering attenuation of the 26 
solar radiation flux (RS) by shading from the overhead canopy, parametrized by the leaf area index 27 
(LAI): 28 

𝑅𝑔 = 𝑅𝑆 exp (−
𝛼LAI

cos𝜃
)        (Eq. S2) 29 

where 𝛼 = 0.5, assuming extinction from a random angular distribution of leaves3 and 𝜃 is the solar 30 
zenith angle. 31 
 32 
We compiled several relevant observational constraints for the parametrization in Tables S1 and S2. 33 
Observational studies from the Amazon region suggest that deforestation has a large impact on soil 34 
emissions due to removal of canopy shading, showing factors of 1.8×, 6.7×, and >31× more emissions 35 
in forested compared to deforested land plots (Table S1). Observational studies from other regions 36 
find a similarly high sensitivity of soil emissions to the presence of forest: open fields in China 37 
showed 6–10 times higher Hg emissions than forests4 and logging in the US flipped the surface-air 38 
Hg0 flux from net deposition to net emissions (‑2.2 µg m–2 yr–1 to +5.5 µg m–2 yr–1) 5. For extratropical 39 
grassland soil emissions, we use the compiled median values from Zhu et al.6 and Agnan et al.7 40 
 41 
We conducted a parameter sweep of a, b, and c, calculating globally-gridded soil emissions using 42 
annual solar radiation data (Fig. S1). Sensitivity simulations showed that the ratio of deforested to 43 
forested soil emissions in the Amazon (median value 6.7) can tune the exponent for the radiation term 44 
(c in Eq. S1), i.e., the response of emissions to canopy shading. The exponent for the soil 45 
concentration term (b) was tuned with the ratio of deforested Amazon soil emissions (Table S1) to 46 
extratropical grassland soil emissions from the Northern Hemisphere from two review studies6,7 47 
(overall Amazon to extratropical ratio of 5.3). Lastly, after these coefficients are tuned, the prefactor a 48 
is adjusted so that predicted annual mean emissions match the observed median magnitudes of 49 
Amazon deforested soil emissions (23 µg m–2 yr–1) and extratropical grassland emissions (4.3 µg m–2 50 
yr–1).  51 
 52 
We recognize the uncertainties in the observed data used to tune this parametrization, and thus we 53 
constructed 100 alternative parametrizations that fit within observed data bounds (Table S5). These 54 
parametrizations were applied in offline uncertainty analyses to assess 95% confidence intervals in the 55 
fluxes driven by deforestation (Section S4). 56 
 57 
  58 
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Table S1. Literature review of available Hg0 soil emission flux measurements from the Amazon 59 
region, differentiated by land cover type.  60 

Reference Location Site 

Deforested Hg0 

flux 

(µg m-2 yr–1) 

Forested Hg0 flux 

(µg m-2 yr–1) 

Flux ratio 

(deforest:forest) 

Magarelli and 

Fostier8 

Negro River 

Basin, 

Brazil 

#1 27 ± 9 0.6 ± 1.5  

#2 19 –1.0 ± 0.8  

#3 9.8 ± 0.7   

Mean 18 –0.2 > 31a 

Almeida et al.9 
Rondônia, 

Brazil 
#1 79 ± 110 44 ± 18 1.8 

Carpi et al.10 Acre, Brazil 
#1 19 ± 2 2.9 ± 0.8 6.7 

#2 230b   

 Median  23 1.8 6.7 
alower limit calculated assuming the forested flux is equal to site #1, as site #2 shows negative overall flux; 61 

deforested flux assumed as mean. 62 
bthis site was 2-months post-fire and soil temperatures were still elevated; this flux is excluded from ratio 63 

calculations  64 

 65 

Table S2. Observational constraints used to tune the soil emissions parametrization.  66 

Constraint  Value Reference 
Coefficient 

constrained 

Amazon deforested soil emissions (µg m–2 yr–1) 23  Table S1 a 

Extratropical grassland soil emissions (µg m–2 yr–1) 4.3† 
Zhu et al.6; Agnan et 

al.7 
a 

Ratio of Amazon to extratropical soil emissions 5.3 (23:4.3) b 

Ratio of deforested to forested Amazon soil 

emissions 
6.7 Table S1 c 

†average of grassland median Hg0 fluxes from the two independent review studies 67 
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 68 

Figure S1. Parameter tuning (Eq. S1) to match observational constraints from Table S2.  69 

