2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC) | 979-8-3503-9946-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/ITSC57777.2023.10422349

2023 IEEE 26th International Conference on
Intelligent Transportation Systems (ITSC)
24-28 September 2023. Bilbao, Bizkaia, Spain

A Multi-Sensor Video/LiDAR System for Analyzing Intersection
Safety

Aotian Wu, Tania Banerjee, Ke Chen, Anand Rangarajan and Sanjay Ranka

Abstract—We introduce an integrated video and LiDAR an-
alytics system for analyzing pedestrian and vehicle behavior
at traffic intersections. Subsystems for each modality leverage
advanced deep-learning techniques to detect pedestrians and
vehicles and then use a Kalman-filter-based tracking algorithm
to generate tracks. The video and LiDAR tracks are then
aligned spatiotemporally onto the same coordinate system with
synchronized clocks.

We evaluate the benefits of these two modalities by providing
both qualitative and quantitative comparisons, utilizing low-level
measures such as detection and tracking accuracy, as well as high-
level measures such as severe events. Additionally, we compare
the two modalities at different times of the day and show that
LiDAR is competitive with video during daylight hours and
significantly outperforms video at late evening when lighting
conditions are poor. To the best of our knowledge, this study
represents the first detailed comparison of these two modalities
for observing traffic intersections.

Index Terms—Pedestrian Safety, Surrogate Measures, Near-
misses, Severe Events

I. INTRODUCTION

Intersections are often considered high-risk areas for traffic
crashes, as they are points of conflict between vehicles trav-
eling in different directions. Nearly 28% of all fatal crashes
and 58% nonfatal crashes are intersection crashes, resulting in
$179 billion, or 53% of all economic costs from motor vehicle
crashes [1]. Toward the goal of improving intersection safety,
it is crucial to build a traffic monitoring and analytics system
that helps understand road user behaviors, identify abnormal
behaviors and patterns, assess potential risks, and prevent crash
events proactively. Many intersections are already equipped
with surveillance cameras, making it easier to integrate video
monitoring into the existing infrastructure. LiDAR has also
gained attention due to its reduced cost and increased pre-
cision, making it a potential alternative or complement to
camera-based systems for intersection monitoring.

Camera-based systems are generally adopted for intersec-
tion monitoring and analysis [2], [3] due to their low cost and
advanced object detection and tracking algorithms. Video cam-
eras provide a rich visual representation of the scene, which
can be useful for understanding traffic patterns and behaviors.
However, they may be limited for the following scenarios: (1)
poor lighting and weather conditions; (2) occlusions caused by
infrastructure (e.g., poles) or other road users; (3) pedestrian
detection in areas where image footprint is small; and (4) areas
where the field of view (FOV) does not cover. Additionally,
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the lack of 3D understanding of the scene and distortion in
case of fisheye cameras may result in an inaccurate estimate
of speed and severity of conflict events.

LiDAR provides a highly accurate 3-D representation of
the surrounding environment in terms of point clouds because
it precisely measures the 3-D distance and scale of objects
by measuring the time between emitting and receiving the
reflected laser light waves. Additionally, it has long-range
detection capabilities and is robust under different lighting
conditions. Thus, it has the potential to be complementary
to vision sensors. LiDAR has its own potential limitations,
especially considering the lack of appearance information
and occlusion issues. Previous studies [4]-[6] have shown
the effectiveness of LiDAR in infrastructure analytic systems.
They produce trajectories in four main steps: (1) background
filtering, (2) object clustering, (3) object classification, and
(4) object tracking. However, there are many challenges that
need to be addressed. For example, both background filtering
and object clustering require extensive parameter tuning to
achieve satisfactory results. Moreover, in object clustering, it
is common for one object to be assigned to multiple clusters,
or for multiple nearby smaller objects to be assigned to the
same cluster, resulting in tracking challenges. One study [7]
leverages deep convolutional neural networks pretrained on
autonomous driving datasets, but only achieves suboptimal
detection performance (72.9% average F1 score).

