SPHERICAL MAXIMAL OPERATORS ON HEISENBERG
GROUPS: RESTRICTED DILATION SETS

JORIS ROOS  ANDREAS SEEGER  RAJULA SRIVASTAVA

ABSTRACT. Consider spherical means on the Heisenberg group with a
codimension two incidence relation, and associated spherical local max-
imal functions Mg f where the dilations are restricted to a set E. We
prove LP — L7 estimates for these maximal operators; the results de-
pend on various notions of dimension of FE.

1. INTRODUCTION

The purpose of this paper is to extend recent LP-improving results for
local spherical maximal functions on the Heisenberg group in [24] to the
setting of restricted dilation sets. To fix notation, for n € N, we let H"
denote the Heisenberg group of Euclidean dimension d = 2n+ 1. We denote
coordinates on H" by z = (z,Z) € R*™ x R. The group law is given by

rvoy=(x+yr+y+aJy),

where J is an invertible skew symmetric 2n x 2n matrix. The Heisenberg
group is equipped with automorphic dilations given by d;(z) = (tz, t*7).

Let p be the normalized rotation-invariant measure on the 2n — 1 di-
mensional unit sphere in the horizontal subspace R?" x {0}, centered at the
origin. The automorphic dilations map this subspace into itself. We define
the dilates of p by (u, f) = (i, f 0 &), where ¢ > 0. In this paper we study
the averaging operators

f*m(z) = /S%1 flz —tw, & — taT Jw)dp(w),

which were introduced by Nevo and Thangavelu [21].
Let £ C [1,2]. We are interested in determining the set of exponent pairs

(%, %) € [0, 1)? so that the local maximal operator

Mg f =sup | f * pu
teE

extends to a bounded operator LP(H") — L9(H"). For the full maximal
function sup,.q|f * p| sharp LP(H") — LP(H") bounds for n > 2 were
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established by Miiller and the second author [19] and independently by
Narayanan and Thangavelu [20]. The problem of L” — L% boundedness
of the local version M o was investigated by Bagchi, Hait, Roncal and
Thangavelu [2], who were motivated by applications to sparse bounds and
weighted estimates for the corresponding global maximal function, as well
as for a lacunary variant. L? — LY results that are sharp up to endpoints,
for both the single averages and full local maximal function, were proved in
our previous paper [24].

In the present paper we ask what happens if we take for £ more general
subsets of [1,2]. This question was recently considered in the Euclidean
setting in [1], [23] (also see the earlier paper [26] for the case p = ¢). While
the LP — LP results depend on the Minkowski dimension of E the new
feature of [1], [23] is the dependence on various different notions of fractal
dimension. These dimensions play a congruent role in the Heisenberg case.
For £ C R let N(FE,6) be the minimal number of intervals of length §
needed to cover E. To state our main result we first recall the Minkowski
and quasi-Assouad dimensions. We say that E has Minkowski dimension
dimy, E = f € [0, 1] if for every € > 0 there exists ¢. > 0 such that for every
0> 0,

(1.1) N(E,0) < c.0 7.

The Assouad spectrum is a continuum of fractal dimensions defined in [§]
(see also [10, 9, 7]): for § € [0, 1] let dimy ¢ F denote the smallest number ~
such that for every € > 0 there exists c. > 0 such that for every interval
with |I] > 6% we have

(1.2) N(ENI,5) < c. (|I]/8)"*.

As 0 — di_mAﬂE is non-decreasing the limit dimga £ := limg ~ di_mAng
exists and is called the quasi-Assouad dimension, see [16].

To identify classes of sets for which our LP-improving results are sharp
we shall need the concept of quasi-Assouad regularity in [23] (see also [1]
for a related notion). A set £ C [1,2] with § = dimy £ and 7 = dimga E
is called quasi-Assouad regular if either v = 0 or di_mAﬂ E = dimgs £ for
all @ € (1 — B/v,1). Observe that always 0 < § <~y < 1.

Let R(f3,7) denote the closed quadrilateral with corners

Ql = (070)7 QQ,B = (%7 %)7

. (2n+17/6' 2 ) Q o ( n(2n+1) om )
3,8 = \2n+3-8° 2nt3-8/° 47 7 \2n213n+2vy’ 2n2+3n+2+v/"

(1.3)
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FIGURE 1. The quadrilateral R(3, 7).

Theorem 1.1. Let n > 2, E C [1,2] with dimy E =  and dimga E = 7.
Then the following hold.

(i) Mg : LP(H") — L%(H") is bounded for (}D,%) in the interior of
R(B,7), and on the line segment [Q1, Q2,5)-

(ii) If E is quasi-Assouad regular and (%, %) & R(SB,7), then Mg does
not map LP(H"™) to LY(H").

Note that up to endpoints we recover the corresponding sharp results for
E = [1,2] in [24]. Further examples of quasi-Assouad regular sets include
convex sequences, self-similar sets with 8 = v (such as Cantor sets) and
many more; see [23, §6]. Note that we do not cover the case n = 1; indeed
it is currently unknown whether the full circular maximal operator on the
Heisenberg group H! is bounded on any L for p < oo and LP-improving
estimates are even more elusive (see [3, 14] for results on Heisenberg-radial
functions).

The definitions of Minkowski and Assouad dimension in (1.1) and (1.2)
allow positive or negative powers of log 1, or log(d/|I]) ™, and are therefore
not suitable for the formulation of endpoint results at the boundary of
R(B,7). The following theorem covers such endpoint results for 0 < g < 1.
We define functions x1j 3, xX - : [0, 1] = [0, 00), by

(1.4a) \54(0) = 8°N(E. ),
(1.4D) X&,(0) = suwp 6/ N(EALS).

As in [23] we refer to Xl\E/M as the 8 -Minkowski characteristic of £ and
to Xfﬁ as the y-Assouad characteristic of E. If these characteristics are
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bounded then we obtain I — L9 boundedness of Mg on the edges of
R(B,7), with the possible exception of corners Qs 5, Q35 and Q4.

Theorem 1.2. Letn >2, E C[1,2],0< 5 <1and <y <1 and assume
that supg_s-1 Xi1,5(0) < 00, SUPy_ 521 Xh(8) < 00. Then the following hold.
(i) My : LP(H?) = L) for (4, 1) € R(5, )\ {@a Qs Qu -
(i1) Mg is of restricted weak type (p,q) for all (%, %) € R(B,7).