 70 

The tuning procedure is illustrated in Fig. S1, yielding best matches for a = 71, b = 2.5, and  71 
c = 0.76. We compare the gridded annual mean soil emissions from the previous soil emission 72 
parametrization (GEOS-Chem v12.8) and the current study (Eq. S1) in Fig. S2. Global annual mean 73 
soil Hg0 emissions in the new parametrizations (954 Mg yr–1) is similar to the predictions from two 74 
GEOS-Chem studies11,12 using the previous parametrization: 860 ± 440 Mg yr-1 and 910 Mg yr–1. The 75 
spatial distribution of emissions (Fig. S2) shows a decrease in vegetated regions (e.g., the Amazon and 76 
Congo rainforests) and an increase in regions with high soil Hg concentrations (e.g., eastern China). 77 
 78 
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 79 
Figure S2. (a) Annual mean soil emissions of Hg0 with the new parametrization. (b) Difference 80 
between new and old (GEOS-Chem v12.8) soil emissions parametrizations (new minus old). 81 
 82 

Section S2. Observational constraints on deforestation Hg fluxes 83 
There are several available sources of information that can be used to validate the deforestation 84 
emission factors (EF) calculated by GEOS-Chem (Fig. 1, SI Spreadsheet): 85 
 86 
1) Soil Hg concentration measurements of paired forest-deforested sites:  87 
Previous studies have measured the concentrations of Hg soils at deforested sites (𝐶𝑑) and nearby 88 
forest (𝐶𝑓) plots. For this analysis, we assume that the difference in these soil concentrations is due to 89 
mainly the change in atmospheric exchange, which is supported by the magnitude of modeled erosion 90 
fluxes (Section S6) and available measurements5. We use the following equation to convert the 91 
difference in these concentrations to a deforestation emission factor of Hg in Mg m-2 yr-1: 92 

Total EF =
(𝐶𝑑−𝐶𝑓)× 𝜌× ℎ 

𝑡𝑑
   (S3) 93 

where 𝜌 is the density of the soil, ℎ is the depth of the soil layer, and 𝑡𝑑  is the time since deforestation. 94 
In the US (Nearctic), there have been studies in Ohio13 and Oregon14 with measurements of Hg in 95 
deforested and forested soils, which we use to calculate deforestation EFs for the Nearctic. For the 96 
Amazon, more measurements are available (24 pairs of soil plots)8–10,15–25. We compiled a literature 97 
database of studies that compared Hg concentrations in deforested Amazonian soils with nearby forest 98 
plots (Fig. S3; SI Spreadsheet). Deforested sites show a consistent decrease compared to paired 99 
forested sites (p-value < 0.001; Wilcoxon signed-rank test), with the median decrease being 25 ng g-1 100 
(10th–90th percentile: 2–58 ng g-1). To calculate a deforestation EF for the Amazon, we apply this 101 
concentration decrease in Eq. S3 and assume an average Amazon soil density of 1.25 ng g-1, a surface 102 
soil layer of 10 cm, and that deforested soils in the literature studies were measured 10 years after 103 
deforestation.  104 
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 105 
Figure S3. Measured Hg concentrations in forest (green) and deforested (orange) soils (0–20 cm 106 
depth) from the literature (n = 24)8–10,15–25. Box plots show the median values (solid lines), 107 
interquartile range (shaded), and 10th and 90th percentiles (whiskers). Gray lines connect paired sites 108 
from the same study. Listed p-value (<0.001) refers to the Wilcoxon signed-rank test of the null 109 
hypothesis that paired forest and deforested sites come from the same distribution. 110 

 111 
2) Terrestrial-atmosphere exchange models validated by Hg observations:  112 
An estimate for the deforestation EF over China is available from the Wang et al.26 modeling study. 113 
We use their area-averaged mean fluxes over forest and agricultural land cover to calculate a 114 
deforestation emission factor: 115 

Total EF = (𝐸𝑑 − 𝐷𝑑) − (𝐸𝑓 − 𝐷𝑓)  (S4) 116 
where 𝐸𝑑 and 𝐸𝑓 are the terrestrial emission fluxes (Mg m-2 yr-1) from Chinese agricultural land and 117 
forest, and 𝐷𝑑  and 𝐷𝑓 are the deposition fluxes (Mg m-2 yr-1) to Chinese agricultural land and forest. 118 
Although this EF estimate is model-based, the Wang et al.26 model was validated extensively with 119 
available terrestrial-atmosphere exchange measurements from China. 120 
 121 
3) Dynamic flux chamber measurements of forested and deforested soils:  122 
Additional studies investigating the impact of deforestation on atmospheric fluxes quantified the 123 
response of soil emissions using dynamic flux chamber measurements5,8–10,27,28. We compare these 124 
measurements to the soil-only EF modeled by GEOS-Chem. The soil emission factors measured by 125 
the studies is calculated as the difference between soil emissions (Mg m-2 yr-1) over deforested and 126 
forested soils: 127 