In this paper, we present an integrated video and LiDAR
analytics system for analysing pedestrian and vehicle behavior
at traffic intersections. Subsystems for each modality leverage
advanced deep-learning techniques to detect road users and
then use a Kalman-filter-based tracking algorithm to generate
tracks. The key contributions of the paper are as follows:

1) Spatiotemporal mapping of the video and LiDAR tracks.
This involves mapping the two modalities to the same
space, namely the Google Maps coordinate system, and
clustering them based on their ingress and egress lanes.
Additionally, we develop simple clock synchronization
techniques to account for small timing differences in data
acquisition between the two sensors.

2) Using this system, we evaluate the benefits of the two
modalities and provide both a qualitative and quantitative
comparison. Utilizing both low level measures such as
detection and tracking accuracy and high level measures
such as severe events [8], we provide a qualitative and
quantitative comparison of the two modalities during
different times of day. Our definition of severe events
is a generalization of near-misses and incorporates speed

979-8-3503-9946-2/23/$31.00 ©2023 IEEE 1158

Authorized licensed use limited to: University of Florida. Downloaded on July 25,2024 at 03:09:22 UTC from IEEE Xplore. Restrictions apply.



Fisheye Camera Input Source

w

.

o

LiDAR Input Source

Video-based LiDAR-based

Object Detection
and Tracking

Object Detection
and Tracking

LiDAR Coordinate to
Google Map Mapping

TPS Mapping to
Google Map

Video Trajectories.

~~‘u (! . A

Online Trajectory|
Clustering

Conflict and Severe
Event Detection,
Fusion, and Analysis

Pedestrian Conffct Type 5 NBT Volume
Y.

N
|
L I |
L[]
e
Statistics Conflict Point Heatmap  Severe Event Playback

Fig. 1. The overall workflow of our system. From an input video and LiDAR
stream, the system initially detects and tracks all road users for each of the two
streams, then maps them to the same Google Maps coordinate system. The
trajectories are then clustered based on their movement patterns. Finally, the
conflict and severe event detection and analysis module fuses this information
to generate statistics for severe events, heatmaps, and video playback clips.

and acceleration profiles, clustering information, and the
direction of the trajectories [8], and is used for both
vehicle-vehicle and pedestrian-vehicle interactions.

3) We develop techniques for fusing severe conflict events
to produce statistics, a conflict point heatmap, and video
footage of severe events in which the LiDAR and video
are synchronized and displayed side by side.

Experimental results are presented using video and LiDAR
data collected concomitantly at the same intersection. Our

overall results show that LiDAR is competitive with video
during the day and significantly outperforms video during
early morning and late evening when the lighting conditions
are poor. We currently provide users with a union of the
severe events found by two modalities. In the future, we plan
to intelligently combine the two modalities by automatically
choosing the better of the two based on location of the
intersection (e.g., areas where LiDAR is more accurate than
video and vice versa), traffic conditions (e.g., when video
accuracy is reduced due to occlusions), and lighting and
weather conditions.

The rest of the paper is structured as follows. The method-
ology for developing the integrated system is described in
Section II. Section III outlines the experiments conducted
on an intersection in Gainesville, Florida, to demonstrate the
advantages of our system. Section IV presents the related work
on the use of cameras and LiDAR sensors for monitoring
intersections. Conclusions are described in Section V.

II. METHODOLOGY

The overall workflow of the video and LiDAR analytic
system is shown in figure 1. For an input video and LiDAR
stream, the system first detects and tracks all road users, then
maps to the same Google Map coordinate system. At this
stage, the trajectories are clustered based on their movement
patterns. Finally, the conflict and severe event detection and
analysis module generates severe event statistics, heatmaps, as
well as video playback clips.