The case 8 = 0 corresponds to single averages for which a stronger result
was proved in [24]. The main ideas for the LP improving results in Theorems
1.1 and 1.2 follow roughly the outline in the Euclidean case [25, 15, 1, 23]
(even though the outcomes are quite different) and there are also similari-
ties to the treatment of the full maximal operators on Heisenberg groups H”
(n > 2) in [24]. However there is an important difference which makes the
proof of the estimate at ()4, harder. Concretely, in the case of a restricted
dilation set we can no longer efficiently use the space-time rotational cur-
vature properties for the averages (z,t) — f * uy(x) which we relied on
in [24]. Unlike in the Euclidean case the fixed time averages f * p; do not
have nonvanishing rotational curvature but are Fourier integral operators
whose canonical relations project with fold singularities. As noticed in [19]
this does not severely impact the outcome for the LP — LP-inequalities for
the maximal functions, however it creates technical problems in the proofs

of the sharp LP-improving estimates for (1/p,1/q) away from the diagonals
(cf- §4).

Further remarks and results. It is natural to ask what happens if in
the above results one drops the assumpton that E be quasi-Assouad reg-
ular. There are many interesting examples, in particular unions of quasi-
Assouad regular sets are typically not quasi-Assouad regular. In the case
of finite unions, one can deduce from the above results that the closure of
the sharp region of boundedness exponents is given by a polygon arising as
the intersection of finitely many quadrilaterals of the form R(f,~). When
considering countable unions, more complicated convex regions can arise.
The following result is a direct analogue of a corresponding result in the

Euclidean setting.

Theorem 1.3. Let n > 2 and let Tg be the type set of Mg, i.e. the set
of (%, %) such that Mg : LP(H") — LY(H") is bounded. Then the following
hold.

(i) Suppose that E = UY | E; where E; are quasi-Assouad reqular sets

with dimy E; = §; and dimga E; = 7;. Then Te = NN R(Bi, 7).
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(i1) If dimy E = B, dimgs E =, then R(8,7) C Tz C R(B, ).

(111) For every closed convex set T satisfying R(B,v) C T C R(B,5)
there is a set E C [1,2] with dimy E = § and dimga E = v such that
To-T

In particular, (ii) and (iii) characterize exactly which closed convex sets
can arise as Tz for some E C [1,2]. It turns out that the essential sharp-
ness of the results for quasi-Assouad regular dilation sets in Theorem 1.1
allows one to give a proof of Theorem 1.3 that is entirely analogous to the
arguments in [23, §5-7] and we will therefore not repeat the details of the
constructions here.

Our results have applications to sparse bounds for global maximal opera-
tors given by f +— supycy SUp;cp | f* o |. We refer to the detailed discussion
in the paper by Bagchi, Hait, Roncal, Thangavelu [2] who show how (par-
tial) results on LP-improving esimates imply corresponding partial results
on sparse bounds for the lacunary and full maximal functions (see also [24,
§8] for a discussion of an essentially sharp version of such results). In the
same way our results imply sparse bounds for the global maximal operators
with restricted dilation sets.

Finally we remark that the behavior of maximal operators associated
with the codimension two spherical means considered here is quite different
from the behavior of maximal functions associated with hypersurfaces in
the Heisenberg group. Of particular interest here is the Koranyi sphere, for
which the sharp L” improving properties of the local full maximal operator
up to endpoints were obtained in a recent paper by one of the authors [27],
see also partial results about averages in previous work [11] by Ganguly and
Thangavelu.

Summary of the paper.

— §2 contains some known preliminary reductions.

— 83 contains the proof of the basic bounds at the points Q1, Q2 3, @33
and states the estimates proving part (i) of Theorems 1.1, 1.2 (i).

— 84 is concerned with the estimate at Q)4.,. We follow the main ar-
gument in §4 which is the reduction to an L? — L9 estimate. This
is handled by T7T* arguments similar to [1], but we have to over-
come difficulties caused by the presence of fold singularities. These
arguments complete the proof of part (i) of Theorems 1.1, 1.2.

— In §5 we prove the key kernel estimate, Proposition 4.2.
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— In §6 we prove part (ii) of Theorems 1.1, 1.2 by testing the operator

on some old and new counterexamples.

Notation. Partial derivatives will often be denoted by subscript. P denotes
the (2n—1) x 2n matrix P = (I3,-1 0). By A < B we mean that A < C-B,
where C' is a constant and A ~ B signifies that A < B and B < A.

2. PRELIMINARIES

Via suitable rotation and localization arguments (as explained in Section
2.1 of [24]), we may assume that f is supported in a small neighborhood
of the origin and the measure p is supported in a small neighborhood of
the vector ey,. Splitting y = (', y2,) and using the parametrization w =
(w', g(w")) with g(w') = \/1 — [w/[? near the north pole ey, of the sphere, it
suffices to consider maximal functions sup,cp |Rf(x,t)| where the integral
operator (generalized Radon transform) R is defined by

Ri(e..0) = [ xla ) f5 (o9, 5oty
here x is smooth and supported on
(21) {<xlvx2n7j’tay,) : |y/| <€ |I/| < |$2n - t| <e |1_:| < 6}-

The choice of € will be determined by considerations in the proof of Lemma
5.1 below, depending on the size of derivatives of phase functions and the
choice of J, but it is not necessary to track this.

(2.22) $2 (2,1, ) = Tan — tg(EL),

(2.2b) 5(z,t,y )=z +2TJPTY + (an — tg(x/;yl))(gTJeQn),

where P = ([271,1 O) is the matrix of the projection on R?*" omitting the
last coordinate. We will need that

(2.3) 9(0) =1, Vg(0) =0, g"(0) = —Izn—1, g"'(0) = 0.

It will be convenient to introduce a nonlinear shear transformation in the

x-variables

()

(I) =T — x?nth]eQn'

I
1=

)

«=l =

By a change of variables it suffices to prove the relevant estimates for
Af(x,t) = Rf(x(x),t). The operator A has a Schwartz kernel which is

a co-normal distribution given by

K(z,t,y) = xi(z, t,¥)0(S*(x,t,y') — yon, Sz, t,y') — 7),



SPHERICAL MAXIMAL FUNCTIONS ON HEISENBERG GROUPS 7

where x1(z,t,y') = x(x(x),t,9'), d is Dirac measure at the origin in R? and
(SQn, S)’(m,t,y’) = (527175)’(;(1),1572/), that is

S2n(xa t y/) = Ton — tg<ac’;y')’

S(a,t,y) =3+ (2T I)(PTyY — tg(*5 )ezn),

(2.4)

with ¢ as in (2.3). Note that the function x; is still supported in a set of
the form (2.1), where we replace € by O(e). It is standard to express dy via
the Fourier transform

(2.5) K(z,t,y) = x1(x, t,9) o (t.0) _;fz’
6eR? 2

where the phase function W is given by

(26) \I/(l‘, 2 Y, 9) - 62n<52n<x7 t y/) - an) + 0(§(x, t y/) - g)

and 0 = (0a,,0).