Soil EF = 𝐸𝑑 − 𝐸𝑓    (S5) 128 
 129 

The comparison between GEOS-Chem simulated deforestation EFs and observation-derived values is 130 
summarized in Fig. 1. Observations are only available from three regions (Amazon, China and 131 
Nearctic). We found further references investigating the impact of deforestation on Hg for the 132 
Palearctic region29,30, yet these focused on measuring Hg concentrations in aquatic media and 133 
methylation potential rather than soil concentrations or atmospheric exchange. Australian soil 134 
measurements31,32 have been made before and after vegetation burning events, but do not cover the 135 
longer term soil Hg response to deforestation.  136 
 137 
The modeled EF estimates and their uncertainties overlap with observation-derived EFs for all 3 138 
regions. If anything, the modeled best estimate used in online simulations is conservative compared to 139 
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available observations, showing generally lower EFs (Fig. 1). However, it is unclear whether the 140 
sparse observations available are representative of the overall region. The modeled EF uncertainty 141 
estimates cover 1–2 orders of magnitude, emphasizing the current uncertainties in the response of Hg 142 
fluxes to deforestation. Figure 1 also reveals the regions where no observations of the impact of 143 
deforestation on Hg cycling are currently available. Specifically, the Afrotropic and Indomalayan 144 
domains would be priorities for future measurement campaigns, given the current impact of 145 
deforestation in those regions (Fig. 2). It remains unknown whether Southeast Asian and African 146 
rainforests show similarly high levels of Hg in litterfall as the Amazon rainforest33. 147 
 148 
Section S3. Global deforestation-driven emissions estimates 149 
We use perturbation simulations in which a set area within each region is deforested to calculate each 150 
deforestation EF. In the EF approach, we assume that 1) land-air fluxes respond linearly to deforested 151 
area and 2) spatial variability in the deforestation response within regions can be ignored. We explored 152 
the validity these assumptions using the four Amazon deforestation scenario simulations conducted in 153 
this work (Fig. S4). In the Amazon simulations — the reference simulation with 2003 forest cover 154 
(HIST), governance scenario for 2050 (GOV), business-as-usual for 2050 (BAU), and savannization 155 
(SAV) — different areas (both in spatial pattern and extent) were deforested in the Amazon region. 156 
The total fluxes from the Amazon basin for Hg0 dry deposition, soil Hg0 emissions, and the overall 157 
land-air balance of Hg all respond linearly (R2  > 0.98) to the magnitude of the deforested area. 158 
Therefore, the approach of calculating deforestation EFs and scaling these with deforested areas would 159 
likely not be highly sensitive to the spatial distribution and amount of deforestation. Therefore, we 160 
conducted 7 other idealized deforestation simulations for the other land regions (Fig. S5). 161 
 162 

 163 
Figure S4. Relationship between land-air fluxes and the area deforested in GEOS-Chem simulations 164 
for the Amazon rainforest. Fluxes are averaged over the Amazon rainforest domain and listed R2 165 
values refer to linear models.  166 
  167 
Additional data related to the calculation of historical deforestation-driven emissions of Hg are 168 
presented in this section. The maps defining the regions used in this study is shown in Fig. S5. Table 169 
S3 tabulates the results from the perturbation simulations for the different regions and the resultant 170 
emission factors. Fig. S6 explores the impact of choosing different time horizons for the deforestation 171 
area on the calculated Hg emissions globally and by country. Fig. S7 shows the map of Hg 172 
deforestation-driven emissions, assuming a 45 year time horizon (deforestation area of 1970–2014 173 
from the LUH2 dataset34). 174 
 175 
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 176 
 177 
Figure S5. Definition of regions used to calculate the deforestation emission factors.  178 
 179 
 180 
Table S3. Results from the deforestation perturbation simulations in GEOS-Chem for determining the 181 
response of land-air fluxes to deforesting a specified area. Emissions factors are listed with the 95% 182 
confidence interval calculated in offline simulations assessing the uncertainties due to model 183 
parameters (Section S4).  184 

Realm  

Area 

deforested 

(km2) 

Change in 

emissions 

(Mg yr-1) 

Change in 

deposition 

(Mg yr-1) 