A. Video-based Detection, Tracking, and Mapping

The video-based object detection and tracking module uti-
lizes YOLOvV4 [9] to detect different kinds of road participants,
including vehicles, pedestrians, cyclists, and motorcyclists. A
modified version of the DeepSORT [10] algorithm is used
to associate detections across frames and assign a unique
ID for each object. The modification is necessary because
of the large distortion in fisheye videos. Specifically, the
trajectories in fisheye videos have unusual shapes and speeds,
which do not work well with the Kalman Filter used in
DeepSORT. Therefore, instead of computing the distances in
the original fisheye coordinates, we first align them to Google
Map coordinates and then compute distances in this regular
coordinates. Details of the mapping and overall approach can
be found in [11].

B. LiDAR-based Detection, Tracking, and Mapping

We used state-of-the-art algorithms to detect and track
objects in LiDAR point clouds, specifically Centerpoint [12]
and SimpleTrack [13]. The detector was trained on high-
quality annotations using an efficient annotation tool [14] and
can detect traffic participants with high precision.

LiDAR-based Object Detection: We detect road users using
CenterPoint [12], which identifies objects as key points and
regresses their other attributes, such as 3-D location, size,
and heading orientation. CenterPoint consists of a standard
3-D backbone network, a center heatmap head, and regression
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heads. The center heatmap head produces keypoint heatmaps,
where each peak corresponds to a predicted object center.
The regression heads regress other properties for predicted
key points. We followed OpenPCDet’s [15] implementation of
CenterPoint. More details on the model can be found in [12].

LiDAR-based Object Tracking: We used SimpleTrack [13]
for multi-object tracking. SimpleTrack is a high-performing
multi-object tracking approach that unifies 3D MOT methods
into a general framework. It consists of four major compo-
nents: detection preprocessing, object motion modeling, BBox
association across frames, and tracklet lifecycle management.
We apply stricter non-maximum suppression (NMS) to ex-
clude overlapping low-confidence BBoxes while preserving
low-confidence BBoxes caused by sparsity or occlusion. For
object motion modeling, we use the Kalman filtering algo-
rithm, which estimates the next locations of objects from un-
certain observations. We found that the Kalman filter performs
well in infrastructure-based LiDAR settings due to the high-
precision measurements of objects subject to kinematics. We
associate the predicted location with detections in the next
frame using the Hungarian algorithm [16].

Map the 3D Trajectories to Google Maps Coordinates: For
each 3D point, we map it to a 2D point on Google Maps using
the following equation:

Zg sz 0 0] [cos@ —sinf t,| [z
Yg| =10 sy, Of [sin@ cost ty| |yp (D
1 0 0 1 0 0 1 1

where (z,, yp, zp) are centroids of the 3D BBoxes, (x4, y,) are
mapped points in Google Maps coordinates, ¢ is the rotation
angle, t,, t, are the translation offsets, and s,, s, are the
scaling parameters along the = and y axes accordingly. Notice
that z, is omitted because the LiDAR is parallel to the ground.

C. Trajectory Clustering

To accurately identify and categorize severe conflicting
events, we first need to cluster trajectories based on their
movement directions. We represent the movement directions
using phases, as illustrated in Figure 2. Certain phases are in
conflict with each other, while others are not. For instance,
Phase 1 is in conflict with Phase 2 but not with Phase 5, as
shown in Figure 2. We are particularly interested in interac-
tions between trajectories in conflicting phases, which may
reveal potential risks of the intersection. The trajectories are
clustered in two modes: online and offline. Online clustering
matches each new trajectory as it happens with the list of
representative trajectories returned from offline clustering and
assigns a cluster to the new trajectory. The best matching
trajectory is picked by computing the Dynamic time warping
(DTW) distance.

Offline clustering repeats every 24 hours and results in a
representative trajectory (centroid) for each cluster. Specif-
ically, it groups together the trajectories based on ingress
and egress lanes. Each possible combination of ingress-egress
lanes is considered a distinct class, assuming that vehicles
do not change lanes at intersections. Trajectories that do

Fig. 2. Different traffic movements at the intersection used for our experi-
mental results. The traffic movements are assigned a number between 1 and 8.
Additionally, the positions of both the camera and LiDAR sensor are depicted
within the diagram.

involve lane changes are considered anomalous trajectories.
Then, we compute a representative trajectory for each cluster
by averaging multiple trajectories of the same cluster. This
concludes the offline clustering.