We now perform a dyadic decomposition of this modified kernel. Let
Co be a smooth radial function on R? with compact support in {|f] < 1}
such that (p(6) = 1 for |#] < 1/2. We set (1(0) = (o(6/2) — (o(f) and
G(0) = G (2790) for > 1.

We set, for k=0,1,2,...

A f(z) = / xi(z,t,y) /@ ] Ge(0)e 0 s [ (y)dy.
= 2

For k£ > 1 this can be rewritten, by a change of variables and the homo-

geneity of the phase function with respect to 6, as
1) AL =2 [ty [ aEoe e s fay
I 2

As already observed in [19] these Fourier integral operators lack “rota-
tional curvature” (i.e. the assumption that the associated canonical relation
is locally the graph of a diffeomorphism). Indeed from Hormander [13] the

“rotational curvature matrix” is given by

Roteurv(¥) = (gmy \\gaﬂ)
oy Yoo

which is equal to

0onSaity +0 Sy 0 0 SZ' Sy
fel, JPT 0o 0 1 0

0 0 0 0 1

(Szm)T -1 0 0 0
(ST 0 -1 0 0
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One calculates S = —Vg(27L), S% = Vg(£7%) and

OonSary + 0 Sary =
7 (O + 027 Je2,)g" (ZL) + 0 [PTPT + B(x,t,y')]
where the (2n — 1) X (2n — 1) matrix B(z,t,y’) is given by
B(z,t,y) = PJes, Vg(Z=L).

t

With
(2.8) o(x,0) = o, + 07 Jeg,
we see that Rotcurv(¥) equals
t_lag”(%) +0(PJPT+B) 0 0 —Vg(x/;yl) *
fel JPT 0 0 1 0
0 0 O 0 1
Vg(Z3L)T —1 0 0 0
* 0 -1 0 0

and by using elementary row operations and the skew-symmetry of J, it is
not hard to see that

det (Rotcurv(¥)) = det (¢ 'og”(2=L) 4+ 6 (PJPT + B — BT)).
t

Note that PJPT + B — BT is a skew-symmetric matrix of order 2n — 1 and
is thus not invertible. Using [24, Lemma 3.1], we conclude that

tog"(“ZL) + 0 (PJPT + B — BT)
is invertible if and only if o # 0. Indeed from the calculations in §3 of [24]
and [19, Lemma 5.4] it follows that
det(Rotcurv(V)) ~ o(z, 0).

It is natural to use an idea in [22] to further decompose in terms of the size
of o (see also [6], [19], [3]). For k > 1 and 1 < ¢ < [£], we define

(1—Co(50(x,0))) if€=0,
(2.9) ug(x,0) = < (2% (x,0)) if1<¢<|k/3],

oM ¥o(x,0)  if €= |k/3],

k
so that Z%ié up = 1 and w, is supported where |o| ~ 27¢ when 1 < / <
|k/3]. Set
(2.10) AP f(z) = AM f(x,1)

=2 [atwt) [ G@0)ule, 0 @00 L fy)y

HeR?
Furthermore, for k > 1 and 0 < ¢ < [ £], we let MY, f(2) = supyep [AYf(2)],
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(2.11) M%éf(l’):?elglflf’ef(x)!and Mifl@)= Y Mg f(z).

o<e<|¥)

Since for all E C [1,2] the operator MY maps LP — Li for all 1 < p < ¢ <
oo it will be ignored in what follows.

2.1. The operators 0, A% versus A**. Finally, in order to estimate the max-
imal operators MY, we will rely on estimates for 9, A% f(z,t). As in [19],
[3] it will be crucial to observe that 0,V lies in the ideal generated by o,
indeed

(2.12) 0y (2,y,0) = —0,(tg(*7L)) o (x, 6).

t

In view of (2.9), (2.10), (2.12) the operator 27%9,A%¢ will usually have the
same quantitative behavior as AL
To expand on this let X*(z,¢) be the Schwartz kernel of A", i.e.

(2.13) KRt y) = 2%/ 2 V@0 g, (3t o/ 0)db),
R2

with U as in (2.6) and as(x,t,y/,0) = (27) " 2x1(z,t,y')C1(20)ue(z, 0).
For the t-derivatives we compute

6thk’£(x,t,y) = i23k/8t\11(x,t,y,H)eim’(x’t’y’g)ag(x,t,y',9) do
+ 2%/eim’(’”’t’yﬁ)@tag(x,t,y',@) do.

Observe that Owae(x,t,y',0) = (Oxa(z,t,y"))(1(20)us(x,0) and its deriva-

tives satisfy the same quantitative estimates as a,. Regarding the first sum-
its derivatives satisfy uniform bounds. Since |o(x,0)| ~ 27¢ we see that the

mand we use (2.12). The expression 0, (tg( )) does not depend on ¢ and

modified amplitude function
ao(z,t,y,0) = 20 (x, 0)ae(z, t,y, 0)

satisfies the same estimates as ay, with a similar statement for the deriva-
tives. As a consequence of these considerations we see that the operator
2_k+£8tAf £ will always satisfy the same estimates as A", and we usually

omit a separate proof for 0, f £,
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3. BASIC ESTIMATES
We use the representation (2.13) for the Schwartz kernel K*¢ of A¥* and
integration by parts yields the estimate

2k—€

(1 + 28 yap — 520 (z, L,y )[)N
ok
U+ 25— S(,t,y') — 2 Jean(yan — 57, £y )Y
This estimate yields

(3.1) [KM(z,t,y)| < Cn

sup sup [KC"(z, t,y)] < 277,
te[1,2] zy

sup sup/|IC” z,ty)ldy <1,

te(1,2]

sup sup [ K, t,)]de 5 1

te[1,2] vy

where for the third inequality we used the specific expressions for S?", S in
(2.4). It follows that

(3.2) AP N s + TP [z sre S 1,
(3.3) Lpee S 2HE
We also have the L? fixed-time estimate
_1.2n—1 ¢
(3.4) AP fll pomensny S 27F7% 22| £,

for 0 < ¢ < %. Display (3.4) was established in [19] via estimates for oscil-
latory integrals with fold singularities in [6], see also the detailed treatment
of a relevant extended class of oscillatory integral operators in [3, §6]. B
interpolation we get