Change in 

net emissions  

(Mg yr-1) 

Emissions factor  

(Mg m-2 yr-1) 

[95% confidence 

interval] 

Afrotropic 3 644 969 29.1 -10.0 39.1 
1.1 × 10-5 

[2.8 × 10-6 to 1.2 × 10-4] 

Neotropic 2 422 577 13.0 -4.9 17.9 
7.4 × 10-6 

[4.8 × 10-6 to 5.7 × 10-5] 

Indomalaya 2 626 474 31.6 -28.3 59.9 
2.3 × 10-5 

[1.5 × 10-5 to 2.1 × 10-4] 

Palearctic 4 221 663 5.8 -4.3 10.1 
2.4 × 10-6 

[7.6 × 10-8 to 2.3 × 10-5] 

Nearctic 4 606 898 31.6 -17.4 48.9 
1.1 × 10-5 

[7.1 × 10-6 to 6.2 × 10-5] 

Australasia 1 088 250 1.9 -4.8 6.6 
6.1 × 10-6 

[8.3 × 10-7 to 5.4 × 10-5] 

China 1 141 180 16.6 -10.1 26.7 
2.3 × 10-5 

[1.7 × 10-5 to 2.3 × 10-4] 

Amazon 6 775 429 96.2 -394.0 490.2 
7.2 × 10-5 

[4.5 × 10-5 to 2.0 × 10-4] 

 185 
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 186 
Figure S6. (a) Global and (b) country-level deforestation emissions of Hg for the top 15 emitting 187 
countries. Results are summarized accumulating deforested area over different time horizons (15 188 
years, 30 years, 45 years, and 60 years) before 2015. Error bars refer to the 95% confidence interval 189 
based on the uncertainty in model parameters (Section S4). 190 
 191 

 192 
Figure S7. Map of net emissions of Hg from deforestation calculated over a 45 year time horizon 193 
before 2015 (1970–2014), using deforested area from the LUH2 dataset34. 194 
 195 

  196 
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Section S4. Model uncertainty analysis 197 
 198 
Table S4. Parameter uncertainty bounds applied in the uncertainty analysis.  199 

Parameter  Min Max Units Distribution Comment 

Soil emission 
parametrization 

1 100 - Uniform  

Integer representing one of 100 
reasonable parametrizations 
calculated within the range of 
observed uncertainties (Table 
S5)  

Percentile of replaced 
LAI when building 
scenarios 

10 90 - Uniform 
e.g., deforested Amazon area is 
assigned 10th percentile LAI of 
HIST savanna, instead of mean 
for default estimate  

Dry deposition Hg0 
reactivity (f0) Amazon 
rainforest 

10-2 0.5 - Loguniform 
Based on Feinberg et al.33, 
within range of available 
vegetation uptake 
measurements 

Dry deposition Hg0 
reactivity (f0) other 
rainforests 

10-5 0.2 - Loguniform 
Based on Feinberg et al.33; no 
available measurements from 
other rainforests, leading to 
wider f0 uncertainty 

Dry deposition Hg0 
reactivity (f0) elsewhere 

10-5 5 × 10-5 - Uniform 
Based on Feinberg et al.33, 
within range of available 
vegetation uptake 
measurements 

Biomass burning 
emission factor for 
Amazon 

350 615 µg m-2 Uniform Estimated range in 
literature10,35,36 

 200 

 201 

Table S5. Bounds of observed parameters used to calculate 100 reasonable soil emission 202 
parametrizations, which are then applied in the uncertainty analysis (Table S4). 203 

Parameter  Min Max Units Comment 

Ratio of deforested to forested 
Amazon soil emissions 

1.8 31 - Range from Table S1 

Ratio of Amazon to 
extratropical soil emissions 

3.5 8 - Assume 50% error from Table S2 

Extratropical grassland soil 
emissions 

3.5 11.4 µg m–2 yr–1 Grasslands and background soil range 
from literature reviews6,7 

Deforested Amazon soil 
emissions 

9.8 79 µg m–2 yr–1 Range from Table S1 

 204 

  205 
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Section S5. Scenarios for Amazon deforestation and global reforestation 206 

 207 
Figure S8. Map of the Amazon basin showing the area of forest, forest loss and rangeland and 208 
agriculture in (a) HIST; and projections for 2050 in (b) Business as Usual (BAU) and (c) Governance 209 
(GOV) scenarios (replotted from Soares-Filho et al.37 data). 210 
 211 