D. Severe Events

Using trajectories extracted from video and LiDAR, we
can conduct safety analysis to identify potential risk factors
at intersections. For each trajectory, we compute its speed
and acceleration at each timestamp, along with the lane and
cluster belonging information. For pairs of trajectories passing
the intersection within the same time period, we compute
surrogate safety measures, namely time-to-collision (TTC) and
post-encroachment time (PET). TTC measures the time it takes
for two road users to collide if they keep their current velocity.
PET is the time difference between one road user leaving the
conflict zone and the other road user entering the zone. A low
TTC or PET value indicates a high risk of collision.

The output of our safety analysis system is a list of near-
miss events. To ensure the accuracy of detecting these events,
we propose a two-stage filtering approach. In the first stage, we
identify potential severe near-miss events using loose criteria:
(1) Both road users pass the intersection at the same time; (2)
they are in conflicting traffic phases; (3) either TTC or PET
is less than 10 seconds; (4) both of them are moving; and (5)
the distance between them is less than 10 meters. We refer to
the pair of trajectories passing the first-stage events as conflict
events in the rest of the paper. Conflict events provide good
coverage of potentially dangerous situations.

In the second stage, we employ domain expertise to conduct
more fine-grained filtering. We refer to the events passing
this second stage as severe events. In this stage, we use the
following criteria to further narrow down the conflict events.
For vehicle-to-vehicle (V2V) conflicts, we check for two con-
ditions: (1) TTC/PET is less than 3 seconds and both vehicles
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Fig. 3. An example of detection results on video and LiDAR subsystems. (a) The detected bounding boxes on the original fisheye image. (b) The rectified
detection result aligned with the Google map coordinates. (c) The LiDAR detection results on the same Google Map coordinates.

are moving relatively fast; and (2) the vehicles properly yield
to each other (deceleration is detected). For pedestrian-to-
vehicle (P2V) conflicts, we also check (1) whether TTC/PET
is less than 3 seconds; (2) whether the pedestrian is moving
at a reasonable speed (to exclude the cases where cyclists
or motorcycles are wrongly detected as pedestrians); and (3)
whether the pedestrian has left the curb.

We will like to note that many of the thresholds (e.g.,
distance and time) are tunable by the user and in general will
depend on the intersection and the city. In our future work,
as we collect data from more intersections, we will develop
techniques for automatically setting these thresholds.

E. Fusion of LiDAR and Video Data

We conduct the safety analysis separately for video and
LiDAR before fusing the output. Fusion is performed at
the severe event level. We chose to do this to reduce the
overall computational overhead as we are mainly interested
in comparing the two modalities using higher level measures.

The initial step is the synchronization of the two sources.
We select a LIDAR frame and find a video frame that roughly
matches the placement of road users. Then, we consider the
10 surrounding timestamps of that video frame as candidates.
For each possible timestamp, it is assumed to align with the
LiDAR frame’s timestamp, and the average distance between
the trajectories of all objects that appeared in both LiDAR
and video is computed. The timestamp with minimum average
distance is considered the match. This process is repeated
for tens of chosen LiDAR frames. Using the average time
difference between multiple pairs of LiDAR frames and their
matching video frames, we synchronize the two sources.

For V2V severe event fusion, we first find matching video
and LiDAR trajectory pairs. In other words, a video severe
event matches a LiDAR severe event if the corresponding
trajectories match each other (this is based on same timestamp
of the two frames and average distance between the two
trajectories to be within a small user defined threshold). If
the minimum distance exceeds the threshold, it is determined
that there is no match. The same process is also used to find
a video trajectory that matches a given LIDAR trajectory.