Proposition 3.1. Let n > 1 and t € [1,2].
(i) For 1 <p <2,

(3.5) A £, < 2755 27| 1,
and for 2 < p < o0,
(3.6) IS Fllp S 2755 201 £

(i) For 2 < q < oo,

2n+3

(3.7) 1A, S 25

122GV £l

(iii) The same estimates hold for 2759, AP* in place of AL
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Proof. Part (i) follows by interpolating between (3.2) and (3.4), while Part
(ii) is a consequence of interpolating between (3.3) and (3.4). For part (iii)

see the considerations in §2.1. O

The above estimates give the following bounds for the maximal operator

k0
MY

Proposition 3.2. For alln = 1,2,3,... we have the following bounds for
Schwartz functions f on R?*"1,
(i) For 1 < p < o0,

k0 — —k(2n—1) min(%,%) 5¢min(L, L
(38)  [MEfll, S N (B, 28R rg HCrmtminGopgfmnG i) g
(i1) For 2 < q < oo,
kL g 3_
(3.9) IME fllg S N(B,27F)192 SN fllg-

(111) If dimy E = 3, then for every e > 0
M Flp < 205

2n—1) min 7 @mlnl%
g K minGr gt G) £y, 1< p <00

and
(2 2n+3

IMEFl, S 209552 192GV flly, 2< g < oo

Proof. The fundamental theorem of calculus implies the pointwise bound
9=kt

My F@) < s (A @1+ [ 0AY. S @) ds)

tEZ)_o
where Z;,_, consists of the left endpoints of a minimal collection of intervals
of length 27%¢ that covers E. With this in hand, parts (i) and (ii) follow
directly from Proposition 3.1. Part (iii) is immediate since

N(E, 27k+2) < oUk=0)(B+e)

when dimy £ = . Il
For ¢ > 0, we introduce the operator
k¢
(3.10) My o= > M-
k>30

Proposition 3.3. Let n > 2, p € (0,1] and assume that
sup x4 4(0) = sup §PN(E,6) < A < oo.
5>0

_/ 2n-1 2n-1 2n+1—p 2
Let Qs = (52755 maivs) d Qs = (555 3nra=p):

(1) If (1/p,1/q) is one of the points Q2p, Q3 p then there is a(p,q) > 0
such that

||9ﬁ f||quo < AI/QZ—Zan ||f||Lp1
and Mg : LP' — L9 js bounded.
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(it) If (1/p,1/q) belongs to the open line segment connecting Q25 and

Qs then
1
Mg fllrar S AV fllzor

for all r > 0, in particular Mg is bounded from LP to L9.

Proof. We observe that part (ii) follows from part (i) by real interpolation
(note that the line connecting ()2 5 and Q3 3 has a positive finite slope).
We have, for 1 < p < 2,
L8 o(1—

k.t —k(2n—1-—2= 148
IMEF], S 270 z A1l

by Proposition 3.2 (i). By Bourgain’s restricted weak type interpolation
trick (see [4], or the appendix of [5]), applied to 9%, defined in (3.10), we
get

< ot(1-32) I fllLoerts  Per = %

o],

1+ﬁ — _6 2n—2
Pcr 2n—1+p

The asserted restricted weak type inequality for ), s follows.

and we have 1 — so that we can sum in ¢ > 0 if n > 2.

To prove the estimate for ()3 3 we note that for 2 < ¢ < oo we get from
Proposition 3.2 (ii)

M A, S Allogte™

n+3-3
q

121D

and again by the restricted weak type interpolation result,

B_1 2n+3—
Hmfm G s e = 22
We have 222 — 1 = 3 ﬁ +2 ~ which is negative for n > 2. Summing in ¢ yields
the desured result on Mg. O

Finally, we state the main estimate at the vertex
1y n(2n+1) 2n
(311) Q47’Y (p4 q4) (2n2+3n+277 2n2+3n+27)'
Proposition 3.4. Let n > 1, v € (0,1) and assume that
suprﬂ(é) =supsup(d/|[I])"N(ENI1,0) < Ay < 00.

>0 0>0 |I|>6
Let p4, q4 as in (3.11). Then
1 (2n—3)+2v(n—1
(812) MG f lgsoo S A "2 fllpua,  for b < MERBGD.

If in addition n > 2 then also

(3.13) M fll o S AY S Fll poa.

The assertion for Mg follows from (3.12) after summing in ¢. Inequality
(3.12) will be proven in the next section as a consequence of Proposition 4.1

below.
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4. ESTIMATES AT ()4,

After a decomposition of E into a finite number of subsets we may assume
that

(4.1) diam(F) < e,

with € as in (2.1). Given a non-negative integer m, let Z,,(E) denote the set
of all dyadic intervals of the form (v27™ (v + 1)27™) (with v € Z) which
intersect £. Then one observes that #Z,,(E) < N(E,27™). Thus, for any
interval I of length at least 27™, we have

#Ln(ENT) S XK, (277 T2

Further, let Z,,(E) denote the set of left endpoints of intervals I, € Z,,(F),
endowed with the counting measure. The main result of this section is the
following Stein-Tomas type estimate for A,

Proposition 4.1. Letn > 1 and ¢5 = w Suppose

sSup Xfﬁ(é) S AQ < 0,

§>0
where x% (0) is as defined in (1.4b). Then for any by > n+1§’ we have
(2ol
(4.2) AP Lo ant1) s Las oo ®on 1wz, ) oy 270 D20

Proof that Proposition 4.1 implies Proposition 3.4. By the fundamental the-

orem of calculus,
2@
My 1) < s (4 @1+ [ oA @) ds).
teEZ_y

Thus, taking an L% norm on both sides and using Proposition 4.1, we

conclude that

IME Fllzase < INAS il asoo gantix2, )

2[71@

[ IO S @l ds
0

(4.3) < 9 FE D905 (332 9t2 1.
We can now use Bourgain’s trick to interpolate between the above es-
timate and the case ¢ = oo of (3.9), with ¢ = % 0,1), a

% and small € > 0. Observe that a > 0 if n > 2. Note that

(1_19>(17072’ )_’_19(27 1_ 27;:1’;((”+1§ +6> (

which implies the desired estimate (3.12). O

L0, —a + ve)

P4’ qa’
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Outline of the proof of Proposition 4.1. We can use a partial scaled

Fourier transform
F(y', 020, 0) / W yan, v)e 128 (2020 0) o, I
to write
AREf(2,t) = 22]“/eiQk(02"5%(x’t’y/)+és(x’t’y'))ag(x,t, Y, 0)Fp(y, 0o, 0)dy'db.
By Plancherel’s theorem
(4.4) 1 Fkllz = 27*2m]| f]]2.