 212 
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 213 
Figure S9. Annual mean leaf area index (LAI) maps for the Amazon deforestation scenarios at 0.25° 214 
× 0.25° resolution. The simulations names refer to the following scenarios: reference (HIST), 215 
Business-as-usual (BAU), Governance (GOV), and Savannization (SAV). 216 
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 217 
Figure S10. Annual mean leaf area index (LAI) maps at 0.25 × 0.25° resolution for: (a) the reference 218 
(HIST) scenario (b) Reforestation scenario (RFR) (c) Difference between RFR and HIST. 219 
 220 

Section S6. Impact of Amazon deforestation on erosion 221 
Previous field studies15,38 have suggested that erosion of Hg is increased after deforestation in the 222 
Amazon, measuring enhanced runoff of Hg in deforested catchments. We estimated the change in soil 223 
displacement by water erosion (soil erosion) in the Amazon deforestation scenarios using the RUSLE-224 
based39 modeling platform Global Soil Erosion Modeling (GloSEM)40,41. As a detachment-limited soil 225 
erosion prediction model, GloSEM estimates soil erosion (expressed as a mass of soil lost per unit area 226 
and time, Mg ha−1 yr−1) due to inter-rill and rill erosion processes by multiplication of six contributing 227 
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factors. The modeling scheme follows the same principle of most RUSLE-type models or more 228 
complex catchment-scale process-based models, with a driving force (erosivity of the climate, R), a 229 
resistance term (erodibility of the soil, K) and other factors representing the farming choice, i.e., 230 
topographical conformation of the field (LS), cropping system (C), and soil conservation practices (P).  231 
 232 
Our approach for calculating soil erosion in the Amazon scenarios is similar to the GloSEM 233 
parametrization adopted by Borrelli et al.40,41 to estimate human-induced soil erosion change between 234 
2001 and 2070 at a global scale. The horizontal resolution of the native soil erosion modeling is 250 × 235 
250 m. The calculation of erosivity (R), erodiblity (K), topographical conformation of the field (LS), 236 
and soil conservation practices (P) factors are described in Borrelli et al.40,41. We acknowledge that the 237 
calculation of erosion model factors for the Amazon rainforest may be associated with higher 238 
uncertainties than other regions due to the lower density in meteorological stations42 and soil sampling 239 
sites43. For this study, we adapted the computation of the land cover and management factor (C-240 
factor), which measures the combined effect of vegetation cover and cropping system variables on the 241 
soil erosion process. We parametrize the C-factor according to two layers of information: 1) the spatial 242 
dimension of land use classes according to the deforestation scenarios from Soares-Filho et al.37 243 
(described below); 2) the vegetation condition in each land use class using the MODIS MOD44B 244 
Vegetation Continuous Fields product (VCF) (~250m spatial resolution) as a proxy to quantify (i) 245 
surface vegetation cover, (ii) tree cover, and (iii) bare soil. As we focus our analysis on comparing the 246 
forest coverage in the years 2003 and 2050, the baseline vegetation condition is given by the average 247 
VCF values over the years 2000, 2001 and 2002. The C-factor for noncropland areas (Cnc) is estimated 248 
in two steps. First, a preliminary C-factor (𝐶𝑝) not considering tree cover is calculated as:  249 

𝐶𝑝 =  𝐶𝑚𝑖𝑛 +  ((𝐶𝑚𝑎𝑥 −  𝐶𝑚𝑖𝑛) NVS) (S6) 250 
where the 𝐶𝑚𝑖𝑛 (0.01) and 𝐶𝑚𝑎𝑥 (0.15) express the potential range in C-factor values for dense to 251 
sparse grassland cover. NVS (non-vegetated surface) is spatially defined using the MODIS MOD44B 252 
VCF data normalized to a range from 0 to 1 and describes the percentage of ground covered by any 253 
vegetation type. For the NVS, the C-factor is set to 0.5. Within the next step, the final land cover and 254 
management C-factor for non-croplands (𝐶𝑛𝑐) is computed including the tree coverage (TC) defined 255 
using the MODIS MOD44B VCF normalized to range from 0 to 1: 256 