In addition to the strictly matched events, in which both
video and LiDAR consider them severe and both trajectories
are matched, we also defined partially matched events. A
partially matched event indicates that at least one trajectory is
matched and at least one sensor considers it severe. If a video
or LiDAR event cannot find a strictly or partially matched
event from the other source, it is considered a video-only or
LiDAR-only event. In the ideal world, the video and LiDAR
trajectories should match - but in practice this is not the case
due to distortion, occlusion, lighting conditions and processing
errors that are variable for the two modalities.

For P2V event fusion, due to the challenges in matching
pedestrian trajectories and the possibility of one vehicle con-
flicting with multiple pedestrians, we have decided to relax
the severe event matching criteria. As a result, if the involved
vehicles in the video and LiDAR severe events match, even
if the pedestrian trajectories do not precisely match, we will
consider it a match.

E. Visualization

In addition, we provide event visualization. We extract a
10-second clip surrounding the conflict time for each Severe
event. In the clip, we display rectified video frames and a top-
down view of the LiDAR frames, highlighting the two or more
objects involved in the conflict. Note that for P2V events, we
highlight all involved and potentially at-risk pedestrians. The
event playback enables traffic engineers to closely examine
each event, analyze driver behavior, and identify dangerous
maneuvers. Detailed analysis results and visualization exam-
ples are provided in Section III-C.

III. EXPERIMENTS
A. Sensor and System Setup

We collected the datasets at a busy intersection—West
University Avenue & Northwest 17th Street, Gainesville,
FL—near the campus of the University of Florida. Both
sensors are mounted parallel to the ground on traffic posts.
As shown in Figure 2, the LiDAR sensor is mounted on
the northwest corner of the intersection, while the fisheye
camera is mounted in the center of the west side. The camera
sensor is a GRIDSMART bell camera with a 180° fisheye lens.
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TABLE I
DETECTION PERFORMANCE OF VIDEO AND LIDAR IN DAY TIME AND
NIGHT TIME (TP - TRUE POSITIVE, FN - FALSE NEGATIVE, FP - FALSE

POSITIVE).
Day time Night time
Vehicle Pedestrian Vehicle Pedestrian
video LiDAR video LiDAR video LiDAR video LiDAR
TP 4395 9883 485 4141 3063 9993 467 10568
FN 654 52 137 11 1100 32 362 151
FP 228 56 40 334 482 34 97 1537
Recall 87.0 995 780 99.7 73.6 997 563 98.6
Precision 95.1 994 924 925 864 997 828 873
F-1 score 90.9 995 846 96.0 795 997 67.0 92.6

The LiDAR sensor is a Velodyne VLP-32C LiDAR with 32
channels, a 200-meter range, +15° to —25° vertical field of
view (FOV), and 360° horizontal FOV. Both sensors have a
frame rate of 10 Hz.

Our video and LiDAR detection and tracking framework
was executed on the NVIDIA TITAN RTX GPU, which is built
on the Turing architecture and features 4608 CUDA cores,
576 Tensor cores, and 72 RT cores. With 24 GB of GDDR6
memory and a memory bandwidth of 672 GB/s, the TITAN
RTX is a high-performance computing device that can handle
large and complex datasets.

In our implementation, video and LiDAR pipelines share the
online trajectory clustering, near-miss, and severe event detec-
tion modules, but have separate object detection, tracking, and
coordinate mapping modules. The modules are containerized
using Docker. Between modules, we utilize RabbitMQ to pass
messages with negligible latency. The pipeline is triggered by
adding a new video file or LIDAR PCAP file to the specified
paths. And the detected near-misses and severe events, as
well as the intermediate output such as detection and tracking
results, are stored in a MySQL database.

B. Perception Analysis

This section evaluates the accuracy of detecting vehicles
and pedestrians in video and LiDAR during the same time
periods. We carefully annotate 5-minute daytime and 5-minute
nighttime video and LiDAR sequences. The detection result is
shown in Table I. It is worth noting that the number of ground
truths is different for video and LiDAR because they have
different detectable ranges and occlusion areas. An example
of the detection result is shown in Figure 3. The majority of
their detections correspond, but the pedestrian on the left of
the LiDAR frame is occluded in the video.