Note that a, is supported on a set where |¢/| is small and |0] ~ 1. We
make a finite decomposition of the symbol a; = ). as; where each ay; is
supported on a set of diameter O(e). It will be convenient to rename the
variables (', 0) = (w', wa,, w) and replace Fi (1, 02, 0) by a general function
w — f(w). We are therefore led to consider the oscillatory integral operator
T** defined by

T f(x,t) = /d 2@, (1t w) f (w)dw,
with the phase function ’
(4.5) O(z,t,w) = we, S*™(z, t,w') + wS(z,t,w'),
and symbol b, which is a placeholder for one of the a,;. Thus we have
be(z, t,w) = x1(@, t, w)C1(2w)ue(x, W, )
with u, as in (2.9). b, is smooth and supported in a set of diameter O(e)
where |w'| <€, |2/ S €, |ron — t] S € |7 S €, |(wan, )] ~ 1 and where
|t —t°| < e for some fixed t°, and finally the size of
(4.6) o(z, Wap, W) = Wy, + waT Jeay,

(i.e. o as in (2.8)) is about 27¢.
In view of (4.4) we see that (4.2) follows from

_1.2n+41
(47) |’Tk7€“L2(R2n+l)*)Lq5,oo(R2n+1XZkie) 5 2 k a5 2Zb1

We remark that for 2¢ < e! the estimate follows by the consideration in
[24], indeed then we can apply a theorem about oscillatory integrals with
Carleson-Sjolin conditions (see [28], [17]). However in view of the properties
of the amplitude function b, for large ¢ these theorems are no longer directly
applicable. In what follows we shall only treat the case for large /.

In order to show (4.7) it will be convenient to work with a subset of Zj_,

with some additional separation condition. Given small v such that

(4.8) 0<v<i(b— nJi)
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we replace Zj_, with an arbitrary subset Z;*, satisfying the separation
condition

(4.9) tte ZFP t£1 = |t —1| > 20k

It is clear that Z;_, can be written as a disjoint family of sets Z;_,;, for
i=1,...,N with N < 2% where each Z;_,; satisfies the condition (4.9).
By Minkowski’s inequality it is therefore enough to prove

k.t _f2ntl Zn(l—’y)-}—y'y
(410) ||T ||L2(R2n+1)*>Lq5,oo(R2n+1Xzsz'l) 5 2 g5 Q2 2(n+v)

for any subset Z;", of Z;_, satisfying (4.9). In what follows we fix such a
subset Z;,. We define the operator S** acting on functions g : R*"*1 x
Z% — C by

SHg(a,t) = S TETEY (o, )](@),

sep
e Z;°P,

where T} f(x) = T"'f(x,t). By a TT* argument, (4.10) is a consequence

of the following estimate

— 9ok 2n+1
5

(4.11) ||Sk’€9||Lq5»°°(R2n+1 x Z5P) S2 !

pr(l=y)+vy
2 e ||g||Lq’5,1(R2n+1 X Z3P )

For j > 0 and t € 2%, we define
Z] () = {t' € Z;F, « 2R < | < oUWk

and for j = 0 we set 22 ,(t) = {t}. Note that Z]_,(t) is empty, if j >
k—{+4. Let

SPlg(aty =) TT) (- 1)]()

ezl ,(t)
and observe that
ke k0
ShE=3"5r".
7=0

We claim that Sj]-c’g satisfies for 2 < ¢ < oo the estimates

(4.12) [|S7 gl paqen+i zzon)

< 9 kU gl(n—v4 D) f=(nr)) i (1 -

" HgHLq’(RQ"H x Z;%P,)

which follow by interpolation from
(4.13) HSJ]-C’EQHLz(Ran « Z5€P S 27k(2"+1)2€2j7 HgHLQ(RQnJrl x Z;°P,)

)

and

(414) ”Sf’g‘gHLOO (R2n+l XZIS:E)E) S 278(7]7”)27‘7.” HgHLl(R2n+1 Xzzej’e).
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Clearly, if ¢ > g5 = ) we can sum in 7 in (4.12) to get

n

(4.15) 1S g[| parensrxzmev,)

—kAnt2 p((p—y 2 _(n—v
g 270 2O g i), G > 5.

Moreover for ¢ = ¢5 we can apply Bourgain’s interpolation trick to obtain
the restricted weak type inequality (4.11).
To prove (4.13) we estimate

||S;'€’Zg||L2(R2"+1 X Z5P)

(X /] X @y

teZ;7P, vez] ,(t)

(X #2002 mHay et o)k )

te 2P, vez] @)
j k.t kol *
SO #2850 Y Tl @ 1Rl £)13)
tez;®, = 0)

g A227k(2n+1)2€2j7 HQHLZ(R%H Xzzc_p[) X

2 1/2
dx)

1/2

1/2

£

Here we have used the fact that
- Lo k(n+l
T8Nz S 2H A, S 2E27H0HD

and that #27]_,(t') < A3277 for all ¢/ € Z]_,. This takes care of (4.13).
Inequality (4.14) is a direct consequence of the following kernel estimate,
which shall be proved in §5.

N

Proposition 4.2. Let k > 0 and 0 < ¢ < [k/3]. Let ICff denote the kernel
of ﬂk’g(nk’z)*, which is given by
(4.16)  K[f(2,%) = / 2 (@ tw)=®ELw) (3t )by (&, £, w) dw.
R2n+1

Letv >0 and
(4.17) 2kt < |t — 1] < 1.
Then for 0 < ¢ < [£], we have

CH (2, 0)] S 2(1+ 28t — £))".
Remark 4.3. One can run the above arguments also for n = 1. A favorable
L* — L% bound for Ay, follows if ¢ > 2(1 + 7) because then the j-sum of
the terms in (4.12) converges for the case n = 1 of (4.15). The exponent of

2¢in (4.15) is now positive for all v > 0 when ¢ < 4, and we have to allow
the range ¢ < k/3. Thus we get a positive result when —g + %(% -1)< -2
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which is the case for ¢ < 14/5. This restricts the range of allowable « to
2(1+7) < 14/5, i.e. v < 2/5. As a result one obtains that Mz maps L*(H*)
to LI(H") if dimga £ < 2/5 and ¢ < 14/5. We know from considerations in
[12, 24] that this result is not sharp; this point will be addressed elsewhere.