𝐶𝑛𝑐 =  𝐶𝑝 𝑚𝑖𝑛 +  ((𝐶𝑝 𝑚𝑎𝑥 −  𝐶𝑝 𝑚𝑖𝑛) TC)  (S7) 257 
where the 𝐶𝑝 𝑚𝑖𝑛 and 𝐶𝑝 𝑚𝑎𝑥 values are set to 0.0001 (100% canopy cover) and 0.009 (sparse forest 258 
vegetation).  259 
 260 
While the deforestation scenarios proposed by Soares-Filho et al.37 provide a spatial quantification of 261 
the forest losses between 2003 and 2050, the annual shares of conversion from forest to grassland or 262 
cropland are separate from the annual projection of the Land-Use Harmonization (LUH2) data34, 263 
which provides fractional land-use patterns (850-2100) at 0.25° × 0.25° resolution. The downscaling 264 
of the LUH2 fractional cropland and grassland data from 0.25° × 0.25° resolution to the 250 m × 250 265 
m resolution of the erosion model is performed through a probabilistic land use allocation scheme 266 
based on classification rules applied to auxiliary information (i.e., a crop suitability index, more detail 267 
in Borrelli et al.40). Finally, the C-factor of the cropland is defined at sub-national administrative level 268 
(Global Administrative Unit Levels) based on the Food and Agriculture Organization's (FAO) 269 
FAOSTAT database, which allowed to statistically describe typical crop rotations in each region. The 270 
C-factor of the croplands ranges from 0.131 (Northern Suriname) to 0.332 (Northeast Brazil). 271 
 272 
Following the assumption of Lugato et al.44 for eroded carbon, we assume that 30% of the eroded soil 273 
flux is not redeposited on land and enters riverine systems. The fraction of eroded Hg which enters 274 
aquatic systems is uncertain, depending on hillslopes dynamics and flow patterns that are not 275 
explicitly modeled by the RUSLE-based framework, as well as whether Hg would be selectively 276 
eroded relative to carbon. We recognize that this assumption introduces uncertainty into our 277 
calculations, and assume that the fraction of eroded soil which enters riverine systems can vary 278 
between 5–47%, the range reported by Van Oost et al.45 We calculate the eroded flux of Hg from land 279 
by multiplying the soil flux by the median Hg concentration in Amazon forested soils from a literature 280 
review (86 ng g-1; see SI Spreadsheet).  281 
 282 
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For each Amazon scenario, we tabulate the Hg erosion fluxes in Table S6. Erosion in the HIST 283 
scenario represents a flux of 64 Mg yr-1 (uncertainty range: 11–100 Mg yr-1). Erosion is enhanced in 284 
the deforestation scenarios, ranging from +14% increase in GOV to a 96% increase in the extreme 285 
SAV scenario. The absolute magnitudes of erosion flux changes are smaller than the perturbations in 286 
the land-air flux, driven by changes in Hg0 soil emissions and dry deposition (Table S6). Overall, 287 
perturbations to the erosion flux are approximately 14% of the perturbations to the land-air flux due to 288 
deforestation. A previous field study5 has also suggested that the majority of flux changes after 289 
deforestation occurs through atmospheric exchange (97%) rather than erosion to riverine systems. 290 
Therefore, the land-air changes to the fluxes play the larger role in the impact of deforestation on the 291 
mass balance of Hg in soils. Nevertheless, changes to erosion will affect downstream Hg 292 
concentrations and the methylation potential after deforestation5,29, which would be important to 293 
consider when assessing the impact of deforestation on local ecosystems.  294 
 295 
Table S6. Soil erosion fluxes for the Amazon basin calculated by the erosion model GloSEM. The 296 
simulations names refer to the following scenarios: reference (HIST), Business-as-usual (BAU), 297 
Governance (GOV), and Savannization (SAV). 298 

Scenario HIST BAU GOV SAV 

Soil loss (Mt yr-1) 2467 3276 2816 4834 

30% of soil loss (Mt yr-1)a 

[5%–47%] 

740 

[123–1159] 

983 

[164–1540] 

845 

[141–1323] 

1450 

[242–2272] 

Hg erosion (Mg yr-1) 

[uncertainty range] 

64 

[11–100] 

85 

[14–132] 

73 

[12–114] 

125 

[21–195] 

Change from HIST (Mg yr-1) 

(relative change) 

- 21 

(+33%) 

9 

(+14%) 

61 

(+96%) 

Land-air flux change from 

HIST  

(Mg yr-1) 

- 153 61 441 

a This is the flux assumed to be entering riverine systems 299 

 300 
  301 
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Section S7. Impacts on atmospheric Hg concentrations 302 

 303 
Figure S11. Annual mean differences in simulated atmospheric Hg0 concentration at the surface 304 
between scenarios — Business-as-usual (BAU), Governance (GOV), Savannization (SAV), and global 305 
reforestation (RFR) — and the HIST reference simulation. 306 
 307 
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