C. Severe Event fusion analysis

We collected data from both sensors from 7 a.m. to 10 p.m.
for one week as well as running them through the pipeline
which outputs the severe events.

Vehicle-to-vehicle: In the top portion of Figure 4, we show
the count of correctly detected severe events. The “matched”
section includes both strictly and partially matched cases. It
shows that video and LiDAR are able to detect the majority of

Day-time ‘ ‘ Night-time
Video LiDAR Video LiDAR
Vva2v only Matched antly only Matched only
Severe 1 87 0 0 5 7
Events
Day-time ‘ ‘ Night-time
P2v Video LiDAR Video LiDAR
Severe only Matched only only Matched only
Events 5 65 30 4 5 28

Fig. 4. Statistics of daytime and nighttime V2V and P2V severe events
detected by video, LiDAR, or both.

TABLE I
STATISTICS OF MATCHING VIDEO AND LIDAR VEHICLE-TO-VEHICLE
SEVERE EVENTS.

Video LiDAR

All 84 97
Strictly matched 51 51
Partially matched 19 26
No match 14 20

Strictly matched coverage 60.7% 52.6%
Loosely matched coverage 83.3% 79.4%

severe events during the daytime, while LiDAR detects more
severe events at nighttime. Detailed statistics are shown in
Table II. Unlike the Venn diagrams, this table also includes
false positives. For example, there are 51 + 19 + 26 = 96
matched events shown in the table, for both partially and
strictly matched ones. However, there are only 87 + 5 = 92
matched events shown in Figure 4. This discrepancy comes
from 4 false positive events. These false positives were
identified through manual assessment of playback clips for
each severe event. We also calculate the matched coverage,
where “loosely matched” includes both strictly matched and
partially matched events. A high percentage of overlapped
events demonstrates the accuracy of both sensors, as both are
capable of detecting the same potentially dangerous events.
Due to the speed and location imprecision of sensors, partially
matched cases may result from only one sensor meeting the
severe event criteria, while the other does not. We further
analyzed the no-match cases and found the main reasons to
be as follows: (1) only one sensor data is available, while the
other is either corrupted during that time or incomplete; (2) the
video’s detection accuracy degrades at night, resulting in both
false positives and false negatives; and (3) some objects of
minor classes (such as trucks and cyclists) are not detected by
LiDAR (This is currently the limitation of our training dataset);
(4) Large trucks and buses tend to occlude LiDAR’s view
compared to video because of different placement positions.
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Video advantageous case

Fig. 5. Example of video and LiDAR snapshot of a vehicle-to-vehicle severe
event found using our system. The involved vehicles are highlighted with
green dots. A green dot without a corresponding bounding box suggests a
false negative.

Fig. 6. Example of LiDAR snapshot of a vehicle-to-pedestrian event at night.
Only LiDAR reports this event because the video detector fails to detect the
pedestrian due to poor lighting conditions.

Pedestrian-to-vehicle: The lower portion of Figure 4 shows
the detected P2V severe events. These results show that
LiDAR is superior for both daytime and nighttime detection
of pedestrian-vehicle severe events. The gap is considerably
higher at nighttime. The main reason for its advantage during
daytime is mainly due to the difference in detection range.
When annotating pedestrians in the video, there were cov-
erage areas on the intersection where the image footprint
of pedestrians in the fisheye space was very small. LiDAR
is able to detect pedestrians up to 50 meters away. We
noticed that LiDAR detects numerous instances of pedestrians
crossing vehicle lanes that are not detected by video. For
nighttime, most of the P2V severe events are only detected by
LiDAR. As shown in Figure 6, pedestrian visibility at night
is extremely low for both human and camera-based detectors.