5. PROOF OF PROPOSITION 4.2

In order to estimate the oscillatory integral (4.16) using stationary phase

arguments we expand the phase ®(z,t,w) — ®(Z,f, w) as
(x — )TV, ®(2, L, w) + (t — 1)0,®(%, L, w) + O(|(x — &,t — 1))

and thus, for stationary phase calculations it is natural to consider the
curvature property of the surface

Ex,t = {Vz7tq)($, t, U))}

where w is close to a reference point w® with (w’)° = 0. These considera-
tions are similar to those in the proof of Stein’s result on Carleson-Sjolin
type oscillatory integral operators (see [28, 29] and also [18]). A potential
difficulty here is that for large ¢ and small |2 — &| + |t — | the amplitudes
do not a priori seem to satisfy the appropriate derivative bounds for an
application of the stationary phase method. However, a closer examination
of the curvature properties of Y, ; and their interplay with the geometry of
the fold surface {o = 0} will reveal that this is not a significant obstacle in

our specific situation.

5.1. Curvature of ¥, ;. We analyze the w-derivatives of
(51) E(I, ta w) = vm,tq)(xa ta IU) = anVm,tS2n(x7 ta U)/) + U_)vz,tg(my t; w/);

for a fixed (z,t). These calculation will be the basis for a stationary phase

estimate in §5.2. We will only consider the case of large ¢ i.e. when
(5.2) 0 = o(x, Wy, W) = Wy, + wx'Jes,

is small (Jo| < 27%) since the other cases have already been discussed in [24].
We need some modifications because of the lack of good differentiability
properties of the amplitudes for large /.

For the sake of completeness, we include the calculation of the curvature
matrix below, and then establish the invertibility of this minor. Using (5.1),

the expressions for S?7, S, and the skew-symmetry of J we calculate that
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=(z,t,w) is equal to
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/

~Vg(Z52)
1
Wan O
g (252
PJP™W — tg(2=")PJes, — (27 Jea,) Vg(272)
_ el JPTw'
+w 1
g*(f;w/ )xTJeon
where
(5.3a) g«(2") = (', Vg(2')) — g(2'),
with

The oscillatory integral operator f — TFf(-,t) := >, T* f(-,¢) is an
operator with a folding canonical relation (i.e. two-sided fold singularities),
and the fold surface is parametrized by o = 0 (see [24, Remark 3.2], [19]

and the discussion after (2.7)
operators, for more details).

We compute, for j =1,...,

expression for o from (5.2)),

tilaf)ng(z/

and, with W = way, 11,

PJPWwW —t

—_

— pu—
—W2n+41

in the analogous setting of Fourier integral

2n — 1, the partial derivatives (recalling the

—tw’> + IT)PJ(@j + ajg(z/;w/ )egn)
wel, Je;
0 Y

_t—lo.ajg*(m/—tw/)

—Vg(£52)

g(EFEVP ey, — 2T Je2, Vg (274 )
el JPTw'
1

' —w’

9*(T)£TJ€2n

For 2’ = w’, using the properties of g, h in (2.3), (5.3b) we get

—_

S =
Wi z'=w'
N
02n71
— 1
S = )
2n J— 0
-1

= (—=t'o +w])ey,

PJP™wW' —tPJes,
el J PTw'
— 1
_zTJGZn

—
—w2an+1 ’
T
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Using the defining equations of a unit normal vector IV,
(N,Zp,)=0,i=1,....,2n+1

at the north pole (z/ = w’), we get

(5.4a) 0= (N,Zy,) T —tloa; +walJe;, j<2n-—1.
(54b) 0= <N7 Ew2n> . = Olgp — Qop42,
and

(5.4c) 0= (N,Z,, .,)

) —W2an+1

z/=w’

oT(PJP™W' —tPJey,) + agned JPTW + aipi1 — agpyoxTJeoy,
where NT = (a/T, ag,, @). Equation (5.4c) above expresses ag,11 in terms
of a and aw,, o and turns out to be not really relevant to our calculations.
Since |N| =1 we have |a| ~ 1.
The second derivative vectors are given by

7200, Vg(E7Y) — wt™' PJes,0%,9(“7)

/

t t

- 0

‘:"ijk = 0 )
2000, (252)
for 1 <7,k <2n—1, and

Ewjw, = 0, if 2n < j,k <2n+ 1.

Moreover, for j =1,...,2n — 1,
t710;Vg(=2)
- _ 0
*—*ijzn - 0 bl
10,9, (252
and,

PJej + PJesn,0;g(“7%) + t 1T J 2,0,V g(25)

t
T

— pu—
—WjWan+1 0

/

—t_lgTJegnajg*(x%w)

We evaluate at @’ = w’, using ¢”(0) = ¢/(0) = —I2,—1, ¢"(0) = 0, and see

that the components of the curvature matrix CV at 2/ = w’ are given by
(N, Ewju;)

<N7 ijwk>

=t o) TP Jegniv — t % ign 20,

/

' =w

=0, ifj#k
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for 1 < j,k <2n — 1. Moreover for 1 < j <2n —1,
<N7 ijw2n>

(N,Z,,

jW2n+41 >

_ -1
=—t Qy,

/

T =w

— AT -1 T
=a'Je; —t  a;xT Jeg,,

' =w’

and
=0, 7j,ke{2n,2n+1}.

' =w’

<N7 ijwk>

Thus, the curvature matrix €V at 2’ = w’ with entries (N, Zy,0,), 1 < 4,7 <

2n + 1 (with we, 1 = ) is

eN _ (012n—1 PA)

Y
!

ATPT 0

T/ =w
where the scalar ¢ and the 2n x 2 matrix A are given by
(5.5) c= QT‘;”"U_J — 2R

A=(—ja Ja— =)

(and PA is the (2n — 1) x 2 matrix obtained by deleting the last row of A).
Using [24, Lemma 3.1] and the fact that |a| ~ 1, it can be checked that |c|
is uniformly bounded away from zero, which implies that the rank of the
curvature matrix is 2n (indeed by (5.4a) we have PJa = 0 when 2/ = '
and o = 0, hence rank(PA) = 1).

As a consequence of the above we obtain for the restricted matrices

/|12
(5.6) det (D2 (=, N)) = —c2n—2% 40
(5.7) det (D2,,,(Z,N))|  =c""1#£0

with ¢ as in (5.5).
5.2. Proof of Proposition 4.2, continued. Recall that

KE(x, 2) = /em(é(””’t’w)_@(f’f’w))bg(x,t,w)bg(:i",f,w) dw.

t,t
For ease of notation, we set
X = (x,1), X = (2,1),
and
Bo(X, X, w) = bylz, t, w)be(2, 1, w).
Recall that the amplitude B, is supported in the set where
(5.8) |(Won, )| ~ 1, || < ¢ 2| <e || <e |2 <e |T| <
[Zon —t| <€, |Ton — | <6 |t —F <€
and

|w2n + wlTJ€2n| ~ 2_é ~ |w2n + wiTJ€2n|-
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We fix a reference point (X°, w°) where
X =(0,125,,z°t%), w®=(0,0,0°)

(so that o becomes 0 at (X°, w°), and let N° be one of the unit normals to

Yixo at w = w°, i.e. we have
(5.9) (N, 0u, Vx®(X°,w?)) =0, for1<j<2n+1.