Pedestrian-to-Vehicle Severe Event Heatmap

§

Fig. 7. The heatmaps for pedestrian-to-vehicle and vehicle-to-vehicle severe
based on common conflict regions using both LiDAR and video streams using
our system.

Figure 6 shows a case in which a right-turning vehicle noticed
the pedestrian in the middle of a turning maneuver, placing
the pedestrian in a dangerous situation. We believe LiDAR
sensors are crucial for improving nighttime pedestrian safety.
Although some of the variability can be attributed to the
level of annotation and training conducted for each of the
two modalities, we believe that our conclusions are relatively
independent of this variability.

Finally, instead of case-by-case severe event visualization,
we also generate V2V and P2V heatmaps summarizing the
most common conflict zones, as shown in Figure 7. The
heatmap highlights the regions where traffic engineers should
focus their attention to prevent accidents in advance.

D. Computational Speed

The detection, tracking, and mapping modules are im-
plemented in an online fashion, i.e., frame-by-frame data
processing and message passing. We measure the running
time using a full day of data. The video-based detection and
tracking run at 40 Hz (40 frames per second). The LiDAR-
based detection runs at 12 Hz and the tracking runs at 10
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Hz. The message passing and mapping for both sensors take
negligible time. Note that the data acquisition rate for each
pipeline is 10 Hz. LiDAR processing is mostly real-time,
but it can be slowed during peak traffic times when a large
number of objects are present resulting in more trajectories.
Video processing is considerably faster than LiDAR. The
downstream modules, namely trajectory clustering, conflict,
and severe event detection, process input in batches and are
currently offline. These computations are limited to the number
of objects (rather than the size of the images) and generally
are extremely fast.

IV. RELATED WORK

Intersection monitoring using video cameras has been the
focus of several studies in recent years. In [17], Cheung and
Kamath proposed a system that utilizes video cameras to
detect and track vehicles at intersections using a combination
of foreground validation and background subtraction. As part
of our previous work [18], we developed an integrated two-
stream convolutional network architecture for real-time detec-
tion, tracking, and near-miss detection. Related work by Qi
et al. [19], also proposed a computer-vision-based intelligent
system for analyzing traffic at road intersections. Overall,
these studies demonstrate the effectiveness of video-based
intersection monitoring systems in detecting and tracking
vehicles, classifying road users, and analyzing traffic patterns.
However, challenges such as lighting and weather conditions,
occlusions, and lack of 3D understanding of the scene, can
affect the reliability of these systems, and there is still room
for improvement in terms of accuracy and performance.

Unlike video monitoring systems, infrastructure-based Li-
DAR systems are still in their infancy. Zhao et al. [4] utilized
roadside LiDAR to track vehicles and pedestrians. They extract
LiDAR trajectories of vehicles and pedestrians in the following
steps: (1) background filtering, (2) object clustering, (3) vehi-
cle and pedestrian classification, and (4) object tracking. Wu et
al. [5] utilized a similar approach to generate object tracks, fol-
lowed by the identification of vehicle-pedestrian near-crashes.
The work [6] computes operational safety assessment metrics
using multisensor data from infrastructure. Their multimodel
perception sensor system includes fixed video cameras and
temporarily deployed sensors, namely a drone with a video
sensor, a LIDAR, and a vehicle equipped with differential GPS.
They also performed a measurement uncertainty analysis to
evaluate the precision of each sensor, using differential GPS as
the ground truth. Another study [20] fuses the output of a low-
resolution video camera and a solid-state LIDAR and analyzes
vehicle-vehicle conflicts. However, given that both types of
their sensors are of low resolution, the detection of smaller
objects like pedestrians becomes extremely challenging. Zhou
et al. [7] applied deep convolutional neural network (DCNN)
models trained on autonomous driving datasets to roadside
LiDAR data. However, the performance is suboptimal. As
stated in the paper, the average F-1 score for vehicles was
only 72.9%.

Surrogate safety measures are quantitative indicators that are
used to assess the safety of a transportation system instead of
using crash data (which are fortunately rare and thus require
data collected over multiple years). Surrogate measures can be
collected through various technologies, such as video cameras,
radar or GPS [8] and can be predictive of crashes and thereby
provide measurements of safety. Measures such as time-to-
collision (TTC) [21] and post-encroachment time (PET) [22]
are two of the most commonly used indicators, as they are
based on the temporal proximity of road users. Lower values
of TTC and PET indicate higher collision risks. Thresholds of
TTC or PET are typically determined based on the perception-
reaction time of road users. However, it’s worth noting that
there is still no consensus on what constitutes a safety-critical
event or a near-miss, despite proposals of a hierarchy of
traffic events varying in severity. Other measures, such as
those based on spatial proximity or acceleration-deceleration
patterns of vehicles, have also been proposed [23], [24]. A very
comprehensive synthesis of the literature on surrogate safety
measures was recently provided by Arun et al. [25]. Surrogate
safety measures primarily capture the possible interactions, or
“events,” among road users, but not all of these events are
equally critical for safety. Therefore, it is crucial to distinguish
between safe and critical interactions. In this paper, safety-
critical events are referred to as ’severe events” [8].

Severe events encompass near-miss incidents and unsafe
behavior exhibited by road users. The use of surrogate safety
measures presents an opportunity to address site-specific and
time-specific safety issues and develop countermeasures. How-
ever, processing large volumes of video data is a significant
practical challenge in utilizing surrogate measures for safety
analysis. This involves determining trajectories, identifying
conflicts, and filtering critical unsafe maneuvers for further
examination. In the context of signalized intersections, an-
alyzing unsafe maneuvers during specific signal phases is
crucial to identify appropriate countermeasures. For example,
if unsafe maneuvers occur frequently during a permitted left-
turn phase, implementing a protected left-turn phase may be
necessary. Additionally, conflicts between right-turning vehi-
cles and pedestrians could suggest separating signal phases
for these movements, such as disallowing right turns on red
or introducing a leading pedestrian phase.

V. CONCLUSIONS

We have developed an integrated video and LiDAR ana-
Iytics system with the aim of improving intersection safety.
Advanced deep-learning techniques were employed for both
video and LiDAR detection and tracking, which were then
mapped to the same Google Maps space. The system performs
trajectory clustering, conflict event detection, and severe event
playback. Additionally, fusion was performed for both vehicle-
to-vehicle and vehicle-to-pedestrian severe conflict events.
The overall system serves as an effective tool to help traffic
engineers identify potential risks at intersections.

Experimental results for 100+ hours of video and LiDAR
data collected concomitantly on the same intersection for the
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same week. Video provides rich appearance information that
helps people better understand the severity of an event. In
addition, the processing speed for video is faster. However,
video struggles with night vision and pedestrian detection.
LiDAR, on the other hand, is capable of detecting road users
with higher precision, performs well during nighttime, and
is excellent for pedestrian detection. However, tall objects can
cast a large “shadow” in LiDAR point clouds, leading to severe
occlusion. Moreover, it is difficult for people to comprehend
the scene; for instance, pedestrian crosswalks are not visi-
ble. When doing LiDAR annotation, it is beneficial to use
video as a reference to classify smaller objects. For example,
pedestrians and cyclists are difficult to distinguish in sparse
regions. Additionally, some traffic posts and road barriers may
also “appear” to be pedestrians in LiDAR point clouds. These
results indicate that the two sensors are complementary, and
both contribute to a more accurate and reliable system.

In this work, we currently use a union of the severe events
found by two modalities. In the future, we plan to intelligently
combine the two modalities by automatically choosing the
better of the two based on location of the intersection (e.g.,
areas where LiDAR is more accurate than video and vice
versa), traffic conditions (e.g., when video accuracy is reduced
due to occlusions), and lighting and weather conditions.

In the past, we have used a fisheye video-based system to
study performance and safety for multiple signal timing plans
and allow the user to choose appropriate tradeoffs [26]. We
plan to extend this work for the hybrid system described above.
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