Then By is supported in a ball of radius O(e) centered at (X°, X°, w°).

For a unit vector u define
1
U(X, X, d,w) = / i -Vx®(X 4 s(X — X),w)ds.
0
Then we can express the phase function corresponding to the kernel ICff as

(5.10) 28(®(X,y)—®(X,y)) = A V(X, X, ﬁ,w), with A = 2F|X — X|.
Define for all @ € S?"+!
Too(X, X, @) = /eiA‘I’(X’X’ﬁ’w)Bg(X,X',w)dw

and note that U is a smooth phase, in all arguments.

Lemma 5.1. Let v > 0. For e in (5.8) sufficiently small the following holds,
for2t > et N> L
(i) For min{|@ — N°|, |@ + N°|} > €/* we have

Zoo(X, X, @)| < Car 27 (N270) M.
(ii) For min{|@ — N°|, i + N°|} < €¥/2 and 2¢ < AT we have
Toe(X, X, @] Se A7
(iii) For min{|@ — N°|, |@ + N°|} < €2, we have
Too (X, X, @) S 27N 77
If in particular 2¢ > ATOTT then
Zoo(X, X, @) S 27A7™

Remark. The conclusions in part (ii), (iii) also hold for v = 0 but in (ii)
require a stationary phase estimate for amplitudes x, satisfying endpoint

Calderén-Vaillancourt bounds, i.e. 9%(xr(w)) = O(A*/?). For our applica-
tion it suffices to take v > 0.

We first show that Lemma 5.1 implies Proposition 4.2. We take X # X

and U = %, and A = 2| X — X|. Assume min]&(%f;| + Ny| > /4. We
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have |t — £| > 2¢7%2* and get from part (i) of Lemma 5.1 the estimate, for
N > n,
[Zhel S 276277 Sy 207D X - X)X - X))
5 (Qk‘X _ X’)anE(nflfu(an)).

The bound |Z)\ o) < (281X — X|)™ follows if we choose N large enough.
+ Ny| < €¥/* the appropriate bound is in part (ii) of the

If mm\lX %

lemma, and the bound in Proposition 4.2 is now established for the range
2 < (2K X — X|)7m i, |X X| > 92t0+w)—k

Next assume ¢ # £, |X X| < 22+0)=k 1y the assumed ¢-variation we
also have the lower bound and | X — X | > 204k which is needed to apply

part (i) of Lemma 5.1 for m1n| VI + Ny| > /% In the opposite range

we apply part (iii) of the lemma. Note that the assumption 2¢ > AT
is now equivalent to the required |X — X| > 22~k We also note that
02, (BA(X, X, w)) = O(1).

This finishes the proof of Proposition 4.2 once Lemma 5.1 is verified.

5.3. Proof of Lemma 5.1. Let V' be the linear space perpendicular to N°;
then V2 @ is invertible as a map from R2"+ to V. Hence

]vw i, Vi ®(X° W)Y gy
and by expanding VwQ/(X,X, w0, w) about (X°, X°, @, w°) we get
Vo (X, X, i, w) — Vo (i, Vo (X w)) | _ = O(e).
This implies that for |# — N°| > 3/* and € small
|VwW(X,X,ﬁ,w)| > 34

(@, N°)N°| 2 /1,

for (X, X ,w) in the support of By. Since the higher w-derivatives of ¥ are
bounded and since

(5.11) Oy [ B, t,w)] = O(2°°)

Wan, W)
an integration by parts yields the bound Z, , = O(27¢(A27%)") as asserted.

We now turn to (ii) and apply a stationary phase argument with respect
to the w-variables. By our curvature calculations the (2n x 2n) Hessian
matrix D2, ((N°, Vx®(X°,w,w))), _. . is invertible, for ju—N°| < €!/? we

get a matrix norm estimate
D5 ((N°, Vx®(X°, w)) Jumue — Dy, ¥ (X, @ w) || S €/

and hence (given that e is small) we see that D2 W(X,d, w) is invertible,

with uniformly bounded inverse. Note that by our assumption on ¢ and
A we have 92B,(X, X, w) = O(NV/C+2)) and so for v > 0 a standard
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application of the stationary phase method in the w variables gives the
estimate |Zy | = O(A™™).

For (iii) we argue similarly but in view of the unfavorable differentia-
bility properties of B, with respect to ws, we are freezing both the wy,
and w variables. We now have that the (2n — 1) x (2n — 1) Hessian ma-
trix D2, ((N°, Vx®(X°, w', wy,, w)))
a perturbation argument as above we see that D?, , U (X,d,w) is invert-

_,o 18 the identity matrix and by
ible. Since o does not depend on w’ we have uniform upper bounds for
the w'-derivatives of the amplitude. We can therefore apply the method
of stationary phase in the w’-variables and since the (ws,,w)-integral is

extended over a set of measure O(27¢) we obtain the asserted estimate
2n—1

1Zys| = O(27“A 72 ). The second estimate in (iii) is immediate since the
1 —
inequality 2¢ > A\Z0) is equivalent with 27\~ "% < 2V )\~ O

6. NECESSARY CONDITIONS

In this section we prove the sharpness of Theorem 1.1 for Assouad regular
sets E2. Regarding the line connecting ); and ()2 g this is just the necessary
condition p < ¢ imposed by translation invariance and noncompactness
of the group H™. The necessary conditions for the segments Qs 5, Q35 and
m are quite similar to the consideration in the Euclidean case. However
the example for the segment m is substantially different from a Knapp
type example for co-dimension two surfaces in the Euclidean case (see also
[24] for a simplified version for the full maximal operator); this indicates a
new phenomenon on the Heisenberg group.

Given 6 € (0,1), let Zs(E) denote the set of all dyadic intervals of the
form [vd, (v + 1)d) (with v € Z) which intersect E, and let Z5(E) denote a
subset of E which contains exactly one t € E N[ for every I € Z5(F). Let
B =dimy E, and v = dimga E, respectively.

6.1. The line connecting (), 3 and ()3 3. For any € > 0 there exists a set
A, ={6;:j=1,2,...} with lim; ,,, §; = 0 such that N(E,§) > §=#* for
0 € A.. For § € A, let fs be the characteristic function of Bjgs, the ball of
radius 100 centered at the origin. Then

1fslp ~ 80/,
For 1 <t < 2 we consider the sets
Rsy = {(z,7) : ||z] —t| <0/20, |z < §/20}.
Then |Rsy| 2 0% Let ¥,y = {w € S*7! : |z — tw| < §/4} which has

spherical measure ~ §%"~ 1.
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If z € Rs; and w € ¥, then |z — tw| < § and using the skew symmetry
of J we get

1z —teTJw| < |Z| + |27 (tw — z)| < 30.

Thus, for z € Ry,
oo = [ file— .3 — ) duw) 2 8
S2n71

Passing to the maximal operator, we set

Rs = Uez;(p) Rsyt.

We have |Rs| = 0°N(E,§) 2 6*¢=P. Further, for € Ry, there exists a
unique t(z) € Z5(E) such that | f5 * py)(z)| > 621
This yields the inequality

§2n—152+e=B)/q9 < §2n+1)/p.

We set 6 = 0, and let 7 — 0o, and since € > 0 was arbitrary we obtain the

necessary condition
2-8 _ 2n+1
(6.1) L 4+2n—12> =8,

that is, (1/p,1/q) lies on or above the line connecting Q)2 3 and Q3 3.

6.2. The line connecting (); and )4,. For this line we just use the coun-
terexample for the individual averaging operators, bounding the maximal
function from below by an averaging operator. Given ¢ € [1,2], let g5 be
the characteristic function of the set {(y,y) : ||ly| — t| < 104,[y| < 105}
Thus [lgs.l, S %7,

Let x = (x,7) be such that |z| < and |Z| < §. For any w € S?" !, we
have that t|zTJw| < 2§. Thus

|z — tw] —t| < 25,
|z — taTJw| < |Z| + t|zT Jw| < 106

implying that |gs; * o¢(z)| = 1. This yields the inequality §@n+D/a < §2/p
which leads to the necessary condition

(6.2)

that is, (1/p, 1/q) lies on or above the line connecting @)1 and Q4.
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6.3. The line connecting Q)35 and @4,. Here we assume § > 0 (and

therefore v > 0) since Q39 = Q0. By a change of variables, we can assume

that
(0 I
S 2\—-1, 0)°

with I,, being the n x n identity matrix.

Let ¢ > 0. By the definition of quasi-Assouad regularity there exists
a sequence {§;}52, of positive numbers with lim; o, §; = 0 and intervals
I; C [1,2] of length 67 with 6 = 1 — 3/~ such that

(63) N(E L6 2 (6/|1)77 = 677,
We let P. denote the set of pairs (d;, ;) and fix (0,1) € P.. Set
(64) g — 6(1_'9)/2'

Let a be the right end point of the interval I and let f be the characteristic
function of the set

{22 4] S o 120 S < llzal — al S8, llz2al — al S 8,121 S 67,

where z = (21,2,) € R" X R and 2; = (2],2,) € R"' xR, 2, = (2, 20,) €
R"! x R. Then

(6.5) £llp S (27205 0) VP s (00 2) 1,

For each t € [1,2], t < a we define the set
R o= {(z,7) : |2 S 071, |ay| S 671 [zl £ 67, (2n, w2)| + ¢ — a] S0}
Clearly meas(R%) ~ (6¢71)?"725%*%. Note that there is a constant C' > 1
such that R% and RY are disjoint if [t — #/| > C'6. We choose a covering of
E N 1T by a collection J of pairwise disjoint intervals, each of length ¢ and
intersecting £ N I. Let J = {I,})__, be a maximal 2Cd-separated subset of
intervals in J. For each I, pick t, € I, N E. Then Rg” and Rg”' are disjoint
if v # V. Also
(6.6) N=#J > N(ENISH).

We now prove the lower bound
(6.7) Mpf(z,z) = 6" for (z,7) € RY.

To see (6.7), we need the lower bound
(6.8) |f ez, T)| = 69 for (z,7) € R
To this end observe that, given (z,Z) € R} and for w € S**~! such that

Wil S 6 lwrl S l(wn, wan) — 2| < 8%,

|(1’n7$2n
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we have
2]+t S, JaHtwp| S
and
|7 +tz"Jw| < |7| + %|:L‘Ew; — W] + %lxnw?n — Top0n|
<o L5+ :cn<w2n — W::Q—;;M> — :r;gn(wn — m)’

<OV | |01 4 g |61 < 610

Also for ¢ = n, 2n, we compute
|z + tws|? = |2i|* + 2 |wi]* + 2txs0;
< fanl? 4 won]® + 26| (2, 220) | + 2t (2i0; — |(20, 220)])
< (| van)| 41 28], 00)] (- — 1)
< (|(@n, wan)| +1)* + 2t( )
< (|(@n, 220)| + )% + 2| (20, 220)
= (I( )* +2t|( )

As |[(xn, T2p)| + 1 — a| < 6, we obtain
([ (@, 220)| +1)* = a®] 9,
|2t(f€mx2n)|\/1 — w2 = fwp 2 = 11 S (1t — al + 8) (Jwil” + |wi[*)
S (H+0)* <9,

21, 7| (] — 1)
(s 20)] = 1)
T 20| 1) 4 28] (2, 22| (/1 — [f]2 — k2 — 1),

where we use |I| = 6% = 6¢=2. This implies
sz + twi|2 — CL2| 5 0
and hence ||z; — tw;| — a| < 0. Thus, for (z,z) € RS, we have

foom(z, ) = / fla +tw, 7 + taT Jw) du(w) Z 2600 = §n0-0)

S2n—1
and (6.8) is proved. Hence (6.7) follows.
The lower bound (6.7) implies

N 1/q
IMefll, = (D meas(RY))
v=1

Z 5n(1—9)N(E N I, 5)1/q((6g—1)2n—252+0)1/q

> §7(1=0) 53 (1+0)n+(1=0)(e=7)+1)

Thus we obtain the necessary condition for L” — L? boundedness

671(1—0)5%((1+9)n+(1—9)(£—’y)+1) < 5%(n(1—9)+2))'
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for all (4, 1) = (0;,1;) € P.. Taking the limit as j — oo and using that ¢ > 0
can be chosen arbitrarily small we obtain the necessary condition

1+0)n—~(1—-0)+1 n(1—0)+2
n(1 — 6) + (OO0 5 n0=0)

which using § = 1 — 3/ is rewritten as
np 1 B 1(npB
(6.9) TH(E-n+1-p) < (F+2).

In the preceding inequality we get equality for the points Q)3 g, Q4 in (1.3)
and thus (6.9) expresses that (1/p, 1/¢) has to lie on or above the line passing
to @35 and Q4.
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